--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/Arith/nat_transitive.ML Wed Nov 26 16:42:56 1997 +0100
@@ -0,0 +1,253 @@
+(* Title: Provers/nat_transitive.ML
+ ID: $Id$
+ Author: Tobias Nipkow
+ Copyright 1996 TU Munich
+*)
+
+(***
+A very simple package for inequalities over nat.
+It uses all premises of the form
+
+t = u, t < u, t <= u, ~(t < u), ~(t <= u)
+
+where t and u must be of type nat, to
+1. either derive a contradiction,
+ in which case the conclusion can be any term,
+2. or prove the conclusion, which must be of the same form as the premises.
+
+The package
+- does not deal with the relation ~=
+- treats `pred', +, *, ... as atomic terms. Hence it can prove
+ [| x < y+z; y+z < u |] ==> Suc x < u
+ but not
+ [| x < y+z; z < u |] ==> Suc x < y+u
+- takes only (in)equalities which are atomic premises into account. It does
+ not deal with logical operators like -->, & etc. Hence it cannot prove
+ [| x < y+z & y+z < u |] ==> Suc x < u
+
+In order not to fall foul of the above limitations, the following hints are
+useful:
+
+1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic
+ premises.
+
+2. To get rid of ~= in the premises, it is advisable to use a rule like
+ nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm
+ (the name nat_eqE is chosen in HOL), for example as follows:
+ by(safe_tac (HOL_cs addSEs [nat_neqE])
+
+3. To get rid of `pred', you may be able to do the following:
+ expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac
+ to turn the case-expressions into logical case distinctions. In HOL:
+ simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case]))
+
+The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in
+the simplifier, `cut_trans_tac' is also provided, which cuts the given thms
+in as facts.
+
+Notes:
+- It should easily be possible to adapt this package to other numeric types
+ like int.
+- There is ample scope for optimizations, which so far have not proved
+ necessary.
+- The code can be simplified by adding the negated conclusion to the
+ premises to derive a contradiction. However, this would restrict the
+ package to classical logics.
+***)
+
+(* The package works for arbitrary logics.
+ You just need to instantiate the following parameter structure.
+*)
+signature LESS_ARITH =
+sig
+ val lessI: thm (* n < Suc n *)
+ val zero_less_Suc: thm (* 0 < Suc n *)
+ val less_reflE: thm (* n < n ==> P *)
+ val less_zeroE: thm (* n < 0 ==> P *)
+ val less_incr: thm (* m < n ==> Suc m < Suc n *)
+ val less_decr: thm (* Suc m < Suc n ==> m < n *)
+ val less_incr_rhs: thm (* m < n ==> m < Suc n *)
+ val less_decr_lhs: thm (* Suc m < n ==> m < n *)
+ val less_trans_Suc: thm (* [| i < j; j < k |] ==> Suc i < k *)
+ val leD: thm (* m <= n ==> m < Suc n *)
+ val not_lessD: thm (* ~(m < n) ==> n < Suc m *)
+ val not_leD: thm (* ~(m <= n) ==> n < m *)
+ val eqD1: thm (* m = n ==> m < Suc n *)
+ val eqD2: thm (* m = n ==> m < Suc n *)
+ val not_lessI: thm (* n < Suc m ==> ~(m < n) *)
+ val leI: thm (* m < Suc n ==> m <= n *)
+ val not_leI: thm (* n < m ==> ~(m <= n) *)
+ val eqI: thm (* [| m < Suc n; n < Suc m |] ==> n = m *)
+ val is_zero: term -> bool
+ val decomp: term -> (term * int * string * term * int)option
+(* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j)
+ where Rel is one of "<", "~<", "<=", "~<=" and "=" *)
+end;
+
+
+signature TRANS_TAC =
+sig
+ val trans_tac: int -> tactic
+ val cut_trans_tac: thm list -> int -> tactic
+end;
+
+functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC =
+struct
+
+datatype proof = Asm of int
+ | Thm of proof list * thm
+ | Incr1 of proof * int (* Increment 1 side *)
+ | Incr2 of proof * int (* Increment 2 sides *);
+
+
+(*** Turn proof objects into thms ***)
+
+fun incr2(th,i) = if i=0 then th else
+ if i>0 then incr2(th RS Less.less_incr,i-1)
+ else incr2(th RS Less.less_decr,i+1);
+
+fun incr1(th,i) = if i=0 then th else
+ if i>0 then incr1(th RS Less.less_incr_rhs,i-1)
+ else incr1(th RS Less.less_decr_lhs,i+1);
+
+fun prove asms =
+ let fun pr(Asm i) = nth_elem(i,asms)
+ | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm
+ | pr(Incr1(p,i)) = incr1(pr p,i)
+ | pr(Incr2(p,i)) = incr2(pr p,i)
+ in pr end;
+
+(*** Internal representation of inequalities
+(x,i,y,j) means x+i < y+j.
+Leads to simpler case distinctions than the normalized x < y+k
+***)
+type less = term * int * term * int * proof;
+
+(*** raised when contradiction is found ***)
+exception Contr of proof;
+
+(*** raised when goal can't be proved ***)
+exception Cant;
+
+infix subsumes;
+
+fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) =
+ x=x' andalso y=y' andalso j-i<=j'-i';
+
+fun trivial(x,i:int,y,j,_) = (x=y orelse Less.is_zero(x)) andalso i<j;
+
+(*** transitive closure ***)
+
+(* Very naive: computes all consequences of a set of less-statements. *)
+(* In the worst case very expensive not just in time but also space *)
+(* Could easily be optimized but there are ususally only a few < asms *)
+
+fun add new =
+ let fun adds([],news) = new::news
+ | adds(old::olds,news) = if new subsumes old then adds(olds,news)
+ else adds(olds,old::news)
+ in adds end;
+
+fun ctest(less as (x,i,y,j,p)) =
+ if x=y andalso i>=j
+ then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else
+ if Less.is_zero(y) andalso i>=j
+ then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE))
+ else less;
+
+fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) =
+ ctest(if j >= k
+ then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc))
+ else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc)));
+
+fun trans (new as (x,i,y,j,p)) olds =
+ let fun tr(news, old as (x1,i1,y1,j1,p1):less) =
+ if y1=x then mktrans(old,new)::news else
+ if x1=y then mktrans(new,old)::news else news
+ in foldl tr ([],olds) end;
+
+fun close1(olds: less list)(new:less):less list =
+ if trivial new orelse exists (fn old => old subsumes new) olds then olds
+ else let val news = trans new olds
+ in close (add new (olds,[])) news end
+and close (olds: less list) ([]:less list) = olds
+ | close olds ((new:less)::news) = close (close1 olds (ctest new)) news;
+
+(*** end of transitive closure ***)
+
+(* recognize and solve trivial goal *)
+fun triv_sol(x,i,y,j,_) =
+ if x=y andalso i<j
+ then Some(Incr1(Incr2(Thm([],Less.lessI),i),j-i-1)) else
+ if Less.is_zero(x) andalso i<j
+ then Some(Incr1(Incr2(Thm([],Less.zero_less_Suc),i),j-i-1))
+ else None;
+
+(* solve less starting from facts *)
+fun solve facts (less as (x,i,y,j,_)) =
+ case triv_sol less of
+ None => (case find_first (fn fact => fact subsumes less) facts of
+ None => raise Cant
+ | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j))
+ | Some prf => prf;
+
+(* turn term into a less-tuple *)
+fun mkasm(t,n) =
+ case Less.decomp(t) of
+ Some(x,i,rel,y,j) => (case rel of
+ "<" => [(x,i,y,j,Asm n)]
+ | "~<" => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))]
+ | "<=" => [(x,i,y,j+1,Thm([Asm n],Less.leD))]
+ | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))]
+ | "=" => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)),
+ (y,j,x,i+1,Thm([Asm n],Less.eqD2))]
+ | "~=" => []
+ | _ => error("trans_tac/decomp: unknown relation " ^ rel))
+ | None => [];
+
+(* mkconcl t returns a pair (goals,proof) where goals is a list of *)
+(* less-subgoals to solve, and proof the validation which proves the concl t *)
+(* from the subgoals. Asm ~1 is dummy *)
+fun mkconcl t =
+ case Less.decomp(t) of
+ Some(x,i,rel,y,j) => (case rel of
+ "<" => ([(x,i,y,j,Asm ~1)],Asm 0)
+ | "~<" => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI))
+ | "<=" => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI))
+ | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI))
+ | "=" => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)],
+ Thm([Asm 0,Asm 1],Less.eqI))
+ | "~=" => raise Cant
+ | _ => error("trans_tac/decomp: unknown relation " ^ rel))
+ | None => raise Cant;
+
+
+val trans_tac = SUBGOAL (fn (A,n) =>
+ let val Hs = Logic.strip_assums_hyp A
+ val C = Logic.strip_assums_concl A
+ val lesss = flat(ListPair.map mkasm (Hs, 0 upto (length Hs - 1)))
+ val clesss = close [] lesss
+ val (subgoals,prf) = mkconcl C
+ val prfs = map (solve clesss) subgoals
+ in METAHYPS (fn asms => let val thms = map (prove asms) prfs
+ in rtac (prove thms prf) 1 end) n
+ end
+ handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n
+ | Cant => no_tac);
+
+fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac;
+
+end;
+
+(*** Tests
+fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]);
+
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc i) < m";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc(Suc i)) <= m";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m <= Suc(Suc i)";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m < Suc(Suc(Suc i))";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m <= Suc(Suc(Suc i)) |] \
+\ ==> m = Suc(Suc(Suc i))";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m=n; n <= Suc(Suc(Suc i)) |] \
+\ ==> m = Suc(Suc(Suc i))";
+***)
--- a/src/Provers/nat_transitive.ML Wed Nov 26 16:42:37 1997 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,253 +0,0 @@
-(* Title: Provers/nat_transitive.ML
- ID: $Id$
- Author: Tobias Nipkow
- Copyright 1996 TU Munich
-*)
-
-(***
-A very simple package for inequalities over nat.
-It uses all premises of the form
-
-t = u, t < u, t <= u, ~(t < u), ~(t <= u)
-
-where t and u must be of type nat, to
-1. either derive a contradiction,
- in which case the conclusion can be any term,
-2. or prove the conclusion, which must be of the same form as the premises.
-
-The package
-- does not deal with the relation ~=
-- treats `pred', +, *, ... as atomic terms. Hence it can prove
- [| x < y+z; y+z < u |] ==> Suc x < u
- but not
- [| x < y+z; z < u |] ==> Suc x < y+u
-- takes only (in)equalities which are atomic premises into account. It does
- not deal with logical operators like -->, & etc. Hence it cannot prove
- [| x < y+z & y+z < u |] ==> Suc x < u
-
-In order not to fall foul of the above limitations, the following hints are
-useful:
-
-1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic
- premises.
-
-2. To get rid of ~= in the premises, it is advisable to use a rule like
- nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm
- (the name nat_eqE is chosen in HOL), for example as follows:
- by(safe_tac (HOL_cs addSEs [nat_neqE])
-
-3. To get rid of `pred', you may be able to do the following:
- expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac
- to turn the case-expressions into logical case distinctions. In HOL:
- simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case]))
-
-The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in
-the simplifier, `cut_trans_tac' is also provided, which cuts the given thms
-in as facts.
-
-Notes:
-- It should easily be possible to adapt this package to other numeric types
- like int.
-- There is ample scope for optimizations, which so far have not proved
- necessary.
-- The code can be simplified by adding the negated conclusion to the
- premises to derive a contradiction. However, this would restrict the
- package to classical logics.
-***)
-
-(* The package works for arbitrary logics.
- You just need to instantiate the following parameter structure.
-*)
-signature LESS_ARITH =
-sig
- val lessI: thm (* n < Suc n *)
- val zero_less_Suc: thm (* 0 < Suc n *)
- val less_reflE: thm (* n < n ==> P *)
- val less_zeroE: thm (* n < 0 ==> P *)
- val less_incr: thm (* m < n ==> Suc m < Suc n *)
- val less_decr: thm (* Suc m < Suc n ==> m < n *)
- val less_incr_rhs: thm (* m < n ==> m < Suc n *)
- val less_decr_lhs: thm (* Suc m < n ==> m < n *)
- val less_trans_Suc: thm (* [| i < j; j < k |] ==> Suc i < k *)
- val leD: thm (* m <= n ==> m < Suc n *)
- val not_lessD: thm (* ~(m < n) ==> n < Suc m *)
- val not_leD: thm (* ~(m <= n) ==> n < m *)
- val eqD1: thm (* m = n ==> m < Suc n *)
- val eqD2: thm (* m = n ==> m < Suc n *)
- val not_lessI: thm (* n < Suc m ==> ~(m < n) *)
- val leI: thm (* m < Suc n ==> m <= n *)
- val not_leI: thm (* n < m ==> ~(m <= n) *)
- val eqI: thm (* [| m < Suc n; n < Suc m |] ==> n = m *)
- val is_zero: term -> bool
- val decomp: term -> (term * int * string * term * int)option
-(* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j)
- where Rel is one of "<", "~<", "<=", "~<=" and "=" *)
-end;
-
-
-signature TRANS_TAC =
-sig
- val trans_tac: int -> tactic
- val cut_trans_tac: thm list -> int -> tactic
-end;
-
-functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC =
-struct
-
-datatype proof = Asm of int
- | Thm of proof list * thm
- | Incr1 of proof * int (* Increment 1 side *)
- | Incr2 of proof * int (* Increment 2 sides *);
-
-
-(*** Turn proof objects into thms ***)
-
-fun incr2(th,i) = if i=0 then th else
- if i>0 then incr2(th RS Less.less_incr,i-1)
- else incr2(th RS Less.less_decr,i+1);
-
-fun incr1(th,i) = if i=0 then th else
- if i>0 then incr1(th RS Less.less_incr_rhs,i-1)
- else incr1(th RS Less.less_decr_lhs,i+1);
-
-fun prove asms =
- let fun pr(Asm i) = nth_elem(i,asms)
- | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm
- | pr(Incr1(p,i)) = incr1(pr p,i)
- | pr(Incr2(p,i)) = incr2(pr p,i)
- in pr end;
-
-(*** Internal representation of inequalities
-(x,i,y,j) means x+i < y+j.
-Leads to simpler case distinctions than the normalized x < y+k
-***)
-type less = term * int * term * int * proof;
-
-(*** raised when contradiction is found ***)
-exception Contr of proof;
-
-(*** raised when goal can't be proved ***)
-exception Cant;
-
-infix subsumes;
-
-fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) =
- x=x' andalso y=y' andalso j-i<=j'-i';
-
-fun trivial(x,i:int,y,j,_) = (x=y orelse Less.is_zero(x)) andalso i<j;
-
-(*** transitive closure ***)
-
-(* Very naive: computes all consequences of a set of less-statements. *)
-(* In the worst case very expensive not just in time but also space *)
-(* Could easily be optimized but there are ususally only a few < asms *)
-
-fun add new =
- let fun adds([],news) = new::news
- | adds(old::olds,news) = if new subsumes old then adds(olds,news)
- else adds(olds,old::news)
- in adds end;
-
-fun ctest(less as (x,i,y,j,p)) =
- if x=y andalso i>=j
- then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else
- if Less.is_zero(y) andalso i>=j
- then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE))
- else less;
-
-fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) =
- ctest(if j >= k
- then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc))
- else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc)));
-
-fun trans (new as (x,i,y,j,p)) olds =
- let fun tr(news, old as (x1,i1,y1,j1,p1):less) =
- if y1=x then mktrans(old,new)::news else
- if x1=y then mktrans(new,old)::news else news
- in foldl tr ([],olds) end;
-
-fun close1(olds: less list)(new:less):less list =
- if trivial new orelse exists (fn old => old subsumes new) olds then olds
- else let val news = trans new olds
- in close (add new (olds,[])) news end
-and close (olds: less list) ([]:less list) = olds
- | close olds ((new:less)::news) = close (close1 olds (ctest new)) news;
-
-(*** end of transitive closure ***)
-
-(* recognize and solve trivial goal *)
-fun triv_sol(x,i,y,j,_) =
- if x=y andalso i<j
- then Some(Incr1(Incr2(Thm([],Less.lessI),i),j-i-1)) else
- if Less.is_zero(x) andalso i<j
- then Some(Incr1(Incr2(Thm([],Less.zero_less_Suc),i),j-i-1))
- else None;
-
-(* solve less starting from facts *)
-fun solve facts (less as (x,i,y,j,_)) =
- case triv_sol less of
- None => (case find_first (fn fact => fact subsumes less) facts of
- None => raise Cant
- | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j))
- | Some prf => prf;
-
-(* turn term into a less-tuple *)
-fun mkasm(t,n) =
- case Less.decomp(t) of
- Some(x,i,rel,y,j) => (case rel of
- "<" => [(x,i,y,j,Asm n)]
- | "~<" => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))]
- | "<=" => [(x,i,y,j+1,Thm([Asm n],Less.leD))]
- | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))]
- | "=" => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)),
- (y,j,x,i+1,Thm([Asm n],Less.eqD2))]
- | "~=" => []
- | _ => error("trans_tac/decomp: unknown relation " ^ rel))
- | None => [];
-
-(* mkconcl t returns a pair (goals,proof) where goals is a list of *)
-(* less-subgoals to solve, and proof the validation which proves the concl t *)
-(* from the subgoals. Asm ~1 is dummy *)
-fun mkconcl t =
- case Less.decomp(t) of
- Some(x,i,rel,y,j) => (case rel of
- "<" => ([(x,i,y,j,Asm ~1)],Asm 0)
- | "~<" => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI))
- | "<=" => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI))
- | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI))
- | "=" => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)],
- Thm([Asm 0,Asm 1],Less.eqI))
- | "~=" => raise Cant
- | _ => error("trans_tac/decomp: unknown relation " ^ rel))
- | None => raise Cant;
-
-
-val trans_tac = SUBGOAL (fn (A,n) =>
- let val Hs = Logic.strip_assums_hyp A
- val C = Logic.strip_assums_concl A
- val lesss = flat(ListPair.map mkasm (Hs, 0 upto (length Hs - 1)))
- val clesss = close [] lesss
- val (subgoals,prf) = mkconcl C
- val prfs = map (solve clesss) subgoals
- in METAHYPS (fn asms => let val thms = map (prove asms) prfs
- in rtac (prove thms prf) 1 end) n
- end
- handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n
- | Cant => no_tac);
-
-fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac;
-
-end;
-
-(*** Tests
-fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]);
-
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc i) < m";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc(Suc i)) <= m";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m <= Suc(Suc i)";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m < Suc(Suc(Suc i))";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m <= Suc(Suc(Suc i)) |] \
-\ ==> m = Suc(Suc(Suc i))";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m=n; n <= Suc(Suc(Suc i)) |] \
-\ ==> m = Suc(Suc(Suc i))";
-***)