Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
authorpaulson <lp15@cam.ac.uk>
Tue, 10 Mar 2015 15:20:40 +0000
changeset 59667 651ea265d568
parent 59665 37adca7fd48f
child 59668 1c937d56a70a
Removal of the file HOL/Number_Theory/Binomial!! And class field_char_0 now declared in Int.thy
src/Doc/Tutorial/Sets/Examples.thy
src/HOL/Algebra/Exponent.thy
src/HOL/Fact.thy
src/HOL/Fields.thy
src/HOL/GCD.thy
src/HOL/HOLCF/Universal.thy
src/HOL/Int.thy
src/HOL/Library/Formal_Power_Series.thy
src/HOL/Library/NthRoot_Limits.thy
src/HOL/Number_Theory/Binomial.thy
src/HOL/Number_Theory/Cong.thy
src/HOL/Number_Theory/Fib.thy
src/HOL/Number_Theory/Primes.thy
src/HOL/Number_Theory/Residues.thy
src/HOL/Probability/Probability_Mass_Function.thy
src/HOL/ROOT
src/HOL/Rat.thy
--- a/src/Doc/Tutorial/Sets/Examples.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/Doc/Tutorial/Sets/Examples.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -1,4 +1,4 @@
-theory Examples imports "~~/src/HOL/Number_Theory/Binomial" begin
+theory Examples imports Complex_Main begin
 
 declare [[eta_contract = false]]
 
--- a/src/HOL/Algebra/Exponent.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Algebra/Exponent.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -6,7 +6,7 @@
 *)
 
 theory Exponent
-imports Main "~~/src/HOL/Number_Theory/Primes" "~~/src/HOL/Number_Theory/Binomial"
+imports Main "~~/src/HOL/Number_Theory/Primes"
 begin
 
 section {*Sylow's Theorem*}
@@ -35,7 +35,7 @@
 
 lemma prime_dvd_cases:
   fixes p::nat
-  shows "[| p*k dvd m*n;  prime p |]  
+  shows "[| p*k dvd m*n;  prime p |]
    ==> (\<exists>x. k dvd x*n & m = p*x) | (\<exists>y. k dvd m*y & n = p*y)"
 apply (simp add: prime_iff)
 apply (frule dvd_mult_left)
@@ -48,10 +48,10 @@
 done
 
 
-lemma prime_power_dvd_cases [rule_format (no_asm)]: 
+lemma prime_power_dvd_cases [rule_format (no_asm)]:
 fixes p::nat
   shows "prime p
-  ==> \<forall>m n. p^c dvd m*n -->  
+  ==> \<forall>m n. p^c dvd m*n -->
         (\<forall>a b. a+b = Suc c --> p^a dvd m | p^b dvd n)"
 apply (induct c)
 apply (metis dvd_1_left nat_power_eq_Suc_0_iff one_is_add)
@@ -119,7 +119,7 @@
 lemma power_Suc_exponent_Not_dvd:
   "[|(p * p ^ exponent p s) dvd s;  prime p |] ==> s=0"
 apply (subgoal_tac "p ^ Suc (exponent p s) dvd s")
- prefer 2 apply simp 
+ prefer 2 apply simp
 apply (rule ccontr)
 apply (drule exponent_ge, auto)
 done
@@ -147,7 +147,7 @@
 by (metis mult_dvd_mono power_exponent_dvd)
 
 (* exponent_mult_add, opposite inclusion *)
-lemma exponent_mult_add2: "[| a > 0; b > 0 |]  
+lemma exponent_mult_add2: "[| a > 0; b > 0 |]
   ==> exponent p (a * b) <= (exponent p a) + (exponent p b)"
 apply (case_tac "prime p")
 apply (rule leI, clarify)
@@ -155,7 +155,7 @@
 apply (subgoal_tac "p ^ (Suc (exponent p a + exponent p b)) dvd a * b")
 apply (rule_tac [2] le_imp_power_dvd [THEN dvd_trans])
   prefer 3 apply assumption
- prefer 2 apply simp 
+ prefer 2 apply simp
 apply (frule_tac a = "Suc (exponent p a) " and b = "Suc (exponent p b) " in prime_power_dvd_cases)
  apply (assumption, force, simp)
 apply (blast dest: power_Suc_exponent_Not_dvd)
@@ -185,7 +185,7 @@
 text{*Main Combinatorial Argument*}
 
 lemma gcd_mult': fixes a::nat shows "gcd b (a * b) = b"
-by (simp add: mult.commute[of a b]) 
+by (simp add: mult.commute[of a b])
 
 lemma le_extend_mult: "[| c > 0; a <= b |] ==> a <= b * (c::nat)"
 apply (rule_tac P = "%x. x <= b * c" in subst)
@@ -204,7 +204,7 @@
 apply (metis diff_is_0_eq dvd_diffD1 gcd_dvd2_nat gcd_mult' gr0I le_extend_mult less_diff_conv nat_dvd_not_less mult.commute not_add_less2 xt1(10))
 done
 
-lemma p_fac_forw: "[| (m::nat) > 0; k>0; k < p^a; (p^r) dvd (p^a)* m - k |]  
+lemma p_fac_forw: "[| (m::nat) > 0; k>0; k < p^a; (p^r) dvd (p^a)* m - k |]
   ==> (p^r) dvd (p^a) - k"
 apply (frule p_fac_forw_lemma [THEN le_imp_power_dvd, of _ k p], auto)
 apply (subgoal_tac "p^r dvd p^a*m")
@@ -220,7 +220,7 @@
   "[| (k::nat) > 0; k < p^a; p>0; (p^r) dvd (p^a) - k |] ==> r <= a"
 by (rule_tac m = "Suc 0" in p_fac_forw_lemma, auto)
 
-lemma p_fac_backw: "[| m>0; k>0; (p::nat)\<noteq>0;  k < p^a;  (p^r) dvd p^a - k |]  
+lemma p_fac_backw: "[| m>0; k>0; (p::nat)\<noteq>0;  k < p^a;  (p^r) dvd p^a - k |]
   ==> (p^r) dvd (p^a)*m - k"
 apply (frule_tac k1 = k and p1 = p in r_le_a_forw [THEN le_imp_power_dvd], auto)
 apply (subgoal_tac "p^r dvd p^a*m")
@@ -231,7 +231,7 @@
 apply (drule less_imp_Suc_add, auto)
 done
 
-lemma exponent_p_a_m_k_equation: "[| m>0; k>0; (p::nat)\<noteq>0;  k < p^a |]  
+lemma exponent_p_a_m_k_equation: "[| m>0; k>0; (p::nat)\<noteq>0;  k < p^a |]
   ==> exponent p (p^a * m - k) = exponent p (p^a - k)"
 apply (blast intro: exponent_equalityI p_fac_forw p_fac_backw)
 done
@@ -241,16 +241,16 @@
 
 (*The bound K is needed; otherwise it's too weak to be used.*)
 lemma p_not_div_choose_lemma [rule_format]:
-  "[| \<forall>i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))|]  
+  "[| \<forall>i. Suc i < K --> exponent p (Suc i) = exponent p (Suc(j+i))|]
    ==> k<K --> exponent p ((j+k) choose k) = 0"
 apply (cases "prime p")
- prefer 2 apply simp 
+ prefer 2 apply simp
 apply (induct k)
 apply (simp (no_asm))
 (*induction step*)
 apply (subgoal_tac "(Suc (j+k) choose Suc k) > 0")
  prefer 2 apply (simp, clarify)
-apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) = 
+apply (subgoal_tac "exponent p ((Suc (j+k) choose Suc k) * Suc k) =
                     exponent p (Suc k)")
  txt{*First, use the assumed equation.  We simplify the LHS to
   @{term "exponent p (Suc (j + k) choose Suc k) + exponent p (Suc k)"}
@@ -276,7 +276,7 @@
 lemma const_p_fac_right:
   "m>0 ==> exponent p ((p^a * m - Suc 0) choose (p^a - Suc 0)) = 0"
 apply (case_tac "prime p")
- prefer 2 apply simp 
+ prefer 2 apply simp
 apply (frule_tac a = a in zero_less_prime_power)
 apply (rule_tac K = "p^a" in p_not_div_choose)
    apply simp
@@ -294,14 +294,14 @@
 lemma const_p_fac:
   "m>0 ==> exponent p (((p^a) * m) choose p^a) = exponent p m"
 apply (case_tac "prime p")
- prefer 2 apply simp 
+ prefer 2 apply simp
 apply (subgoal_tac "0 < p^a * m & p^a <= p^a * m")
  prefer 2 apply (force simp add: prime_iff)
 txt{*A similar trick to the one used in @{text p_not_div_choose_lemma}:
   insert an equation; use @{text exponent_mult_add} on the LHS; on the RHS,
   first
   transform the binomial coefficient, then use @{text exponent_mult_add}.*}
-apply (subgoal_tac "exponent p ((( (p^a) * m) choose p^a) * p^a) = 
+apply (subgoal_tac "exponent p ((( (p^a) * m) choose p^a) * p^a) =
                     a + exponent p m")
  apply (simp add: exponent_mult_add)
 txt{*one subgoal left!*}
--- a/src/HOL/Fact.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Fact.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -15,7 +15,7 @@
   fixes fact :: "'a \<Rightarrow> 'a"
 
 instantiation nat :: fact
-begin 
+begin
 
 fun
   fact_nat :: "nat \<Rightarrow> nat"
@@ -31,11 +31,11 @@
 
 instantiation int :: fact
 
-begin 
+begin
 
 definition
   fact_int :: "int \<Rightarrow> int"
-where  
+where
   "fact_int x = (if x >= 0 then int (fact (nat x)) else 0)"
 
 instance proof qed
@@ -55,7 +55,7 @@
   "x >= (0::int) \<Longrightarrow> fact x >= 0"
   by (auto simp add: fact_int_def)
 
-declare transfer_morphism_nat_int[transfer add return: 
+declare transfer_morphism_nat_int[transfer add return:
     transfer_nat_int_factorial transfer_nat_int_factorial_closure]
 
 lemma transfer_int_nat_factorial:
@@ -66,7 +66,7 @@
   "is_nat x \<Longrightarrow> fact x >= 0"
   by (auto simp add: fact_int_def)
 
-declare transfer_morphism_int_nat[transfer add return: 
+declare transfer_morphism_int_nat[transfer add return:
     transfer_int_nat_factorial transfer_int_nat_factorial_closure]
 
 
@@ -87,10 +87,10 @@
 lemma fact_plus_one_nat: "fact ((n::nat) + 1) = (n + 1) * fact n"
   by simp
 
-lemma fact_plus_one_int: 
+lemma fact_plus_one_int:
   assumes "n >= 0"
   shows "fact ((n::int) + 1) = (n + 1) * fact n"
-  using assms unfolding fact_int_def 
+  using assms unfolding fact_int_def
   by (simp add: nat_add_distrib algebra_simps int_mult)
 
 lemma fact_reduce_nat: "(n::nat) > 0 \<Longrightarrow> fact n = n * fact (n - 1)"
@@ -153,7 +153,7 @@
   apply auto
   done
 
-lemma interval_plus_one_nat: "(i::nat) <= j + 1 \<Longrightarrow> 
+lemma interval_plus_one_nat: "(i::nat) <= j + 1 \<Longrightarrow>
   {i..j+1} = {i..j} Un {j+1}"
   by auto
 
@@ -199,7 +199,7 @@
     case (Suc d')
     have "fact (n + Suc d') div fact n = Suc (n + d') * fact (n + d') div fact n"
       by simp
-    also from Suc.hyps have "... = Suc (n + d') * \<Prod>{n + 1..n + d'}" 
+    also from Suc.hyps have "... = Suc (n + d') * \<Prod>{n + 1..n + d'}"
       unfolding div_mult1_eq[of _ "fact (n + d')"] by (simp add: fact_mod)
     also have "... = \<Prod>{n + 1..n + Suc d'}"
       by (simp add: atLeastAtMostSuc_conv setprod.insert)
@@ -224,7 +224,7 @@
   apply arith
 done
 
-lemma fact_mono_int_aux [rule_format]: "k >= (0::int) \<Longrightarrow> 
+lemma fact_mono_int_aux [rule_format]: "k >= (0::int) \<Longrightarrow>
     fact (m + k) >= fact m"
   apply (case_tac "m < 0")
   apply auto
@@ -266,7 +266,7 @@
   apply auto
 done
 
-lemma fact_num_eq_if_nat: "fact (m::nat) = 
+lemma fact_num_eq_if_nat: "fact (m::nat) =
   (if m=0 then 1 else m * fact (m - 1))"
 by (cases m) auto
 
@@ -275,7 +275,7 @@
 by (cases "m + n") auto
 
 lemma fact_add_num_eq_if2_nat:
-  "fact ((m::nat) + n) = 
+  "fact ((m::nat) + n) =
     (if m = 0 then fact n else (m + n) * fact ((m - 1) + n))"
 by (cases m) auto
 
@@ -339,7 +339,7 @@
 lemma binomial_Suc_Suc [simp]: "(Suc n choose Suc k) = (n choose k) + (n choose Suc k)"
   by simp
 
-lemma choose_reduce_nat: 
+lemma choose_reduce_nat:
   "0 < (n::nat) \<Longrightarrow> 0 < k \<Longrightarrow>
     (n choose k) = ((n - 1) choose (k - 1)) + ((n - 1) choose k)"
   by (metis Suc_diff_1 binomial.simps(2) neq0_conv)
@@ -404,7 +404,7 @@
     {s. s \<subseteq> M \<and> card s = Suc k} \<union> {s. \<exists>t. t \<subseteq> M \<and> card t = k \<and> s = insert x t}"
   apply safe
      apply (auto intro: finite_subset [THEN card_insert_disjoint])
-  by (metis (full_types) Diff_insert_absorb Set.set_insert Zero_neq_Suc card_Diff_singleton_if 
+  by (metis (full_types) Diff_insert_absorb Set.set_insert Zero_neq_Suc card_Diff_singleton_if
      card_eq_0_iff diff_Suc_1 in_mono subset_insert_iff)
 
 lemma finite_bex_subset [simp]:
@@ -455,7 +455,7 @@
 subsection {* The binomial theorem (courtesy of Tobias Nipkow): *}
 
 text{* Avigad's version, generalized to any commutative ring *}
-theorem binomial_ring: "(a+b::'a::{comm_ring_1,power})^n = 
+theorem binomial_ring: "(a+b::'a::{comm_ring_1,power})^n =
   (\<Sum>k=0..n. (of_nat (n choose k)) * a^k * b^(n-k))" (is "?P n")
 proof (induct n)
   case 0 then show "?P 0" by simp
@@ -465,7 +465,7 @@
     by auto
   have decomp2: "{0..n} = {0} Un {1..n}"
     by auto
-  have "(a+b)^(n+1) = 
+  have "(a+b)^(n+1) =
       (a+b) * (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k))"
     using Suc.hyps by simp
   also have "\<dots> = a*(\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n-k)) +
@@ -476,14 +476,14 @@
     by (auto simp add: setsum_right_distrib ac_simps)
   also have "\<dots> = (\<Sum>k=0..n. of_nat (n choose k) * a^k * b^(n+1-k)) +
                   (\<Sum>k=1..n+1. of_nat (n choose (k - 1)) * a^k * b^(n+1-k))"
-    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le field_simps  
+    by (simp add:setsum_shift_bounds_cl_Suc_ivl Suc_diff_le field_simps
         del:setsum_cl_ivl_Suc)
   also have "\<dots> = a^(n+1) + b^(n+1) +
                   (\<Sum>k=1..n. of_nat (n choose (k - 1)) * a^k * b^(n+1-k)) +
                   (\<Sum>k=1..n. of_nat (n choose k) * a^k * b^(n+1-k))"
     by (simp add: decomp2)
   also have
-      "\<dots> = a^(n+1) + b^(n+1) + 
+      "\<dots> = a^(n+1) + b^(n+1) +
             (\<Sum>k=1..n. of_nat(n+1 choose k) * a^k * b^(n+1-k))"
     by (auto simp add: field_simps setsum.distrib [symmetric] choose_reduce_nat)
   also have "\<dots> = (\<Sum>k=0..n+1. of_nat (n+1 choose k) * a^k * b^(n+1-k))"
@@ -518,7 +518,7 @@
       by simp
     from n h th0
     have "fact k * fact (n - k) * (n choose k) =
-        k * (fact h * fact (m - h) * (m choose h)) + 
+        k * (fact h * fact (m - h) * (m choose h)) +
         (m - h) * (fact k * fact (m - k) * (m choose k))"
       by (simp add: field_simps)
     also have "\<dots> = (k + (m - h)) * fact m"
@@ -537,4 +537,644 @@
   using binomial_fact_lemma[OF kn]
   by (simp add: field_simps of_nat_mult [symmetric])
 
+lemma choose_row_sum: "(\<Sum>k=0..n. n choose k) = 2^n"
+  using binomial [of 1 "1" n]
+  by (simp add: numeral_2_eq_2)
+
+lemma sum_choose_lower: "(\<Sum>k=0..n. (r+k) choose k) = Suc (r+n) choose n"
+  by (induct n) auto
+
+lemma sum_choose_upper: "(\<Sum>k=0..n. k choose m) = Suc n choose Suc m"
+  by (induct n) auto
+
+lemma natsum_reverse_index:
+  fixes m::nat
+  shows "(\<And>k. m \<le> k \<Longrightarrow> k \<le> n \<Longrightarrow> g k = f (m + n - k)) \<Longrightarrow> (\<Sum>k=m..n. f k) = (\<Sum>k=m..n. g k)"
+  by (rule setsum.reindex_bij_witness[where i="\<lambda>k. m+n-k" and j="\<lambda>k. m+n-k"]) auto
+
+text{*NW diagonal sum property*}
+lemma sum_choose_diagonal:
+  assumes "m\<le>n" shows "(\<Sum>k=0..m. (n-k) choose (m-k)) = Suc n choose m"
+proof -
+  have "(\<Sum>k=0..m. (n-k) choose (m-k)) = (\<Sum>k=0..m. (n-m+k) choose k)"
+    by (rule natsum_reverse_index) (simp add: assms)
+  also have "... = Suc (n-m+m) choose m"
+    by (rule sum_choose_lower)
+  also have "... = Suc n choose m" using assms
+    by simp
+  finally show ?thesis .
+qed
+
+subsection{* Pochhammer's symbol : generalized rising factorial *}
+
+text {* See @{url "http://en.wikipedia.org/wiki/Pochhammer_symbol"} *}
+
+definition "pochhammer (a::'a::comm_semiring_1) n =
+  (if n = 0 then 1 else setprod (\<lambda>n. a + of_nat n) {0 .. n - 1})"
+
+lemma pochhammer_0 [simp]: "pochhammer a 0 = 1"
+  by (simp add: pochhammer_def)
+
+lemma pochhammer_1 [simp]: "pochhammer a 1 = a"
+  by (simp add: pochhammer_def)
+
+lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a"
+  by (simp add: pochhammer_def)
+
+lemma pochhammer_Suc_setprod: "pochhammer a (Suc n) = setprod (\<lambda>n. a + of_nat n) {0 .. n}"
+  by (simp add: pochhammer_def)
+
+lemma setprod_nat_ivl_Suc: "setprod f {0 .. Suc n} = setprod f {0..n} * f (Suc n)"
+proof -
+  have "{0..Suc n} = {0..n} \<union> {Suc n}" by auto
+  then show ?thesis by (simp add: field_simps)
+qed
+
+lemma setprod_nat_ivl_1_Suc: "setprod f {0 .. Suc n} = f 0 * setprod f {1.. Suc n}"
+proof -
+  have "{0..Suc n} = {0} \<union> {1 .. Suc n}" by auto
+  then show ?thesis by simp
+qed
+
+
+lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)"
+proof (cases n)
+  case 0
+  then show ?thesis by simp
+next
+  case (Suc n)
+  show ?thesis unfolding Suc pochhammer_Suc_setprod setprod_nat_ivl_Suc ..
+qed
+
+lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n"
+proof (cases "n = 0")
+  case True
+  then show ?thesis by (simp add: pochhammer_Suc_setprod)
+next
+  case False
+  have *: "finite {1 .. n}" "0 \<notin> {1 .. n}" by auto
+  have eq: "insert 0 {1 .. n} = {0..n}" by auto
+  have **: "(\<Prod>n\<in>{1\<Colon>nat..n}. a + of_nat n) = (\<Prod>n\<in>{0\<Colon>nat..n - 1}. a + 1 + of_nat n)"
+    apply (rule setprod.reindex_cong [where l = Suc])
+    using False
+    apply (auto simp add: fun_eq_iff field_simps)
+    done
+  show ?thesis
+    apply (simp add: pochhammer_def)
+    unfolding setprod.insert [OF *, unfolded eq]
+    using ** apply (simp add: field_simps)
+    done
+qed
+
+lemma pochhammer_fact: "of_nat (fact n) = pochhammer 1 n"
+  unfolding fact_altdef_nat
+  apply (cases n)
+   apply (simp_all add: of_nat_setprod pochhammer_Suc_setprod)
+  apply (rule setprod.reindex_cong [where l = Suc])
+    apply (auto simp add: fun_eq_iff)
+  done
+
+lemma pochhammer_of_nat_eq_0_lemma:
+  assumes "k > n"
+  shows "pochhammer (- (of_nat n :: 'a:: idom)) k = 0"
+proof (cases "n = 0")
+  case True
+  then show ?thesis
+    using assms by (cases k) (simp_all add: pochhammer_rec)
+next
+  case False
+  from assms obtain h where "k = Suc h" by (cases k) auto
+  then show ?thesis
+    by (simp add: pochhammer_Suc_setprod)
+       (metis Suc_leI Suc_le_mono assms atLeastAtMost_iff less_eq_nat.simps(1))
+qed
+
+lemma pochhammer_of_nat_eq_0_lemma':
+  assumes kn: "k \<le> n"
+  shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k \<noteq> 0"
+proof (cases k)
+  case 0
+  then show ?thesis by simp
+next
+  case (Suc h)
+  then show ?thesis
+    apply (simp add: pochhammer_Suc_setprod)
+    using Suc kn apply (auto simp add: algebra_simps)
+    done
+qed
+
+lemma pochhammer_of_nat_eq_0_iff:
+  shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n"
+  (is "?l = ?r")
+  using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a]
+    pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a]
+  by (auto simp add: not_le[symmetric])
+
+lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)"
+  apply (auto simp add: pochhammer_of_nat_eq_0_iff)
+  apply (cases n)
+   apply (auto simp add: pochhammer_def algebra_simps group_add_class.eq_neg_iff_add_eq_0)
+  apply (metis leD not_less_eq)
+  done
+
+lemma pochhammer_eq_0_mono:
+  "pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0"
+  unfolding pochhammer_eq_0_iff by auto
+
+lemma pochhammer_neq_0_mono:
+  "pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0"
+  unfolding pochhammer_eq_0_iff by auto
+
+lemma pochhammer_minus:
+  assumes kn: "k \<le> n"
+  shows "pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k"
+proof (cases k)
+  case 0
+  then show ?thesis by simp
+next
+  case (Suc h)
+  have eq: "((- 1) ^ Suc h :: 'a) = (\<Prod>i=0..h. - 1)"
+    using setprod_constant[where A="{0 .. h}" and y="- 1 :: 'a"]
+    by auto
+  show ?thesis
+    unfolding Suc pochhammer_Suc_setprod eq setprod.distrib[symmetric]
+    by (rule setprod.reindex_bij_witness[where i="op - h" and j="op - h"])
+       (auto simp: of_nat_diff)
+qed
+
+lemma pochhammer_minus':
+  assumes kn: "k \<le> n"
+  shows "pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k"
+  unfolding pochhammer_minus[OF kn, where b=b]
+  unfolding mult.assoc[symmetric]
+  unfolding power_add[symmetric]
+  by simp
+
+lemma pochhammer_same: "pochhammer (- of_nat n) n =
+    ((- 1) ^ n :: 'a::comm_ring_1) * of_nat (fact n)"
+  unfolding pochhammer_minus[OF le_refl[of n]]
+  by (simp add: of_nat_diff pochhammer_fact)
+
+
+subsection{* Generalized binomial coefficients *}
+
+definition gbinomial :: "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
+  where "a gchoose n =
+    (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / of_nat (fact n))"
+
+lemma gbinomial_0 [simp]: "a gchoose 0 = 1" "0 gchoose (Suc n) = 0"
+  apply (simp_all add: gbinomial_def)
+  apply (subgoal_tac "(\<Prod>i\<Colon>nat\<in>{0\<Colon>nat..n}. - of_nat i) = (0::'b)")
+   apply (simp del:setprod_zero_iff)
+  apply simp
+  done
+
+lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / of_nat (fact n)"
+proof (cases "n = 0")
+  case True
+  then show ?thesis by simp
+next
+  case False
+  from this setprod_constant[of "{0 .. n - 1}" "- (1:: 'a)"]
+  have eq: "(- (1\<Colon>'a)) ^ n = setprod (\<lambda>i. - 1) {0 .. n - 1}"
+    by auto
+  from False show ?thesis
+    by (simp add: pochhammer_def gbinomial_def field_simps
+      eq setprod.distrib[symmetric])
+qed
+
+lemma binomial_gbinomial: "of_nat (n choose k) = of_nat n gchoose k"
+proof -
+  { assume kn: "k > n"
+    then have ?thesis
+      by (subst binomial_eq_0[OF kn])
+         (simp add: gbinomial_pochhammer field_simps  pochhammer_of_nat_eq_0_iff) }
+  moreover
+  { assume "k=0" then have ?thesis by simp }
+  moreover
+  { assume kn: "k \<le> n" and k0: "k\<noteq> 0"
+    from k0 obtain h where h: "k = Suc h" by (cases k) auto
+    from h
+    have eq:"(- 1 :: 'a) ^ k = setprod (\<lambda>i. - 1) {0..h}"
+      by (subst setprod_constant) auto
+    have eq': "(\<Prod>i\<in>{0..h}. of_nat n + - (of_nat i :: 'a)) = (\<Prod>i\<in>{n - h..n}. of_nat i)"
+        using h kn
+      by (intro setprod.reindex_bij_witness[where i="op - n" and j="op - n"])
+         (auto simp: of_nat_diff)
+    have th0: "finite {1..n - Suc h}" "finite {n - h .. n}"
+        "{1..n - Suc h} \<inter> {n - h .. n} = {}" and
+        eq3: "{1..n - Suc h} \<union> {n - h .. n} = {1..n}"
+      using h kn by auto
+    from eq[symmetric]
+    have ?thesis using kn
+      apply (simp add: binomial_fact[OF kn, where ?'a = 'a]
+        gbinomial_pochhammer field_simps pochhammer_Suc_setprod)
+      apply (simp add: pochhammer_Suc_setprod fact_altdef_nat h
+        of_nat_setprod setprod.distrib[symmetric] eq' del: One_nat_def power_Suc)
+      unfolding setprod.union_disjoint[OF th0, unfolded eq3, of "of_nat:: nat \<Rightarrow> 'a"] eq[unfolded h]
+      unfolding mult.assoc[symmetric]
+      unfolding setprod.distrib[symmetric]
+      apply simp
+      apply (intro setprod.reindex_bij_witness[where i="op - n" and j="op - n"])
+      apply (auto simp: of_nat_diff)
+      done
+  }
+  moreover
+  have "k > n \<or> k = 0 \<or> (k \<le> n \<and> k \<noteq> 0)" by arith
+  ultimately show ?thesis by blast
+qed
+
+lemma gbinomial_1[simp]: "a gchoose 1 = a"
+  by (simp add: gbinomial_def)
+
+lemma gbinomial_Suc0[simp]: "a gchoose (Suc 0) = a"
+  by (simp add: gbinomial_def)
+
+lemma gbinomial_mult_1:
+  "a * (a gchoose n) =
+    of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"  (is "?l = ?r")
+proof -
+  have "?r = ((- 1) ^n * pochhammer (- a) n / of_nat (fact n)) * (of_nat n - (- a + of_nat n))"
+    unfolding gbinomial_pochhammer
+      pochhammer_Suc fact_Suc of_nat_mult right_diff_distrib power_Suc
+    by (simp add:  field_simps del: of_nat_Suc)
+  also have "\<dots> = ?l" unfolding gbinomial_pochhammer
+    by (simp add: field_simps)
+  finally show ?thesis ..
+qed
+
+lemma gbinomial_mult_1':
+    "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
+  by (simp add: mult.commute gbinomial_mult_1)
+
+lemma gbinomial_Suc:
+    "a gchoose (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k}) / of_nat (fact (Suc k))"
+  by (simp add: gbinomial_def)
+
+lemma gbinomial_mult_fact:
+  "(of_nat (fact (Suc k)) :: 'a) * ((a::'a::field_char_0) gchoose (Suc k)) =
+    (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
+  by (simp_all add: gbinomial_Suc field_simps del: fact_Suc)
+
+lemma gbinomial_mult_fact':
+  "((a::'a::field_char_0) gchoose (Suc k)) * (of_nat (fact (Suc k)) :: 'a) =
+    (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
+  using gbinomial_mult_fact[of k a]
+  by (subst mult.commute)
+
+
+lemma gbinomial_Suc_Suc:
+  "((a::'a::field_char_0) + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
+proof (cases k)
+  case 0
+  then show ?thesis by simp
+next
+  case (Suc h)
+  have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
+    apply (rule setprod.reindex_cong [where l = Suc])
+      using Suc
+      apply auto
+    done
+  have "of_nat (fact (Suc k)) * (a gchoose k + (a gchoose (Suc k))) =
+    ((a gchoose Suc h) * of_nat (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
+    apply (simp add: Suc field_simps del: fact_Suc)
+    unfolding gbinomial_mult_fact'
+    apply (subst fact_Suc)
+    unfolding of_nat_mult
+    apply (subst mult.commute)
+    unfolding mult.assoc
+    unfolding gbinomial_mult_fact
+    apply (simp add: field_simps)
+    done
+  also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
+    unfolding gbinomial_mult_fact' setprod_nat_ivl_Suc
+    by (simp add: field_simps Suc)
+  also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
+    using eq0
+    by (simp add: Suc setprod_nat_ivl_1_Suc)
+  also have "\<dots> = of_nat (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
+    unfolding gbinomial_mult_fact ..
+  finally show ?thesis by (simp del: fact_Suc)
+qed
+
+lemma gbinomial_reduce_nat:
+  "0 < k \<Longrightarrow> (a::'a::field_char_0) gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
+by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
+
+
+lemma binomial_symmetric:
+  assumes kn: "k \<le> n"
+  shows "n choose k = n choose (n - k)"
+proof-
+  from kn have kn': "n - k \<le> n" by arith
+  from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn']
+  have "fact k * fact (n - k) * (n choose k) =
+    fact (n - k) * fact (n - (n - k)) * (n choose (n - k))" by simp
+  then show ?thesis using kn by simp
+qed
+
+text{*Contributed by Manuel Eberl, generalised by LCP.
+  Alternative definition of the binomial coefficient as @{term "\<Prod>i<k. (n - i) / (k - i)"} *}
+lemma gbinomial_altdef_of_nat:
+  fixes k :: nat
+    and x :: "'a :: {field_char_0,field_inverse_zero}"
+  shows "x gchoose k = (\<Prod>i<k. (x - of_nat i) / of_nat (k - i) :: 'a)"
+proof -
+  have "(x gchoose k) = (\<Prod>i<k. x - of_nat i) / of_nat (fact k)"
+    unfolding gbinomial_def
+    by (auto simp: gr0_conv_Suc lessThan_Suc_atMost atLeast0AtMost)
+  also have "\<dots> = (\<Prod>i<k. (x - of_nat i) / of_nat (k - i) :: 'a)"
+    unfolding fact_eq_rev_setprod_nat of_nat_setprod
+    by (auto simp add: setprod_dividef intro!: setprod.cong of_nat_diff[symmetric])
+  finally show ?thesis .
+qed
+
+lemma gbinomial_ge_n_over_k_pow_k:
+  fixes k :: nat
+    and x :: "'a :: linordered_field_inverse_zero"
+  assumes "of_nat k \<le> x"
+  shows "(x / of_nat k :: 'a) ^ k \<le> x gchoose k"
+proof -
+  have x: "0 \<le> x"
+    using assms of_nat_0_le_iff order_trans by blast
+  have "(x / of_nat k :: 'a) ^ k = (\<Prod>i<k. x / of_nat k :: 'a)"
+    by (simp add: setprod_constant)
+  also have "\<dots> \<le> x gchoose k"
+    unfolding gbinomial_altdef_of_nat
+  proof (safe intro!: setprod_mono)
+    fix i :: nat
+    assume ik: "i < k"
+    from assms have "x * of_nat i \<ge> of_nat (i * k)"
+      by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult)
+    then have "x * of_nat k - x * of_nat i \<le> x * of_nat k - of_nat (i * k)" by arith
+    then have "x * of_nat (k - i) \<le> (x - of_nat i) * of_nat k"
+      using ik
+      by (simp add: algebra_simps zero_less_mult_iff of_nat_diff of_nat_mult)
+    then have "x * of_nat (k - i) \<le> (x - of_nat i) * (of_nat k :: 'a)"
+      unfolding of_nat_mult[symmetric] of_nat_le_iff .
+    with assms show "x / of_nat k \<le> (x - of_nat i) / (of_nat (k - i) :: 'a)"
+      using `i < k` by (simp add: field_simps)
+  qed (simp add: x zero_le_divide_iff)
+  finally show ?thesis .
+qed
+
+text{*Versions of the theorems above for the natural-number version of "choose"*}
+lemma binomial_altdef_of_nat:
+  fixes n k :: nat
+    and x :: "'a :: {field_char_0,field_inverse_zero}"  --{*the point is to constrain @{typ 'a}*}
+  assumes "k \<le> n"
+  shows "of_nat (n choose k) = (\<Prod>i<k. of_nat (n - i) / of_nat (k - i) :: 'a)"
+using assms
+by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)
+
+lemma binomial_ge_n_over_k_pow_k:
+  fixes k n :: nat
+    and x :: "'a :: linordered_field_inverse_zero"
+  assumes "k \<le> n"
+  shows "(of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)"
+by (simp add: assms gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)
+
+lemma binomial_le_pow:
+  assumes "r \<le> n"
+  shows "n choose r \<le> n ^ r"
+proof -
+  have "n choose r \<le> fact n div fact (n - r)"
+    using `r \<le> n` by (subst binomial_fact_lemma[symmetric]) auto
+  with fact_div_fact_le_pow [OF assms] show ?thesis by auto
+qed
+
+lemma binomial_altdef_nat: "(k::nat) \<le> n \<Longrightarrow>
+    n choose k = fact n div (fact k * fact (n - k))"
+ by (subst binomial_fact_lemma [symmetric]) auto
+
+lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"
+by (metis binomial_fact_lemma dvd_def)
+
+lemma choose_dvd_int:
+  assumes "(0::int) <= k" and "k <= n"
+  shows "fact k * fact (n - k) dvd fact n"
+  apply (subst tsub_eq [symmetric], rule assms)
+  apply (rule choose_dvd_nat [transferred])
+  using assms apply auto
+  done
+
+lemma fact_fact_dvd_fact: fixes k::nat shows "fact k * fact n dvd fact (n + k)"
+by (metis add.commute add_diff_cancel_left' choose_dvd_nat le_add2)
+
+lemma choose_mult_lemma:
+     "((m+r+k) choose (m+k)) * ((m+k) choose k) = ((m+r+k) choose k) * ((m+r) choose m)"
+proof -
+  have "((m+r+k) choose (m+k)) * ((m+k) choose k) =
+        fact (m+r + k) div (fact (m + k) * fact (m+r - m)) * (fact (m + k) div (fact k * fact m))"
+    by (simp add: assms binomial_altdef_nat)
+  also have "... = fact (m+r+k) div (fact r * (fact k * fact m))"
+    apply (subst div_mult_div_if_dvd)
+    apply (auto simp: fact_fact_dvd_fact)
+    apply (metis add.assoc add.commute fact_fact_dvd_fact)
+    done
+  also have "... = (fact (m+r+k) * fact (m+r)) div (fact r * (fact k * fact m) * fact (m+r))"
+    apply (subst div_mult_div_if_dvd [symmetric])
+    apply (auto simp: fact_fact_dvd_fact)
+    apply (metis dvd_trans dvd.dual_order.refl fact_fact_dvd_fact mult_dvd_mono mult.left_commute)
+    done
+  also have "... = (fact (m+r+k) div (fact k * fact (m+r)) * (fact (m+r) div (fact r * fact m)))"
+    apply (subst div_mult_div_if_dvd)
+    apply (auto simp: fact_fact_dvd_fact)
+    apply(metis mult.left_commute)
+    done
+  finally show ?thesis
+    by (simp add: binomial_altdef_nat mult.commute)
+qed
+
+text{*The "Subset of a Subset" identity*}
+lemma choose_mult:
+  assumes "k\<le>m" "m\<le>n"
+    shows "(n choose m) * (m choose k) = (n choose k) * ((n-k) choose (m-k))"
+using assms choose_mult_lemma [of "m-k" "n-m" k]
+by simp
+
+
+subsection {* Binomial coefficients *}
+
+lemma choose_one: "(n::nat) choose 1 = n"
+  by simp
+
+(*FIXME: messy and apparently unused*)
+lemma binomial_induct [rule_format]: "(ALL (n::nat). P n n) \<longrightarrow>
+    (ALL n. P (Suc n) 0) \<longrightarrow> (ALL n. (ALL k < n. P n k \<longrightarrow> P n (Suc k) \<longrightarrow>
+    P (Suc n) (Suc k))) \<longrightarrow> (ALL k <= n. P n k)"
+  apply (induct n)
+  apply auto
+  apply (case_tac "k = 0")
+  apply auto
+  apply (case_tac "k = Suc n")
+  apply auto
+  apply (metis Suc_le_eq fact_nat.cases le_Suc_eq le_eq_less_or_eq)
+  done
+
+lemma card_UNION:
+  assumes "finite A" and "\<forall>k \<in> A. finite k"
+  shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
+  (is "?lhs = ?rhs")
+proof -
+  have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))" by simp
+  also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))" (is "_ = nat ?rhs")
+    by(subst setsum_right_distrib) simp
+  also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
+    using assms by(subst setsum.Sigma)(auto)
+  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
+    by (rule setsum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI simp add: split_beta)
+  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
+    using assms by(auto intro!: setsum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"])
+  also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))"
+    using assms by(subst setsum.Sigma) auto
+  also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "setsum ?lhs _ = _")
+  proof(rule setsum.cong[OF refl])
+    fix x
+    assume x: "x \<in> \<Union>A"
+    def K \<equiv> "{X \<in> A. x \<in> X}"
+    with `finite A` have K: "finite K" by auto
+    let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
+    have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
+      using assms by(auto intro!: inj_onI)
+    moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
+      using assms by(auto intro!: rev_image_eqI[where x="(card a, a)" for a]
+        simp add: card_gt_0_iff[folded Suc_le_eq]
+        dest: finite_subset intro: card_mono)
+    ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
+      by (rule setsum.reindex_cong [where l = snd]) fastforce
+    also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))"
+      using assms by(subst setsum.Sigma) auto
+    also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))"
+      by(subst setsum_right_distrib) simp
+    also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))" (is "_ = ?rhs")
+    proof(rule setsum.mono_neutral_cong_right[rule_format])
+      show "{1..card K} \<subseteq> {1..card A}" using `finite A`
+        by(auto simp add: K_def intro: card_mono)
+    next
+      fix i
+      assume "i \<in> {1..card A} - {1..card K}"
+      hence i: "i \<le> card A" "card K < i" by auto
+      have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}"
+        by(auto simp add: K_def)
+      also have "\<dots> = {}" using `finite A` i
+        by(auto simp add: K_def dest: card_mono[rotated 1])
+      finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0"
+        by(simp only:) simp
+    next
+      fix i
+      have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)"
+        (is "?lhs = ?rhs")
+        by(rule setsum.cong)(auto simp add: K_def)
+      thus "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs" by simp
+    qed simp
+    also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}" using assms
+      by(auto simp add: card_eq_0_iff K_def dest: finite_subset)
+    hence "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1"
+      by(subst (2) setsum_head_Suc)(simp_all )
+    also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1"
+      using K by(subst n_subsets[symmetric]) simp_all
+    also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1"
+      by(subst setsum_right_distrib[symmetric]) simp
+    also have "\<dots> =  - ((-1 + 1) ^ card K) + 1"
+      by(subst binomial_ring)(simp add: ac_simps)
+    also have "\<dots> = 1" using x K by(auto simp add: K_def card_gt_0_iff)
+    finally show "?lhs x = 1" .
+  qed
+  also have "nat \<dots> = card (\<Union>A)" by simp
+  finally show ?thesis ..
+qed
+
+text{* The number of nat lists of length @{text m} summing to @{text N} is
+@{term "(N + m - 1) choose N"}: *}
+
+lemma card_length_listsum_rec:
+  assumes "m\<ge>1"
+  shows "card {l::nat list. length l = m \<and> listsum l = N} =
+    (card {l. length l = (m - 1) \<and> listsum l = N} +
+    card {l. length l = m \<and> listsum l + 1 =  N})"
+    (is "card ?C = (card ?A + card ?B)")
+proof -
+  let ?A'="{l. length l = m \<and> listsum l = N \<and> hd l = 0}"
+  let ?B'="{l. length l = m \<and> listsum l = N \<and> hd l \<noteq> 0}"
+  let ?f ="\<lambda> l. 0#l"
+  let ?g ="\<lambda> l. (hd l + 1) # tl l"
+  have 1: "\<And>xs x. xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" by simp
+  have 2: "\<And>xs. (xs::nat list) \<noteq> [] \<Longrightarrow> listsum(tl xs) = listsum xs - hd xs"
+    by(auto simp add: neq_Nil_conv)
+  have f: "bij_betw ?f ?A ?A'"
+    apply(rule bij_betw_byWitness[where f' = tl])
+    using assms
+    by (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv)
+  have 3: "\<And>xs:: nat list. xs \<noteq> [] \<Longrightarrow> hd xs + (listsum xs - hd xs) = listsum xs"
+    by (metis 1 listsum_simps(2) 2)
+  have g: "bij_betw ?g ?B ?B'"
+    apply(rule bij_betw_byWitness[where f' = "\<lambda> l. (hd l - 1) # tl l"])
+    using assms
+    by (auto simp: 2 length_0_conv[symmetric] intro!: 3
+      simp del: length_greater_0_conv length_0_conv)
+  { fix M N :: nat have "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}"
+    using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto }
+    note fin = this
+  have fin_A: "finite ?A" using fin[of _ "N+1"]
+    by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"],
+      auto simp: member_le_listsum_nat less_Suc_eq_le)
+  have fin_B: "finite ?B"
+    by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"],
+      auto simp: member_le_listsum_nat less_Suc_eq_le fin)
+  have uni: "?C = ?A' \<union> ?B'" by auto
+  have disj: "?A' \<inter> ?B' = {}" by auto
+  have "card ?C = card(?A' \<union> ?B')" using uni by simp
+  also have "\<dots> = card ?A + card ?B"
+    using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g]
+      bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B
+    by presburger
+  finally show ?thesis .
+qed
+
+lemma card_length_listsum: --"By Holden Lee, tidied by Tobias Nipkow"
+  "card {l::nat list. size l = m \<and> listsum l = N} = (N + m - 1) choose N"
+proof (cases m)
+  case 0 then show ?thesis
+    by (cases N) (auto simp: cong: conj_cong)
+next
+  case (Suc m')
+    have m: "m\<ge>1" by (simp add: Suc)
+    then show ?thesis
+    proof (induct "N + m - 1" arbitrary: N m)
+      case 0   -- "In the base case, the only solution is [0]."
+      have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
+        by (auto simp: length_Suc_conv)
+      have "m=1 \<and> N=0" using 0 by linarith
+      then show ?case by simp
+    next
+      case (Suc k)
+
+      have c1: "card {l::nat list. size l = (m - 1) \<and> listsum l =  N} =
+        (N + (m - 1) - 1) choose N"
+      proof cases
+        assume "m = 1"
+        with Suc.hyps have "N\<ge>1" by auto
+        with `m = 1` show ?thesis by (simp add: binomial_eq_0)
+      next
+        assume "m \<noteq> 1" thus ?thesis using Suc by fastforce
+      qed
+
+      from Suc have c2: "card {l::nat list. size l = m \<and> listsum l + 1 = N} =
+        (if N>0 then ((N - 1) + m - 1) choose (N - 1) else 0)"
+      proof -
+        have aux: "\<And>m n. n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" by arith
+        from Suc have "N>0 \<Longrightarrow>
+          card {l::nat list. size l = m \<and> listsum l + 1 = N} =
+          ((N - 1) + m - 1) choose (N - 1)" by (simp add: aux)
+        thus ?thesis by auto
+      qed
+
+      from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> listsum l = N} +
+          card {l::nat list. size l = m \<and> listsum l + 1 = N}) = (N + m - 1) choose N"
+        by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def)
+      thus ?case using card_length_listsum_rec[OF Suc.prems] by auto
+    qed
+qed
+
 end
--- a/src/HOL/Fields.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Fields.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -91,7 +91,7 @@
 apply auto
 done
 
-lemma inverse_unique: 
+lemma inverse_unique:
   assumes ab: "a * b = 1"
   shows "inverse a = b"
 proof -
@@ -121,7 +121,7 @@
 lemma inverse_1 [simp]: "inverse 1 = 1"
 by (rule inverse_unique) simp
 
-lemma nonzero_inverse_mult_distrib: 
+lemma nonzero_inverse_mult_distrib:
   assumes "a \<noteq> 0" and "b \<noteq> 0"
   shows "inverse (a * b) = inverse b * inverse a"
 proof -
@@ -199,7 +199,7 @@
 proof -
   assume [simp]: "c \<noteq> 0"
   have "b / c = a \<longleftrightarrow> (b / c) * c = a * c" by simp
-  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult.assoc) 
+  also have "... \<longleftrightarrow> b = a * c" by (simp add: divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -262,7 +262,7 @@
 proof cases
   assume "a=0" thus ?thesis by simp
 next
-  assume "a\<noteq>0" 
+  assume "a\<noteq>0"
   thus ?thesis by (simp add: nonzero_inverse_minus_eq)
 qed
 
@@ -271,7 +271,7 @@
 proof cases
   assume "a=0" thus ?thesis by simp
 next
-  assume "a\<noteq>0" 
+  assume "a\<noteq>0"
   thus ?thesis by (simp add: nonzero_inverse_inverse_eq)
 qed
 
@@ -394,7 +394,7 @@
 
 lemma divide_minus1 [simp]: "x / - 1 = - x"
   using nonzero_minus_divide_right [of "1" x] by simp
-  
+
 end
 
 class field_inverse_zero = field +
@@ -409,10 +409,10 @@
 lemma inverse_mult_distrib [simp]:
   "inverse (a * b) = inverse a * inverse b"
 proof cases
-  assume "a \<noteq> 0 & b \<noteq> 0" 
+  assume "a \<noteq> 0 & b \<noteq> 0"
   thus ?thesis by (simp add: nonzero_inverse_mult_distrib ac_simps)
 next
-  assume "~ (a \<noteq> 0 & b \<noteq> 0)" 
+  assume "~ (a \<noteq> 0 & b \<noteq> 0)"
   thus ?thesis by force
 qed
 
@@ -470,13 +470,13 @@
 
 lemma minus_divide_divide:
   "(- a) / (- b) = a / b"
-apply (cases "b=0", simp) 
-apply (simp add: nonzero_minus_divide_divide) 
+apply (cases "b=0", simp)
+apply (simp add: nonzero_minus_divide_divide)
 done
 
 lemma inverse_eq_1_iff [simp]:
   "inverse x = 1 \<longleftrightarrow> x = 1"
-  by (insert inverse_eq_iff_eq [of x 1], simp) 
+  by (insert inverse_eq_iff_eq [of x 1], simp)
 
 lemma divide_eq_0_iff [simp]:
   "a / b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
@@ -489,7 +489,7 @@
   done
 
 lemma divide_cancel_left [simp]:
-  "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b" 
+  "c / a = c / b \<longleftrightarrow> c = 0 \<or> a = b"
   apply (cases "c=0", simp)
   apply (simp add: divide_inverse)
   done
@@ -524,19 +524,19 @@
 class linordered_field = field + linordered_idom
 begin
 
-lemma positive_imp_inverse_positive: 
-  assumes a_gt_0: "0 < a" 
+lemma positive_imp_inverse_positive:
+  assumes a_gt_0: "0 < a"
   shows "0 < inverse a"
 proof -
-  have "0 < a * inverse a" 
+  have "0 < a * inverse a"
     by (simp add: a_gt_0 [THEN less_imp_not_eq2])
-  thus "0 < inverse a" 
+  thus "0 < inverse a"
     by (simp add: a_gt_0 [THEN less_not_sym] zero_less_mult_iff)
 qed
 
 lemma negative_imp_inverse_negative:
   "a < 0 \<Longrightarrow> inverse a < 0"
-  by (insert positive_imp_inverse_positive [of "-a"], 
+  by (insert positive_imp_inverse_positive [of "-a"],
     simp add: nonzero_inverse_minus_eq less_imp_not_eq)
 
 lemma inverse_le_imp_le:
@@ -577,7 +577,7 @@
 proof
   fix x::'a
   have m1: "- (1::'a) < 0" by simp
-  from add_strict_right_mono[OF m1, where c=x] 
+  from add_strict_right_mono[OF m1, where c=x]
   have "(- 1) + x < x" by simp
   thus "\<exists>y. y < x" by blast
 qed
@@ -587,7 +587,7 @@
 proof
   fix x::'a
   have m1: " (1::'a) > 0" by simp
-  from add_strict_right_mono[OF m1, where c=x] 
+  from add_strict_right_mono[OF m1, where c=x]
   have "1 + x > x" by simp
   thus "\<exists>y. y > x" by blast
 qed
@@ -606,13 +606,13 @@
 lemma inverse_less_imp_less:
   "inverse a < inverse b \<Longrightarrow> 0 < a \<Longrightarrow> b < a"
 apply (simp add: less_le [of "inverse a"] less_le [of "b"])
-apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq) 
+apply (force dest!: inverse_le_imp_le nonzero_inverse_eq_imp_eq)
 done
 
 text{*Both premises are essential. Consider -1 and 1.*}
 lemma inverse_less_iff_less [simp]:
   "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
-  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less) 
+  by (blast intro: less_imp_inverse_less dest: inverse_less_imp_less)
 
 lemma le_imp_inverse_le:
   "a \<le> b \<Longrightarrow> 0 < a \<Longrightarrow> inverse b \<le> inverse a"
@@ -620,42 +620,42 @@
 
 lemma inverse_le_iff_le [simp]:
   "0 < a \<Longrightarrow> 0 < b \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
-  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le) 
+  by (blast intro: le_imp_inverse_le dest: inverse_le_imp_le)
 
 
 text{*These results refer to both operands being negative.  The opposite-sign
 case is trivial, since inverse preserves signs.*}
 lemma inverse_le_imp_le_neg:
   "inverse a \<le> inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b \<le> a"
-apply (rule classical) 
-apply (subgoal_tac "a < 0") 
+apply (rule classical)
+apply (subgoal_tac "a < 0")
  prefer 2 apply force
 apply (insert inverse_le_imp_le [of "-b" "-a"])
-apply (simp add: nonzero_inverse_minus_eq) 
+apply (simp add: nonzero_inverse_minus_eq)
 done
 
 lemma less_imp_inverse_less_neg:
    "a < b \<Longrightarrow> b < 0 \<Longrightarrow> inverse b < inverse a"
-apply (subgoal_tac "a < 0") 
- prefer 2 apply (blast intro: less_trans) 
+apply (subgoal_tac "a < 0")
+ prefer 2 apply (blast intro: less_trans)
 apply (insert less_imp_inverse_less [of "-b" "-a"])
-apply (simp add: nonzero_inverse_minus_eq) 
+apply (simp add: nonzero_inverse_minus_eq)
 done
 
 lemma inverse_less_imp_less_neg:
    "inverse a < inverse b \<Longrightarrow> b < 0 \<Longrightarrow> b < a"
-apply (rule classical) 
-apply (subgoal_tac "a < 0") 
+apply (rule classical)
+apply (subgoal_tac "a < 0")
  prefer 2
  apply force
 apply (insert inverse_less_imp_less [of "-b" "-a"])
-apply (simp add: nonzero_inverse_minus_eq) 
+apply (simp add: nonzero_inverse_minus_eq)
 done
 
 lemma inverse_less_iff_less_neg [simp]:
   "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a < inverse b \<longleftrightarrow> b < a"
 apply (insert inverse_less_iff_less [of "-b" "-a"])
-apply (simp del: inverse_less_iff_less 
+apply (simp del: inverse_less_iff_less
             add: nonzero_inverse_minus_eq)
 done
 
@@ -665,7 +665,7 @@
 
 lemma inverse_le_iff_le_neg [simp]:
   "a < 0 \<Longrightarrow> b < 0 \<Longrightarrow> inverse a \<le> inverse b \<longleftrightarrow> b \<le> a"
-  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg) 
+  by (blast intro: le_imp_inverse_le_neg dest: inverse_le_imp_le_neg)
 
 lemma one_less_inverse:
   "0 < a \<Longrightarrow> a < 1 \<Longrightarrow> 1 < inverse a"
@@ -682,7 +682,7 @@
   from assms have "a \<le> b / c \<longleftrightarrow> a * c \<le> (b / c) * c"
     using mult_le_cancel_right [of a c "b * inverse c"] by (auto simp add: field_simps)
   also have "... \<longleftrightarrow> a * c \<le> b"
-    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -693,7 +693,7 @@
   from assms have "a < b / c \<longleftrightarrow> a * c < (b / c) * c"
     using mult_less_cancel_right [of a c "b / c"] by auto
   also have "... = (a*c < b)"
-    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -704,7 +704,7 @@
   from assms have "a < b / c \<longleftrightarrow> (b / c) * c < a * c"
     using mult_less_cancel_right [of "b / c" c a] by auto
   also have "... \<longleftrightarrow> b < a * c"
-    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -715,7 +715,7 @@
   from assms have "a \<le> b / c \<longleftrightarrow> (b / c) * c \<le> a * c"
     using mult_le_cancel_right [of "b * inverse c" c a] by (auto simp add: field_simps)
   also have "... \<longleftrightarrow> b \<le> a * c"
-    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -726,7 +726,7 @@
   from assms have "b / c \<le> a \<longleftrightarrow> (b / c) * c \<le> a * c"
     using mult_le_cancel_right [of "b / c" c a] by auto
   also have "... \<longleftrightarrow> b \<le> a * c"
-    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -737,7 +737,7 @@
   from assms have "b / c < a \<longleftrightarrow> (b / c) * c < a * c"
     using mult_less_cancel_right [of "b / c" c a] by auto
   also have "... \<longleftrightarrow> b < a * c"
-    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq2 [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -746,9 +746,9 @@
   shows "b / c \<le> a \<longleftrightarrow> a * c \<le> b"
 proof -
   from assms have "b / c \<le> a \<longleftrightarrow> a * c \<le> (b / c) * c"
-    using mult_le_cancel_right [of a c "b / c"] by auto 
+    using mult_le_cancel_right [of a c "b / c"] by auto
   also have "... \<longleftrightarrow> a * c \<le> b"
-    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -759,7 +759,7 @@
   from assms have "b / c < a \<longleftrightarrow> a * c < b / c * c"
     using mult_less_cancel_right [of a c "b / c"] by auto
   also have "... \<longleftrightarrow> a * c < b"
-    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc) 
+    by (simp add: less_imp_not_eq [OF assms] divide_inverse mult.assoc)
   finally show ?thesis .
 qed
 
@@ -842,7 +842,7 @@
 by(simp add:field_simps)
 
 lemma divide_nonneg_neg:
-  "0 <= x ==> y < 0 ==> x / y <= 0" 
+  "0 <= x ==> y < 0 ==> x / y <= 0"
 by(simp add:field_simps)
 
 lemma divide_neg_neg:
@@ -855,7 +855,7 @@
 
 lemma divide_strict_right_mono:
      "[|a < b; 0 < c|] ==> a / c < b / c"
-by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono 
+by (simp add: less_imp_not_eq2 divide_inverse mult_strict_right_mono
               positive_imp_inverse_positive)
 
 
@@ -865,7 +865,7 @@
 apply (simp add: less_imp_not_eq nonzero_minus_divide_right [symmetric])
 done
 
-text{*The last premise ensures that @{term a} and @{term b} 
+text{*The last premise ensures that @{term a} and @{term b}
       have the same sign*}
 lemma divide_strict_left_mono:
   "[|b < a; 0 < c; 0 < a*b|] ==> c / a < c / b"
@@ -895,7 +895,7 @@
     z < x / y"
 by(simp add:field_simps)
 
-lemma frac_le: "0 <= x ==> 
+lemma frac_le: "0 <= x ==>
     x <= y ==> 0 < w ==> w <= z  ==> x / z <= y / w"
   apply (rule mult_imp_div_pos_le)
   apply simp
@@ -905,7 +905,7 @@
   apply simp_all
 done
 
-lemma frac_less: "0 <= x ==> 
+lemma frac_less: "0 <= x ==>
     x < y ==> 0 < w ==> w <= z  ==> x / z < y / w"
   apply (rule mult_imp_div_pos_less)
   apply simp
@@ -915,7 +915,7 @@
   apply simp_all
 done
 
-lemma frac_less2: "0 < x ==> 
+lemma frac_less2: "0 < x ==>
     x <= y ==> 0 < w ==> w < z  ==> x / z < y / w"
   apply (rule mult_imp_div_pos_less)
   apply simp_all
@@ -933,7 +933,7 @@
 subclass unbounded_dense_linorder
 proof
   fix x y :: 'a
-  from less_add_one show "\<exists>y. x < y" .. 
+  from less_add_one show "\<exists>y. x < y" ..
   from less_add_one have "x + (- 1) < (x + 1) + (- 1)" by (rule add_strict_right_mono)
   then have "x - 1 < x + 1 - 1" by simp
   then have "x - 1 < x" by (simp add: algebra_simps)
@@ -943,14 +943,14 @@
 
 lemma nonzero_abs_inverse:
      "a \<noteq> 0 ==> \<bar>inverse a\<bar> = inverse \<bar>a\<bar>"
-apply (auto simp add: neq_iff abs_if nonzero_inverse_minus_eq 
+apply (auto simp add: neq_iff abs_if nonzero_inverse_minus_eq
                       negative_imp_inverse_negative)
-apply (blast intro: positive_imp_inverse_positive elim: less_asym) 
+apply (blast intro: positive_imp_inverse_positive elim: less_asym)
 done
 
 lemma nonzero_abs_divide:
      "b \<noteq> 0 ==> \<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
-  by (simp add: divide_inverse abs_mult nonzero_abs_inverse) 
+  by (simp add: divide_inverse abs_mult nonzero_abs_inverse)
 
 lemma field_le_epsilon:
   assumes e: "\<And>e. 0 < e \<Longrightarrow> x \<le> y + e"
@@ -1003,10 +1003,10 @@
 qed
 
 lemma inverse_less_1_iff: "inverse x < 1 \<longleftrightarrow> x \<le> 0 \<or> 1 < x"
-  by (simp add: not_le [symmetric] one_le_inverse_iff) 
+  by (simp add: not_le [symmetric] one_le_inverse_iff)
 
 lemma inverse_le_1_iff: "inverse x \<le> 1 \<longleftrightarrow> x \<le> 0 \<or> 1 \<le> x"
-  by (simp add: not_less [symmetric] one_less_inverse_iff) 
+  by (simp add: not_less [symmetric] one_less_inverse_iff)
 
 lemma [divide_simps]:
   shows le_divide_eq: "a \<le> b / c \<longleftrightarrow> (if 0 < c then a * c \<le> b else if c < 0 then b \<le> a * c else a \<le> 0)"
@@ -1060,13 +1060,13 @@
      "[|a \<le> b; 0 \<le> c|] ==> a/c \<le> b/c"
 by (force simp add: divide_strict_right_mono le_less)
 
-lemma divide_right_mono_neg: "a <= b 
+lemma divide_right_mono_neg: "a <= b
     ==> c <= 0 ==> b / c <= a / c"
 apply (drule divide_right_mono [of _ _ "- c"])
 apply auto
 done
 
-lemma divide_left_mono_neg: "a <= b 
+lemma divide_left_mono_neg: "a <= b
     ==> c <= 0 ==> 0 < a * b ==> c / a <= c / b"
   apply (drule divide_left_mono [of _ _ "- c"])
   apply (auto simp add: mult.commute)
@@ -1162,28 +1162,28 @@
 by (auto simp add: divide_eq_eq)
 
 lemma abs_inverse [simp]:
-     "\<bar>inverse a\<bar> = 
+     "\<bar>inverse a\<bar> =
       inverse \<bar>a\<bar>"
-apply (cases "a=0", simp) 
-apply (simp add: nonzero_abs_inverse) 
+apply (cases "a=0", simp)
+apply (simp add: nonzero_abs_inverse)
 done
 
 lemma abs_divide [simp]:
      "\<bar>a / b\<bar> = \<bar>a\<bar> / \<bar>b\<bar>"
-apply (cases "b=0", simp) 
-apply (simp add: nonzero_abs_divide) 
+apply (cases "b=0", simp)
+apply (simp add: nonzero_abs_divide)
 done
 
-lemma abs_div_pos: "0 < y ==> 
+lemma abs_div_pos: "0 < y ==>
     \<bar>x\<bar> / y = \<bar>x / y\<bar>"
   apply (subst abs_divide)
   apply (simp add: order_less_imp_le)
 done
 
-lemma zero_le_divide_abs_iff [simp]: "(0 \<le> a / abs b) = (0 \<le> a | b = 0)" 
+lemma zero_le_divide_abs_iff [simp]: "(0 \<le> a / abs b) = (0 \<le> a | b = 0)"
 by (auto simp: zero_le_divide_iff)
 
-lemma divide_le_0_abs_iff [simp]: "(a / abs b \<le> 0) = (a \<le> 0 | b = 0)" 
+lemma divide_le_0_abs_iff [simp]: "(a / abs b \<le> 0) = (a \<le> 0 | b = 0)"
 by (auto simp: divide_le_0_iff)
 
 lemma field_le_mult_one_interval:
@@ -1208,5 +1208,5 @@
 
 code_identifier
   code_module Fields \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith
- 
+
 end
--- a/src/HOL/GCD.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/GCD.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -28,7 +28,7 @@
 section {* Greatest common divisor and least common multiple *}
 
 theory GCD
-imports Fact
+imports Main
 begin
 
 declare One_nat_def [simp del]
@@ -50,7 +50,7 @@
 class semiring_gcd = comm_semiring_1 + gcd +
   assumes gcd_dvd1 [iff]: "gcd a b dvd a"
 		and gcd_dvd2 [iff]: "gcd a b dvd b"
-		and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b" 
+		and gcd_greatest: "c dvd a \<Longrightarrow> c dvd b \<Longrightarrow> c dvd gcd a b"
 
 class ring_gcd = comm_ring_1 + semiring_gcd
 
@@ -266,10 +266,10 @@
   then show "k dvd gcd m n"
     by (induct m n rule: gcd_nat_induct) (simp_all add: gcd_non_0_nat dvd_mod gcd_0_nat)
 qed
-  
+
 instance int :: ring_gcd
   by intro_classes (simp_all add: dvd_int_unfold_dvd_nat gcd_int_def gcd_greatest)
-  
+
 lemma dvd_gcd_D1_nat: "k dvd gcd m n \<Longrightarrow> (k::nat) dvd m"
   by (metis gcd_dvd1 dvd_trans)
 
@@ -1753,12 +1753,12 @@
 
 
 text \<open>Fact aliasses\<close>
-  
-lemmas gcd_dvd1_nat = gcd_dvd1 [where ?'a = nat] 
+
+lemmas gcd_dvd1_nat = gcd_dvd1 [where ?'a = nat]
   and gcd_dvd2_nat = gcd_dvd2 [where ?'a = nat]
   and gcd_greatest_nat = gcd_greatest [where ?'a = nat]
 
-lemmas gcd_dvd1_int = gcd_dvd1 [where ?'a = int] 
+lemmas gcd_dvd1_int = gcd_dvd1 [where ?'a = int]
   and gcd_dvd2_int = gcd_dvd2 [where ?'a = int]
   and gcd_greatest_int = gcd_greatest [where ?'a = int]
 
--- a/src/HOL/HOLCF/Universal.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/HOLCF/Universal.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -325,8 +325,6 @@
   qed
 qed
 
-no_notation binomial (infixl "choose" 65)
-
 definition
   choose :: "'a compact_basis set \<Rightarrow> 'a compact_basis"
 where
--- a/src/HOL/Int.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Int.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -1599,4 +1599,8 @@
 lifting_update int.lifting
 lifting_forget int.lifting
 
+text{*Also the class for fields with characteristic zero.*}
+class field_char_0 = field + ring_char_0
+subclass (in linordered_field) field_char_0 ..
+
 end
--- a/src/HOL/Library/Formal_Power_Series.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Library/Formal_Power_Series.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -5,7 +5,7 @@
 section{* A formalization of formal power series *}
 
 theory Formal_Power_Series
-imports "~~/src/HOL/Number_Theory/Binomial"
+imports Complex_Main
 begin
 
 
--- a/src/HOL/Library/NthRoot_Limits.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Library/NthRoot_Limits.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -1,13 +1,7 @@
 theory NthRoot_Limits
-  imports Complex_Main "~~/src/HOL/Number_Theory/Binomial"
+  imports Complex_Main
 begin
 
-text {*
-
-This does not fit into @{text Complex_Main}, as it depends on @{text Binomial}
-
-*}
-
 lemma LIMSEQ_root: "(\<lambda>n. root n n) ----> 1"
 proof -
   def x \<equiv> "\<lambda>n. root n n - 1"
--- a/src/HOL/Number_Theory/Binomial.thy	Tue Mar 10 11:56:32 2015 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,656 +0,0 @@
-(*  Title:      HOL/Number_Theory/Binomial.thy
-    Authors:    Lawrence C. Paulson, Jeremy Avigad, Tobias Nipkow
-
-Defines the "choose" function, and establishes basic properties.
-*)
-
-section {* Binomial *}
-
-theory Binomial
-imports Cong Fact Complex_Main
-begin
-
-lemma choose_row_sum: "(\<Sum>k=0..n. n choose k) = 2^n"
-  using binomial [of 1 "1" n]
-  by (simp add: numeral_2_eq_2)
-
-lemma sum_choose_lower: "(\<Sum>k=0..n. (r+k) choose k) = Suc (r+n) choose n"
-  by (induct n) auto
-
-lemma sum_choose_upper: "(\<Sum>k=0..n. k choose m) = Suc n choose Suc m"
-  by (induct n) auto
-
-lemma natsum_reverse_index:
-  fixes m::nat
-  shows "(\<And>k. m \<le> k \<Longrightarrow> k \<le> n \<Longrightarrow> g k = f (m + n - k)) \<Longrightarrow> (\<Sum>k=m..n. f k) = (\<Sum>k=m..n. g k)"
-  by (rule setsum.reindex_bij_witness[where i="\<lambda>k. m+n-k" and j="\<lambda>k. m+n-k"]) auto
-
-text{*NW diagonal sum property*}
-lemma sum_choose_diagonal:
-  assumes "m\<le>n" shows "(\<Sum>k=0..m. (n-k) choose (m-k)) = Suc n choose m"
-proof -
-  have "(\<Sum>k=0..m. (n-k) choose (m-k)) = (\<Sum>k=0..m. (n-m+k) choose k)"
-    by (rule natsum_reverse_index) (simp add: assms)
-  also have "... = Suc (n-m+m) choose m"
-    by (rule sum_choose_lower)
-  also have "... = Suc n choose m" using assms
-    by simp
-  finally show ?thesis .
-qed
-
-subsection{* Pochhammer's symbol : generalized rising factorial *}
-
-text {* See @{url "http://en.wikipedia.org/wiki/Pochhammer_symbol"} *}
-
-definition "pochhammer (a::'a::comm_semiring_1) n =
-  (if n = 0 then 1 else setprod (\<lambda>n. a + of_nat n) {0 .. n - 1})"
-
-lemma pochhammer_0 [simp]: "pochhammer a 0 = 1"
-  by (simp add: pochhammer_def)
-
-lemma pochhammer_1 [simp]: "pochhammer a 1 = a"
-  by (simp add: pochhammer_def)
-
-lemma pochhammer_Suc0 [simp]: "pochhammer a (Suc 0) = a"
-  by (simp add: pochhammer_def)
-
-lemma pochhammer_Suc_setprod: "pochhammer a (Suc n) = setprod (\<lambda>n. a + of_nat n) {0 .. n}"
-  by (simp add: pochhammer_def)
-
-lemma setprod_nat_ivl_Suc: "setprod f {0 .. Suc n} = setprod f {0..n} * f (Suc n)"
-proof -
-  have "{0..Suc n} = {0..n} \<union> {Suc n}" by auto
-  then show ?thesis by (simp add: field_simps)
-qed
-
-lemma setprod_nat_ivl_1_Suc: "setprod f {0 .. Suc n} = f 0 * setprod f {1.. Suc n}"
-proof -
-  have "{0..Suc n} = {0} \<union> {1 .. Suc n}" by auto
-  then show ?thesis by simp
-qed
-
-
-lemma pochhammer_Suc: "pochhammer a (Suc n) = pochhammer a n * (a + of_nat n)"
-proof (cases n)
-  case 0
-  then show ?thesis by simp
-next
-  case (Suc n)
-  show ?thesis unfolding Suc pochhammer_Suc_setprod setprod_nat_ivl_Suc ..
-qed
-
-lemma pochhammer_rec: "pochhammer a (Suc n) = a * pochhammer (a + 1) n"
-proof (cases "n = 0")
-  case True
-  then show ?thesis by (simp add: pochhammer_Suc_setprod)
-next
-  case False
-  have *: "finite {1 .. n}" "0 \<notin> {1 .. n}" by auto
-  have eq: "insert 0 {1 .. n} = {0..n}" by auto
-  have **: "(\<Prod>n\<in>{1\<Colon>nat..n}. a + of_nat n) = (\<Prod>n\<in>{0\<Colon>nat..n - 1}. a + 1 + of_nat n)"
-    apply (rule setprod.reindex_cong [where l = Suc])
-    using False
-    apply (auto simp add: fun_eq_iff field_simps)
-    done
-  show ?thesis
-    apply (simp add: pochhammer_def)
-    unfolding setprod.insert [OF *, unfolded eq]
-    using ** apply (simp add: field_simps)
-    done
-qed
-
-lemma pochhammer_fact: "of_nat (fact n) = pochhammer 1 n"
-  unfolding fact_altdef_nat
-  apply (cases n)
-   apply (simp_all add: of_nat_setprod pochhammer_Suc_setprod)
-  apply (rule setprod.reindex_cong [where l = Suc])
-    apply (auto simp add: fun_eq_iff)
-  done
-
-lemma pochhammer_of_nat_eq_0_lemma:
-  assumes "k > n"
-  shows "pochhammer (- (of_nat n :: 'a:: idom)) k = 0"
-proof (cases "n = 0")
-  case True
-  then show ?thesis
-    using assms by (cases k) (simp_all add: pochhammer_rec)
-next
-  case False
-  from assms obtain h where "k = Suc h" by (cases k) auto
-  then show ?thesis
-    by (simp add: pochhammer_Suc_setprod)
-       (metis Suc_leI Suc_le_mono assms atLeastAtMost_iff less_eq_nat.simps(1))
-qed
-
-lemma pochhammer_of_nat_eq_0_lemma':
-  assumes kn: "k \<le> n"
-  shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k \<noteq> 0"
-proof (cases k)
-  case 0
-  then show ?thesis by simp
-next
-  case (Suc h)
-  then show ?thesis
-    apply (simp add: pochhammer_Suc_setprod)
-    using Suc kn apply (auto simp add: algebra_simps)
-    done
-qed
-
-lemma pochhammer_of_nat_eq_0_iff:
-  shows "pochhammer (- (of_nat n :: 'a:: {idom,ring_char_0})) k = 0 \<longleftrightarrow> k > n"
-  (is "?l = ?r")
-  using pochhammer_of_nat_eq_0_lemma[of n k, where ?'a='a]
-    pochhammer_of_nat_eq_0_lemma'[of k n, where ?'a = 'a]
-  by (auto simp add: not_le[symmetric])
-
-
-lemma pochhammer_eq_0_iff: "pochhammer a n = (0::'a::field_char_0) \<longleftrightarrow> (\<exists>k < n. a = - of_nat k)"
-  apply (auto simp add: pochhammer_of_nat_eq_0_iff)
-  apply (cases n)
-   apply (auto simp add: pochhammer_def algebra_simps group_add_class.eq_neg_iff_add_eq_0)
-  apply (metis leD not_less_eq)
-  done
-
-
-lemma pochhammer_eq_0_mono:
-  "pochhammer a n = (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a m = 0"
-  unfolding pochhammer_eq_0_iff by auto
-
-lemma pochhammer_neq_0_mono:
-  "pochhammer a m \<noteq> (0::'a::field_char_0) \<Longrightarrow> m \<ge> n \<Longrightarrow> pochhammer a n \<noteq> 0"
-  unfolding pochhammer_eq_0_iff by auto
-
-lemma pochhammer_minus:
-  assumes kn: "k \<le> n"
-  shows "pochhammer (- b) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (b - of_nat k + 1) k"
-proof (cases k)
-  case 0
-  then show ?thesis by simp
-next
-  case (Suc h)
-  have eq: "((- 1) ^ Suc h :: 'a) = (\<Prod>i=0..h. - 1)"
-    using setprod_constant[where A="{0 .. h}" and y="- 1 :: 'a"]
-    by auto
-  show ?thesis
-    unfolding Suc pochhammer_Suc_setprod eq setprod.distrib[symmetric]
-    by (rule setprod.reindex_bij_witness[where i="op - h" and j="op - h"])
-       (auto simp: of_nat_diff)
-qed
-
-lemma pochhammer_minus':
-  assumes kn: "k \<le> n"
-  shows "pochhammer (b - of_nat k + 1) k = ((- 1) ^ k :: 'a::comm_ring_1) * pochhammer (- b) k"
-  unfolding pochhammer_minus[OF kn, where b=b]
-  unfolding mult.assoc[symmetric]
-  unfolding power_add[symmetric]
-  by simp
-
-lemma pochhammer_same: "pochhammer (- of_nat n) n =
-    ((- 1) ^ n :: 'a::comm_ring_1) * of_nat (fact n)"
-  unfolding pochhammer_minus[OF le_refl[of n]]
-  by (simp add: of_nat_diff pochhammer_fact)
-
-
-subsection{* Generalized binomial coefficients *}
-
-definition gbinomial :: "'a::field_char_0 \<Rightarrow> nat \<Rightarrow> 'a" (infixl "gchoose" 65)
-  where "a gchoose n =
-    (if n = 0 then 1 else (setprod (\<lambda>i. a - of_nat i) {0 .. n - 1}) / of_nat (fact n))"
-
-lemma gbinomial_0 [simp]: "a gchoose 0 = 1" "0 gchoose (Suc n) = 0"
-  apply (simp_all add: gbinomial_def)
-  apply (subgoal_tac "(\<Prod>i\<Colon>nat\<in>{0\<Colon>nat..n}. - of_nat i) = (0::'b)")
-   apply (simp del:setprod_zero_iff)
-  apply simp
-  done
-
-lemma gbinomial_pochhammer: "a gchoose n = (- 1) ^ n * pochhammer (- a) n / of_nat (fact n)"
-proof (cases "n = 0")
-  case True
-  then show ?thesis by simp
-next
-  case False
-  from this setprod_constant[of "{0 .. n - 1}" "- (1:: 'a)"]
-  have eq: "(- (1\<Colon>'a)) ^ n = setprod (\<lambda>i. - 1) {0 .. n - 1}"
-    by auto
-  from False show ?thesis
-    by (simp add: pochhammer_def gbinomial_def field_simps
-      eq setprod.distrib[symmetric])
-qed
-
-
-lemma binomial_gbinomial: "of_nat (n choose k) = of_nat n gchoose k"
-proof -
-  { assume kn: "k > n"
-    then have ?thesis
-      by (subst binomial_eq_0[OF kn]) 
-         (simp add: gbinomial_pochhammer field_simps  pochhammer_of_nat_eq_0_iff) }
-  moreover
-  { assume "k=0" then have ?thesis by simp }
-  moreover
-  { assume kn: "k \<le> n" and k0: "k\<noteq> 0"
-    from k0 obtain h where h: "k = Suc h" by (cases k) auto
-    from h
-    have eq:"(- 1 :: 'a) ^ k = setprod (\<lambda>i. - 1) {0..h}"
-      by (subst setprod_constant) auto
-    have eq': "(\<Prod>i\<in>{0..h}. of_nat n + - (of_nat i :: 'a)) = (\<Prod>i\<in>{n - h..n}. of_nat i)"
-        using h kn
-      by (intro setprod.reindex_bij_witness[where i="op - n" and j="op - n"])
-         (auto simp: of_nat_diff)
-    have th0: "finite {1..n - Suc h}" "finite {n - h .. n}"
-        "{1..n - Suc h} \<inter> {n - h .. n} = {}" and
-        eq3: "{1..n - Suc h} \<union> {n - h .. n} = {1..n}"
-      using h kn by auto
-    from eq[symmetric]
-    have ?thesis using kn
-      apply (simp add: binomial_fact[OF kn, where ?'a = 'a]
-        gbinomial_pochhammer field_simps pochhammer_Suc_setprod)
-      apply (simp add: pochhammer_Suc_setprod fact_altdef_nat h
-        of_nat_setprod setprod.distrib[symmetric] eq' del: One_nat_def power_Suc)
-      unfolding setprod.union_disjoint[OF th0, unfolded eq3, of "of_nat:: nat \<Rightarrow> 'a"] eq[unfolded h]
-      unfolding mult.assoc[symmetric]
-      unfolding setprod.distrib[symmetric]
-      apply simp
-      apply (intro setprod.reindex_bij_witness[where i="op - n" and j="op - n"])
-      apply (auto simp: of_nat_diff)
-      done
-  }
-  moreover
-  have "k > n \<or> k = 0 \<or> (k \<le> n \<and> k \<noteq> 0)" by arith
-  ultimately show ?thesis by blast
-qed
-
-lemma gbinomial_1[simp]: "a gchoose 1 = a"
-  by (simp add: gbinomial_def)
-
-lemma gbinomial_Suc0[simp]: "a gchoose (Suc 0) = a"
-  by (simp add: gbinomial_def)
-
-lemma gbinomial_mult_1:
-  "a * (a gchoose n) =
-    of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"  (is "?l = ?r")
-proof -
-  have "?r = ((- 1) ^n * pochhammer (- a) n / of_nat (fact n)) * (of_nat n - (- a + of_nat n))"
-    unfolding gbinomial_pochhammer
-      pochhammer_Suc fact_Suc of_nat_mult right_diff_distrib power_Suc
-    by (simp add:  field_simps del: of_nat_Suc)
-  also have "\<dots> = ?l" unfolding gbinomial_pochhammer
-    by (simp add: field_simps)
-  finally show ?thesis ..
-qed
-
-lemma gbinomial_mult_1':
-    "(a gchoose n) * a = of_nat n * (a gchoose n) + of_nat (Suc n) * (a gchoose (Suc n))"
-  by (simp add: mult.commute gbinomial_mult_1)
-
-lemma gbinomial_Suc:
-    "a gchoose (Suc k) = (setprod (\<lambda>i. a - of_nat i) {0 .. k}) / of_nat (fact (Suc k))"
-  by (simp add: gbinomial_def)
-
-lemma gbinomial_mult_fact:
-  "(of_nat (fact (Suc k)) :: 'a) * ((a::'a::field_char_0) gchoose (Suc k)) =
-    (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
-  by (simp_all add: gbinomial_Suc field_simps del: fact_Suc)
-
-lemma gbinomial_mult_fact':
-  "((a::'a::field_char_0) gchoose (Suc k)) * (of_nat (fact (Suc k)) :: 'a) =
-    (setprod (\<lambda>i. a - of_nat i) {0 .. k})"
-  using gbinomial_mult_fact[of k a]
-  by (subst mult.commute)
-
-
-lemma gbinomial_Suc_Suc:
-  "((a::'a::field_char_0) + 1) gchoose (Suc k) = a gchoose k + (a gchoose (Suc k))"
-proof (cases k)
-  case 0
-  then show ?thesis by simp
-next
-  case (Suc h)
-  have eq0: "(\<Prod>i\<in>{1..k}. (a + 1) - of_nat i) = (\<Prod>i\<in>{0..h}. a - of_nat i)"
-    apply (rule setprod.reindex_cong [where l = Suc])
-      using Suc
-      apply auto
-    done
-  have "of_nat (fact (Suc k)) * (a gchoose k + (a gchoose (Suc k))) =
-    ((a gchoose Suc h) * of_nat (fact (Suc h)) * of_nat (Suc k)) + (\<Prod>i\<in>{0\<Colon>nat..Suc h}. a - of_nat i)"
-    apply (simp add: Suc field_simps del: fact_Suc)
-    unfolding gbinomial_mult_fact'
-    apply (subst fact_Suc)
-    unfolding of_nat_mult
-    apply (subst mult.commute)
-    unfolding mult.assoc
-    unfolding gbinomial_mult_fact
-    apply (simp add: field_simps)
-    done
-  also have "\<dots> = (\<Prod>i\<in>{0..h}. a - of_nat i) * (a + 1)"
-    unfolding gbinomial_mult_fact' setprod_nat_ivl_Suc
-    by (simp add: field_simps Suc)
-  also have "\<dots> = (\<Prod>i\<in>{0..k}. (a + 1) - of_nat i)"
-    using eq0
-    by (simp add: Suc setprod_nat_ivl_1_Suc)
-  also have "\<dots> = of_nat (fact (Suc k)) * ((a + 1) gchoose (Suc k))"
-    unfolding gbinomial_mult_fact ..
-  finally show ?thesis by (simp del: fact_Suc)
-qed
-
-lemma gbinomial_reduce_nat:
-  "0 < k \<Longrightarrow> (a::'a::field_char_0) gchoose k = (a - 1) gchoose (k - 1) + ((a - 1) gchoose k)"
-by (metis Suc_pred' diff_add_cancel gbinomial_Suc_Suc)
-
-
-lemma binomial_symmetric:
-  assumes kn: "k \<le> n"
-  shows "n choose k = n choose (n - k)"
-proof-
-  from kn have kn': "n - k \<le> n" by arith
-  from binomial_fact_lemma[OF kn] binomial_fact_lemma[OF kn']
-  have "fact k * fact (n - k) * (n choose k) =
-    fact (n - k) * fact (n - (n - k)) * (n choose (n - k))" by simp
-  then show ?thesis using kn by simp
-qed
-
-text{*Contributed by Manuel Eberl, generalised by LCP.
-  Alternative definition of the binomial coefficient as @{term "\<Prod>i<k. (n - i) / (k - i)"} *}
-lemma gbinomial_altdef_of_nat:
-  fixes k :: nat
-    and x :: "'a :: {field_char_0,field_inverse_zero}"
-  shows "x gchoose k = (\<Prod>i<k. (x - of_nat i) / of_nat (k - i) :: 'a)"
-proof -
-  have "(x gchoose k) = (\<Prod>i<k. x - of_nat i) / of_nat (fact k)"
-    unfolding gbinomial_def
-    by (auto simp: gr0_conv_Suc lessThan_Suc_atMost atLeast0AtMost)
-  also have "\<dots> = (\<Prod>i<k. (x - of_nat i) / of_nat (k - i) :: 'a)"
-    unfolding fact_eq_rev_setprod_nat of_nat_setprod
-    by (auto simp add: setprod_dividef intro!: setprod.cong of_nat_diff[symmetric])
-  finally show ?thesis .
-qed
-
-lemma gbinomial_ge_n_over_k_pow_k:
-  fixes k :: nat
-    and x :: "'a :: linordered_field_inverse_zero"
-  assumes "of_nat k \<le> x"
-  shows "(x / of_nat k :: 'a) ^ k \<le> x gchoose k"
-proof -
-  have x: "0 \<le> x"
-    using assms of_nat_0_le_iff order_trans by blast
-  have "(x / of_nat k :: 'a) ^ k = (\<Prod>i<k. x / of_nat k :: 'a)"
-    by (simp add: setprod_constant)
-  also have "\<dots> \<le> x gchoose k"
-    unfolding gbinomial_altdef_of_nat
-  proof (safe intro!: setprod_mono)
-    fix i :: nat
-    assume ik: "i < k"
-    from assms have "x * of_nat i \<ge> of_nat (i * k)"
-      by (metis mult.commute mult_le_cancel_right of_nat_less_0_iff of_nat_mult)
-    then have "x * of_nat k - x * of_nat i \<le> x * of_nat k - of_nat (i * k)" by arith
-    then have "x * of_nat (k - i) \<le> (x - of_nat i) * of_nat k"
-      using ik 
-      by (simp add: algebra_simps zero_less_mult_iff of_nat_diff of_nat_mult)
-    then have "x * of_nat (k - i) \<le> (x - of_nat i) * (of_nat k :: 'a)"
-      unfolding of_nat_mult[symmetric] of_nat_le_iff .
-    with assms show "x / of_nat k \<le> (x - of_nat i) / (of_nat (k - i) :: 'a)"
-      using `i < k` by (simp add: field_simps)
-  qed (simp add: x zero_le_divide_iff)
-  finally show ?thesis .
-qed
-
-text{*Versions of the theorems above for the natural-number version of "choose"*}
-lemma binomial_altdef_of_nat:
-  fixes n k :: nat
-    and x :: "'a :: {field_char_0,field_inverse_zero}"  --{*the point is to constrain @{typ 'a}*}
-  assumes "k \<le> n"
-  shows "of_nat (n choose k) = (\<Prod>i<k. of_nat (n - i) / of_nat (k - i) :: 'a)"
-using assms
-by (simp add: gbinomial_altdef_of_nat binomial_gbinomial of_nat_diff)
-
-lemma binomial_ge_n_over_k_pow_k:
-  fixes k n :: nat
-    and x :: "'a :: linordered_field_inverse_zero"
-  assumes "k \<le> n"
-  shows "(of_nat n / of_nat k :: 'a) ^ k \<le> of_nat (n choose k)"
-by (simp add: assms gbinomial_ge_n_over_k_pow_k binomial_gbinomial of_nat_diff)  
-  
-lemma binomial_le_pow:
-  assumes "r \<le> n"
-  shows "n choose r \<le> n ^ r"
-proof -
-  have "n choose r \<le> fact n div fact (n - r)"
-    using `r \<le> n` by (subst binomial_fact_lemma[symmetric]) auto
-  with fact_div_fact_le_pow [OF assms] show ?thesis by auto
-qed
-
-lemma binomial_altdef_nat: "(k::nat) \<le> n \<Longrightarrow>
-    n choose k = fact n div (fact k * fact (n - k))"
- by (subst binomial_fact_lemma [symmetric]) auto
-
-lemma choose_dvd_nat: "(k::nat) \<le> n \<Longrightarrow> fact k * fact (n - k) dvd fact n"
-by (metis binomial_fact_lemma dvd_def)
-
-lemma choose_dvd_int: 
-  assumes "(0::int) <= k" and "k <= n"
-  shows "fact k * fact (n - k) dvd fact n"
-  apply (subst tsub_eq [symmetric], rule assms)
-  apply (rule choose_dvd_nat [transferred])
-  using assms apply auto
-  done
-
-lemma fact_fact_dvd_fact: fixes k::nat shows "fact k * fact n dvd fact (n + k)"
-by (metis add.commute add_diff_cancel_left' choose_dvd_nat le_add2)
-
-lemma choose_mult_lemma:
-     "((m+r+k) choose (m+k)) * ((m+k) choose k) = ((m+r+k) choose k) * ((m+r) choose m)"
-proof -
-  have "((m+r+k) choose (m+k)) * ((m+k) choose k) =
-        fact (m+r + k) div (fact (m + k) * fact (m+r - m)) * (fact (m + k) div (fact k * fact m))"
-    by (simp add: assms binomial_altdef_nat)
-  also have "... = fact (m+r+k) div (fact r * (fact k * fact m))"
-    apply (subst div_mult_div_if_dvd)
-    apply (auto simp: fact_fact_dvd_fact)
-    apply (metis add.assoc add.commute fact_fact_dvd_fact)
-    done
-  also have "... = (fact (m+r+k) * fact (m+r)) div (fact r * (fact k * fact m) * fact (m+r))"
-    apply (subst div_mult_div_if_dvd [symmetric])
-    apply (auto simp: fact_fact_dvd_fact)
-    apply (metis dvd_trans dvd.dual_order.refl fact_fact_dvd_fact mult_dvd_mono mult.left_commute)
-    done
-  also have "... = (fact (m+r+k) div (fact k * fact (m+r)) * (fact (m+r) div (fact r * fact m)))"
-    apply (subst div_mult_div_if_dvd)
-    apply (auto simp: fact_fact_dvd_fact)
-    apply(metis mult.left_commute)
-    done
-  finally show ?thesis
-    by (simp add: binomial_altdef_nat mult.commute)
-qed
-
-text{*The "Subset of a Subset" identity*}
-lemma choose_mult:
-  assumes "k\<le>m" "m\<le>n"
-    shows "(n choose m) * (m choose k) = (n choose k) * ((n-k) choose (m-k))"
-using assms choose_mult_lemma [of "m-k" "n-m" k]
-by simp
-
-
-subsection {* Binomial coefficients *}
-
-lemma choose_one: "(n::nat) choose 1 = n"
-  by simp
-
-(*FIXME: messy and apparently unused*)
-lemma binomial_induct [rule_format]: "(ALL (n::nat). P n n) \<longrightarrow> 
-    (ALL n. P (Suc n) 0) \<longrightarrow> (ALL n. (ALL k < n. P n k \<longrightarrow> P n (Suc k) \<longrightarrow>
-    P (Suc n) (Suc k))) \<longrightarrow> (ALL k <= n. P n k)"
-  apply (induct n)
-  apply auto
-  apply (case_tac "k = 0")
-  apply auto
-  apply (case_tac "k = Suc n")
-  apply auto
-  apply (metis Suc_le_eq fact_nat.cases le_Suc_eq le_eq_less_or_eq)
-  done
-
-lemma card_UNION:
-  assumes "finite A" and "\<forall>k \<in> A. finite k"
-  shows "card (\<Union>A) = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * int (card (\<Inter>I)))"
-  (is "?lhs = ?rhs")
-proof -
-  have "?rhs = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (- 1) ^ (card I + 1) * (\<Sum>_\<in>\<Inter>I. 1))" by simp
-  also have "\<dots> = nat (\<Sum>I | I \<subseteq> A \<and> I \<noteq> {}. (\<Sum>_\<in>\<Inter>I. (- 1) ^ (card I + 1)))" (is "_ = nat ?rhs")
-    by(subst setsum_right_distrib) simp
-  also have "?rhs = (\<Sum>(I, _)\<in>Sigma {I. I \<subseteq> A \<and> I \<noteq> {}} Inter. (- 1) ^ (card I + 1))"
-    using assms by(subst setsum.Sigma)(auto)
-  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:UNIV. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
-    by (rule setsum.reindex_cong [where l = "\<lambda>(x, y). (y, x)"]) (auto intro: inj_onI simp add: split_beta)
-  also have "\<dots> = (\<Sum>(x, I)\<in>(SIGMA x:\<Union>A. {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}). (- 1) ^ (card I + 1))"
-    using assms by(auto intro!: setsum.mono_neutral_cong_right finite_SigmaI2 intro: finite_subset[where B="\<Union>A"])
-  also have "\<dots> = (\<Sum>x\<in>\<Union>A. (\<Sum>I|I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I. (- 1) ^ (card I + 1)))" 
-    using assms by(subst setsum.Sigma) auto
-  also have "\<dots> = (\<Sum>_\<in>\<Union>A. 1)" (is "setsum ?lhs _ = _")
-  proof(rule setsum.cong[OF refl])
-    fix x
-    assume x: "x \<in> \<Union>A"
-    def K \<equiv> "{X \<in> A. x \<in> X}"
-    with `finite A` have K: "finite K" by auto
-    let ?I = "\<lambda>i. {I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I}"
-    have "inj_on snd (SIGMA i:{1..card A}. ?I i)"
-      using assms by(auto intro!: inj_onI)
-    moreover have [symmetric]: "snd ` (SIGMA i:{1..card A}. ?I i) = {I. I \<subseteq> A \<and> I \<noteq> {} \<and> x \<in> \<Inter>I}"
-      using assms by(auto intro!: rev_image_eqI[where x="(card a, a)" for a]
-        simp add: card_gt_0_iff[folded Suc_le_eq]
-        dest: finite_subset intro: card_mono)
-    ultimately have "?lhs x = (\<Sum>(i, I)\<in>(SIGMA i:{1..card A}. ?I i). (- 1) ^ (i + 1))"
-      by (rule setsum.reindex_cong [where l = snd]) fastforce
-    also have "\<dots> = (\<Sum>i=1..card A. (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. (- 1) ^ (i + 1)))"
-      using assms by(subst setsum.Sigma) auto
-    also have "\<dots> = (\<Sum>i=1..card A. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1))"
-      by(subst setsum_right_distrib) simp
-    also have "\<dots> = (\<Sum>i=1..card K. (- 1) ^ (i + 1) * (\<Sum>I|I \<subseteq> K \<and> card I = i. 1))" (is "_ = ?rhs")
-    proof(rule setsum.mono_neutral_cong_right[rule_format])
-      show "{1..card K} \<subseteq> {1..card A}" using `finite A`
-        by(auto simp add: K_def intro: card_mono)
-    next
-      fix i
-      assume "i \<in> {1..card A} - {1..card K}"
-      hence i: "i \<le> card A" "card K < i" by auto
-      have "{I. I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I} = {I. I \<subseteq> K \<and> card I = i}" 
-        by(auto simp add: K_def)
-      also have "\<dots> = {}" using `finite A` i
-        by(auto simp add: K_def dest: card_mono[rotated 1])
-      finally show "(- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1 :: int) = 0"
-        by(simp only:) simp
-    next
-      fix i
-      have "(\<Sum>I | I \<subseteq> A \<and> card I = i \<and> x \<in> \<Inter>I. 1) = (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)"
-        (is "?lhs = ?rhs")
-        by(rule setsum.cong)(auto simp add: K_def)
-      thus "(- 1) ^ (i + 1) * ?lhs = (- 1) ^ (i + 1) * ?rhs" by simp
-    qed simp
-    also have "{I. I \<subseteq> K \<and> card I = 0} = {{}}" using assms
-      by(auto simp add: card_eq_0_iff K_def dest: finite_subset)
-    hence "?rhs = (\<Sum>i = 0..card K. (- 1) ^ (i + 1) * (\<Sum>I | I \<subseteq> K \<and> card I = i. 1 :: int)) + 1"
-      by(subst (2) setsum_head_Suc)(simp_all )
-    also have "\<dots> = (\<Sum>i = 0..card K. (- 1) * ((- 1) ^ i * int (card K choose i))) + 1"
-      using K by(subst n_subsets[symmetric]) simp_all
-    also have "\<dots> = - (\<Sum>i = 0..card K. (- 1) ^ i * int (card K choose i)) + 1"
-      by(subst setsum_right_distrib[symmetric]) simp
-    also have "\<dots> =  - ((-1 + 1) ^ card K) + 1"
-      by(subst binomial_ring)(simp add: ac_simps)
-    also have "\<dots> = 1" using x K by(auto simp add: K_def card_gt_0_iff)
-    finally show "?lhs x = 1" .
-  qed
-  also have "nat \<dots> = card (\<Union>A)" by simp
-  finally show ?thesis ..
-qed
-
-text{* The number of nat lists of length @{text m} summing to @{text N} is
-@{term "(N + m - 1) choose N"}: *} 
-
-lemma card_length_listsum_rec:
-  assumes "m\<ge>1"
-  shows "card {l::nat list. length l = m \<and> listsum l = N} =
-    (card {l. length l = (m - 1) \<and> listsum l = N} +
-    card {l. length l = m \<and> listsum l + 1 =  N})"
-    (is "card ?C = (card ?A + card ?B)")
-proof - 
-  let ?A'="{l. length l = m \<and> listsum l = N \<and> hd l = 0}"
-  let ?B'="{l. length l = m \<and> listsum l = N \<and> hd l \<noteq> 0}"
-  let ?f ="\<lambda> l. 0#l"
-  let ?g ="\<lambda> l. (hd l + 1) # tl l"
-  have 1: "\<And>xs x. xs \<noteq> [] \<Longrightarrow> x = hd xs \<Longrightarrow> x # tl xs = xs" by simp
-  have 2: "\<And>xs. (xs::nat list) \<noteq> [] \<Longrightarrow> listsum(tl xs) = listsum xs - hd xs"
-    by(auto simp add: neq_Nil_conv)
-  have f: "bij_betw ?f ?A ?A'"
-    apply(rule bij_betw_byWitness[where f' = tl])
-    using assms 
-    by (auto simp: 2 length_0_conv[symmetric] 1 simp del: length_0_conv)
-  have 3: "\<And>xs:: nat list. xs \<noteq> [] \<Longrightarrow> hd xs + (listsum xs - hd xs) = listsum xs"
-    by (metis 1 listsum_simps(2) 2)
-  have g: "bij_betw ?g ?B ?B'"
-    apply(rule bij_betw_byWitness[where f' = "\<lambda> l. (hd l - 1) # tl l"])
-    using assms
-    by (auto simp: 2 length_0_conv[symmetric] intro!: 3
-      simp del: length_greater_0_conv length_0_conv)
-  { fix M N :: nat have "finite {xs. size xs = M \<and> set xs \<subseteq> {0..<N}}"
-    using finite_lists_length_eq[OF finite_atLeastLessThan] conj_commute by auto }
-    note fin = this
-  have fin_A: "finite ?A" using fin[of _ "N+1"]
-    by (intro finite_subset[where ?A = "?A" and ?B = "{xs. size xs = m - 1 \<and> set xs \<subseteq> {0..<N+1}}"], 
-      auto simp: member_le_listsum_nat less_Suc_eq_le)
-  have fin_B: "finite ?B"
-    by (intro finite_subset[where ?A = "?B" and ?B = "{xs. size xs = m \<and> set xs \<subseteq> {0..<N}}"], 
-      auto simp: member_le_listsum_nat less_Suc_eq_le fin)
-  have uni: "?C = ?A' \<union> ?B'" by auto
-  have disj: "?A' \<inter> ?B' = {}" by auto
-  have "card ?C = card(?A' \<union> ?B')" using uni by simp
-  also have "\<dots> = card ?A + card ?B"
-    using card_Un_disjoint[OF _ _ disj] bij_betw_finite[OF f] bij_betw_finite[OF g]
-      bij_betw_same_card[OF f] bij_betw_same_card[OF g] fin_A fin_B
-    by presburger
-  finally show ?thesis .
-qed
-
-lemma card_length_listsum: --"By Holden Lee, tidied by Tobias Nipkow"
-  "card {l::nat list. size l = m \<and> listsum l = N} = (N + m - 1) choose N"
-proof (cases m)
-  case 0 then show ?thesis
-    by (cases N) (auto simp: cong: conj_cong)
-next
-  case (Suc m')
-    have m: "m\<ge>1" by (simp add: Suc)
-    then show ?thesis
-    proof (induct "N + m - 1" arbitrary: N m)
-      case 0   -- "In the base case, the only solution is [0]."
-      have [simp]: "{l::nat list. length l = Suc 0 \<and> (\<forall>n\<in>set l. n = 0)} = {[0]}"
-        by (auto simp: length_Suc_conv)
-      have "m=1 \<and> N=0" using 0 by linarith
-      then show ?case by simp
-    next
-      case (Suc k)
-      
-      have c1: "card {l::nat list. size l = (m - 1) \<and> listsum l =  N} = 
-        (N + (m - 1) - 1) choose N"
-      proof cases
-        assume "m = 1"
-        with Suc.hyps have "N\<ge>1" by auto
-        with `m = 1` show ?thesis by (simp add: binomial_eq_0)
-      next
-        assume "m \<noteq> 1" thus ?thesis using Suc by fastforce
-      qed
-    
-      from Suc have c2: "card {l::nat list. size l = m \<and> listsum l + 1 = N} = 
-        (if N>0 then ((N - 1) + m - 1) choose (N - 1) else 0)"
-      proof -
-        have aux: "\<And>m n. n > 0 \<Longrightarrow> Suc m = n \<longleftrightarrow> m = n - 1" by arith
-        from Suc have "N>0 \<Longrightarrow>
-          card {l::nat list. size l = m \<and> listsum l + 1 = N} = 
-          ((N - 1) + m - 1) choose (N - 1)" by (simp add: aux)
-        thus ?thesis by auto
-      qed
-    
-      from Suc.prems have "(card {l::nat list. size l = (m - 1) \<and> listsum l = N} + 
-          card {l::nat list. size l = m \<and> listsum l + 1 = N}) = (N + m - 1) choose N"
-        by (auto simp: c1 c2 choose_reduce_nat[of "N + m - 1" N] simp del: One_nat_def)
-      thus ?case using card_length_listsum_rec[OF Suc.prems] by auto
-    qed
-qed
-
-end
--- a/src/HOL/Number_Theory/Cong.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Number_Theory/Cong.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -461,15 +461,7 @@
 
 lemma cong_to_1'_nat: "[(a::nat) = 1] (mod n) \<longleftrightarrow>
     a = 0 \<and> n = 1 \<or> (\<exists>m. a = 1 + m * n)"
-  apply (cases "n = 1")
-  apply auto [1]
-  apply (drule_tac x = "a - 1" in spec)
-  apply force
-  apply (cases "a = 0", simp add: cong_0_1_nat)
-  apply (rule iffI)
-  apply (metis cong_to_1_nat dvd_def monoid_mult_class.mult.right_neutral mult.commute mult_eq_if)
-  apply (metis cong_add_lcancel_0_nat cong_mult_self_nat)
-  done
+by (metis add.right_neutral cong_0_1_nat cong_iff_lin_nat cong_to_1_nat dvd_div_mult_self leI le_add_diff_inverse less_one mult_eq_if)
 
 lemma cong_le_nat: "(y::nat) <= x \<Longrightarrow> [x = y] (mod n) \<longleftrightarrow> (\<exists>q. x = q * n + y)"
   by (metis cong_altdef_nat Nat.le_imp_diff_is_add dvd_def mult.commute)
@@ -579,7 +571,7 @@
       [x = y] (mod (PROD i:A. m i))"
   apply (induct set: finite)
   apply auto
-  apply (metis coprime_cong_mult_nat gcd_semilattice_nat.inf_commute setprod_coprime_nat)
+  apply (metis One_nat_def coprime_cong_mult_nat gcd_nat.commute setprod_coprime_nat)
   done
 
 lemma cong_cong_setprod_coprime_int [rule_format]: "finite A \<Longrightarrow>
@@ -835,7 +827,7 @@
          [x = y] (mod (PROD i:A. m i))"
   apply (induct set: finite)
   apply auto
-  apply (metis coprime_cong_mult_nat mult.commute setprod_coprime_nat)
+  apply (metis One_nat_def coprime_cong_mult_nat gcd_nat.commute setprod_coprime_nat)
   done
 
 lemma chinese_remainder_unique_nat:
--- a/src/HOL/Number_Theory/Fib.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Number_Theory/Fib.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -11,7 +11,7 @@
 section {* Fib *}
 
 theory Fib
-imports Binomial
+imports Main "../GCD"
 begin
 
 
--- a/src/HOL/Number_Theory/Primes.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Number_Theory/Primes.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -28,7 +28,7 @@
 section {* Primes *}
 
 theory Primes
-imports "~~/src/HOL/GCD"
+imports "~~/src/HOL/GCD" "~~/src/HOL/Fact"
 begin
 
 declare [[coercion int]]
--- a/src/HOL/Number_Theory/Residues.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Number_Theory/Residues.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -8,10 +8,7 @@
 section {* Residue rings *}
 
 theory Residues
-imports
-  UniqueFactorization
-  Binomial
-  MiscAlgebra
+imports UniqueFactorization MiscAlgebra
 begin
 
 (*
@@ -275,15 +272,15 @@
   then have cop: "\<And>x. x \<in> {1::nat..p - 1} \<Longrightarrow> coprime x p"
     by blast
   { fix x::nat assume *: "1 < x" "x < p" and "x dvd p"
-    have "coprime x p" 
+    have "coprime x p"
       apply (rule cop)
       using * apply auto
       done
     with `x dvd p` `1 < x` have "False" by auto }
-  then show ?thesis 
-    using `2 \<le> p` 
+  then show ?thesis
+    using `2 \<le> p`
     by (simp add: prime_def)
-       (metis One_nat_def dvd_pos_nat nat_dvd_not_less nat_neq_iff not_gr0 
+       (metis One_nat_def dvd_pos_nat nat_dvd_not_less nat_neq_iff not_gr0
               not_numeral_le_zero one_dvd)
 qed
 
@@ -367,7 +364,7 @@
   also have "phi p = nat p - 1"
     by (rule phi_prime, rule assms)
   finally show ?thesis
-    by (metis nat_int) 
+    by (metis nat_int)
 qed
 
 lemma fermat_theorem_nat:
@@ -441,7 +438,7 @@
 lemma wilson_theorem:
   assumes "prime p" shows "[fact (p - 1) = - 1] (mod p)"
 proof (cases "p = 2")
-  case True 
+  case True
   then show ?thesis
     by (simp add: cong_int_def fact_altdef_nat)
 next
--- a/src/HOL/Probability/Probability_Mass_Function.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Probability/Probability_Mass_Function.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -1,5 +1,5 @@
 (*  Title:      HOL/Probability/Probability_Mass_Function.thy
-    Author:     Johannes Hölzl, TU München 
+    Author:     Johannes Hölzl, TU München
     Author:     Andreas Lochbihler, ETH Zurich
 *)
 
@@ -8,7 +8,6 @@
 theory Probability_Mass_Function
 imports
   Giry_Monad
-  "~~/src/HOL/Number_Theory/Binomial"
   "~~/src/HOL/Library/Multiset"
 begin
 
@@ -52,14 +51,14 @@
     fix n assume "infinite {x. ?M / Suc n < ?m x}" (is "infinite ?X")
     then obtain X where "finite X" "card X = Suc (Suc n)" "X \<subseteq> ?X"
       by (metis infinite_arbitrarily_large)
-    from this(3) have *: "\<And>x. x \<in> X \<Longrightarrow> ?M / Suc n \<le> ?m x" 
+    from this(3) have *: "\<And>x. x \<in> X \<Longrightarrow> ?M / Suc n \<le> ?m x"
       by auto
     { fix x assume "x \<in> X"
       from `?M \<noteq> 0` *[OF this] have "?m x \<noteq> 0" by (auto simp: field_simps measure_le_0_iff)
       then have "{x} \<in> sets M" by (auto dest: measure_notin_sets) }
     note singleton_sets = this
     have "?M < (\<Sum>x\<in>X. ?M / Suc n)"
-      using `?M \<noteq> 0` 
+      using `?M \<noteq> 0`
       by (simp add: `card X = Suc (Suc n)` real_eq_of_nat[symmetric] real_of_nat_Suc field_simps less_le measure_nonneg)
     also have "\<dots> \<le> (\<Sum>x\<in>X. ?m x)"
       by (rule setsum_mono) fact
@@ -82,7 +81,7 @@
   assume "\<exists>S. countable S \<and> (AE x in M. x \<in> S)"
   then obtain S where S[intro]: "countable S" and ae: "AE x in M. x \<in> S"
     by auto
-  then have "emeasure M (\<Union>x\<in>{x\<in>S. emeasure M {x} \<noteq> 0}. {x}) = 
+  then have "emeasure M (\<Union>x\<in>{x\<in>S. emeasure M {x} \<noteq> 0}. {x}) =
     (\<integral>\<^sup>+ x. emeasure M {x} * indicator {x\<in>S. emeasure M {x} \<noteq> 0} x \<partial>count_space UNIV)"
     by (subst emeasure_UN_countable)
        (auto simp: disjoint_family_on_def nn_integral_restrict_space[symmetric] restrict_count_space)
@@ -136,7 +135,7 @@
 interpretation pmf_as_measure .
 
 lemma sets_measure_pmf[simp]: "sets (measure_pmf p) = UNIV"
-  by transfer blast 
+  by transfer blast
 
 lemma sets_measure_pmf_count_space[measurable_cong]:
   "sets (measure_pmf M) = sets (count_space UNIV)"
@@ -353,10 +352,10 @@
 
   have [measurable]: "g \<in> measurable f (subprob_algebra (count_space UNIV))"
     by (auto simp: measurable_def space_subprob_algebra prob_space_imp_subprob_space g)
-    
+
   show "prob_space (f \<guillemotright>= g)"
     using g by (intro f.prob_space_bind[where S="count_space UNIV"]) auto
-  then interpret fg: prob_space "f \<guillemotright>= g" . 
+  then interpret fg: prob_space "f \<guillemotright>= g" .
   show [simp]: "sets (f \<guillemotright>= g) = UNIV"
     using sets_eq_imp_space_eq[OF s_f]
     by (subst sets_bind[where N="count_space UNIV"]) auto
@@ -385,7 +384,7 @@
   by transfer (simp add: bind_const' prob_space_imp_subprob_space)
 
 lemma set_bind_pmf[simp]: "set_pmf (bind_pmf M N) = (\<Union>M\<in>set_pmf M. set_pmf (N M))"
-  unfolding set_pmf_eq ereal_eq_0(1)[symmetric] ereal_pmf_bind  
+  unfolding set_pmf_eq ereal_eq_0(1)[symmetric] ereal_pmf_bind
   by (auto simp add: nn_integral_0_iff_AE AE_measure_pmf_iff set_pmf_eq not_le less_le pmf_nonneg)
 
 lemma bind_pmf_cong:
@@ -415,7 +414,7 @@
   using measurable_measure_pmf[of N]
   unfolding measure_pmf_bind
   by (subst emeasure_bind[where N="count_space UNIV"]) auto
-                                
+
 lift_definition return_pmf :: "'a \<Rightarrow> 'a pmf" is "return (count_space UNIV)"
   by (auto intro!: prob_space_return simp: AE_return measure_return)
 
@@ -451,7 +450,7 @@
 proof -
   have "rel_fun op = (rel_fun pmf_as_measure.cr_pmf pmf_as_measure.cr_pmf)
      (\<lambda>f M. M \<guillemotright>= (return (count_space UNIV) o f)) map_pmf"
-    unfolding map_pmf_def[abs_def] comp_def by transfer_prover 
+    unfolding map_pmf_def[abs_def] comp_def by transfer_prover
   then show ?thesis
     by (force simp: rel_fun_def cr_pmf_def bind_return_distr)
 qed
@@ -468,7 +467,7 @@
   using map_pmf_id unfolding id_def .
 
 lemma map_pmf_compose: "map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g"
-  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def) 
+  by (rule, transfer) (simp add: distr_distr[symmetric, where N="count_space UNIV"] measurable_def)
 
 lemma map_pmf_comp: "map_pmf f (map_pmf g M) = map_pmf (\<lambda>x. f (g x)) M"
   using map_pmf_compose[of f g] by (simp add: comp_def)
@@ -665,7 +664,7 @@
   show "M = density (count_space UNIV) (\<lambda>x. ereal (measure M {x}))"
   proof (rule measure_eqI)
     fix A :: "'a set"
-    have "(\<integral>\<^sup>+ x. ereal (measure M {x}) * indicator A x \<partial>count_space UNIV) = 
+    have "(\<integral>\<^sup>+ x. ereal (measure M {x}) * indicator A x \<partial>count_space UNIV) =
       (\<integral>\<^sup>+ x. emeasure M {x} * indicator (A \<inter> {x. measure M {x} \<noteq> 0}) x \<partial>count_space UNIV)"
       by (auto intro!: nn_integral_cong simp: emeasure_eq_measure split: split_indicator)
     also have "\<dots> = (\<integral>\<^sup>+ x. emeasure M {x} \<partial>count_space (A \<inter> {x. measure M {x} \<noteq> 0}))"
@@ -706,9 +705,9 @@
 
 setup_lifting td_pmf_embed_pmf
 
-lemma set_pmf_transfer[transfer_rule]: 
+lemma set_pmf_transfer[transfer_rule]:
   assumes "bi_total A"
-  shows "rel_fun (pcr_pmf A) (rel_set A) (\<lambda>f. {x. f x \<noteq> 0}) set_pmf"  
+  shows "rel_fun (pcr_pmf A) (rel_set A) (\<lambda>f. {x. f x \<noteq> 0}) set_pmf"
   using `bi_total A`
   by (auto simp: pcr_pmf_def cr_pmf_def rel_fun_def rel_set_def bi_total_def Bex_def set_pmf_iff)
      metis+
@@ -888,14 +887,14 @@
 inductive rel_pmf :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a pmf \<Rightarrow> 'b pmf \<Rightarrow> bool"
 for R p q
 where
-  "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y; 
+  "\<lbrakk> \<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> R x y;
      map_pmf fst pq = p; map_pmf snd pq = q \<rbrakk>
   \<Longrightarrow> rel_pmf R p q"
 
 bnf pmf: "'a pmf" map: map_pmf sets: set_pmf bd : "natLeq" rel: rel_pmf
 proof -
   show "map_pmf id = id" by (rule map_pmf_id)
-  show "\<And>f g. map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g" by (rule map_pmf_compose) 
+  show "\<And>f g. map_pmf (f \<circ> g) = map_pmf f \<circ> map_pmf g" by (rule map_pmf_compose)
   show "\<And>f g::'a \<Rightarrow> 'b. \<And>p. (\<And>x. x \<in> set_pmf p \<Longrightarrow> f x = g x) \<Longrightarrow> map_pmf f p = map_pmf g p"
     by (intro map_pmf_cong refl)
 
@@ -1042,7 +1041,7 @@
                    map_pair)
 qed
 
-lemma rel_pmf_reflI: 
+lemma rel_pmf_reflI:
   assumes "\<And>x. x \<in> set_pmf p \<Longrightarrow> P x x"
   shows "rel_pmf P p p"
   by (rule rel_pmf.intros[where pq="map_pmf (\<lambda>x. (x, x)) p"])
@@ -1089,7 +1088,7 @@
     and q: "q = map_pmf snd pq"
     and P: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> rel_pmf P x y"
     by cases auto
-  from P obtain PQ 
+  from P obtain PQ
     where PQ: "\<And>x y a b. \<lbrakk> (x, y) \<in> set_pmf pq; (a, b) \<in> set_pmf (PQ x y) \<rbrakk> \<Longrightarrow> P a b"
     and x: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf fst (PQ x y) = x"
     and y: "\<And>x y. (x, y) \<in> set_pmf pq \<Longrightarrow> map_pmf snd (PQ x y) = y"
@@ -1112,12 +1111,12 @@
 
 text {*
   Proof that @{const rel_pmf} preserves orders.
-  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism, 
-  Theoretical Computer Science 12(1):19--37, 1980, 
+  Antisymmetry proof follows Thm. 1 in N. Saheb-Djahromi, Cpo's of measures for nondeterminism,
+  Theoretical Computer Science 12(1):19--37, 1980,
   @{url "http://dx.doi.org/10.1016/0304-3975(80)90003-1"}
 *}
 
-lemma 
+lemma
   assumes *: "rel_pmf R p q"
   and refl: "reflp R" and trans: "transp R"
   shows measure_Ici: "measure p {y. R x y} \<le> measure q {y. R x y}" (is ?thesis1)
@@ -1174,7 +1173,7 @@
     hence "measure (measure_pmf p) (?E x) \<noteq> 0"
       by (auto simp add: measure_pmf.prob_eq_0 AE_measure_pmf_iff intro: reflpD[OF \<open>reflp R\<close>])
     hence "measure (measure_pmf q) (?E x) \<noteq> 0" using eq by simp
-    hence "set_pmf q \<inter> {y. R x y \<and> R y x} \<noteq> {}" 
+    hence "set_pmf q \<inter> {y. R x y \<and> R y x} \<noteq> {}"
       by (auto simp add: measure_pmf.prob_eq_0 AE_measure_pmf_iff) }
   ultimately show "inf R R\<inverse>\<inverse> x y"
     by (auto simp add: pq_def)
@@ -1235,13 +1234,13 @@
 lemma set_pmf_bernoulli: "0 < p \<Longrightarrow> p < 1 \<Longrightarrow> set_pmf (bernoulli_pmf p) = UNIV"
   by (auto simp add: set_pmf_iff UNIV_bool)
 
-lemma nn_integral_bernoulli_pmf[simp]: 
+lemma nn_integral_bernoulli_pmf[simp]:
   assumes [simp]: "0 \<le> p" "p \<le> 1" "\<And>x. 0 \<le> f x"
   shows "(\<integral>\<^sup>+x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
   by (subst nn_integral_measure_pmf_support[of UNIV])
      (auto simp: UNIV_bool field_simps)
 
-lemma integral_bernoulli_pmf[simp]: 
+lemma integral_bernoulli_pmf[simp]:
   assumes [simp]: "0 \<le> p" "p \<le> 1"
   shows "(\<integral>x. f x \<partial>bernoulli_pmf p) = f True * p + f False * (1 - p)"
   by (subst integral_measure_pmf[of UNIV]) (auto simp: UNIV_bool)
@@ -1277,7 +1276,7 @@
 
 lift_definition pmf_of_multiset :: "'a pmf" is "\<lambda>x. count M x / size M"
 proof
-  show "(\<integral>\<^sup>+ x. ereal (real (count M x) / real (size M)) \<partial>count_space UNIV) = 1"  
+  show "(\<integral>\<^sup>+ x. ereal (real (count M x) / real (size M)) \<partial>count_space UNIV) = 1"
     using M_not_empty
     by (simp add: zero_less_divide_iff nn_integral_count_space nonempty_has_size
                   setsum_divide_distrib[symmetric])
@@ -1300,7 +1299,7 @@
 
 lift_definition pmf_of_set :: "'a pmf" is "\<lambda>x. indicator S x / card S"
 proof
-  show "(\<integral>\<^sup>+ x. ereal (indicator S x / real (card S)) \<partial>count_space UNIV) = 1"  
+  show "(\<integral>\<^sup>+ x. ereal (indicator S x / real (card S)) \<partial>count_space UNIV) = 1"
     using S_not_empty S_finite by (subst nn_integral_count_space'[of S]) auto
 qed simp
 
--- a/src/HOL/ROOT	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/ROOT	Tue Mar 10 15:20:40 2015 +0000
@@ -285,7 +285,6 @@
     (* Preliminaries from set and number theory *)
     "~~/src/HOL/Library/FuncSet"
     "~~/src/HOL/Number_Theory/Primes"
-    "~~/src/HOL/Number_Theory/Binomial"
     "~~/src/HOL/Library/Permutation"
   theories
     (*** New development, based on explicit structures ***)
--- a/src/HOL/Rat.thy	Tue Mar 10 11:56:32 2015 +0100
+++ b/src/HOL/Rat.thy	Tue Mar 10 15:20:40 2015 +0000
@@ -638,10 +638,6 @@
 
 subsection {* Embedding from Rationals to other Fields *}
 
-class field_char_0 = field + ring_char_0
-
-subclass (in linordered_field) field_char_0 ..
-
 context field_char_0
 begin