moved to Arith/;
authorwenzelm
Wed, 26 Nov 1997 16:42:56 +0100
changeset 4293 66da34945f8b
parent 4292 014771692751
child 4294 7fe9723d579b
moved to Arith/;
src/Provers/Arith/nat_transitive.ML
src/Provers/nat_transitive.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Provers/Arith/nat_transitive.ML	Wed Nov 26 16:42:56 1997 +0100
@@ -0,0 +1,253 @@
+(*  Title:      Provers/nat_transitive.ML
+    ID:         $Id$
+    Author:     Tobias Nipkow
+    Copyright   1996  TU Munich
+*)
+
+(***
+A very simple package for inequalities over nat.
+It uses all premises of the form
+
+t = u, t < u, t <= u, ~(t < u), ~(t <= u)
+
+where t and u must be of type nat, to
+1. either derive a contradiction,
+   in which case the conclusion can be any term,
+2. or prove the conclusion, which must be of the same form as the premises.
+
+The package
+- does not deal with the relation ~=
+- treats `pred', +, *, ... as atomic terms. Hence it can prove
+  [| x < y+z; y+z < u |] ==> Suc x < u
+  but not
+  [| x < y+z; z < u |] ==> Suc x < y+u
+- takes only (in)equalities which are atomic premises into account. It does
+  not deal with logical operators like -->, & etc. Hence it cannot prove 
+  [| x < y+z & y+z < u |] ==> Suc x < u
+
+In order not to fall foul of the above limitations, the following hints are
+useful:
+
+1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic
+   premises.
+
+2. To get rid of ~= in the premises, it is advisable to use a rule like
+   nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm
+   (the name nat_eqE is chosen in HOL), for example as follows:
+   by(safe_tac (HOL_cs addSEs [nat_neqE])
+
+3. To get rid of `pred', you may be able to do the following:
+   expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac
+   to turn the case-expressions into logical case distinctions. In HOL:
+   simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case]))
+
+The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in
+the simplifier, `cut_trans_tac' is also provided, which cuts the given thms
+in as facts.
+
+Notes:
+- It should easily be possible to adapt this package to other numeric types
+  like int.
+- There is ample scope for optimizations, which so far have not proved
+  necessary.
+- The code can be simplified by adding the negated conclusion to the
+  premises to derive a contradiction. However, this would restrict the
+  package to classical logics.
+***)
+
+(* The package works for arbitrary logics.
+   You just need to instantiate the following parameter structure.
+*)
+signature LESS_ARITH =
+sig
+  val lessI:            thm (* n < Suc n *)
+  val zero_less_Suc:    thm (* 0 < Suc n *)
+  val less_reflE:       thm (* n < n ==> P *)
+  val less_zeroE:       thm (* n < 0 ==> P *)
+  val less_incr:        thm (* m < n ==> Suc m < Suc n *)
+  val less_decr:        thm (* Suc m < Suc n ==> m < n *)
+  val less_incr_rhs:    thm (* m < n ==> m < Suc n *)
+  val less_decr_lhs:    thm (* Suc m < n ==> m < n *)
+  val less_trans_Suc:   thm (* [| i < j; j < k |] ==> Suc i < k *)
+  val leD:              thm (* m <= n ==> m < Suc n *)
+  val not_lessD:        thm (* ~(m < n) ==> n < Suc m *)
+  val not_leD:          thm (* ~(m <= n) ==> n < m *)
+  val eqD1:             thm (* m = n ==> m < Suc n *)
+  val eqD2:             thm (* m = n ==> m < Suc n *)
+  val not_lessI:        thm (* n < Suc m ==> ~(m < n) *)
+  val leI:              thm (* m < Suc n ==> m <= n *)
+  val not_leI:          thm (* n < m ==> ~(m <= n) *)
+  val eqI:              thm (* [| m < Suc n; n < Suc m |] ==> n = m *)
+  val is_zero: term -> bool
+  val decomp:  term -> (term * int * string * term * int)option
+(* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j)
+   where Rel is one of "<", "~<", "<=", "~<=" and "=" *)
+end;
+
+
+signature TRANS_TAC =
+sig
+  val trans_tac: int -> tactic
+  val cut_trans_tac: thm list -> int -> tactic
+end;
+
+functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC =
+struct
+
+datatype proof = Asm of int
+               | Thm of proof list * thm
+               | Incr1 of proof * int (* Increment 1 side *)
+               | Incr2 of proof * int (* Increment 2 sides *);
+
+
+(*** Turn proof objects into thms ***)
+
+fun incr2(th,i) = if i=0 then th else
+                  if i>0 then incr2(th RS Less.less_incr,i-1)
+                  else incr2(th RS Less.less_decr,i+1);
+
+fun incr1(th,i) = if i=0 then th else
+                  if i>0 then incr1(th RS Less.less_incr_rhs,i-1)
+                  else incr1(th RS Less.less_decr_lhs,i+1);
+
+fun prove asms =
+  let fun pr(Asm i) = nth_elem(i,asms)
+        | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm
+        | pr(Incr1(p,i)) = incr1(pr p,i)
+        | pr(Incr2(p,i)) = incr2(pr p,i)
+  in pr end;
+
+(*** Internal representation of inequalities
+(x,i,y,j) means x+i < y+j.
+Leads to simpler case distinctions than the normalized x < y+k
+***)
+type less = term * int * term * int * proof;
+
+(*** raised when contradiction is found ***)
+exception Contr of proof;
+
+(*** raised when goal can't be proved ***)
+exception Cant;
+
+infix subsumes;
+
+fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) =
+  x=x' andalso y=y' andalso j-i<=j'-i';
+
+fun trivial(x,i:int,y,j,_)  =  (x=y orelse Less.is_zero(x)) andalso i<j;
+
+(*** transitive closure ***)
+
+(* Very naive: computes all consequences of a set of less-statements. *)
+(* In the worst case very expensive not just in time but also space *)
+(* Could easily be optimized but there are ususally only a few < asms *)
+
+fun add new =
+  let fun adds([],news) = new::news
+        | adds(old::olds,news) = if new subsumes old then adds(olds,news)
+                                 else adds(olds,old::news)
+  in adds end;
+
+fun ctest(less as (x,i,y,j,p)) =
+  if x=y andalso i>=j
+  then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else
+  if Less.is_zero(y) andalso i>=j
+  then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE))
+  else less;
+
+fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) =
+  ctest(if j >= k
+        then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc))
+        else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc)));
+
+fun trans (new as (x,i,y,j,p)) olds =
+  let fun tr(news, old as (x1,i1,y1,j1,p1):less) =
+           if y1=x then mktrans(old,new)::news else
+           if x1=y then mktrans(new,old)::news else news
+  in foldl tr ([],olds) end;
+
+fun close1(olds: less list)(new:less):less list =
+      if trivial new orelse exists (fn old => old subsumes new) olds then olds
+      else let val news = trans new olds
+           in  close (add new (olds,[])) news end
+and close (olds: less list) ([]:less list) = olds
+  | close olds ((new:less)::news) = close (close1 olds (ctest new)) news;
+
+(*** end of transitive closure ***)
+
+(* recognize and solve trivial goal *)
+fun triv_sol(x,i,y,j,_) =
+  if x=y andalso i<j
+  then Some(Incr1(Incr2(Thm([],Less.lessI),i),j-i-1)) else
+  if Less.is_zero(x) andalso i<j
+  then Some(Incr1(Incr2(Thm([],Less.zero_less_Suc),i),j-i-1))
+  else None;
+
+(* solve less starting from facts *)
+fun solve facts (less as (x,i,y,j,_)) =
+  case triv_sol less of
+    None => (case find_first (fn fact => fact subsumes less) facts of
+               None => raise Cant
+             | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j))
+  | Some prf => prf;
+
+(* turn term into a less-tuple *)
+fun mkasm(t,n) =
+  case Less.decomp(t) of
+    Some(x,i,rel,y,j) => (case rel of
+      "<"   => [(x,i,y,j,Asm n)]
+    | "~<"  => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))]
+    | "<="  => [(x,i,y,j+1,Thm([Asm n],Less.leD))]
+    | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))]
+    | "="   => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)),
+                (y,j,x,i+1,Thm([Asm n],Less.eqD2))]
+    | "~="  => []
+    | _     => error("trans_tac/decomp: unknown relation " ^ rel))
+  | None => [];
+
+(* mkconcl t returns a pair (goals,proof) where goals is a list of *)
+(* less-subgoals to solve, and proof the validation which proves the concl t *)
+(* from the subgoals. Asm ~1 is dummy *)
+fun mkconcl t =
+  case Less.decomp(t) of
+    Some(x,i,rel,y,j) => (case rel of
+      "<"   => ([(x,i,y,j,Asm ~1)],Asm 0)
+    | "~<"  => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI))
+    | "<="  => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI))
+    | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI))
+    | "="   => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)],
+                Thm([Asm 0,Asm 1],Less.eqI))
+    | "~="  => raise Cant
+    | _     => error("trans_tac/decomp: unknown relation " ^ rel))
+  | None => raise Cant;
+
+
+val trans_tac = SUBGOAL (fn (A,n) =>
+  let val Hs = Logic.strip_assums_hyp A
+      val C = Logic.strip_assums_concl A
+      val lesss = flat(ListPair.map mkasm (Hs, 0 upto (length Hs - 1)))
+      val clesss = close [] lesss
+      val (subgoals,prf) = mkconcl C
+      val prfs = map (solve clesss) subgoals
+  in METAHYPS (fn asms => let val thms = map (prove asms) prfs
+                          in rtac (prove thms prf) 1 end) n
+  end
+  handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n
+       | Cant => no_tac);
+
+fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac;
+
+end;
+
+(*** Tests
+fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]);
+
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc i) < m";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc(Suc i)) <= m";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m <= Suc(Suc i)";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m < Suc(Suc(Suc i))";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m <= Suc(Suc(Suc i)) |] \
+\     ==> m = Suc(Suc(Suc i))";
+test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m=n; n <= Suc(Suc(Suc i)) |] \
+\     ==> m = Suc(Suc(Suc i))";
+***)
--- a/src/Provers/nat_transitive.ML	Wed Nov 26 16:42:37 1997 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,253 +0,0 @@
-(*  Title:      Provers/nat_transitive.ML
-    ID:         $Id$
-    Author:     Tobias Nipkow
-    Copyright   1996  TU Munich
-*)
-
-(***
-A very simple package for inequalities over nat.
-It uses all premises of the form
-
-t = u, t < u, t <= u, ~(t < u), ~(t <= u)
-
-where t and u must be of type nat, to
-1. either derive a contradiction,
-   in which case the conclusion can be any term,
-2. or prove the conclusion, which must be of the same form as the premises.
-
-The package
-- does not deal with the relation ~=
-- treats `pred', +, *, ... as atomic terms. Hence it can prove
-  [| x < y+z; y+z < u |] ==> Suc x < u
-  but not
-  [| x < y+z; z < u |] ==> Suc x < y+u
-- takes only (in)equalities which are atomic premises into account. It does
-  not deal with logical operators like -->, & etc. Hence it cannot prove 
-  [| x < y+z & y+z < u |] ==> Suc x < u
-
-In order not to fall foul of the above limitations, the following hints are
-useful:
-
-1. You may need to run `by(safe_tac HOL_cs)' in order to bring out the atomic
-   premises.
-
-2. To get rid of ~= in the premises, it is advisable to use a rule like
-   nat_neqE = "[| (m::nat) ~= n; m < n ==> P; n < m ==> P |] ==> P" : thm
-   (the name nat_eqE is chosen in HOL), for example as follows:
-   by(safe_tac (HOL_cs addSEs [nat_neqE])
-
-3. To get rid of `pred', you may be able to do the following:
-   expand `pred(m)' into `case m of 0 => 0 | Suc n => n' and use split_tac
-   to turn the case-expressions into logical case distinctions. In HOL:
-   simp_tac (... addsimps [pred_def] setloop (split_tac [expand_nat_case]))
-
-The basic tactic is `trans_tac'. In order to use `trans_tac' as a solver in
-the simplifier, `cut_trans_tac' is also provided, which cuts the given thms
-in as facts.
-
-Notes:
-- It should easily be possible to adapt this package to other numeric types
-  like int.
-- There is ample scope for optimizations, which so far have not proved
-  necessary.
-- The code can be simplified by adding the negated conclusion to the
-  premises to derive a contradiction. However, this would restrict the
-  package to classical logics.
-***)
-
-(* The package works for arbitrary logics.
-   You just need to instantiate the following parameter structure.
-*)
-signature LESS_ARITH =
-sig
-  val lessI:            thm (* n < Suc n *)
-  val zero_less_Suc:    thm (* 0 < Suc n *)
-  val less_reflE:       thm (* n < n ==> P *)
-  val less_zeroE:       thm (* n < 0 ==> P *)
-  val less_incr:        thm (* m < n ==> Suc m < Suc n *)
-  val less_decr:        thm (* Suc m < Suc n ==> m < n *)
-  val less_incr_rhs:    thm (* m < n ==> m < Suc n *)
-  val less_decr_lhs:    thm (* Suc m < n ==> m < n *)
-  val less_trans_Suc:   thm (* [| i < j; j < k |] ==> Suc i < k *)
-  val leD:              thm (* m <= n ==> m < Suc n *)
-  val not_lessD:        thm (* ~(m < n) ==> n < Suc m *)
-  val not_leD:          thm (* ~(m <= n) ==> n < m *)
-  val eqD1:             thm (* m = n ==> m < Suc n *)
-  val eqD2:             thm (* m = n ==> m < Suc n *)
-  val not_lessI:        thm (* n < Suc m ==> ~(m < n) *)
-  val leI:              thm (* m < Suc n ==> m <= n *)
-  val not_leI:          thm (* n < m ==> ~(m <= n) *)
-  val eqI:              thm (* [| m < Suc n; n < Suc m |] ==> n = m *)
-  val is_zero: term -> bool
-  val decomp:  term -> (term * int * string * term * int)option
-(* decomp(`Suc^i(x) Rel Suc^j(y)') should yield (x,i,Rel,y,j)
-   where Rel is one of "<", "~<", "<=", "~<=" and "=" *)
-end;
-
-
-signature TRANS_TAC =
-sig
-  val trans_tac: int -> tactic
-  val cut_trans_tac: thm list -> int -> tactic
-end;
-
-functor Trans_Tac_Fun(Less:LESS_ARITH):TRANS_TAC =
-struct
-
-datatype proof = Asm of int
-               | Thm of proof list * thm
-               | Incr1 of proof * int (* Increment 1 side *)
-               | Incr2 of proof * int (* Increment 2 sides *);
-
-
-(*** Turn proof objects into thms ***)
-
-fun incr2(th,i) = if i=0 then th else
-                  if i>0 then incr2(th RS Less.less_incr,i-1)
-                  else incr2(th RS Less.less_decr,i+1);
-
-fun incr1(th,i) = if i=0 then th else
-                  if i>0 then incr1(th RS Less.less_incr_rhs,i-1)
-                  else incr1(th RS Less.less_decr_lhs,i+1);
-
-fun prove asms =
-  let fun pr(Asm i) = nth_elem(i,asms)
-        | pr(Thm(prfs,thm)) = (map pr prfs) MRS thm
-        | pr(Incr1(p,i)) = incr1(pr p,i)
-        | pr(Incr2(p,i)) = incr2(pr p,i)
-  in pr end;
-
-(*** Internal representation of inequalities
-(x,i,y,j) means x+i < y+j.
-Leads to simpler case distinctions than the normalized x < y+k
-***)
-type less = term * int * term * int * proof;
-
-(*** raised when contradiction is found ***)
-exception Contr of proof;
-
-(*** raised when goal can't be proved ***)
-exception Cant;
-
-infix subsumes;
-
-fun (x,i,y,j:int,_) subsumes (x',i',y',j',_) =
-  x=x' andalso y=y' andalso j-i<=j'-i';
-
-fun trivial(x,i:int,y,j,_)  =  (x=y orelse Less.is_zero(x)) andalso i<j;
-
-(*** transitive closure ***)
-
-(* Very naive: computes all consequences of a set of less-statements. *)
-(* In the worst case very expensive not just in time but also space *)
-(* Could easily be optimized but there are ususally only a few < asms *)
-
-fun add new =
-  let fun adds([],news) = new::news
-        | adds(old::olds,news) = if new subsumes old then adds(olds,news)
-                                 else adds(olds,old::news)
-  in adds end;
-
-fun ctest(less as (x,i,y,j,p)) =
-  if x=y andalso i>=j
-  then raise Contr(Thm([Incr1(Incr2(p,~j),j-i)],Less.less_reflE)) else
-  if Less.is_zero(y) andalso i>=j
-  then raise Contr(Thm([Incr2(p,~j)],Less.less_zeroE))
-  else less;
-
-fun mktrans((x,i,_,j,p):less,(_,k,z,l,q)) =
-  ctest(if j >= k
-        then (x,i+1,z,l+(j-k),Thm([p,Incr2(q,j-k)],Less.less_trans_Suc))
-        else (x,i+(k-j)+1,z,l,Thm([Incr2(p,k-j),q],Less.less_trans_Suc)));
-
-fun trans (new as (x,i,y,j,p)) olds =
-  let fun tr(news, old as (x1,i1,y1,j1,p1):less) =
-           if y1=x then mktrans(old,new)::news else
-           if x1=y then mktrans(new,old)::news else news
-  in foldl tr ([],olds) end;
-
-fun close1(olds: less list)(new:less):less list =
-      if trivial new orelse exists (fn old => old subsumes new) olds then olds
-      else let val news = trans new olds
-           in  close (add new (olds,[])) news end
-and close (olds: less list) ([]:less list) = olds
-  | close olds ((new:less)::news) = close (close1 olds (ctest new)) news;
-
-(*** end of transitive closure ***)
-
-(* recognize and solve trivial goal *)
-fun triv_sol(x,i,y,j,_) =
-  if x=y andalso i<j
-  then Some(Incr1(Incr2(Thm([],Less.lessI),i),j-i-1)) else
-  if Less.is_zero(x) andalso i<j
-  then Some(Incr1(Incr2(Thm([],Less.zero_less_Suc),i),j-i-1))
-  else None;
-
-(* solve less starting from facts *)
-fun solve facts (less as (x,i,y,j,_)) =
-  case triv_sol less of
-    None => (case find_first (fn fact => fact subsumes less) facts of
-               None => raise Cant
-             | Some(a,m,b,n,p) => Incr1(Incr2(p,j-n),n+i-m-j))
-  | Some prf => prf;
-
-(* turn term into a less-tuple *)
-fun mkasm(t,n) =
-  case Less.decomp(t) of
-    Some(x,i,rel,y,j) => (case rel of
-      "<"   => [(x,i,y,j,Asm n)]
-    | "~<"  => [(y,j,x,i+1,Thm([Asm n],Less.not_lessD))]
-    | "<="  => [(x,i,y,j+1,Thm([Asm n],Less.leD))]
-    | "~<=" => [(y,j,x,i,Thm([Asm n],Less.not_leD))]
-    | "="   => [(x,i,y,j+1,Thm([Asm n],Less.eqD1)),
-                (y,j,x,i+1,Thm([Asm n],Less.eqD2))]
-    | "~="  => []
-    | _     => error("trans_tac/decomp: unknown relation " ^ rel))
-  | None => [];
-
-(* mkconcl t returns a pair (goals,proof) where goals is a list of *)
-(* less-subgoals to solve, and proof the validation which proves the concl t *)
-(* from the subgoals. Asm ~1 is dummy *)
-fun mkconcl t =
-  case Less.decomp(t) of
-    Some(x,i,rel,y,j) => (case rel of
-      "<"   => ([(x,i,y,j,Asm ~1)],Asm 0)
-    | "~<"  => ([(y,j,x,i+1,Asm ~1)],Thm([Asm 0],Less.not_lessI))
-    | "<="  => ([(x,i,y,j+1,Asm ~1)],Thm([Asm 0],Less.leI))
-    | "~<=" => ([(y,j,x,i,Asm ~1)],Thm([Asm 0],Less.not_leI))
-    | "="   => ([(x,i,y,j+1,Asm ~1),(y,j,x,i+1,Asm ~1)],
-                Thm([Asm 0,Asm 1],Less.eqI))
-    | "~="  => raise Cant
-    | _     => error("trans_tac/decomp: unknown relation " ^ rel))
-  | None => raise Cant;
-
-
-val trans_tac = SUBGOAL (fn (A,n) =>
-  let val Hs = Logic.strip_assums_hyp A
-      val C = Logic.strip_assums_concl A
-      val lesss = flat(ListPair.map mkasm (Hs, 0 upto (length Hs - 1)))
-      val clesss = close [] lesss
-      val (subgoals,prf) = mkconcl C
-      val prfs = map (solve clesss) subgoals
-  in METAHYPS (fn asms => let val thms = map (prove asms) prfs
-                          in rtac (prove thms prf) 1 end) n
-  end
-  handle Contr(p) => METAHYPS (fn asms => rtac (prove asms p) 1) n
-       | Cant => no_tac);
-
-fun cut_trans_tac thms = cut_facts_tac thms THEN' trans_tac;
-
-end;
-
-(*** Tests
-fun test s = prove_goal Nat.thy ("!!m::nat." ^ s) (fn _ => [trans_tac 1]);
-
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc i) < m";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> Suc(Suc(Suc i)) <= m";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m <= Suc(Suc i)";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l) |] ==> ~ m < Suc(Suc(Suc i))";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m <= Suc(Suc(Suc i)) |] \
-\     ==> m = Suc(Suc(Suc i))";
-test "[| i<j; j<=k; ~(l < Suc k); ~(m <= l); m=n; n <= Suc(Suc(Suc i)) |] \
-\     ==> m = Suc(Suc(Suc i))";
-***)