merged;
authorwenzelm
Sat, 11 Aug 2018 16:02:55 +0200
changeset 68740 682ff0e84387
parent 68739 0c62e3b4f4c0 (current diff)
parent 68727 ec0b2833cfc4 (diff)
child 68741 e90cf766723c
merged;
NEWS
--- a/CONTRIBUTORS	Tue Aug 07 11:39:40 2018 +0200
+++ b/CONTRIBUTORS	Sat Aug 11 16:02:55 2018 +0200
@@ -3,6 +3,10 @@
 listed as an author in one of the source files of this Isabelle distribution.
 
 
+Contributions to this Isabelle version
+--------------------------------------
+
+
 Contributions to Isabelle2018
 -----------------------------
 
--- a/NEWS	Tue Aug 07 11:39:40 2018 +0200
+++ b/NEWS	Sat Aug 11 16:02:55 2018 +0200
@@ -4,6 +4,11 @@
 (Note: Isabelle/jEdit shows a tree-view of the NEWS file in Sidekick.)
 
 
+New in this Isabelle version
+----------------------------
+
+
+
 New in Isabelle2018 (August 2018)
 ---------------------------------
 
--- a/src/HOL/Algebra/AbelCoset.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/AbelCoset.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -269,17 +269,15 @@
     by (rule a_comm_group)
   interpret subgroup "H" "(add_monoid G)"
     by (rule a_subgroup)
-
-  show "abelian_subgroup H G"
-    apply unfold_locales
-  proof (simp add: r_coset_def l_coset_def, clarsimp)
-    fix x
-    assume xcarr: "x \<in> carrier G"
-    from a_subgroup have Hcarr: "H \<subseteq> carrier G"
-      unfolding subgroup_def by simp
-    from xcarr Hcarr show "(\<Union>h\<in>H. {h \<oplus>\<^bsub>G\<^esub> x}) = (\<Union>h\<in>H. {x \<oplus>\<^bsub>G\<^esub> h})"
+  have "(\<Union>xa\<in>H. {xa \<oplus> x}) = (\<Union>xa\<in>H. {x \<oplus> xa})" if "x \<in> carrier G" for x
+  proof -
+    have "H \<subseteq> carrier G"
+      using a_subgroup that unfolding subgroup_def by simp
+    with that show "(\<Union>h\<in>H. {h \<oplus>\<^bsub>G\<^esub> x}) = (\<Union>h\<in>H. {x \<oplus>\<^bsub>G\<^esub> h})"
       using m_comm [simplified] by fastforce
   qed
+  then show "abelian_subgroup H G"
+    by unfold_locales (auto simp: r_coset_def l_coset_def)
 qed
 
 lemma abelian_subgroupI3:
@@ -304,14 +302,6 @@
 by (rule normal.inv_op_closed2 [OF a_normal,
     folded a_inv_def, simplified monoid_record_simps])
 
-text\<open>Alternative characterization of normal subgroups\<close>
-lemma (in abelian_group) a_normal_inv_iff:
-     "(N \<lhd> (add_monoid G)) = 
-      (subgroup N (add_monoid G) & (\<forall>x \<in> carrier G. \<forall>h \<in> N. x \<oplus> h \<oplus> (\<ominus> x) \<in> N))"
-      (is "_ = ?rhs")
-by (rule group.normal_inv_iff [OF a_group,
-    folded a_inv_def, simplified monoid_record_simps])
-
 lemma (in abelian_group) a_lcos_m_assoc:
   "\<lbrakk> M \<subseteq> carrier G; g \<in> carrier G; h \<in> carrier G \<rbrakk> \<Longrightarrow> g <+ (h <+ M) = (g \<oplus> h) <+ M"
 by (rule group.lcos_m_assoc [OF a_group,
@@ -322,13 +312,11 @@
 by (rule group.lcos_mult_one [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
-
 lemma (in abelian_group) a_l_coset_subset_G:
   "\<lbrakk> H \<subseteq> carrier G; x \<in> carrier G \<rbrakk> \<Longrightarrow> x <+ H \<subseteq> carrier G"
 by (rule group.l_coset_subset_G [OF a_group,
     folded a_l_coset_def, simplified monoid_record_simps])
 
-
 lemma (in abelian_group) a_l_coset_swap:
      "\<lbrakk>y \<in> x <+ H;  x \<in> carrier G;  subgroup H (add_monoid G)\<rbrakk> \<Longrightarrow> x \<in> y <+ H"
 by (rule group.l_coset_swap [OF a_group,
@@ -498,15 +486,15 @@
 
 text \<open>Since the Factorization is based on an \emph{abelian} subgroup, is results in 
         a commutative group\<close>
-theorem (in abelian_subgroup) a_factorgroup_is_comm_group:
-  "comm_group (G A_Mod H)"
-apply (intro comm_group.intro comm_monoid.intro) prefer 3
-  apply (rule a_factorgroup_is_group)
- apply (rule group.axioms[OF a_factorgroup_is_group])
-apply (rule comm_monoid_axioms.intro)
-apply (unfold A_FactGroup_def FactGroup_def RCOSETS_def, fold set_add_def a_r_coset_def, clarsimp)
-apply (simp add: a_rcos_sum a_comm)
-done
+theorem (in abelian_subgroup) a_factorgroup_is_comm_group: "comm_group (G A_Mod H)"
+proof -
+  have "Group.comm_monoid_axioms (G A_Mod H)"
+    apply (rule comm_monoid_axioms.intro)
+    apply (auto simp: A_FactGroup_def FactGroup_def RCOSETS_def a_normal add.m_comm normal.rcos_sum)
+    done
+  then show ?thesis
+    by (intro comm_group.intro comm_monoid.intro) (simp_all add: a_factorgroup_is_group group.is_monoid)
+qed
 
 lemma add_A_FactGroup [simp]: "X \<otimes>\<^bsub>(G A_Mod H)\<^esub> X' = X <+>\<^bsub>G\<^esub> X'"
 by (simp add: A_FactGroup_def set_add_def)
@@ -552,11 +540,8 @@
   interpret G: abelian_group G by fact
   interpret H: abelian_group H by fact
   show ?thesis
-    apply (intro abelian_group_hom.intro abelian_group_hom_axioms.intro)
-      apply fact
-     apply fact
-    apply (rule a_group_hom)
-    done
+    by (intro abelian_group_hom.intro abelian_group_hom_axioms.intro 
+        G.abelian_group_axioms H.abelian_group_axioms a_group_hom)
 qed
 
 lemma (in abelian_group_hom) is_abelian_group_hom:
@@ -576,8 +561,7 @@
 
 lemma (in abelian_group_hom) zero_closed [simp]:
   "h \<zero> \<in> carrier H"
-by (rule group_hom.one_closed[OF a_group_hom,
-    simplified ring_record_simps])
+  by simp
 
 lemma (in abelian_group_hom) hom_zero [simp]:
   "h \<zero> = \<zero>\<^bsub>H\<^esub>"
@@ -586,8 +570,7 @@
 
 lemma (in abelian_group_hom) a_inv_closed [simp]:
   "x \<in> carrier G ==> h (\<ominus>x) \<in> carrier H"
-by (rule group_hom.inv_closed[OF a_group_hom,
-    folded a_inv_def, simplified ring_record_simps])
+  by simp
 
 lemma (in abelian_group_hom) hom_a_inv [simp]:
   "x \<in> carrier G ==> h (\<ominus>x) = \<ominus>\<^bsub>H\<^esub> (h x)"
@@ -596,19 +579,15 @@
 
 lemma (in abelian_group_hom) additive_subgroup_a_kernel:
   "additive_subgroup (a_kernel G H h) G"
-apply (rule additive_subgroup.intro)
-apply (rule group_hom.subgroup_kernel[OF a_group_hom,
-       folded a_kernel_def, simplified ring_record_simps])
-done
+  by (simp add: additive_subgroup.intro a_group_hom a_kernel_def group_hom.subgroup_kernel)
 
 text\<open>The kernel of a homomorphism is an abelian subgroup\<close>
 lemma (in abelian_group_hom) abelian_subgroup_a_kernel:
   "abelian_subgroup (a_kernel G H h) G"
-apply (rule abelian_subgroupI)
-apply (rule group_hom.normal_kernel[OF a_group_hom,
-       folded a_kernel_def, simplified ring_record_simps])
-apply (simp add: G.a_comm)
-done
+  apply (rule abelian_subgroupI)
+   apply (simp add: G.abelian_group_axioms abelian_subgroup.a_normal abelian_subgroupI3 additive_subgroup_a_kernel)
+  apply (simp add: G.a_comm)
+  done
 
 lemma (in abelian_group_hom) A_FactGroup_nonempty:
   assumes X: "X \<in> carrier (G A_Mod a_kernel G H h)"
@@ -715,48 +694,34 @@
 qed
 
 lemma (in abelian_subgroup) a_repr_independence':
-  assumes y: "y \<in> H +> x"
-      and xcarr: "x \<in> carrier G"
+  assumes "y \<in> H +> x" "x \<in> carrier G"
   shows "H +> x = H +> y"
-  apply (rule a_repr_independence)
-    apply (rule y)
-   apply (rule xcarr)
-  apply (rule a_subgroup)
-  done
+  using a_repr_independence a_subgroup assms by blast
 
 lemma (in abelian_subgroup) a_repr_independenceD:
-  assumes ycarr: "y \<in> carrier G"
-      and repr:  "H +> x = H +> y"
+  assumes "y \<in> carrier G" "H +> x = H +> y"
   shows "y \<in> H +> x"
-by (rule group.repr_independenceD [OF a_group a_subgroup,
-    folded a_r_coset_def, simplified monoid_record_simps]) (rule ycarr, rule repr)
+  by (simp add: a_rcos_self assms)
 
 
 lemma (in abelian_subgroup) a_rcosets_carrier:
   "X \<in> a_rcosets H \<Longrightarrow> X \<subseteq> carrier G"
-by (rule subgroup.rcosets_carrier [OF a_subgroup a_group,
-    folded A_RCOSETS_def, simplified monoid_record_simps])
+  using a_rcosets_part_G by auto
 
 
 subsubsection \<open>Addition of Subgroups\<close>
 
 lemma (in abelian_monoid) set_add_closed:
-  assumes Acarr: "A \<subseteq> carrier G"
-      and Bcarr: "B \<subseteq> carrier G"
+  assumes "A \<subseteq> carrier G" "B \<subseteq> carrier G"
   shows "A <+> B \<subseteq> carrier G"
-by (rule monoid.set_mult_closed [OF a_monoid,
-    folded set_add_def, simplified monoid_record_simps]) (rule Acarr, rule Bcarr)
+  by (simp add: assms add.set_mult_closed set_add_defs(1))
 
 lemma (in abelian_group) add_additive_subgroups:
   assumes subH: "additive_subgroup H G"
-      and subK: "additive_subgroup K G"
+    and subK: "additive_subgroup K G"
   shows "additive_subgroup (H <+> K) G"
-apply (rule additive_subgroup.intro)
-apply (unfold set_add_def)
-apply (intro comm_group.mult_subgroups)
-  apply (rule a_comm_group)
- apply (rule additive_subgroup.a_subgroup[OF subH])
-apply (rule additive_subgroup.a_subgroup[OF subK])
-done
+  unfolding set_add_def
+  using add.mult_subgroups additive_subgroup_def subH subK
+  by (blast intro: additive_subgroup.intro)
 
 end
--- a/src/HOL/Algebra/Bij.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Bij.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -46,15 +46,11 @@
   by (simp add: Bij_def compose_inv_into_id)
 
 theorem group_BijGroup: "group (BijGroup S)"
-apply (simp add: BijGroup_def)
-apply (rule groupI)
-    apply (simp add: compose_Bij)
-   apply (simp add: id_Bij)
-  apply (simp add: compose_Bij)
-  apply (blast intro: compose_assoc [symmetric] dest: Bij_imp_funcset)
- apply (simp add: id_Bij Bij_imp_funcset Bij_imp_extensional, simp)
-apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
-done
+  apply (simp add: BijGroup_def)
+  apply (rule groupI)
+      apply (auto simp: compose_Bij id_Bij Bij_imp_funcset Bij_imp_extensional compose_assoc [symmetric])
+  apply (blast intro: Bij_compose_restrict_eq restrict_inv_into_Bij)
+  done
 
 
 subsection\<open>Automorphisms Form a Group\<close>
@@ -63,13 +59,18 @@
 by (simp add: Bij_def bij_betw_def inv_into_into)
 
 lemma Bij_inv_into_lemma:
- assumes eq: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> h(g x y) = g (h x) (h y)"
- shows "\<lbrakk>h \<in> Bij S;  g \<in> S \<rightarrow> S \<rightarrow> S;  x \<in> S;  y \<in> S\<rbrakk>
-        \<Longrightarrow> inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
-apply (simp add: Bij_def bij_betw_def)
-apply (subgoal_tac "\<exists>x'\<in>S. \<exists>y'\<in>S. x = h x' \<and> y = h y'", clarify)
- apply (simp add: eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem], blast)
-done
+  assumes eq: "\<And>x y. \<lbrakk>x \<in> S; y \<in> S\<rbrakk> \<Longrightarrow> h(g x y) = g (h x) (h y)"
+      and hg: "h \<in> Bij S" "g \<in> S \<rightarrow> S \<rightarrow> S" and "x \<in> S" "y \<in> S"
+  shows "inv_into S h (g x y) = g (inv_into S h x) (inv_into S h y)"
+proof -
+  have "h ` S = S"
+    by (metis (no_types) Bij_def Int_iff assms(2) bij_betw_def mem_Collect_eq)
+  with \<open>x \<in> S\<close> \<open>y \<in> S\<close> have "\<exists>x'\<in>S. \<exists>y'\<in>S. x = h x' \<and> y = h y'"
+    by auto
+  then show ?thesis
+    using assms
+    by (auto simp add: Bij_def bij_betw_def eq [symmetric] inv_f_f funcset_mem [THEN funcset_mem])
+qed
 
 
 definition
@@ -94,8 +95,7 @@
 
 lemma inv_BijGroup:
      "f \<in> Bij S \<Longrightarrow> m_inv (BijGroup S) f = (\<lambda>x \<in> S. (inv_into S f) x)"
-apply (rule group.inv_equality)
-apply (rule group_BijGroup)
+apply (rule group.inv_equality [OF group_BijGroup])
 apply (simp_all add:BijGroup_def restrict_inv_into_Bij Bij_compose_restrict_eq)
 done
 
--- a/src/HOL/Algebra/Complete_Lattice.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Complete_Lattice.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -680,22 +680,25 @@
     next
       case False
       show ?thesis
-      proof (rule_tac x="\<Squnion>\<^bsub>L\<^esub> A" in exI, rule least_UpperI, simp_all)
+      proof (intro exI least_UpperI, simp_all)
         show b:"\<And> x. x \<in> A \<Longrightarrow> x \<sqsubseteq>\<^bsub>L\<^esub> \<Squnion>\<^bsub>L\<^esub>A"
           using a by (auto intro: L.sup_upper, meson L.at_least_at_most_closed L.sup_upper subset_trans)
         show "\<And>y. y \<in> Upper (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) A \<Longrightarrow> \<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> y"
           using a L.at_least_at_most_closed by (rule_tac L.sup_least, auto intro: funcset_mem simp add: Upper_def)
-        from a show "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
-          by (auto)
-        from a show "\<Squnion>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
-          apply (rule_tac L.at_least_at_most_member)
-          apply (auto)
-          apply (meson L.at_least_at_most_closed L.sup_closed subset_trans)
-          apply (meson False L.at_least_at_most_closed L.at_least_at_most_lower L.le_trans L.sup_closed b all_not_in_conv assms(2) contra_subsetD subset_trans)
-          apply (rule L.sup_least)
-          apply (auto simp add: assms)
-          using L.at_least_at_most_closed apply blast
-        done
+        from a show *: "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          by auto
+        show "\<Squnion>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+        proof (rule_tac L.at_least_at_most_member)
+          show 1: "\<Squnion>\<^bsub>L\<^esub>A \<in> carrier L"
+            by (meson L.at_least_at_most_closed L.sup_closed subset_trans *)
+          show "a \<sqsubseteq>\<^bsub>L\<^esub> \<Squnion>\<^bsub>L\<^esub>A"
+            by (meson "*" False L.at_least_at_most_closed L.at_least_at_most_lower L.le_trans L.sup_upper 1 all_not_in_conv assms(2) set_mp subset_trans)
+          show "\<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> b"
+          proof (rule L.sup_least)
+            show "A \<subseteq> carrier L" "\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq>\<^bsub>L\<^esub> b"
+              using * L.at_least_at_most_closed by blast+
+          qed (simp add: assms)
+        qed
       qed
     qed
     show "\<exists>s. is_glb (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) s A"
@@ -711,15 +714,17 @@
           using a L.at_least_at_most_closed by (force intro!: L.inf_lower)
         show "\<And>y. y \<in> Lower (L\<lparr>carrier := \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>\<rparr>) A \<Longrightarrow> y \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
            using a L.at_least_at_most_closed by (rule_tac L.inf_greatest, auto intro: funcset_carrier' simp add: Lower_def)
-        from a show "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
-          by (auto)
-        from a show "\<Sqinter>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
-          apply (rule_tac L.at_least_at_most_member)
-          apply (auto)
-          apply (meson L.at_least_at_most_closed L.inf_closed subset_trans)
-          apply (meson L.at_least_at_most_closed L.at_least_at_most_lower L.inf_greatest assms(2) set_rev_mp subset_trans)
-          apply (meson False L.at_least_at_most_closed L.at_least_at_most_upper L.inf_closed L.le_trans b all_not_in_conv assms(3) contra_subsetD subset_trans)            
-        done
+        from a show *: "A \<subseteq> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+          by auto
+        show "\<Sqinter>\<^bsub>L\<^esub>A \<in> \<lbrace>a..b\<rbrace>\<^bsub>L\<^esub>"
+        proof (rule_tac L.at_least_at_most_member)
+          show 1: "\<Sqinter>\<^bsub>L\<^esub>A \<in> carrier L"
+            by (meson "*" L.at_least_at_most_closed L.inf_closed subset_trans)
+          show "a \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
+            by (meson "*" L.at_least_at_most_closed L.at_least_at_most_lower L.inf_greatest assms(2) subsetD subset_trans)
+          show "\<Sqinter>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> b"
+            by (meson * 1 False L.at_least_at_most_closed L.at_least_at_most_upper L.inf_lower L.le_trans all_not_in_conv assms(3) set_mp subset_trans)
+        qed
       qed
     qed
   qed
@@ -731,7 +736,7 @@
 text \<open>The set of fixed points of a complete lattice is itself a complete lattice\<close>
 
 theorem Knaster_Tarski:
-  assumes "weak_complete_lattice L" "f \<in> carrier L \<rightarrow> carrier L" "isotone L L f"
+  assumes "weak_complete_lattice L" and f: "f \<in> carrier L \<rightarrow> carrier L" and "isotone L L f"
   shows "weak_complete_lattice (fpl L f)" (is "weak_complete_lattice ?L'")
 proof -
   interpret L: weak_complete_lattice L
@@ -805,15 +810,14 @@
       show "is_lub ?L'' (LFP\<^bsub>?L'\<^esub> f) A"
       proof (rule least_UpperI, simp_all)
         fix x
-        assume "x \<in> Upper ?L'' A"
-        hence "LFP\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>?L'\<^esub> x"
-          apply (rule_tac L'.LFP_lowerbound)
-          apply (auto simp add: Upper_def)
-          apply (simp add: A AL L.at_least_at_most_member L.sup_least set_rev_mp)          
-          apply (simp add: Pi_iff assms(2) fps_def, rule_tac L.weak_refl)
-          apply (auto)
-          apply (rule funcset_mem[of f "carrier L"], simp_all add: assms(2))
-        done
+        assume x: "x \<in> Upper ?L'' A"
+        have "LFP\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>?L'\<^esub> x"
+        proof (rule L'.LFP_lowerbound, simp_all)
+          show "x \<in> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>"
+            using x by (auto simp add: Upper_def A AL L.at_least_at_most_member L.sup_least set_rev_mp)    
+          with x show "f x \<sqsubseteq>\<^bsub>L\<^esub> x"
+            by (simp add: Upper_def) (meson L.at_least_at_most_closed L.use_fps L.weak_refl subsetD f_top_chain imageI)
+        qed
         thus " LFP\<^bsub>?L'\<^esub> f \<sqsubseteq>\<^bsub>L\<^esub> x"
           by (simp)
       next
@@ -838,17 +842,13 @@
              by (auto simp add: at_least_at_most_def)
           have "LFP\<^bsub>?L'\<^esub> f .=\<^bsub>?L'\<^esub> f (LFP\<^bsub>?L'\<^esub> f)"
           proof (rule "L'.LFP_weak_unfold", simp_all)
-            show "f \<in> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>"
-              apply (auto simp add: Pi_def at_least_at_most_def)
-              using assms(2) apply blast
-              apply (meson AL funcset_mem L.le_trans L.sup_closed assms(2) assms(3) pf_w use_iso2)
-              using assms(2) apply blast
-            done
-            from assms(3) show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
-              apply (auto simp add: isotone_def)
-              using L'.weak_partial_order_axioms apply blast
-              apply (meson L.at_least_at_most_closed subsetCE)
-            done
+            have "\<And>x. \<lbrakk>x \<in> carrier L; \<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> x\<rbrakk> \<Longrightarrow> \<Squnion>\<^bsub>L\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> f x"
+              by (meson AL funcset_mem L.le_trans L.sup_closed assms(2) assms(3) pf_w use_iso2)
+            with f show "f \<in> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>"
+              by (auto simp add: Pi_def at_least_at_most_def)
+            show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<Squnion>\<^bsub>L\<^esub>A..\<top>\<^bsub>L\<^esub>\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
+              using L'.weak_partial_order_axioms assms(3) 
+              by (auto simp add: isotone_def) (meson L.at_least_at_most_closed subsetCE)
           qed
           thus "f (LFP\<^bsub>?L'\<^esub> f) .=\<^bsub>L\<^esub> LFP\<^bsub>?L'\<^esub> f"
             by (simp add: L.equivalence_axioms funcset_carrier' c assms(2) equivalence.sym) 
@@ -889,7 +889,6 @@
           thus ?thesis
             by (meson AL L.inf_closed L.le_trans assms(3) b(1) b(2) fx use_iso2 w)
         qed
-   
         show "\<bottom>\<^bsub>L\<^esub> \<sqsubseteq>\<^bsub>L\<^esub> f x"
           by (simp add: fx)
       qed
@@ -905,12 +904,16 @@
       proof (rule greatest_LowerI, simp_all)
         fix x
         assume "x \<in> Lower ?L'' A"
-        hence "x \<sqsubseteq>\<^bsub>?L'\<^esub> GFP\<^bsub>?L'\<^esub> f"
-          apply (rule_tac L'.GFP_upperbound)
-          apply (auto simp add: Lower_def)
-          apply (meson A AL L.at_least_at_most_member L.bottom_lower L.weak_complete_lattice_axioms fps_carrier subsetCE weak_complete_lattice.inf_greatest)
-          apply (simp add: funcset_carrier' L.sym assms(2) fps_def)          
-        done
+        then have x: "\<forall>y. y \<in> A \<and> y \<in> fps L f \<longrightarrow> x \<sqsubseteq>\<^bsub>L\<^esub> y" "x \<in> fps L f"
+          by (auto simp add: Lower_def)
+        have "x \<sqsubseteq>\<^bsub>?L'\<^esub> GFP\<^bsub>?L'\<^esub> f"
+          unfolding Lower_def
+        proof (rule_tac L'.GFP_upperbound; simp)
+          show "x \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..\<Sqinter>\<^bsub>L\<^esub>A\<rbrace>\<^bsub>L\<^esub>"
+            by (meson x A AL L.at_least_at_most_member L.bottom_lower L.inf_greatest contra_subsetD fps_carrier)
+          show "x \<sqsubseteq>\<^bsub>L\<^esub> f x"
+            using x by (simp add: funcset_carrier' L.sym assms(2) fps_def)
+        qed
         thus "x \<sqsubseteq>\<^bsub>L\<^esub> GFP\<^bsub>?L'\<^esub> f"
           by (simp)
       next
@@ -935,17 +938,14 @@
              by (auto simp add: at_least_at_most_def)
           have "GFP\<^bsub>?L'\<^esub> f .=\<^bsub>?L'\<^esub> f (GFP\<^bsub>?L'\<^esub> f)"
           proof (rule "L'.GFP_weak_unfold", simp_all)
-            show "f \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>"
-              apply (auto simp add: Pi_def at_least_at_most_def)
-              using assms(2) apply blast
-              apply (simp add: funcset_carrier' assms(2))
-              apply (meson AL funcset_carrier L.inf_closed L.le_trans assms(2) assms(3) pf_w use_iso2)
-            done
-            from assms(3) show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
-              apply (auto simp add: isotone_def)
-              using L'.weak_partial_order_axioms apply blast
-              using L.at_least_at_most_closed apply (blast intro: funcset_carrier')
-            done
+            have "\<And>x. \<lbrakk>x \<in> carrier L; x \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A\<rbrakk> \<Longrightarrow> f x \<sqsubseteq>\<^bsub>L\<^esub> \<Sqinter>\<^bsub>L\<^esub>A"
+              by (meson AL funcset_carrier L.inf_closed L.le_trans assms(2) assms(3) pf_w use_iso2)
+            with assms(2) show "f \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub> \<rightarrow> \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>"
+              by (auto simp add: Pi_def at_least_at_most_def)
+            have "\<And>x y. \<lbrakk>x \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..\<Sqinter>\<^bsub>L\<^esub>A\<rbrace>\<^bsub>L\<^esub>; y \<in> \<lbrace>\<bottom>\<^bsub>L\<^esub>..\<Sqinter>\<^bsub>L\<^esub>A\<rbrace>\<^bsub>L\<^esub>; x \<sqsubseteq>\<^bsub>L\<^esub> y\<rbrakk> \<Longrightarrow> f x \<sqsubseteq>\<^bsub>L\<^esub> f y"
+              by (meson L.at_least_at_most_closed subsetD use_iso1  assms(3)) 
+            with L'.weak_partial_order_axioms show "Mono\<^bsub>L\<lparr>carrier := \<lbrace>\<bottom>\<^bsub>L\<^esub>..?w\<rbrace>\<^bsub>L\<^esub>\<rparr>\<^esub> f"
+              by (auto simp add: isotone_def)
           qed
           thus "f (GFP\<^bsub>?L'\<^esub> f) .=\<^bsub>L\<^esub> GFP\<^bsub>?L'\<^esub> f"
             by (simp add: L.equivalence_axioms funcset_carrier' c assms(2) equivalence.sym) 
@@ -1117,17 +1117,16 @@
     qed
     show "\<Sqinter>\<^bsub>fpl L f\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> f (\<Sqinter>\<^bsub>L\<^esub>A)"
     proof -
+      have *: "\<Sqinter>\<^bsub>fpl L f\<^esub>A \<in> carrier L"
+        using FA infA by blast
       have "\<And>x. x \<in> A \<Longrightarrow> \<Sqinter>\<^bsub>fpl L f\<^esub>A \<sqsubseteq>\<^bsub>fpl L f\<^esub> x"
         by (rule L'.inf_lower, simp_all add: assms)
       hence "\<Sqinter>\<^bsub>fpl L f\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> (\<Sqinter>\<^bsub>L\<^esub>A)"
-        apply (rule_tac L.inf_greatest, simp_all add: A)
-        using FA infA apply blast
-        done
+        by (rule_tac L.inf_greatest, simp_all add: A *)
       hence 1:"f(\<Sqinter>\<^bsub>fpl L f\<^esub>A) \<sqsubseteq>\<^bsub>L\<^esub> f(\<Sqinter>\<^bsub>L\<^esub>A)"
         by (metis (no_types, lifting) A FA L.inf_closed assms(2) infA subsetCE use_iso1)
       have 2:"\<Sqinter>\<^bsub>fpl L f\<^esub>A \<sqsubseteq>\<^bsub>L\<^esub> f (\<Sqinter>\<^bsub>fpl L f\<^esub>A)"
         by (metis (no_types, lifting) FA L.sym L.use_fps L.weak_complete_lattice_axioms PiE assms(4) infA subsetCE weak_complete_lattice_def weak_partial_order.weak_refl)
-        
       show ?thesis  
         using FA fA infA by (auto intro!: L.le_trans[OF 2 1] ic fc, metis FA PiE assms(4) subsetCE)
     qed
@@ -1189,21 +1188,11 @@
 lemma sup_pres_is_join_pres:
   assumes "weak_sup_pres X Y f"
   shows "join_pres X Y f"
-  using assms
-  apply (simp add: join_pres_def weak_sup_pres_def, safe)
-  apply (rename_tac x y)
-  apply (drule_tac x="{x, y}" in spec)
-  apply (auto simp add: join_def)
-done
+  using assms by (auto simp: join_pres_def weak_sup_pres_def join_def)
 
 lemma inf_pres_is_meet_pres:
   assumes "weak_inf_pres X Y f"
   shows "meet_pres X Y f"
-  using assms
-  apply (simp add: meet_pres_def weak_inf_pres_def, safe)
-  apply (rename_tac x y)
-  apply (drule_tac x="{x, y}" in spec)
-  apply (auto simp add: meet_def)
-done
+  using assms by (auto simp: meet_pres_def weak_inf_pres_def meet_def)
 
 end
--- a/src/HOL/Algebra/Coset.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Coset.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -440,45 +440,36 @@
   shows "N \<lhd> G"
   using assms normal_inv_iff by blast
 
-corollary (in group) normal_invE:
-  assumes "N \<lhd> G"
-  shows "subgroup N G" and "\<And>x h. \<lbrakk> x \<in> carrier G; h \<in> N \<rbrakk> \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> N"
-  using assms normal_inv_iff apply blast
-  by (simp add: assms normal.inv_op_closed2)
-
-
-lemma (in group) one_is_normal :
-   "{\<one>} \<lhd> G"
-proof(intro normal_invI )
+lemma (in group) one_is_normal: "{\<one>} \<lhd> G"
+proof(intro normal_invI)
   show "subgroup {\<one>} G"
     by (simp add: subgroup_def)
-  show "\<And>x h. x \<in> carrier G \<Longrightarrow> h \<in> {\<one>} \<Longrightarrow> x \<otimes> h \<otimes> inv x \<in> {\<one>}" by simp
-qed
+qed simp
 
 
 subsection\<open>More Properties of Left Cosets\<close>
 
 lemma (in group) l_repr_independence:
-  assumes "y \<in> x <# H" "x \<in> carrier G" "subgroup H G"
+  assumes "y \<in> x <# H" "x \<in> carrier G" and HG: "subgroup H G"
   shows "x <# H = y <# H"
 proof -
   obtain h' where h': "h' \<in> H" "y = x \<otimes> h'"
     using assms(1) unfolding l_coset_def by blast
   hence "x \<otimes> h = y \<otimes> ((inv h') \<otimes> h)" if "h \<in> H" for h
   proof -
-    have f3: "h' \<in> carrier G"
-      by (meson assms(3) h'(1) subgroup.mem_carrier)
-    have f4: "h \<in> carrier G"
-      by (meson assms(3) subgroup.mem_carrier that)
-    then show ?thesis
-      by (metis assms(2) f3 h'(2) inv_closed inv_solve_right m_assoc m_closed)
+    have "h' \<in> carrier G"
+      by (meson HG h'(1) subgroup.mem_carrier)
+    moreover have "h \<in> carrier G"
+      by (meson HG subgroup.mem_carrier that)
+    ultimately show ?thesis
+      by (metis assms(2) h'(2) inv_closed inv_solve_right m_assoc m_closed)
   qed
-  hence "\<And> xh. xh \<in> x <# H \<Longrightarrow> xh \<in> y <# H"
-    unfolding l_coset_def by (metis (no_types, lifting) UN_iff assms(3) h'(1) subgroup_def)
-  moreover have "\<And> h. h \<in> H \<Longrightarrow> y \<otimes> h = x \<otimes> (h' \<otimes> h)"
-    using h' by (meson assms(2) assms(3) m_assoc subgroup.mem_carrier)
-  hence "\<And> yh. yh \<in> y <# H \<Longrightarrow> yh \<in> x <# H"
-    unfolding l_coset_def using subgroup.m_closed[OF assms(3) h'(1)] by blast
+  hence "\<And>xh. xh \<in> x <# H \<Longrightarrow> xh \<in> y <# H"
+    unfolding l_coset_def by (metis (no_types, lifting) UN_iff HG h'(1) subgroup_def)
+  moreover have "\<And>h. h \<in> H \<Longrightarrow> y \<otimes> h = x \<otimes> (h' \<otimes> h)"
+    using h' by (meson assms(2) HG m_assoc subgroup.mem_carrier)
+  hence "\<And>yh. yh \<in> y <# H \<Longrightarrow> yh \<in> x <# H"
+    unfolding l_coset_def using subgroup.m_closed[OF HG h'(1)] by blast
   ultimately show ?thesis by blast
 qed
 
@@ -655,8 +646,8 @@
   shows "hb \<otimes> a \<in> (\<Union>h\<in>H. {h \<otimes> b})"
 proof -
   interpret subgroup H G by fact
-  from p show ?thesis apply (rule_tac UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"])
-    apply blast by (simp add: inv_solve_left m_assoc)
+  from p show ?thesis 
+    by (rule_tac UN_I [of "hb \<otimes> ((inv ha) \<otimes> h)"]) (auto simp: inv_solve_left m_assoc)
 qed
 
 lemma (in group) rcos_disjoint:
@@ -666,9 +657,8 @@
 proof -
   interpret subgroup H G by fact
   from p show ?thesis
-    apply (simp add: RCOSETS_def r_coset_def)
-    apply (blast intro: rcos_equation assms sym)
-    done
+    unfolding RCOSETS_def r_coset_def
+    by (blast intro: rcos_equation assms sym)
 qed
 
 
@@ -761,26 +751,26 @@
 proof -
   interpret subgroup H G by fact
   show ?thesis
-    apply (rule equalityI)
-    apply (force simp add: RCOSETS_def r_coset_def)
-    apply (auto simp add: RCOSETS_def intro: rcos_self assms)
-    done
+    unfolding RCOSETS_def r_coset_def by auto
 qed
 
 lemma (in group) cosets_finite:
      "\<lbrakk>c \<in> rcosets H;  H \<subseteq> carrier G;  finite (carrier G)\<rbrakk> \<Longrightarrow> finite c"
-apply (auto simp add: RCOSETS_def)
-apply (simp add: r_coset_subset_G [THEN finite_subset])
-done
+  unfolding RCOSETS_def
+  by (auto simp add: r_coset_subset_G [THEN finite_subset])
 
 text\<open>The next two lemmas support the proof of \<open>card_cosets_equal\<close>.\<close>
 lemma (in group) inj_on_f:
-    "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)"
-apply (rule inj_onI)
-apply (subgoal_tac "x \<in> carrier G \<and> y \<in> carrier G")
- prefer 2 apply (blast intro: r_coset_subset_G [THEN subsetD])
-apply (simp add: subsetD)
-done
+  assumes "H \<subseteq> carrier G" and a: "a \<in> carrier G"
+  shows "inj_on (\<lambda>y. y \<otimes> inv a) (H #> a)"
+proof 
+  fix x y
+  assume "x \<in> H #> a" "y \<in> H #> a" and xy: "x \<otimes> inv a = y \<otimes> inv a"
+  then have "x \<in> carrier G" "y \<in> carrier G"
+    using assms r_coset_subset_G by blast+
+  with xy a show "x = y"
+    by auto
+qed
 
 lemma (in group) inj_on_g:
     "\<lbrakk>H \<subseteq> carrier G;  a \<in> carrier G\<rbrakk> \<Longrightarrow> inj_on (\<lambda>y. y \<otimes> a) H"
@@ -827,16 +817,17 @@
   using rcosets_part_G by auto
 
 proposition (in group) lagrange_finite:
-     "\<lbrakk>finite(carrier G); subgroup H G\<rbrakk>
-      \<Longrightarrow> card(rcosets H) * card(H) = order(G)"
-apply (simp (no_asm_simp) add: order_def rcosets_part_G [symmetric])
-apply (subst mult.commute)
-apply (rule card_partition)
-   apply (simp add: rcosets_subset_PowG [THEN finite_subset])
-  apply (simp add: rcosets_part_G)
-  apply (simp add: card_rcosets_equal subgroup.subset)
-apply (simp add: rcos_disjoint)
-done
+  assumes "finite(carrier G)" and HG: "subgroup H G"
+  shows "card(rcosets H) * card(H) = order(G)"
+proof -
+  have "card H * card (rcosets H) = card (\<Union>(rcosets H))"
+  proof (rule card_partition)
+    show "\<And>c1 c2. \<lbrakk>c1 \<in> rcosets H; c2 \<in> rcosets H; c1 \<noteq> c2\<rbrakk> \<Longrightarrow> c1 \<inter> c2 = {}"
+      using HG rcos_disjoint by auto
+  qed (auto simp: assms finite_UnionD rcosets_part_G card_rcosets_equal subgroup.subset)
+  then show ?thesis
+    by (simp add: HG mult.commute order_def rcosets_part_G)
+qed
 
 theorem (in group) lagrange:
   assumes "subgroup H G"
@@ -844,29 +835,29 @@
 proof (cases "finite (carrier G)")
   case True thus ?thesis using lagrange_finite assms by simp
 next
-  case False note inf_G = this
+  case False 
   thus ?thesis
   proof (cases "finite H")
-    case False thus ?thesis using inf_G  by (simp add: order_def)
+    case False thus ?thesis using \<open>infinite (carrier G)\<close>  by (simp add: order_def)
   next
-    case True note finite_H = this
+    case True 
     have "infinite (rcosets H)"
-    proof (rule ccontr)
-      assume "\<not> infinite (rcosets H)"
+    proof 
+      assume "finite (rcosets H)"
       hence finite_rcos: "finite (rcosets H)" by simp
       hence "card (\<Union>(rcosets H)) = (\<Sum>R\<in>(rcosets H). card R)"
-        using card_Union_disjoint[of "rcosets H"] finite_H rcos_disjoint[OF assms(1)]
+        using card_Union_disjoint[of "rcosets H"] \<open>finite H\<close> rcos_disjoint[OF assms(1)]
               rcosets_finite[where ?H = H] by (simp add: assms subgroup.subset)
       hence "order G = (\<Sum>R\<in>(rcosets H). card R)"
         by (simp add: assms order_def rcosets_part_G)
       hence "order G = (\<Sum>R\<in>(rcosets H). card H)"
         using card_rcosets_equal by (simp add: assms subgroup.subset)
       hence "order G = (card H) * (card (rcosets H))" by simp
-      hence "order G \<noteq> 0" using finite_rcos finite_H assms ex_in_conv
+      hence "order G \<noteq> 0" using finite_rcos \<open>finite H\<close> assms ex_in_conv
                                 rcosets_part_G subgroup.one_closed by fastforce
-      thus False using inf_G order_gt_0_iff_finite by blast
+      thus False using \<open>infinite (carrier G)\<close> order_gt_0_iff_finite by blast
     qed
-    thus ?thesis using inf_G by (simp add: order_def)
+    thus ?thesis using \<open>infinite (carrier G)\<close> by (simp add: order_def)
   qed
 qed
 
@@ -908,8 +899,8 @@
 
 theorem (in normal) factorgroup_is_group:
   "group (G Mod H)"
-apply (simp add: FactGroup_def)
-apply (rule groupI)
+  unfolding FactGroup_def
+  apply (rule groupI)
     apply (simp add: setmult_closed)
    apply (simp add: normal_imp_subgroup subgroup_in_rcosets [OF is_group])
   apply (simp add: restrictI setmult_closed rcosets_assoc)
@@ -922,10 +913,20 @@
   by (simp add: FactGroup_def)
 
 lemma (in normal) inv_FactGroup:
-     "X \<in> carrier (G Mod H) \<Longrightarrow> inv\<^bsub>G Mod H\<^esub> X = set_inv X"
-apply (rule group.inv_equality [OF factorgroup_is_group])
-apply (simp_all add: FactGroup_def setinv_closed rcosets_inv_mult_group_eq)
-done
+  assumes "X \<in> carrier (G Mod H)"
+  shows "inv\<^bsub>G Mod H\<^esub> X = set_inv X"
+proof -
+  have X: "X \<in> rcosets H"
+    using assms by (simp add: FactGroup_def)
+  moreover have "set_inv X <#> X = H"
+    using X by (simp add: normal.rcosets_inv_mult_group_eq normal_axioms)
+  moreover have "Group.group (G Mod H)"
+    using normal.factorgroup_is_group normal_axioms by blast
+  moreover have "set_inv X \<in> rcosets H"
+    by (simp add: \<open>X \<in> rcosets H\<close> setinv_closed)
+  ultimately show ?thesis
+    by (simp add: FactGroup_def group.inv_equality)
+qed
 
 text\<open>The coset map is a homomorphism from @{term G} to the quotient group
   @{term "G Mod H"}\<close>
@@ -945,15 +946,13 @@
   where "kernel G H h = {x. x \<in> carrier G \<and> h x = \<one>\<^bsub>H\<^esub>}"
 
 lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G"
-apply (rule subgroup.intro)
-apply (auto simp add: kernel_def group.intro is_group)
-done
+  by (auto simp add: kernel_def group.intro is_group intro: subgroup.intro)
 
 text\<open>The kernel of a homomorphism is a normal subgroup\<close>
 lemma (in group_hom) normal_kernel: "(kernel G H h) \<lhd> G"
-apply (simp add: G.normal_inv_iff subgroup_kernel)
-apply (simp add: kernel_def)
-done
+  apply (simp only: G.normal_inv_iff subgroup_kernel)
+  apply (simp add: kernel_def)
+  done
 
 lemma (in group_hom) FactGroup_nonempty:
   assumes X: "X \<in> carrier (G Mod kernel G H h)"
@@ -982,37 +981,40 @@
 
 lemma (in group_hom) FactGroup_hom:
      "(\<lambda>X. the_elem (h`X)) \<in> hom (G Mod (kernel G H h)) H"
-apply (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)
-proof (intro ballI)
-  fix X and X'
-  assume X:  "X  \<in> carrier (G Mod kernel G H h)"
-     and X': "X' \<in> carrier (G Mod kernel G H h)"
-  then
-  obtain g and g'
-           where "g \<in> carrier G" and "g' \<in> carrier G"
-             and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
-    by (auto simp add: FactGroup_def RCOSETS_def)
-  hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
-    and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
-    by (force simp add: kernel_def r_coset_def image_def)+
-  hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
-    by (auto dest!: FactGroup_nonempty intro!: image_eqI
-             simp add: set_mult_def
-                       subsetD [OF Xsub] subsetD [OF X'sub])
-  then show "the_elem (h ` (X <#> X')) = the_elem (h ` X) \<otimes>\<^bsub>H\<^esub> the_elem (h ` X')"
-    by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
+proof -
+  have "the_elem (h ` (X <#> X')) = the_elem (h ` X) \<otimes>\<^bsub>H\<^esub> the_elem (h ` X')"
+    if X: "X  \<in> carrier (G Mod kernel G H h)" and X': "X' \<in> carrier (G Mod kernel G H h)" for X X'
+  proof -
+    obtain g and g'
+      where "g \<in> carrier G" and "g' \<in> carrier G"
+        and "X = kernel G H h #> g" and "X' = kernel G H h #> g'"
+      using X X' by (auto simp add: FactGroup_def RCOSETS_def)
+    hence all: "\<forall>x\<in>X. h x = h g" "\<forall>x\<in>X'. h x = h g'"
+      and Xsub: "X \<subseteq> carrier G" and X'sub: "X' \<subseteq> carrier G"
+      by (force simp add: kernel_def r_coset_def image_def)+
+    hence "h ` (X <#> X') = {h g \<otimes>\<^bsub>H\<^esub> h g'}" using X X'
+      by (auto dest!: FactGroup_nonempty intro!: image_eqI
+          simp add: set_mult_def
+          subsetD [OF Xsub] subsetD [OF X'sub])
+    then show "the_elem (h ` (X <#> X')) = the_elem (h ` X) \<otimes>\<^bsub>H\<^esub> the_elem (h ` X')"
+      by (auto simp add: all FactGroup_nonempty X X' the_elem_image_unique)
+  qed
+  then show ?thesis
+    by (simp add: hom_def FactGroup_the_elem_mem normal.factorgroup_is_group [OF normal_kernel] group.axioms monoid.m_closed)
 qed
 
 
 text\<open>Lemma for the following injectivity result\<close>
 lemma (in group_hom) FactGroup_subset:
-     "\<lbrakk>g \<in> carrier G; g' \<in> carrier G; h g = h g'\<rbrakk>
-      \<Longrightarrow>  kernel G H h #> g \<subseteq> kernel G H h #> g'"
-apply (clarsimp simp add: kernel_def r_coset_def)
-apply (rename_tac y)
-apply (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI)
-apply (simp add: G.m_assoc)
-done
+  assumes "g \<in> carrier G" "g' \<in> carrier G" "h g = h g'"
+  shows "kernel G H h #> g \<subseteq> kernel G H h #> g'"
+  unfolding kernel_def r_coset_def
+proof clarsimp
+  fix y 
+  assume "y \<in> carrier G" "h y = \<one>\<^bsub>H\<^esub>"
+  with assms show "\<exists>x. x \<in> carrier G \<and> h x = \<one>\<^bsub>H\<^esub> \<and> y \<otimes> g = x \<otimes> g'"
+    by (rule_tac x="y \<otimes> g \<otimes> inv g'" in exI) (auto simp: G.m_assoc)
+qed
 
 lemma (in group_hom) FactGroup_inj_on:
      "inj_on (\<lambda>X. the_elem (h ` X)) (carrier (G Mod kernel G H h))"
@@ -1113,13 +1115,13 @@
     from hHN obtain h1 h2 where h1h2 : "h1 \<in> H" "h2 \<in> N" "h = (h1,h2)"
       unfolding DirProd_def by fastforce
     hence h1h2GK : "h1 \<in> carrier G" "h2 \<in> carrier K"
-      using normal_imp_subgroup subgroup.subset assms apply blast+.
+      using normal_imp_subgroup subgroup.subset assms by blast+
     have "inv\<^bsub>G \<times>\<times> K\<^esub> x = (inv\<^bsub>G\<^esub> x1,inv\<^bsub>K\<^esub> x2)"
       using inv_DirProd[OF group_axioms assms(1) x1x2(1)x1x2(2)] x1x2 by auto
     hence "x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x = (x1 \<otimes> h1 \<otimes> inv x1,x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)"
       using h1h2 x1x2 h1h2GK by auto
     moreover have "x1 \<otimes> h1 \<otimes> inv x1 \<in> H" "x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2 \<in> N"
-      using normal_invE group.normal_invE[OF assms(1)] assms x1x2 h1h2 apply auto.
+      using assms x1x2 h1h2 assms by (simp_all add: normal.inv_op_closed2)
     hence "(x1 \<otimes> h1 \<otimes> inv x1, x2 \<otimes>\<^bsub>K\<^esub> h2 \<otimes>\<^bsub>K\<^esub> inv\<^bsub>K\<^esub> x2)\<in> H \<times> N" by auto
     ultimately show " x \<otimes>\<^bsub>G \<times>\<times> K\<^esub> h \<otimes>\<^bsub>G \<times>\<times> K\<^esub> inv\<^bsub>G \<times>\<times> K\<^esub> x \<in> H \<times> N" by auto
   qed
@@ -1133,7 +1135,7 @@
 
 proof-
   have R :"(\<lambda>(X, Y). X \<times> Y) \<in> carrier (G Mod H) \<times> carrier (K Mod N) \<rightarrow> carrier (G \<times>\<times> K Mod H \<times> N)"
-    unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def apply simp by blast
+    unfolding r_coset_def Sigma_def DirProd_def FactGroup_def RCOSETS_def by force
   moreover have "(\<forall>x\<in>carrier (G Mod H). \<forall>y\<in>carrier (K Mod N). \<forall>xa\<in>carrier (G Mod H).
                 \<forall>ya\<in>carrier (K Mod N). (x <#> xa) \<times> (y <#>\<^bsub>K\<^esub> ya) =  x \<times> y <#>\<^bsub>G \<times>\<times> K\<^esub> xa \<times> ya)"
     unfolding set_mult_def by force
@@ -1143,8 +1145,14 @@
     by (metis assms(2) assms(3) normal_def partial_object.select_convs(1))
   moreover have "(\<lambda>(X, Y). X \<times> Y) ` (carrier (G Mod H) \<times> carrier (K Mod N)) =
                                      carrier (G \<times>\<times> K Mod H \<times> N)"
-    unfolding image_def  apply auto using R apply force
-    unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def by force
+  proof -
+    have 1: "\<And>x a b. \<lbrakk>a \<in> carrier (G Mod H); b \<in> carrier (K Mod N)\<rbrakk> \<Longrightarrow> a \<times> b \<in> carrier (G \<times>\<times> K Mod H \<times> N)"
+      using R by force
+    have 2: "\<And>z. z \<in> carrier (G \<times>\<times> K Mod H \<times> N) \<Longrightarrow> \<exists>x\<in>carrier (G Mod H). \<exists>y\<in>carrier (K Mod N). z = x \<times> y"
+      unfolding DirProd_def FactGroup_def RCOSETS_def r_coset_def by force
+    show ?thesis
+      unfolding image_def by (auto simp: intro: 1 2)
+  qed
   ultimately show ?thesis
     unfolding iso_def hom_def bij_betw_def inj_on_def by simp
 qed
@@ -1262,7 +1270,7 @@
       have hH:"h\<in>carrier(GH)"
         using hHK HK_def GH_def by auto
       have  "(\<forall>x\<in>carrier (GH). \<forall>h\<in>H1.  x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1)"
-        using assms normal_invE GH_def normal.inv_op_closed2 by fastforce
+        using assms GH_def normal.inv_op_closed2 by fastforce
       hence INCL_1 : "x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> H1"
         using  xH H1K_def p2 by blast
       have " x \<otimes>\<^bsub>GH\<^esub> h \<otimes>\<^bsub>GH\<^esub> inv\<^bsub>GH\<^esub> x \<in> HK"
@@ -1275,7 +1283,6 @@
   qed
 qed
 
-
 lemma (in group) normal_inter_subgroup:
   assumes "subgroup H G"
     and "N \<lhd> G"
@@ -1288,8 +1295,8 @@
   ultimately have "N \<inter> H \<lhd> G\<lparr>carrier := K \<inter> H\<rparr>"
     using normal_inter[of K H N] assms(1) by blast
   moreover have "K \<inter> H = H" using K_def assms subgroup.subset by blast
-  ultimately show "normal (N\<inter>H) (G\<lparr>carrier := H\<rparr>)" by auto
+  ultimately show "normal (N\<inter>H) (G\<lparr>carrier := H\<rparr>)"
+ by auto
 qed
 
-
 end
--- a/src/HOL/Algebra/Divisibility.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Divisibility.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -547,22 +547,14 @@
   using pf by (elim properfactorE)
 
 lemma (in monoid) properfactor_trans1 [trans]:
-  assumes dvds: "a divides b"  "properfactor G b c"
-    and carr: "a \<in> carrier G"  "c \<in> carrier G"
+  assumes "a divides b"  "properfactor G b c" "a \<in> carrier G"  "c \<in> carrier G"
   shows "properfactor G a c"
-  using dvds carr
-  apply (elim properfactorE, intro properfactorI)
-   apply (iprover intro: divides_trans)+
-  done
+  by (meson divides_trans properfactorE properfactorI assms)
 
 lemma (in monoid) properfactor_trans2 [trans]:
-  assumes dvds: "properfactor G a b"  "b divides c"
-    and carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "properfactor G a b"  "b divides c" "a \<in> carrier G"  "b \<in> carrier G"
   shows "properfactor G a c"
-  using dvds carr
-  apply (elim properfactorE, intro properfactorI)
-   apply (iprover intro: divides_trans)+
-  done
+  by (meson divides_trans properfactorE properfactorI assms)
 
 lemma properfactor_lless:
   fixes G (structure)
@@ -660,23 +652,20 @@
   using assms by (fast elim: irreducibleE)
 
 lemma (in monoid_cancel) irreducible_cong [trans]:
-  assumes irred: "irreducible G a"
-    and aa': "a \<sim> a'" "a \<in> carrier G"  "a' \<in> carrier G"
+  assumes "irreducible G a" "a \<sim> a'" "a \<in> carrier G"  "a' \<in> carrier G"
   shows "irreducible G a'"
-  using assms
-  apply (auto simp: irreducible_def assoc_unit_l)
-  apply (metis aa' associated_sym properfactor_cong_r)
-  done
+proof -
+  have "a' divides a"
+    by (meson \<open>a \<sim> a'\<close> associated_def)
+  then show ?thesis
+    by (metis (no_types) assms assoc_unit_l irreducibleE irreducibleI monoid.properfactor_trans2 monoid_axioms)
+qed
 
 lemma (in monoid) irreducible_prod_rI:
-  assumes airr: "irreducible G a"
-    and bunit: "b \<in> Units G"
-    and carr[simp]: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "irreducible G a" "b \<in> Units G" "a \<in> carrier G"  "b \<in> carrier G"
   shows "irreducible G (a \<otimes> b)"
-  using airr carr bunit
-  apply (elim irreducibleE, intro irreducibleI)
-  using prod_unit_r apply blast
-  using associatedI2' properfactor_cong_r by auto
+  using assms
+  by (metis (no_types, lifting) associatedI2' irreducible_def monoid.m_closed monoid_axioms prod_unit_r properfactor_cong_r)
 
 lemma (in comm_monoid) irreducible_prod_lI:
   assumes birr: "irreducible G b"
@@ -764,9 +753,7 @@
     and pp': "p \<sim> p'" "p \<in> carrier G"  "p' \<in> carrier G"
   shows "prime G p'"
   using assms
-  apply (auto simp: prime_def assoc_unit_l)
-  apply (metis pp' associated_sym divides_cong_l)
-  done
+  by (auto simp: prime_def assoc_unit_l) (metis pp' associated_sym divides_cong_l)
 
 (*by Paulo Emílio de Vilhena*)
 lemma (in comm_monoid_cancel) prime_irreducible:
@@ -849,9 +836,7 @@
     and "set as \<subseteq> carrier G" and "set bs \<subseteq> carrier G"
   shows "\<forall>a\<in>set bs. irreducible G a"
   using assms
-  apply (clarsimp simp add: list_all2_conv_all_nth set_conv_nth)
-  apply (blast intro: irreducible_cong)
-  done
+  by (fastforce simp add: list_all2_conv_all_nth set_conv_nth intro: irreducible_cong)
 
 
 text \<open>Permutations\<close>
@@ -1001,15 +986,7 @@
   then have f: "f \<in> carrier G"
     by blast
   show ?case
-  proof (cases "f = a")
-    case True
-    then show ?thesis
-      using Cons.prems by auto
-  next
-    case False
-    with Cons show ?thesis
-      by clarsimp (metis f divides_prod_l multlist_closed)
-  qed
+    using Cons.IH Cons.prems(1) Cons.prems(2) divides_prod_l f by auto
 qed auto
 
 lemma (in comm_monoid_cancel) multlist_listassoc_cong:
@@ -1051,9 +1028,7 @@
     and "set fs \<subseteq> carrier G" and "set fs' \<subseteq> carrier G"
   shows "foldr (\<otimes>) fs \<one> \<sim> foldr (\<otimes>) fs' \<one>"
   using assms
-  apply (elim essentially_equalE)
-  apply (simp add: multlist_perm_cong multlist_listassoc_cong perm_closed)
-  done
+  by (metis essentially_equal_def multlist_listassoc_cong multlist_perm_cong perm_closed)
 
 
 subsubsection \<open>Factorization in irreducible elements\<close>
@@ -1120,9 +1095,6 @@
     and carr[simp]: "set fs \<subseteq> carrier G"
   shows "fs = []"
 proof (cases fs)
-  case Nil
-  then show ?thesis .
-next
   case fs: (Cons f fs')
   from carr have fcarr[simp]: "f \<in> carrier G" and carr'[simp]: "set fs' \<subseteq> carrier G"
     by (simp_all add: fs)
@@ -1874,6 +1846,18 @@
 qed
 
 lemma (in factorial_monoid) properfactor_fmset:
+  assumes "properfactor G a b"
+    and "wfactors G as a"
+    and "wfactors G bs b"
+    and "a \<in> carrier G"
+    and "b \<in> carrier G"
+    and "set as \<subseteq> carrier G"
+    and "set bs \<subseteq> carrier G"
+  shows "fmset G as \<subseteq># fmset G bs"
+  using assms
+  by (meson divides_as_fmsubset properfactor_divides)
+
+lemma (in factorial_monoid) properfactor_fmset_ne:
   assumes pf: "properfactor G a b"
     and "wfactors G as a"
     and "wfactors G bs b"
@@ -1881,11 +1865,8 @@
     and "b \<in> carrier G"
     and "set as \<subseteq> carrier G"
     and "set bs \<subseteq> carrier G"
-  shows "fmset G as \<subseteq># fmset G bs \<and> fmset G as \<noteq> fmset G bs"
-  using pf
-  apply safe
-   apply (meson assms divides_as_fmsubset monoid.properfactor_divides monoid_axioms)
-  by (meson assms associated_def comm_monoid_cancel.ee_wfactorsD comm_monoid_cancel.fmset_ee factorial_monoid_axioms factorial_monoid_def properfactorE)
+  shows "fmset G as \<noteq> fmset G bs"
+  using properfactorE [OF pf] assms divides_as_fmsubset by force
 
 subsection \<open>Irreducible Elements are Prime\<close>
 
@@ -2246,75 +2227,70 @@
 qed
 
 lemma (in gcd_condition_monoid) gcdof_cong_l:
-  assumes a'a: "a' \<sim> a"
-    and agcd: "a gcdof b c"
-    and a'carr: "a' \<in> carrier G" and carr': "a \<in> carrier G"  "b \<in> carrier G"  "c \<in> carrier G"
+  assumes "a' \<sim> a" "a gcdof b c" "a' \<in> carrier G" and carr': "a \<in> carrier G"  "b \<in> carrier G"  "c \<in> carrier G"
   shows "a' gcdof b c"
 proof -
-  note carr = a'carr carr'
   interpret weak_lower_semilattice "division_rel G" by simp
   have "is_glb (division_rel G) a' {b, c}"
-    by (subst greatest_Lower_cong_l[of _ a]) (simp_all add: a'a carr gcdof_greatestLower[symmetric] agcd)
+    by (subst greatest_Lower_cong_l[of _ a]) (simp_all add: assms gcdof_greatestLower[symmetric])
   then have "a' \<in> carrier G \<and> a' gcdof b c"
     by (simp add: gcdof_greatestLower carr')
   then show ?thesis ..
 qed
 
 lemma (in gcd_condition_monoid) gcd_closed [simp]:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "a \<in> carrier G" "b \<in> carrier G"
   shows "somegcd G a b \<in> carrier G"
 proof -
   interpret weak_lower_semilattice "division_rel G" by simp
   show ?thesis
-    apply (simp add: somegcd_meet[OF carr])
-    apply (rule meet_closed[simplified], fact+)
-    done
+  using  assms meet_closed by (simp add: somegcd_meet)
 qed
 
 lemma (in gcd_condition_monoid) gcd_isgcd:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "a \<in> carrier G"  "b \<in> carrier G"
   shows "(somegcd G a b) gcdof a b"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
-  from carr have "somegcd G a b \<in> carrier G \<and> (somegcd G a b) gcdof a b"
+  from assms have "somegcd G a b \<in> carrier G \<and> (somegcd G a b) gcdof a b"
     by (simp add: gcdof_greatestLower inf_of_two_greatest meet_def somegcd_meet)
   then show "(somegcd G a b) gcdof a b"
     by simp
 qed
 
 lemma (in gcd_condition_monoid) gcd_exists:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "a \<in> carrier G"  "b \<in> carrier G"
   shows "\<exists>x\<in>carrier G. x = somegcd G a b"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
-    by (metis carr(1) carr(2) gcd_closed)
+    by (metis assms gcd_closed)
 qed
 
 lemma (in gcd_condition_monoid) gcd_divides_l:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "a \<in> carrier G" "b \<in> carrier G"
   shows "(somegcd G a b) divides a"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
-    by (metis carr(1) carr(2) gcd_isgcd isgcd_def)
+    by (metis assms gcd_isgcd isgcd_def)
 qed
 
 lemma (in gcd_condition_monoid) gcd_divides_r:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"
+  assumes "a \<in> carrier G"  "b \<in> carrier G"
   shows "(somegcd G a b) divides b"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
-    by (metis carr gcd_isgcd isgcd_def)
+    by (metis assms gcd_isgcd isgcd_def)
 qed
 
 lemma (in gcd_condition_monoid) gcd_divides:
-  assumes sub: "z divides x"  "z divides y"
+  assumes "z divides x" "z divides y"
     and L: "x \<in> carrier G"  "y \<in> carrier G"  "z \<in> carrier G"
   shows "z divides (somegcd G x y)"
 proof -
@@ -2325,49 +2301,25 @@
 qed
 
 lemma (in gcd_condition_monoid) gcd_cong_l:
-  assumes xx': "x \<sim> x'"
-    and carr: "x \<in> carrier G"  "x' \<in> carrier G"  "y \<in> carrier G"
+  assumes "x \<sim> x'" "x \<in> carrier G"  "x' \<in> carrier G"  "y \<in> carrier G"
   shows "somegcd G x y \<sim> somegcd G x' y"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
-    apply (simp add: somegcd_meet carr)
-    apply (rule meet_cong_l[simplified], fact+)
-    done
+    using somegcd_meet assms
+    by (metis eq_object.select_convs(1) meet_cong_l partial_object.select_convs(1))
 qed
 
 lemma (in gcd_condition_monoid) gcd_cong_r:
-  assumes carr: "x \<in> carrier G"  "y \<in> carrier G"  "y' \<in> carrier G"
-    and yy': "y \<sim> y'"
+  assumes "y \<sim> y'" "x \<in> carrier G"  "y \<in> carrier G" "y' \<in> carrier G"
   shows "somegcd G x y \<sim> somegcd G x y'"
 proof -
   interpret weak_lower_semilattice "division_rel G" by simp
   show ?thesis
-    apply (simp add: somegcd_meet carr)
-    apply (rule meet_cong_r[simplified], fact+)
-    done
+    by (meson associated_def assms gcd_closed gcd_divides gcd_divides_l gcd_divides_r monoid.divides_trans monoid_axioms)
 qed
 
-(*
-lemma (in gcd_condition_monoid) asc_cong_gcd_l [intro]:
-  assumes carr: "b \<in> carrier G"
-  shows "asc_cong (\<lambda>a. somegcd G a b)"
-using carr
-unfolding CONG_def
-by clarsimp (blast intro: gcd_cong_l)
-
-lemma (in gcd_condition_monoid) asc_cong_gcd_r [intro]:
-  assumes carr: "a \<in> carrier G"
-  shows "asc_cong (\<lambda>b. somegcd G a b)"
-using carr
-unfolding CONG_def
-by clarsimp (blast intro: gcd_cong_r)
-
-lemmas (in gcd_condition_monoid) asc_cong_gcd_split [simp] =
-    assoc_split[OF _ asc_cong_gcd_l] assoc_split[OF _ asc_cong_gcd_r]
-*)
-
 lemma (in gcd_condition_monoid) gcdI:
   assumes dvd: "a divides b"  "a divides c"
     and others: "\<And>y. \<lbrakk>y\<in>carrier G; y divides b; y divides c\<rbrakk> \<Longrightarrow> y divides a"
@@ -2390,25 +2342,23 @@
 
 lemma (in gcd_condition_monoid) SomeGcd_ex:
   assumes "finite A"  "A \<subseteq> carrier G"  "A \<noteq> {}"
-  shows "\<exists>x\<in> carrier G. x = SomeGcd G A"
+  shows "\<exists>x \<in> carrier G. x = SomeGcd G A"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
-    apply (simp add: SomeGcd_def)
-    apply (rule finite_inf_closed[simplified], fact+)
-    done
+    using finite_inf_closed by (simp add: assms SomeGcd_def)
 qed
 
 lemma (in gcd_condition_monoid) gcd_assoc:
-  assumes carr: "a \<in> carrier G"  "b \<in> carrier G"  "c \<in> carrier G"
+  assumes "a \<in> carrier G"  "b \<in> carrier G"  "c \<in> carrier G"
   shows "somegcd G (somegcd G a b) c \<sim> somegcd G a (somegcd G b c)"
 proof -
   interpret weak_lower_semilattice "division_rel G"
     by simp
   show ?thesis
     unfolding associated_def
-    by (meson carr divides_trans gcd_divides gcd_divides_l gcd_divides_r gcd_exists)
+    by (meson assms divides_trans gcd_divides gcd_divides_l gcd_divides_r gcd_exists)
 qed
 
 lemma (in gcd_condition_monoid) gcd_mult:
@@ -2641,141 +2591,124 @@
     using Cons.IH Cons.prems(1) by force
 qed
 
-
-lemma (in primeness_condition_monoid) wfactors_unique__hlp_induct:
-  "\<forall>a as'. a \<in> carrier G \<and> set as \<subseteq> carrier G \<and> set as' \<subseteq> carrier G \<and>
-           wfactors G as a \<and> wfactors G as' a \<longrightarrow> essentially_equal G as as'"
-proof (induct as)
+proposition (in primeness_condition_monoid) wfactors_unique:
+  assumes "wfactors G as a"  "wfactors G as' a"
+    and "a \<in> carrier G"  "set as \<subseteq> carrier G"  "set as' \<subseteq> carrier G"
+  shows "essentially_equal G as as'"
+  using assms
+proof (induct as arbitrary: a as')
   case Nil
-  show ?case
-    apply (clarsimp simp: wfactors_def)
-    by (metis Units_one_closed assoc_unit_r list_update_nonempty unit_wfactors_empty unitfactor_ee wfactorsI)
+  then have "a \<sim> \<one>"
+    by (meson Units_one_closed one_closed perm.Nil perm_wfactorsD unit_wfactors)
+  then have "as' = []"
+    using Nil.prems assoc_unit_l unit_wfactors_empty by blast
+  then show ?case
+    by auto
 next
   case (Cons ah as)
-  then show ?case
-  proof clarsimp
-    fix a as'
-    assume ih [rule_format]:
-      "\<forall>a as'. a \<in> carrier G \<and> set as' \<subseteq> carrier G \<and> wfactors G as a \<and>
-        wfactors G as' a \<longrightarrow> essentially_equal G as as'"
-      and acarr: "a \<in> carrier G" and ahcarr: "ah \<in> carrier G"
-      and ascarr: "set as \<subseteq> carrier G" and as'carr: "set as' \<subseteq> carrier G"
-      and afs: "wfactors G (ah # as) a"
-      and afs': "wfactors G as' a"
-    then have ahdvda: "ah divides a"
-      by (intro wfactors_dividesI[of "ah#as" "a"]) simp_all
+  then have ahdvda: "ah divides a"
+    using wfactors_dividesI by auto
     then obtain a' where a'carr: "a' \<in> carrier G" and a: "a = ah \<otimes> a'"
       by blast
+    have carr_ah: "ah \<in> carrier G" "set as \<subseteq> carrier G"
+      using Cons.prems by fastforce+
+    have "ah \<otimes> foldr (\<otimes>) as \<one> \<sim> a"
+      by (rule wfactorsE[OF \<open>wfactors G (ah # as) a\<close>]) auto
+    then have "foldr (\<otimes>) as \<one> \<sim> a'"
+      by (metis Cons.prems(4) a a'carr assoc_l_cancel insert_subset list.set(2) monoid.multlist_closed monoid_axioms)
+    then
     have a'fs: "wfactors G as a'"
-      apply (rule wfactorsE[OF afs], rule wfactorsI, simp)
-      by (metis a a'carr ahcarr ascarr assoc_l_cancel factorsI factors_def factors_mult_single list.set_intros(1) list.set_intros(2) multlist_closed)
-    from afs have ahirr: "irreducible G ah"
-      by (elim wfactorsE) simp
-    with ascarr have ahprime: "prime G ah"
-      by (intro irreducible_prime ahcarr)
-
-    note carr [simp] = acarr ahcarr ascarr as'carr a'carr
-
+      by (meson Cons.prems(1) set_subset_Cons subset_iff wfactorsE wfactorsI)
+    then have ahirr: "irreducible G ah"
+      by (meson Cons.prems(1) list.set_intros(1) wfactorsE)
+    with Cons have ahprime: "prime G ah"
+      by (simp add: irreducible_prime)
     note ahdvda
-    also from afs' have "a divides (foldr (\<otimes>) as' \<one>)"
-      by (elim wfactorsE associatedE, simp)
+    also have "a divides (foldr (\<otimes>) as' \<one>)"
+      by (meson Cons.prems(2) associatedE wfactorsE)
     finally have "ah divides (foldr (\<otimes>) as' \<one>)"
-      by simp
+      using Cons.prems(4) by auto
     with ahprime have "\<exists>i<length as'. ah divides as'!i"
-      by (intro multlist_prime_pos) simp_all
+      by (intro multlist_prime_pos) (use Cons.prems in auto)
     then obtain i where len: "i<length as'" and ahdvd: "ah divides as'!i"
       by blast
-    from afs' carr have irrasi: "irreducible G (as'!i)"
-      by (fast intro: nth_mem[OF len] elim: wfactorsE)
-    from len carr have asicarr[simp]: "as'!i \<in> carrier G"
-      unfolding set_conv_nth by force
-    note carr = carr asicarr
-
-    from ahdvd obtain x where "x \<in> carrier G" and asi: "as'!i = ah \<otimes> x"
+    then obtain x where "x \<in> carrier G" and asi: "as'!i = ah \<otimes> x"
       by blast
-    with carr irrasi[simplified asi] have asiah: "as'!i \<sim> ah"
-      by (metis ahprime associatedI2 irreducible_prodE primeE)
+    have irrasi: "irreducible G (as'!i)"
+      using nth_mem[OF len] wfactorsE
+      by (metis Cons.prems(2))
+    have asicarr[simp]: "as'!i \<in> carrier G"
+      using len \<open>set as' \<subseteq> carrier G\<close> nth_mem by blast
+    have asiah: "as'!i \<sim> ah"
+      by (metis \<open>ah \<in> carrier G\<close> \<open>x \<in> carrier G\<close> asi irrasi ahprime associatedI2 irreducible_prodE primeE)
     note setparts = set_take_subset[of i as'] set_drop_subset[of "Suc i" as']
-    note partscarr [simp] = setparts[THEN subset_trans[OF _ as'carr]]
-    note carr = carr partscarr
-
     have "\<exists>aa_1. aa_1 \<in> carrier G \<and> wfactors G (take i as') aa_1"
-      by (meson afs' in_set_takeD partscarr(1) wfactorsE wfactors_prod_exists)
-    then obtain aa_1 where aa1carr: "aa_1 \<in> carrier G" and aa1fs: "wfactors G (take i as') aa_1"
+      using Cons
+      by (metis setparts(1) subset_trans in_set_takeD wfactorsE wfactors_prod_exists)
+    then obtain aa_1 where aa1carr [simp]: "aa_1 \<in> carrier G" and aa1fs: "wfactors G (take i as') aa_1"
       by auto
-
-    have "\<exists>aa_2. aa_2 \<in> carrier G \<and> wfactors G (drop (Suc i) as') aa_2"
-      by (meson afs' in_set_dropD partscarr(2) wfactors_def wfactors_prod_exists)
-    then obtain aa_2 where aa2carr: "aa_2 \<in> carrier G"
+    obtain aa_2 where aa2carr [simp]: "aa_2 \<in> carrier G"
       and aa2fs: "wfactors G (drop (Suc i) as') aa_2"
-      by auto
-
-    note carr = carr aa1carr[simp] aa2carr[simp]
-
-    from aa1fs aa2fs
-    have v1: "wfactors G (take i as' @ drop (Suc i) as') (aa_1 \<otimes> aa_2)"
-      by (intro wfactors_mult, simp+)
-    then have v1': "wfactors G (as'!i # take i as' @ drop (Suc i) as') (as'!i \<otimes> (aa_1 \<otimes> aa_2))"
-      using irrasi wfactors_mult_single by auto
-    from aa2carr carr aa1fs aa2fs have "wfactors G (as'!i # drop (Suc i) as') (as'!i \<otimes> aa_2)"
-      by (metis irrasi wfactors_mult_single)
-    with len carr aa1carr aa2carr aa1fs
+      by (metis Cons.prems(2) Cons.prems(5) subset_code(1) in_set_dropD wfactors_def wfactors_prod_exists)
+
+    have set_drop: "set (drop (Suc i) as') \<subseteq> carrier G"
+      using Cons.prems(5) setparts(2) by blast
+    moreover have set_take: "set (take i as') \<subseteq> carrier G"
+      using  Cons.prems(5) setparts by auto
+    moreover have v1: "wfactors G (take i as' @ drop (Suc i) as') (aa_1 \<otimes> aa_2)"
+      using aa1fs aa2fs \<open>set as' \<subseteq> carrier G\<close> by (force simp add: dest: in_set_takeD in_set_dropD)
+    ultimately have v1': "wfactors G (as'!i # take i as' @ drop (Suc i) as') (as'!i \<otimes> (aa_1 \<otimes> aa_2))"
+      using irrasi wfactors_mult_single
+        by (simp add: irrasi v1 wfactors_mult_single)      
+    have "wfactors G (as'!i # drop (Suc i) as') (as'!i \<otimes> aa_2)"
+      by (simp add: aa2fs irrasi set_drop wfactors_mult_single)
+    with len  aa1carr aa2carr aa1fs
     have v2: "wfactors G (take i as' @ as'!i # drop (Suc i) as') (aa_1 \<otimes> (as'!i \<otimes> aa_2))"
-      using wfactors_mult by auto
+      using wfactors_mult  by (simp add: set_take set_drop) 
     from len have as': "as' = (take i as' @ as'!i # drop (Suc i) as')"
       by (simp add: Cons_nth_drop_Suc)
-    with carr have eer: "essentially_equal G (take i as' @ as'!i # drop (Suc i) as') as'"
-      by simp
-    with v2 afs' carr aa1carr aa2carr nth_mem[OF len] have "aa_1 \<otimes> (as'!i \<otimes> aa_2) \<sim> a"
-      by (metis as' ee_wfactorsD m_closed)
+    have eer: "essentially_equal G (take i as' @ as'!i # drop (Suc i) as') as'"
+      using Cons.prems(5) as' by auto
+    with v2 aa1carr aa2carr nth_mem[OF len] have "aa_1 \<otimes> (as'!i \<otimes> aa_2) \<sim> a"
+      using Cons.prems as' comm_monoid_cancel.ee_wfactorsD is_comm_monoid_cancel by fastforce
     then have t1: "as'!i \<otimes> (aa_1 \<otimes> aa_2) \<sim> a"
       by (metis aa1carr aa2carr asicarr m_lcomm)
-    from carr asiah have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> as'!i \<otimes> (aa_1 \<otimes> aa_2)"
-      by (metis associated_sym m_closed mult_cong_l)
+    from asiah have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> as'!i \<otimes> (aa_1 \<otimes> aa_2)"
+      by (simp add: \<open>ah \<in> carrier G\<close> associated_sym mult_cong_l)
     also note t1
-    finally have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> a" by simp
-
-    with carr aa1carr aa2carr a'carr nth_mem[OF len] have a': "aa_1 \<otimes> aa_2 \<sim> a'"
-      by (simp add: a, fast intro: assoc_l_cancel[of ah _ a'])
-
+    finally have "ah \<otimes> (aa_1 \<otimes> aa_2) \<sim> a"
+      using Cons.prems(3) carr_ah aa1carr aa2carr by blast
+    with aa1carr aa2carr a'carr nth_mem[OF len] have a': "aa_1 \<otimes> aa_2 \<sim> a'"
+      using a assoc_l_cancel carr_ah(1) by blast
     note v1
     also note a'
     finally have "wfactors G (take i as' @ drop (Suc i) as') a'"
-      by simp
-
-    from a'fs this carr have "essentially_equal G as (take i as' @ drop (Suc i) as')"
-      by (intro ih[of a']) simp
-    then have ee1: "essentially_equal G (ah # as) (ah # take i as' @ drop (Suc i) as')"
-      by (elim essentially_equalE) (fastforce intro: essentially_equalI)
-
-    from carr have ee2: "essentially_equal G (ah # take i as' @ drop (Suc i) as')
+      by (simp add: a'carr set_drop set_take)
+    from a'fs this have "essentially_equal G as (take i as' @ drop (Suc i) as')"
+      using Cons.hyps a'carr carr_ah(2) set_drop set_take by auto
+    with carr_ah have ee1: "essentially_equal G (ah # as) (ah # take i as' @ drop (Suc i) as')"
+      by (auto simp: essentially_equal_def)
+    have ee2: "essentially_equal G (ah # take i as' @ drop (Suc i) as')
       (as' ! i # take i as' @ drop (Suc i) as')"
     proof (intro essentially_equalI)
       show "ah # take i as' @ drop (Suc i) as' <~~> ah # take i as' @ drop (Suc i) as'"
         by simp
     next
       show "ah # take i as' @ drop (Suc i) as' [\<sim>] as' ! i # take i as' @ drop (Suc i) as'"
-        by (simp add: list_all2_append) (simp add: asiah[symmetric])
+        by (simp add: asiah associated_sym set_drop set_take)
     qed
 
     note ee1
     also note ee2
     also have "essentially_equal G (as' ! i # take i as' @ drop (Suc i) as')
                                    (take i as' @ as' ! i # drop (Suc i) as')"
-      by (metis as' as'carr listassoc_refl essentially_equalI perm_append_Cons)
+      by (metis Cons.prems(5) as' essentially_equalI listassoc_refl perm_append_Cons)
     finally have "essentially_equal G (ah # as) (take i as' @ as' ! i # drop (Suc i) as')"
-      by simp
-    then show "essentially_equal G (ah # as) as'"
-      by (subst as')
-  qed
+      using Cons.prems(4) set_drop set_take by auto
+    then show ?case
+      using as' by auto
 qed
 
-lemma (in primeness_condition_monoid) wfactors_unique:
-  assumes "wfactors G as a"  "wfactors G as' a"
-    and "a \<in> carrier G"  "set as \<subseteq> carrier G"  "set as' \<subseteq> carrier G"
-  shows "essentially_equal G as as'"
-  by (rule wfactors_unique__hlp_induct[rule_format, of a]) (simp add: assms)
-
 
 subsubsection \<open>Application to factorial monoids\<close>
 
@@ -2841,7 +2774,6 @@
     by blast
 
   note [simp] = acarr bcarr ccarr ascarr cscarr
-
   assume b: "b = a \<otimes> c"
   from afs cfs have "wfactors G (as@cs) (a \<otimes> c)"
     by (intro wfactors_mult) simp_all
@@ -2918,9 +2850,7 @@
   apply unfold_locales
   apply (rule wfUNIVI)
   apply (rule measure_induct[of "factorcount G"])
-  apply simp
-  apply (metis properfactor_fcount)
-  done
+  using properfactor_fcount by auto
 
 sublocale factorial_monoid \<subseteq> primeness_condition_monoid
   by standard (rule irreducible_prime)
--- a/src/HOL/Algebra/Embedded_Algebras.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Embedded_Algebras.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -187,7 +187,7 @@
 
 corollary Span_is_add_subgroup:
   "set Us \<subseteq> carrier R \<Longrightarrow> subgroup (Span K Us) (add_monoid R)"
-  using line_extension_is_subgroup add.normal_invE(1)[OF add.one_is_normal] by (induct Us) (auto)
+  using line_extension_is_subgroup normal_imp_subgroup[OF add.one_is_normal] by (induct Us) (auto)
 
 lemma line_extension_smult_closed:
   assumes "\<And>k v. \<lbrakk> k \<in> K; v \<in> E \<rbrakk> \<Longrightarrow> k \<otimes> v \<in> E" and "E \<subseteq> carrier R" "a \<in> carrier R"
@@ -246,7 +246,7 @@
 
 lemma line_extension_of_combine_set:
   assumes "u \<in> carrier R"
-  shows "line_extension K u { combine Ks Us | Ks. set Ks \<subseteq> K } = 
+  shows "line_extension K u { combine Ks Us | Ks. set Ks \<subseteq> K } =
                 { combine Ks (u # Us) | Ks. set Ks \<subseteq> K }"
   (is "?line_extension = ?combinations")
 proof
@@ -292,7 +292,7 @@
 
 lemma line_extension_of_combine_set_length_version:
   assumes "u \<in> carrier R"
-  shows "line_extension K u { combine Ks Us | Ks. length Ks = length Us \<and> set Ks \<subseteq> K } = 
+  shows "line_extension K u { combine Ks Us | Ks. length Ks = length Us \<and> set Ks \<subseteq> K } =
                       { combine Ks (u # Us) | Ks. length Ks = length (u # Us) \<and> set Ks \<subseteq> K }"
   (is "?line_extension = ?combinations")
 proof
@@ -329,16 +329,16 @@
   assumes "set Us \<subseteq> carrier R" and "a \<in> carrier R"
   shows "a \<in> Span K Us \<longleftrightarrow> (\<exists>k \<in> K - { \<zero> }. \<exists>Ks. set Ks \<subseteq> K \<and> combine (k # Ks) (a # Us) = \<zero>)"
          (is "?in_Span \<longleftrightarrow> ?exists_combine")
-proof 
+proof
   assume "?in_Span"
   then obtain Ks where Ks: "set Ks \<subseteq> K" "a = combine Ks Us"
     using Span_eq_combine_set[OF assms(1)] by auto
   hence "((\<ominus> \<one>) \<otimes> a) \<oplus> a = combine ((\<ominus> \<one>) # Ks) (a # Us)"
     by auto
   moreover have "((\<ominus> \<one>) \<otimes> a) \<oplus> a = \<zero>"
-    using assms(2) l_minus l_neg by auto  
+    using assms(2) l_minus l_neg by auto
   moreover have "\<ominus> \<one> \<noteq> \<zero>"
-    using subfieldE(6)[OF K] l_neg by force 
+    using subfieldE(6)[OF K] l_neg by force
   ultimately show "?exists_combine"
     using subring_props(3,5) Ks(1) by (force simp del: combine.simps)
 next
@@ -391,14 +391,14 @@
     proof (induct Ks Us rule: combine.induct)
       case (1 k Ks u Us)
       hence "k \<in> K" and "u \<in> set (u # Us)" by auto
-      hence "k \<otimes> u \<in> E" 
+      hence "k \<otimes> u \<in> E"
         using 1(4) unfolding set_mult_def by auto
       moreover have "K <#> set Us \<subseteq> E"
         using 1(4) unfolding set_mult_def by auto
       hence "combine Ks Us \<in> E"
         using 1 by auto
       ultimately show ?case
-        using add.subgroupE(4)[OF assms(2)] by auto 
+        using add.subgroupE(4)[OF assms(2)] by auto
     next
       case "2_1" thus ?case
         using subgroup.one_closed[OF assms(2)] by auto
@@ -436,7 +436,7 @@
       hence "combine [ k ] (u # Us) \<in> Span K (u # Us)"
         using Span_eq_combine_set[OF Cons(2)] by (auto simp del: combine.simps)
       moreover have "k \<in> carrier R" and "u \<in> carrier R"
-        using Cons(2) k subring_props(1) by (blast, auto) 
+        using Cons(2) k subring_props(1) by (blast, auto)
       ultimately show "k \<otimes> u \<in> Span K (u # Us)"
         by (auto simp del: Span.simps)
     qed
@@ -455,7 +455,7 @@
 corollary Span_same_set:
   assumes "set Us \<subseteq> carrier R"
   shows "set Us = set Vs \<Longrightarrow> Span K Us = Span K Vs"
-  using Span_eq_generate assms by auto 
+  using Span_eq_generate assms by auto
 
 corollary Span_incl: "set Us \<subseteq> carrier R \<Longrightarrow> K <#> (set Us) \<subseteq> Span K Us"
   using Span_eq_generate generate.incl[of _ _ "add_monoid R"] by auto
@@ -583,7 +583,7 @@
   moreover have "Span K Us \<subseteq> Span K (u # Us)"
     using mono_Span independent_in_carrier[OF assms] by auto
   ultimately show ?thesis
-    using independent_backwards(1)[OF assms] by auto 
+    using independent_backwards(1)[OF assms] by auto
 qed
 
 corollary independent_replacement:
@@ -624,7 +624,7 @@
   from assms show "Span K Us \<inter> Span K Vs = { \<zero> }"
   proof (induct Us rule: list.induct)
     case Nil thus ?case
-      using Span_subgroup_props(2)[OF independent_in_carrier[of K Vs]] by simp 
+      using Span_subgroup_props(2)[OF independent_in_carrier[of K Vs]] by simp
   next
     case (Cons u Us)
     hence IH: "Span K Us \<inter> Span K Vs = {\<zero>}" by auto
@@ -653,7 +653,7 @@
       hence "k \<otimes> u = (\<ominus> u') \<oplus> v'"
         using in_carrier(1) k(2) u'(2) v'(2) add.m_comm r_neg1 by auto
       hence "k \<otimes> u \<in> Span K (Us @ Vs)"
-        using Span_subgroup_props(4)[OF in_carrier(2) u'(1)] v'(1) 
+        using Span_subgroup_props(4)[OF in_carrier(2) u'(1)] v'(1)
               Span_append_eq_set_add[OF in_carrier(2-3)] unfolding set_add_def' by blast
       hence "u \<in> Span K (Us @ Vs)"
         using Cons(2) Span_m_inv_simprule[OF _ _ in_carrier(1), of "Us @ Vs" k]
@@ -678,7 +678,7 @@
   hence in_carrier:
     "u \<in> carrier R" "set Us \<subseteq> carrier R" "set Vs \<subseteq> carrier R" "set (u # Us) \<subseteq> carrier R"
     using Cons(2-3)[THEN independent_in_carrier] by auto
-  hence "Span K Us \<subseteq> Span K (u # Us)" 
+  hence "Span K Us \<subseteq> Span K (u # Us)"
     using mono_Span by auto
   hence "Span K Us \<inter> Span K Vs = { \<zero> }"
     using Cons(4) Span_subgroup_props(2)[OF in_carrier(2)] by auto
@@ -733,7 +733,7 @@
     hence "combine Ks' Us = \<zero>"
       using combine_in_carrier[OF _ Us, of Ks'] Ks' u Cons(3) subring_props(1) unfolding Ks by auto
     hence "set (take (length Us) Ks') \<subseteq> { \<zero> }"
-      using Cons(1)[OF Ks' _ independent_backwards(2)[OF Cons(4)]] by simp 
+      using Cons(1)[OF Ks' _ independent_backwards(2)[OF Cons(4)]] by simp
     thus ?thesis
       using k_zero unfolding Ks by auto
   qed
@@ -878,10 +878,10 @@
     case (Cons u Us)
     then obtain Vs' Vs'' where Vs: "Vs = Vs' @ (u # Vs'')"
       by (metis list.set_intros(1) split_list)
-    
+
     have in_carrier: "u \<in> carrier R" "set Us \<subseteq> carrier R"
-      using independent_in_carrier[OF Cons(2)] by auto 
-    
+      using independent_in_carrier[OF Cons(2)] by auto
+
     have "distinct Vs"
       using Cons(3-4) independent_distinct[OF Cons(2)]
       by (metis card_distinct distinct_card)
@@ -905,7 +905,7 @@
   shows "\<exists>Vs'. set Vs' \<subseteq> set Vs \<and> length Vs' = length Us' \<and> independent K (Vs' @ Us)"
   using assms
 proof (induct "length Us'" arbitrary: Us' Us)
-  case 0 thus ?case by auto 
+  case 0 thus ?case by auto
 next
   case (Suc n)
   then obtain u Us'' where Us'': "Us' = Us'' @ [u]"
@@ -1074,9 +1074,9 @@
         using space_subgroup_props(1)[OF assms(1)] li_Cons[OF _ v(2) step(4)] by auto
       then obtain Vs
         where "length (Vs @ (v # Us)) = n" "independent K (Vs @ (v # Us))" "Span K (Vs @ (v # Us)) = E"
-        using step(3)[of "v # Us"] step(1-2,4-6) v by auto 
+        using step(3)[of "v # Us"] step(1-2,4-6) v by auto
       thus ?case
-        by (metis append.assoc append_Cons append_Nil)  
+        by (metis append.assoc append_Cons append_Nil)
     qed } note aux_lemma = this
 
   have "length Us \<le> n"
@@ -1119,7 +1119,7 @@
   hence in_carrier: "set Us \<subseteq> carrier R" "set (Vs @ Bs) \<subseteq> carrier R"
     using independent_in_carrier[OF Us(2)] independent_in_carrier[OF Vs(2)] by auto
   hence "Span K Us \<inter> (Span K (Vs @ Bs)) \<subseteq> Span K Bs"
-    using Bs(4) Us(3) Vs(3) mono_Span_append(1)[OF _ Bs(1), of Us] by auto 
+    using Bs(4) Us(3) Vs(3) mono_Span_append(1)[OF _ Bs(1), of Us] by auto
   hence "Span K Us \<inter> (Span K (Vs @ Bs)) \<subseteq> { \<zero> }"
     using independent_split(3)[OF Us(2)] by blast
   hence "Span K Us \<inter> (Span K (Vs @ Bs)) = { \<zero> }"
@@ -1147,7 +1147,7 @@
     ultimately show "v \<in> (Span K Us) <+>\<^bsub>R\<^esub> F"
       using u1' unfolding set_add_def' by auto
   qed
-  ultimately have "Span K (Us @ (Vs @ Bs)) = E <+>\<^bsub>R\<^esub> F" 
+  ultimately have "Span K (Us @ (Vs @ Bs)) = E <+>\<^bsub>R\<^esub> F"
     using Span_append_eq_set_add[OF in_carrier] Vs(3) by auto
 
   thus ?thesis using dim by simp
@@ -1169,7 +1169,7 @@
     by (metis One_nat_def length_0_conv length_Suc_conv)
   have in_carrier: "set (map (\<lambda>u'. u' \<otimes> u) Us) \<subseteq> carrier R"
     using Us(1) u(1) by (induct Us) (auto)
-  
+
   have li: "independent K (map (\<lambda>u'. u' \<otimes> u) Us)"
   proof (rule trivial_combine_imp_independent[OF assms(1) in_carrier])
     fix Ks assume Ks: "set Ks \<subseteq> K" and "combine Ks (map (\<lambda>u'. u' \<otimes> u) Us) = \<zero>"
@@ -1244,7 +1244,7 @@
   ultimately have "dimension (n * Suc m) K (Span F [ v ] <+>\<^bsub>R\<^esub> Span F Vs')"
     using dimension_direct_sum_space[OF assms(1) _ _ inter] by auto
   thus "dimension (n * Suc m) K E"
-    using Span_append_eq_set_add[OF assms(2) li[THEN independent_in_carrier]] Vs(4) v by auto 
+    using Span_append_eq_set_add[OF assms(2) li[THEN independent_in_carrier]] Vs(4) v by auto
 qed
 
 
@@ -1271,14 +1271,14 @@
   hence "combine Ks Us = (combine (take (length Us) Ks) Us) \<oplus> \<zero>"
     using combine_append[OF _ _ assms(2), of "take (length Us) Ks" "drop (length Us) Ks" "[]"] len by auto
   also have " ... = combine (take (length Us) Ks) Us"
-    using combine_in_carrier[OF set_t assms(2)] by auto 
+    using combine_in_carrier[OF set_t assms(2)] by auto
   finally show "combine Ks Us = combine (take (length Us) Ks) Us" .
 qed
 *)
 
 (*
 lemma combine_normalize:
-  assumes "set Ks \<subseteq> K" "set Us \<subseteq> carrier R" "a = combine Ks Us" 
+  assumes "set Ks \<subseteq> K" "set Us \<subseteq> carrier R" "a = combine Ks Us"
   shows "\<exists>Ks'. set Ks' \<subseteq> K \<and> length Ks' = length Us \<and> a = combine Ks' Us"
 proof (cases "length Ks \<le> length Us")
   assume "\<not> length Ks \<le> length Us"
@@ -1291,12 +1291,12 @@
 next
   assume len: "length Ks \<le> length Us"
   have Ks: "set Ks \<subseteq> carrier R" and set_r: "set (replicate (length Us - length Ks) \<zero>) \<subseteq> carrier R"
-    using assms subring_props(1) zero_closed by (metis dual_order.trans, auto) 
+    using assms subring_props(1) zero_closed by (metis dual_order.trans, auto)
   moreover
   have set_t: "set (take (length Ks) Us) \<subseteq> carrier R"
    and set_d: "set (drop (length Ks) Us) \<subseteq> carrier R"
     using assms(2) len dual_order.trans by (metis set_take_subset, metis set_drop_subset)
-  ultimately 
+  ultimately
   have "combine (Ks @ (replicate (length Us - length Ks) \<zero>)) Us =
        (combine Ks (take (length Ks) Us)) \<oplus>
        (combine (replicate (length Us - length Ks) \<zero>) (drop (length Ks) Us))"
--- a/src/HOL/Algebra/Generated_Groups.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Generated_Groups.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -466,7 +466,7 @@
   shows "derived G H \<lhd> G" unfolding derived_def
 proof (rule normal_generateI)
   show "(\<Union>h1 \<in> H. \<Union>h2 \<in> H. { h1 \<otimes> h2 \<otimes> inv h1 \<otimes> inv h2 }) \<subseteq> carrier G"
-    using subgroup.subset assms normal_invE(1) by blast
+    using subgroup.subset assms normal_imp_subgroup by blast
 next
   show "\<And>h g. \<lbrakk> h \<in> derived_set G H; g \<in> carrier G \<rbrakk> \<Longrightarrow> g \<otimes> h \<otimes> inv g \<in> derived_set G H"
   proof -
@@ -474,7 +474,7 @@
     then obtain h1 h2 where h1: "h1 \<in> H" "h1 \<in> carrier G"
                         and h2: "h2 \<in> H" "h2 \<in> carrier G"
                         and h:  "h = h1 \<otimes> h2 \<otimes> inv h1 \<otimes> inv h2"
-      using subgroup.subset assms normal_invE(1) by blast
+      using subgroup.subset assms normal_imp_subgroup by blast
     hence "g \<otimes> h \<otimes> inv g =
            g \<otimes> h1 \<otimes> (inv g \<otimes> g) \<otimes> h2 \<otimes> (inv g \<otimes> g) \<otimes> inv h1 \<otimes> (inv g \<otimes> g) \<otimes> inv h2 \<otimes> inv g"
       by (simp add: g m_assoc)
@@ -486,8 +486,8 @@
     have "g \<otimes> h \<otimes> inv g =
          (g \<otimes> h1 \<otimes> inv g) \<otimes> (g \<otimes> h2 \<otimes> inv g) \<otimes> inv (g \<otimes> h1 \<otimes> inv g) \<otimes> inv (g \<otimes> h2 \<otimes> inv g)"
       by (simp add: g h1 h2 inv_mult_group m_assoc)
-    moreover have "g \<otimes> h1 \<otimes> inv g \<in> H" by (simp add: assms normal_invE(2) g h1)
-    moreover have "g \<otimes> h2 \<otimes> inv g \<in> H" by (simp add: assms normal_invE(2) g h2)
+    moreover have "g \<otimes> h1 \<otimes> inv g \<in> H" by (simp add: assms normal.inv_op_closed2 g h1)
+    moreover have "g \<otimes> h2 \<otimes> inv g \<in> H" by (simp add: assms normal.inv_op_closed2 g h2)
     ultimately show "g \<otimes> h \<otimes> inv g \<in> derived_set G H" by blast
   qed
 qed
--- a/src/HOL/Algebra/Group.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Group.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -763,13 +763,13 @@
     and "subgroup I K"
   shows "subgroup (H \<times> I) (G \<times>\<times> K)"
 proof (intro group.group_incl_imp_subgroup[OF DirProd_group[OF assms(1)assms(3)]])
-  have "H \<subseteq> carrier G" "I \<subseteq> carrier K" using subgroup.subset assms apply blast+.
+  have "H \<subseteq> carrier G" "I \<subseteq> carrier K" using subgroup.subset assms by blast+
   thus "(H \<times> I) \<subseteq> carrier (G \<times>\<times> K)" unfolding DirProd_def by auto
   have "Group.group ((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>))"
     using DirProd_group[OF subgroup.subgroup_is_group[OF assms(2)assms(1)]
         subgroup.subgroup_is_group[OF assms(4)assms(3)]].
   moreover have "((G\<lparr>carrier := H\<rparr>) \<times>\<times> (K\<lparr>carrier := I\<rparr>)) = ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)"
-    unfolding DirProd_def using assms apply simp.
+    unfolding DirProd_def using assms by simp
   ultimately show "Group.group ((G \<times>\<times> K)\<lparr>carrier := H \<times> I\<rparr>)" by simp
 qed
 
@@ -1054,7 +1054,7 @@
 lemma (in group_hom) img_is_subgroup: "subgroup (h ` (carrier G)) H"
   apply (rule subgroupI)
   apply (auto simp add: image_subsetI)
-  apply (metis (no_types, hide_lams) G.inv_closed hom_inv image_iff)
+  apply (metis G.inv_closed hom_inv image_iff)
   by (metis G.monoid_axioms hom_mult image_eqI monoid.m_closed)
 
 lemma (in group_hom) subgroup_img_is_subgroup:
@@ -1157,9 +1157,8 @@
   show "monoid (G\<lparr>carrier := H\<rparr>)"
     using submonoid.submonoid_is_monoid assms comm_monoid_axioms comm_monoid_def by blast
   show "\<And>x y. x \<in> carrier (G\<lparr>carrier := H\<rparr>) \<Longrightarrow> y \<in> carrier (G\<lparr>carrier := H\<rparr>)
-        \<Longrightarrow> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y = y \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> x" apply simp
-    using  assms comm_monoid_axioms_def submonoid.mem_carrier
-    by (metis m_comm)
+        \<Longrightarrow> x \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> y = y \<otimes>\<^bsub>G\<lparr>carrier := H\<rparr>\<^esub> x" 
+    by simp (meson assms m_comm submonoid.mem_carrier)
 qed
 
 locale comm_group = comm_monoid + group
--- a/src/HOL/Algebra/Ideal.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/Ideal.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -128,10 +128,9 @@
 proof -
   interpret additive_subgroup I R by fact
   interpret cring R by fact
-  show ?thesis apply intro_locales
-    apply (intro ideal_axioms.intro)
-    apply (erule (1) I_l_closed)
-    apply (erule (1) I_r_closed)
+  show ?thesis
+    apply intro_locales
+    apply (simp add: I_l_closed I_r_closed ideal_axioms_def)
     by (simp add: I_notcarr I_prime primeideal_axioms.intro)
 qed
 
--- a/src/HOL/Algebra/RingHom.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Algebra/RingHom.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -20,11 +20,10 @@
   by standard (rule homh)
 
 sublocale ring_hom_ring \<subseteq> abelian_group?: abelian_group_hom R S
-apply (intro abelian_group_homI R.is_abelian_group S.is_abelian_group)
-apply (intro group_hom.intro group_hom_axioms.intro R.a_group S.a_group)
-apply (insert homh, unfold hom_def ring_hom_def)
-apply simp
-done
+proof 
+  show "h \<in> hom (add_monoid R) (add_monoid S)"
+    using homh by (simp add: hom_def ring_hom_def)
+qed
 
 lemma (in ring_hom_ring) is_ring_hom_ring:
   "ring_hom_ring R S h"
@@ -33,8 +32,7 @@
 lemma ring_hom_ringI:
   fixes R (structure) and S (structure)
   assumes "ring R" "ring S"
-  assumes (* morphism: "h \<in> carrier R \<rightarrow> carrier S" *)
-          hom_closed: "!!x. x \<in> carrier R ==> h x \<in> carrier S"
+  assumes hom_closed: "!!x. x \<in> carrier R ==> h x \<in> carrier S"
       and compatible_mult: "\<And>x y. [| x \<in> carrier R; y \<in> carrier R |] ==> h (x \<otimes> y) = h x \<otimes>\<^bsub>S\<^esub> h y"
       and compatible_add: "\<And>x y. [| x \<in> carrier R; y \<in> carrier R |] ==> h (x \<oplus> y) = h x \<oplus>\<^bsub>S\<^esub> h y"
       and compatible_one: "h \<one> = \<one>\<^bsub>S\<^esub>"
@@ -42,13 +40,12 @@
 proof -
   interpret ring R by fact
   interpret ring S by fact
-  show ?thesis apply unfold_locales
-apply (unfold ring_hom_def, safe)
-   apply (simp add: hom_closed Pi_def)
-  apply (erule (1) compatible_mult)
- apply (erule (1) compatible_add)
-apply (rule compatible_one)
-done
+  show ?thesis
+  proof
+    show "h \<in> ring_hom R S"
+      unfolding ring_hom_def
+      by (auto simp: compatible_mult compatible_add compatible_one hom_closed)
+  qed
 qed
 
 lemma ring_hom_ringI2:
@@ -58,11 +55,11 @@
 proof -
   interpret R: ring R by fact
   interpret S: ring S by fact
-  show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro)
-    apply (rule R.is_ring)
-    apply (rule S.is_ring)
-    apply (rule h)
-    done
+  show ?thesis 
+  proof
+    show "h \<in> ring_hom R S"
+      using h .
+  qed
 qed
 
 lemma ring_hom_ringI3:
@@ -75,13 +72,11 @@
   interpret abelian_group_hom R S h by fact
   interpret R: ring R by fact
   interpret S: ring S by fact
-  show ?thesis apply (intro ring_hom_ring.intro ring_hom_ring_axioms.intro, rule R.is_ring, rule S.is_ring)
-    apply (insert group_hom.homh[OF a_group_hom])
-    apply (unfold hom_def ring_hom_def, simp)
-    apply safe
-    apply (erule (1) compatible_mult)
-    apply (rule compatible_one)
-    done
+  show ?thesis
+  proof
+    show "h \<in> ring_hom R S"
+      unfolding ring_hom_def by (auto simp: compatible_one compatible_mult)
+  qed
 qed
 
 lemma ring_hom_cringI:
@@ -91,21 +86,22 @@
   interpret ring_hom_ring R S h by fact
   interpret R: cring R by fact
   interpret S: cring S by fact
-  show ?thesis by (intro ring_hom_cring.intro ring_hom_cring_axioms.intro)
-    (rule R.is_cring, rule S.is_cring, rule homh)
+  show ?thesis 
+  proof
+    show "h \<in> ring_hom R S"
+      by (simp add: homh)
+  qed
 qed
 
 
 subsection \<open>The Kernel of a Ring Homomorphism\<close>
 
 \<comment> \<open>the kernel of a ring homomorphism is an ideal\<close>
-lemma (in ring_hom_ring) kernel_is_ideal:
-  shows "ideal (a_kernel R S h) R"
-apply (rule idealI)
-   apply (rule R.is_ring)
-  apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
- apply (unfold a_kernel_def', simp+)
-done
+lemma (in ring_hom_ring) kernel_is_ideal: "ideal (a_kernel R S h) R"
+  apply (rule idealI [OF R.is_ring])
+    apply (rule additive_subgroup.a_subgroup[OF additive_subgroup_a_kernel])
+   apply (auto simp: a_kernel_def')
+  done
 
 text \<open>Elements of the kernel are mapped to zero\<close>
 lemma (in abelian_group_hom) kernel_zero [simp]:
@@ -174,29 +170,10 @@
 corollary (in ring_hom_ring) rcos_eq_homeq:
   assumes acarr: "a \<in> carrier R"
   shows "(a_kernel R S h) +> a = {x \<in> carrier R. h x = h a}"
-  apply rule defer 1
-   apply clarsimp defer 1
-proof
+proof -
   interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
-
-  fix x
-  assume xrcos: "x \<in> a_kernel R S h +> a"
-  from acarr and this
-  have xcarr: "x \<in> carrier R"
-    by (rule a_elemrcos_carrier)
-
-  from xrcos
-  have "h x = h a" by (rule rcos_imp_homeq[OF acarr])
-  from xcarr and this
-  show "x \<in> {x \<in> carrier R. h x = h a}" by fast
-next
-  interpret ideal "a_kernel R S h" "R" by (rule kernel_is_ideal)
-
-  fix x
-  assume xcarr: "x \<in> carrier R"
-    and hx: "h x = h a"
-  from acarr xcarr hx
-  show "x \<in> a_kernel R S h +> a" by (rule homeq_imp_rcos)
+  show ?thesis
+    using assms by (auto simp: intro: homeq_imp_rcos rcos_imp_homeq a_elemrcos_carrier)
 qed
 
 lemma (in ring_hom_ring) nat_pow_hom:
--- a/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Cauchy_Integral_Theorem.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1341,6 +1341,29 @@
 lemma contour_integral_trivial [simp]: "contour_integral (linepath a a) f = 0"
   using has_contour_integral_trivial contour_integral_unique by blast
 
+lemma differentiable_linepath [intro]: "linepath a b differentiable at x within A"
+  by (auto simp: linepath_def)
+
+lemma bounded_linear_linepath:
+  assumes "bounded_linear f"
+  shows   "f (linepath a b x) = linepath (f a) (f b) x"
+proof -
+  interpret f: bounded_linear f by fact
+  show ?thesis by (simp add: linepath_def f.add f.scale)
+qed
+
+lemma bounded_linear_linepath':
+  assumes "bounded_linear f"
+  shows   "f \<circ> linepath a b = linepath (f a) (f b)"
+  using bounded_linear_linepath[OF assms] by (simp add: fun_eq_iff)
+
+lemma cnj_linepath: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x"
+  by (simp add: linepath_def)
+
+lemma cnj_linepath': "cnj \<circ> linepath a b = linepath (cnj a) (cnj b)"
+  by (simp add: linepath_def fun_eq_iff)
+
+
 
 subsection\<open>Relation to subpath construction\<close>
 
@@ -1501,6 +1524,62 @@
      "contour_integral g f = integral {0..1} (\<lambda>x. f (g x) * vector_derivative g (at x))"
   by (simp add: contour_integral_def integral_def has_contour_integral contour_integrable_on)
 
+lemma contour_integral_cong:
+  assumes "g = g'" "\<And>x. x \<in> path_image g \<Longrightarrow> f x = f' x"
+  shows   "contour_integral g f = contour_integral g' f'"
+  unfolding contour_integral_integral using assms
+  by (intro integral_cong) (auto simp: path_image_def)
+
+
+text \<open>Contour integral along a segment on the real axis\<close>
+
+lemma has_contour_integral_linepath_Reals_iff:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "(f has_contour_integral I) (linepath a b) \<longleftrightarrow>
+             ((\<lambda>x. f (of_real x)) has_integral I) {Re a..Re b}"
+proof -
+  from assms have [simp]: "of_real (Re a) = a" "of_real (Re b) = b"
+    by (simp_all add: complex_eq_iff)
+  from assms have "a \<noteq> b" by auto
+  have "((\<lambda>x. f (of_real x)) has_integral I) (cbox (Re a) (Re b)) \<longleftrightarrow>
+          ((\<lambda>x. f (a + b * of_real x - a * of_real x)) has_integral I /\<^sub>R (Re b - Re a)) {0..1}"
+    by (subst has_integral_affinity_iff [of "Re b - Re a" _ "Re a", symmetric])
+       (insert assms, simp_all add: field_simps scaleR_conv_of_real)
+  also have "(\<lambda>x. f (a + b * of_real x - a * of_real x)) =
+               (\<lambda>x. (f (a + b * of_real x - a * of_real x) * (b - a)) /\<^sub>R (Re b - Re a))"
+    using \<open>a \<noteq> b\<close> by (auto simp: field_simps fun_eq_iff scaleR_conv_of_real)
+  also have "(\<dots> has_integral I /\<^sub>R (Re b - Re a)) {0..1} \<longleftrightarrow> 
+               ((\<lambda>x. f (linepath a b x) * (b - a)) has_integral I) {0..1}" using assms
+    by (subst has_integral_cmul_iff) (auto simp: linepath_def scaleR_conv_of_real algebra_simps)
+  also have "\<dots> \<longleftrightarrow> (f has_contour_integral I) (linepath a b)" unfolding has_contour_integral_def
+    by (intro has_integral_cong) (simp add: vector_derivative_linepath_within)
+  finally show ?thesis by simp
+qed
+
+lemma contour_integrable_linepath_Reals_iff:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "(f contour_integrable_on linepath a b) \<longleftrightarrow>
+             (\<lambda>x. f (of_real x)) integrable_on {Re a..Re b}"
+  using has_contour_integral_linepath_Reals_iff[OF assms, of f]
+  by (auto simp: contour_integrable_on_def integrable_on_def)
+
+lemma contour_integral_linepath_Reals_eq:
+  fixes a b :: complex and f :: "complex \<Rightarrow> complex"
+  assumes "a \<in> Reals" "b \<in> Reals" "Re a < Re b"
+  shows   "contour_integral (linepath a b) f = integral {Re a..Re b} (\<lambda>x. f (of_real x))"
+proof (cases "f contour_integrable_on linepath a b")
+  case True
+  thus ?thesis using has_contour_integral_linepath_Reals_iff[OF assms, of f]
+    using has_contour_integral_integral has_contour_integral_unique by blast
+next
+  case False
+  thus ?thesis using contour_integrable_linepath_Reals_iff[OF assms, of f]
+    by (simp add: not_integrable_contour_integral not_integrable_integral)
+qed
+
+
 
 text\<open>Cauchy's theorem where there's a primitive\<close>
 
@@ -4875,6 +4954,10 @@
   apply (rule derivative_eq_intros | simp)+
   done
 
+corollary differentiable_part_circlepath:
+  "part_circlepath c r a b differentiable at x within A"
+  using has_vector_derivative_part_circlepath[of c r a b x A] differentiableI_vector by blast
+
 corollary vector_derivative_part_circlepath:
     "vector_derivative (part_circlepath z r s t) (at x) =
        \<i> * r * (of_real t - of_real s) * exp(\<i> * linepath s t x)"
@@ -4923,6 +5006,17 @@
     by (fastforce simp add: path_image_def part_circlepath_def)
 qed
 
+proposition path_image_part_circlepath':
+  "path_image (part_circlepath z r s t) = (\<lambda>x. z + r * cis x) ` closed_segment s t"
+proof -
+  have "path_image (part_circlepath z r s t) = 
+          (\<lambda>x. z + r * exp(\<i> * of_real x)) ` linepath s t ` {0..1}"
+    by (simp add: image_image path_image_def part_circlepath_def)
+  also have "linepath s t ` {0..1} = closed_segment s t"
+    by (rule linepath_image_01)
+  finally show ?thesis by (simp add: cis_conv_exp)
+qed
+
 corollary path_image_part_circlepath_subset:
     "\<lbrakk>s \<le> t; 0 \<le> r\<rbrakk> \<Longrightarrow> path_image(part_circlepath z r s t) \<subseteq> sphere z r"
 by (auto simp: path_image_part_circlepath sphere_def dist_norm algebra_simps norm_mult)
@@ -4937,6 +5031,106 @@
     by (simp add: dist_norm norm_minus_commute)
 qed
 
+corollary path_image_part_circlepath_subset':
+  assumes "r \<ge> 0"
+  shows   "path_image (part_circlepath z r s t) \<subseteq> sphere z r"
+proof (cases "s \<le> t")
+  case True
+  thus ?thesis using path_image_part_circlepath_subset[of s t r z] assms by simp
+next
+  case False
+  thus ?thesis using path_image_part_circlepath_subset[of t s r z] assms
+    by (subst reversepath_part_circlepath [symmetric], subst path_image_reversepath) simp_all
+qed
+
+lemma part_circlepath_cnj: "cnj (part_circlepath c r a b x) = part_circlepath (cnj c) r (-a) (-b) x"
+  by (simp add: part_circlepath_def exp_cnj linepath_def algebra_simps)
+
+lemma contour_integral_bound_part_circlepath:
+  assumes "f contour_integrable_on part_circlepath c r a b"
+  assumes "B \<ge> 0" "r \<ge> 0" "\<And>x. x \<in> path_image (part_circlepath c r a b) \<Longrightarrow> norm (f x) \<le> B"
+  shows   "norm (contour_integral (part_circlepath c r a b) f) \<le> B * r * \<bar>b - a\<bar>"
+proof -
+  let ?I = "integral {0..1} (\<lambda>x. f (part_circlepath c r a b x) * \<i> * of_real (r * (b - a)) *
+              exp (\<i> * linepath a b x))"
+  have "norm ?I \<le> integral {0..1} (\<lambda>x::real. B * 1 * (r * \<bar>b - a\<bar>) * 1)"
+  proof (rule integral_norm_bound_integral, goal_cases)
+    case 1
+    with assms(1) show ?case
+      by (simp add: contour_integrable_on vector_derivative_part_circlepath mult_ac)
+  next
+    case (3 x)
+    with assms(2-) show ?case unfolding norm_mult norm_of_real abs_mult
+      by (intro mult_mono) (auto simp: path_image_def)
+  qed auto
+  also have "?I = contour_integral (part_circlepath c r a b) f"
+    by (simp add: contour_integral_integral vector_derivative_part_circlepath mult_ac)
+  finally show ?thesis by simp
+qed
+
+lemma has_contour_integral_part_circlepath_iff:
+  assumes "a < b"
+  shows "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
+           ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}"
+proof -
+  have "(f has_contour_integral I) (part_circlepath c r a b) \<longleftrightarrow>
+          ((\<lambda>x. f (part_circlepath c r a b x) * vector_derivative (part_circlepath c r a b)
+           (at x within {0..1})) has_integral I) {0..1}"
+    unfolding has_contour_integral_def ..
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (part_circlepath c r a b x) * r * (b - a) * \<i> *
+                            cis (linepath a b x)) has_integral I) {0..1}"
+    by (intro has_integral_cong, subst vector_derivative_part_circlepath01)
+       (simp_all add: cis_conv_exp)
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>x. f (c + r * exp (\<i> * linepath (of_real a) (of_real b) x)) *
+                       r * \<i> * exp (\<i> * linepath (of_real a) (of_real b) x) *
+                       vector_derivative (linepath (of_real a) (of_real b)) 
+                         (at x within {0..1})) has_integral I) {0..1}"
+    by (intro has_integral_cong, subst vector_derivative_linepath_within)
+       (auto simp: part_circlepath_def cis_conv_exp of_real_linepath [symmetric])
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>z. f (c + r * exp (\<i> * z)) * r * \<i> * exp (\<i> * z)) has_contour_integral I)
+                      (linepath (of_real a) (of_real b))"
+    by (simp add: has_contour_integral_def)
+  also have "\<dots> \<longleftrightarrow> ((\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) has_integral I) {a..b}" using assms
+    by (subst has_contour_integral_linepath_Reals_iff) (simp_all add: cis_conv_exp)
+  finally show ?thesis .
+qed
+
+lemma contour_integrable_part_circlepath_iff:
+  assumes "a < b"
+  shows "f contour_integrable_on (part_circlepath c r a b) \<longleftrightarrow>
+           (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}"
+  using assms by (auto simp: contour_integrable_on_def integrable_on_def 
+                             has_contour_integral_part_circlepath_iff)
+
+lemma contour_integral_part_circlepath_eq:
+  assumes "a < b"
+  shows "contour_integral (part_circlepath c r a b) f =
+           integral {a..b} (\<lambda>t. f (c + r * cis t) * r * \<i> * cis t)"
+proof (cases "f contour_integrable_on part_circlepath c r a b")
+  case True
+  hence "(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
+    using assms by (simp add: contour_integrable_part_circlepath_iff)
+  with True show ?thesis
+    using has_contour_integral_part_circlepath_iff[OF assms]
+          contour_integral_unique has_integral_integrable_integral by blast
+next
+  case False
+  hence "\<not>(\<lambda>t. f (c + r * cis t) * r * \<i> * cis t) integrable_on {a..b}" 
+    using assms by (simp add: contour_integrable_part_circlepath_iff)
+  with False show ?thesis
+    by (simp add: not_integrable_contour_integral not_integrable_integral)
+qed
+
+lemma contour_integral_part_circlepath_reverse:
+  "contour_integral (part_circlepath c r a b) f = -contour_integral (part_circlepath c r b a) f"
+  by (subst reversepath_part_circlepath [symmetric], subst contour_integral_reversepath) simp_all
+
+lemma contour_integral_part_circlepath_reverse':
+  "b < a \<Longrightarrow> contour_integral (part_circlepath c r a b) f = 
+               -contour_integral (part_circlepath c r b a) f"
+  by (rule contour_integral_part_circlepath_reverse)
+
+
 proposition finite_bounded_log: "finite {z::complex. norm z \<le> b \<and> exp z = w}"
 proof (cases "w = 0")
   case True then show ?thesis by auto
--- a/src/HOL/Analysis/Complex_Analysis_Basics.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Complex_Analysis_Basics.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -41,6 +41,24 @@
 lemma linear_cnj: "linear cnj"
   using bounded_linear.linear[OF bounded_linear_cnj] .
 
+lemma vector_derivative_cnj_within:
+  assumes "at x within A \<noteq> bot" and "f differentiable at x within A"
+  shows   "vector_derivative (\<lambda>z. cnj (f z)) (at x within A) = 
+             cnj (vector_derivative f (at x within A))" (is "_ = cnj ?D")
+proof -
+  let ?D = "vector_derivative f (at x within A)"
+  from assms have "(f has_vector_derivative ?D) (at x within A)"
+    by (subst (asm) vector_derivative_works)
+  hence "((\<lambda>x. cnj (f x)) has_vector_derivative cnj ?D) (at x within A)"
+    by (rule has_vector_derivative_cnj)
+  thus ?thesis using assms by (auto dest: vector_derivative_within)
+qed
+
+lemma vector_derivative_cnj:
+  assumes "f differentiable at x"
+  shows   "vector_derivative (\<lambda>z. cnj (f z)) (at x) = cnj (vector_derivative f (at x))"
+  using assms by (intro vector_derivative_cnj_within) auto
+
 lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = ( * ) 0"
   by auto
 
@@ -286,6 +304,35 @@
   "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
   by (metis holomorphic_on_compose holomorphic_on_subset)
 
+lemma holomorphic_on_balls_imp_entire:
+  assumes "\<not>bdd_above A" "\<And>r. r \<in> A \<Longrightarrow> f holomorphic_on ball c r"
+  shows   "f holomorphic_on B"
+proof (rule holomorphic_on_subset)
+  show "f holomorphic_on UNIV" unfolding holomorphic_on_def
+  proof
+    fix z :: complex
+    from \<open>\<not>bdd_above A\<close> obtain r where r: "r \<in> A" "r > norm (z - c)"
+      by (meson bdd_aboveI not_le)
+    with assms(2) have "f holomorphic_on ball c r" by blast
+    moreover from r have "z \<in> ball c r" by (auto simp: dist_norm norm_minus_commute)
+    ultimately show "f field_differentiable at z"
+      by (auto simp: holomorphic_on_def at_within_open[of _ "ball c r"])
+  qed
+qed auto
+
+lemma holomorphic_on_balls_imp_entire':
+  assumes "\<And>r. r > 0 \<Longrightarrow> f holomorphic_on ball c r"
+  shows   "f holomorphic_on B"
+proof (rule holomorphic_on_balls_imp_entire)
+  {
+    fix M :: real
+    have "\<exists>x. x > max M 0" by (intro gt_ex)
+    hence "\<exists>x>0. x > M" by auto
+  }
+  thus "\<not>bdd_above {(0::real)<..}" unfolding bdd_above_def
+    by (auto simp: not_le)
+qed (insert assms, auto)
+
 lemma holomorphic_on_minus [holomorphic_intros]: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
   by (metis field_differentiable_minus holomorphic_on_def)
 
--- a/src/HOL/Analysis/Complex_Transcendental.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Complex_Transcendental.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -176,6 +176,16 @@
 lemma holomorphic_on_cos: "cos holomorphic_on S"
   by (simp add: field_differentiable_within_cos holomorphic_on_def)
 
+lemma holomorphic_on_sin' [holomorphic_intros]:
+  assumes "f holomorphic_on A"
+  shows   "(\<lambda>x. sin (f x)) holomorphic_on A"
+  using holomorphic_on_compose[OF assms holomorphic_on_sin] by (simp add: o_def)
+
+lemma holomorphic_on_cos' [holomorphic_intros]:
+  assumes "f holomorphic_on A"
+  shows   "(\<lambda>x. cos (f x)) holomorphic_on A"
+  using holomorphic_on_compose[OF assms holomorphic_on_cos] by (simp add: o_def)
+
 subsection\<open>Get a nice real/imaginary separation in Euler's formula\<close>
 
 lemma Euler: "exp(z) = of_real(exp(Re z)) *
@@ -1308,6 +1318,11 @@
 lemma holomorphic_on_Ln [holomorphic_intros]: "(\<And>z. z \<in> S \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> Ln holomorphic_on S"
   by (simp add: field_differentiable_within_Ln holomorphic_on_def)
 
+lemma holomorphic_on_Ln' [holomorphic_intros]:
+  "(\<And>z. z \<in> A \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> f holomorphic_on A \<Longrightarrow> (\<lambda>z. Ln (f z)) holomorphic_on A"
+  using holomorphic_on_compose_gen[OF _ holomorphic_on_Ln, of f A "- \<real>\<^sub>\<le>\<^sub>0"]
+  by (auto simp: o_def)
+
 lemma tendsto_Ln [tendsto_intros]:
   fixes L F
   assumes "(f \<longlongrightarrow> L) F" "L \<notin> \<real>\<^sub>\<le>\<^sub>0"
--- a/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Equivalence_Lebesgue_Henstock_Integration.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -4612,6 +4612,93 @@
     unfolding absolutely_integrable_restrict_UNIV .
 qed
 
+lemma uniform_limit_set_lebesgue_integral_at_top:
+  fixes f :: "'a \<Rightarrow> real \<Rightarrow> 'b::{banach, second_countable_topology}"
+    and g :: "real \<Rightarrow> real"
+  assumes bound: "\<And>x y. x \<in> A \<Longrightarrow> y \<ge> a \<Longrightarrow> norm (f x y) \<le> g y"
+  assumes integrable: "set_integrable M {a..} g"
+  assumes measurable: "\<And>x. x \<in> A \<Longrightarrow> set_borel_measurable M {a..} (f x)"
+  assumes "sets borel \<subseteq> sets M"
+  shows   "uniform_limit A (\<lambda>b x. LINT y:{a..b}|M. f x y) (\<lambda>x. LINT y:{a..}|M. f x y) at_top"
+proof (cases "A = {}")
+  case False
+  then obtain x where x: "x \<in> A" by auto
+  have g_nonneg: "g y \<ge> 0" if "y \<ge> a" for y
+  proof -
+    have "0 \<le> norm (f x y)" by simp
+    also have "\<dots> \<le> g y" using bound[OF x that] by simp
+    finally show ?thesis .
+  qed
+
+  have integrable': "set_integrable M {a..} (\<lambda>y. f x y)" if "x \<in> A" for x
+    unfolding set_integrable_def
+  proof (rule Bochner_Integration.integrable_bound)
+    show "integrable M (\<lambda>x. indicator {a..} x * g x)"
+      using integrable by (simp add: set_integrable_def)
+    show "(\<lambda>y. indicat_real {a..} y *\<^sub>R f x y) \<in> borel_measurable M" using measurable[OF that]
+      by (simp add: set_borel_measurable_def)
+    show "AE y in M. norm (indicat_real {a..} y *\<^sub>R f x y) \<le> norm (indicat_real {a..} y * g y)"
+      using bound[OF that] by (intro AE_I2) (auto simp: indicator_def g_nonneg)
+  qed
+
+  show ?thesis
+  proof (rule uniform_limitI)
+    fix e :: real assume e: "e > 0"
+    have sets [intro]: "A \<in> sets M" if "A \<in> sets borel" for A
+      using that assms by blast
+  
+    have "((\<lambda>b. LINT y:{a..b}|M. g y) \<longlongrightarrow> (LINT y:{a..}|M. g y)) at_top"
+      by (intro tendsto_set_lebesgue_integral_at_top assms sets) auto
+    with e obtain b0 :: real where b0: "\<forall>b\<ge>b0. \<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
+      by (auto simp: tendsto_iff eventually_at_top_linorder dist_real_def abs_minus_commute)
+    define b where "b = max a b0"
+    have "a \<le> b" by (simp add: b_def)
+    from b0 have "\<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
+      by (auto simp: b_def)
+    also have "{a..} = {a..b} \<union> {b<..}" by (auto simp: b_def)
+    also have "\<bar>(LINT y:\<dots>|M. g y) - (LINT y:{a..b}|M. g y)\<bar> = \<bar>(LINT y:{b<..}|M. g y)\<bar>"
+      using \<open>a \<le> b\<close> by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
+    also have "(LINT y:{b<..}|M. g y) \<ge> 0"
+      using g_nonneg \<open>a \<le> b\<close> unfolding set_lebesgue_integral_def
+      by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
+    hence "\<bar>(LINT y:{b<..}|M. g y)\<bar> = (LINT y:{b<..}|M. g y)" by simp
+    finally have less: "(LINT y:{b<..}|M. g y) < e" .
+
+    have "eventually (\<lambda>b. b \<ge> b0) at_top" by (rule eventually_ge_at_top)
+    moreover have "eventually (\<lambda>b. b \<ge> a) at_top" by (rule eventually_ge_at_top)
+    ultimately show "eventually (\<lambda>b. \<forall>x\<in>A. 
+                       dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e) at_top"
+    proof eventually_elim
+      case (elim b)
+      show ?case
+      proof
+        fix x assume x: "x \<in> A"
+        have "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) =
+                norm ((LINT y:{a..}|M. f x y) - (LINT y:{a..b}|M. f x y))"
+          by (simp add: dist_norm norm_minus_commute)
+        also have "{a..} = {a..b} \<union> {b<..}" using elim by auto
+        also have "(LINT y:\<dots>|M. f x y) - (LINT y:{a..b}|M. f x y) = (LINT y:{b<..}|M. f x y)"
+          using elim x
+          by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable'])
+        also have "norm \<dots> \<le> (LINT y:{b<..}|M. norm (f x y))" using elim x
+          by (intro set_integral_norm_bound set_integrable_subset[OF integrable']) auto
+        also have "\<dots> \<le> (LINT y:{b<..}|M. g y)" using elim x bound g_nonneg
+          by (intro set_integral_mono set_integrable_norm set_integrable_subset[OF integrable']
+                    set_integrable_subset[OF integrable]) auto
+        also have "(LINT y:{b<..}|M. g y) \<ge> 0"
+          using g_nonneg \<open>a \<le> b\<close> unfolding set_lebesgue_integral_def
+          by (intro Bochner_Integration.integral_nonneg) (auto simp: indicator_def)
+        hence "(LINT y:{b<..}|M. g y) = \<bar>(LINT y:{b<..}|M. g y)\<bar>" by simp
+        also have "\<dots> = \<bar>(LINT y:{a..b} \<union> {b<..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar>"
+          using elim by (subst set_integral_Un) (auto intro!: set_integrable_subset[OF integrable])
+        also have "{a..b} \<union> {b<..} = {a..}" using elim by auto
+        also have "\<bar>(LINT y:{a..}|M. g y) - (LINT y:{a..b}|M. g y)\<bar> < e"
+          using b0 elim by blast
+        finally show "dist (LINT y:{a..b}|M. f x y) (LINT y:{a..}|M. f x y) < e" .
+      qed
+    qed
+  qed
+qed auto
 
 
 
--- a/src/HOL/Analysis/FPS_Convergence.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/FPS_Convergence.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -193,6 +193,24 @@
     by (subst analytic_on_open) auto
 qed
 
+lemma continuous_eval_fps [continuous_intros]:
+  fixes z :: "'a::{real_normed_field,banach}"
+  assumes "norm z < fps_conv_radius F"
+  shows   "continuous (at z within A) (eval_fps F)"
+proof -
+  from ereal_dense2[OF assms] obtain K :: real where K: "norm z < K" "K < fps_conv_radius F"
+    by auto
+  have "0 \<le> norm z" by simp
+  also have "norm z < K" by fact
+  finally have "K > 0" .
+  from K and \<open>K > 0\<close> have "summable (\<lambda>n. fps_nth F n * of_real K ^ n)"
+    by (intro summable_fps) auto
+  from this have "isCont (eval_fps F) z" unfolding eval_fps_def
+    by (rule isCont_powser) (use K in auto)
+  thus "continuous (at z within A)  (eval_fps F)"
+    by (simp add: continuous_at_imp_continuous_within)
+qed
+
 
 subsection%unimportant \<open>Lower bounds on radius of convergence\<close>
 
@@ -831,6 +849,20 @@
   ultimately show ?thesis using r(1) by (auto simp: has_fps_expansion_def)
 qed
 
+lemma has_fps_expansion_imp_continuous:
+  fixes F :: "'a::{real_normed_field,banach} fps"
+  assumes "f has_fps_expansion F"
+  shows   "continuous (at 0 within A) f"
+proof -
+  from assms have "isCont (eval_fps F) 0"
+    by (intro continuous_eval_fps) (auto simp: has_fps_expansion_def zero_ereal_def)
+  also have "?this \<longleftrightarrow> isCont f 0" using assms
+    by (intro isCont_cong) (auto simp: has_fps_expansion_def)
+  finally have "isCont f 0" .
+  thus "continuous (at 0 within A) f"
+    by (simp add: continuous_at_imp_continuous_within)
+qed
+
 lemma has_fps_expansion_const [simp, intro, fps_expansion_intros]:
   "(\<lambda>_. c) has_fps_expansion fps_const c"
   by (auto simp: has_fps_expansion_def)
--- a/src/HOL/Analysis/Gamma_Function.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Gamma_Function.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1457,6 +1457,15 @@
 lemma holomorphic_rGamma [holomorphic_intros]: "rGamma holomorphic_on A"
   unfolding holomorphic_on_def by (auto intro!: field_differentiable_rGamma)
 
+lemma holomorphic_rGamma' [holomorphic_intros]: 
+  assumes "f holomorphic_on A"
+  shows   "(\<lambda>x. rGamma (f x)) holomorphic_on A"
+proof -
+  have "rGamma \<circ> f holomorphic_on A" using assms
+    by (intro holomorphic_on_compose assms holomorphic_rGamma)
+  thus ?thesis by (simp only: o_def)
+qed
+
 lemma analytic_rGamma: "rGamma analytic_on A"
   unfolding analytic_on_def by (auto intro!: exI[of _ 1] holomorphic_rGamma)
 
@@ -1467,6 +1476,15 @@
 lemma holomorphic_Gamma [holomorphic_intros]: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma holomorphic_on A"
   unfolding holomorphic_on_def by (auto intro!: field_differentiable_Gamma)
 
+lemma holomorphic_Gamma' [holomorphic_intros]: 
+  assumes "f holomorphic_on A" and "\<And>x. x \<in> A \<Longrightarrow> f x \<notin> \<int>\<^sub>\<le>\<^sub>0"
+  shows   "(\<lambda>x. Gamma (f x)) holomorphic_on A"
+proof -
+  have "Gamma \<circ> f holomorphic_on A" using assms
+    by (intro holomorphic_on_compose assms holomorphic_Gamma) auto
+  thus ?thesis by (simp only: o_def)
+qed
+
 lemma analytic_Gamma: "A \<inter> \<int>\<^sub>\<le>\<^sub>0 = {} \<Longrightarrow> Gamma analytic_on A"
   by (rule analytic_on_subset[of _ "UNIV - \<int>\<^sub>\<le>\<^sub>0"], subst analytic_on_open)
      (auto intro!: holomorphic_Gamma)
--- a/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Henstock_Kurzweil_Integration.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -687,6 +687,17 @@
   apply (simp_all add: integrable_integral integrable_linear has_integral_linear )
   done
 
+lemma integrable_on_cnj_iff:
+  "(\<lambda>x. cnj (f x)) integrable_on A \<longleftrightarrow> f integrable_on A"
+  using integrable_linear[OF _ bounded_linear_cnj, of f A]
+        integrable_linear[OF _ bounded_linear_cnj, of "cnj \<circ> f" A]
+  by (auto simp: o_def)
+
+lemma integral_cnj: "cnj (integral A f) = integral A (\<lambda>x. cnj (f x))"
+  by (cases "f integrable_on A")
+     (simp_all add: integral_linear[OF _ bounded_linear_cnj, symmetric]
+                    o_def integrable_on_cnj_iff not_integrable_integral)
+
 lemma integral_component_eq[simp]:
   fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
   assumes "f integrable_on S"
@@ -3440,6 +3451,64 @@
 
 lemmas has_integral_affinity01 = has_integral_affinity [of _ _ 0 "1::real", simplified]
 
+lemma integrable_on_affinity:
+  assumes "m \<noteq> 0" "f integrable_on (cbox a b)"
+  shows   "(\<lambda>x. f (m *\<^sub>R x + c)) integrable_on ((\<lambda>x. (1 / m) *\<^sub>R x - ((1 / m) *\<^sub>R c)) ` cbox a b)"
+proof -
+  from assms obtain I where "(f has_integral I) (cbox a b)"
+    by (auto simp: integrable_on_def)
+  from has_integral_affinity[OF this assms(1), of c] show ?thesis
+    by (auto simp: integrable_on_def)
+qed
+
+lemma has_integral_cmul_iff:
+  assumes "c \<noteq> 0"
+  shows   "((\<lambda>x. c *\<^sub>R f x) has_integral (c *\<^sub>R I)) A \<longleftrightarrow> (f has_integral I) A"
+  using assms has_integral_cmul[of f I A c]
+        has_integral_cmul[of "\<lambda>x. c *\<^sub>R f x" "c *\<^sub>R I" A "inverse c"] by (auto simp: field_simps)
+
+lemma has_integral_affinity':
+  fixes a :: "'a::euclidean_space"
+  assumes "(f has_integral i) (cbox a b)" and "m > 0"
+  shows "((\<lambda>x. f(m *\<^sub>R x + c)) has_integral (i /\<^sub>R m ^ DIM('a)))
+           (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m))"
+proof (cases "cbox a b = {}")
+  case True
+  hence "(cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) = {}"
+    using \<open>m > 0\<close> unfolding box_eq_empty by (auto simp: algebra_simps)
+  with True and assms show ?thesis by simp
+next
+  case False
+  have "((\<lambda>x. f (m *\<^sub>R x + c)) has_integral (1 / \<bar>m\<bar> ^ DIM('a)) *\<^sub>R i)
+          ((\<lambda>x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b)"
+    using assms by (intro has_integral_affinity) auto
+  also have "((\<lambda>x. (1 / m) *\<^sub>R x + - ((1 / m) *\<^sub>R c)) ` cbox a b) =
+               ((\<lambda>x.  - ((1 / m) *\<^sub>R c) + x) ` (\<lambda>x. (1 / m) *\<^sub>R x) ` cbox a b)"
+    by (simp add: image_image algebra_simps)
+  also have "(\<lambda>x. (1 / m) *\<^sub>R x) ` cbox a b = cbox ((1 / m) *\<^sub>R a) ((1 / m) *\<^sub>R b)" using \<open>m > 0\<close> False
+    by (subst image_smult_cbox) simp_all
+  also have "(\<lambda>x. - ((1 / m) *\<^sub>R c) + x) ` \<dots> = cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)"
+    by (subst cbox_translation [symmetric]) (simp add: field_simps vector_add_divide_simps)
+  finally show ?thesis using \<open>m > 0\<close> by (simp add: field_simps)
+qed
+
+lemma has_integral_affinity_iff:
+  fixes f :: "'a :: euclidean_space \<Rightarrow> 'b :: real_normed_vector"
+  assumes "m > 0"
+  shows   "((\<lambda>x. f (m *\<^sub>R x + c)) has_integral (I /\<^sub>R m ^ DIM('a)))
+               (cbox ((a - c) /\<^sub>R m) ((b - c) /\<^sub>R m)) \<longleftrightarrow>
+           (f has_integral I) (cbox a b)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  from has_integral_affinity'[OF this, of "1 / m" "-c /\<^sub>R m"] and \<open>m > 0\<close>
+    show ?rhs by (simp add: field_simps vector_add_divide_simps)
+next
+  assume ?rhs
+  from has_integral_affinity'[OF this, of m c] and \<open>m > 0\<close>
+  show ?lhs by simp
+qed
+
+
 subsection \<open>Special case of stretching coordinate axes separately\<close>
 
 lemma has_integral_stretch:
--- a/src/HOL/Analysis/Path_Connected.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Path_Connected.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1177,6 +1177,21 @@
   unfolding pathfinish_def linepath_def
   by auto
 
+lemma linepath_inner: "linepath a b x \<bullet> v = linepath (a \<bullet> v) (b \<bullet> v) x"
+  by (simp add: linepath_def algebra_simps)
+
+lemma Re_linepath': "Re (linepath a b x) = linepath (Re a) (Re b) x"
+  by (simp add: linepath_def)
+
+lemma Im_linepath': "Im (linepath a b x) = linepath (Im a) (Im b) x"
+  by (simp add: linepath_def)
+
+lemma linepath_0': "linepath a b 0 = a"
+  by (simp add: linepath_def)
+
+lemma linepath_1': "linepath a b 1 = b"
+  by (simp add: linepath_def)
+
 lemma continuous_linepath_at[intro]: "continuous (at x) (linepath a b)"
   unfolding linepath_def
   by (intro continuous_intros)
@@ -1200,6 +1215,9 @@
 lemma linepath_0 [simp]: "linepath 0 b x = x *\<^sub>R b"
   by (simp add: linepath_def)
 
+lemma linepath_cnj: "cnj (linepath a b x) = linepath (cnj a) (cnj b) x"
+  by (simp add: linepath_def)
+
 lemma arc_linepath:
   assumes "a \<noteq> b" shows [simp]: "arc (linepath a b)"
 proof -
--- a/src/HOL/Analysis/Set_Integral.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Analysis/Set_Integral.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -54,6 +54,15 @@
   by (auto simp add: indicator_def)
 *)
 
+lemma set_integrable_cong:
+  assumes "M = M'" "A = A'" "\<And>x. x \<in> A \<Longrightarrow> f x = f' x"
+  shows   "set_integrable M A f = set_integrable M' A' f'"
+proof -
+  have "(\<lambda>x. indicator A x *\<^sub>R f x) = (\<lambda>x. indicator A' x *\<^sub>R f' x)"
+    using assms by (auto simp: indicator_def)
+  thus ?thesis by (simp add: set_integrable_def assms)
+qed
+
 lemma set_borel_measurable_sets:
   fixes f :: "_ \<Rightarrow> _::real_normed_vector"
   assumes "set_borel_measurable M X f" "B \<in> sets borel" "X \<in> sets M"
@@ -925,4 +934,127 @@
   then show "integrable M (F n)" by (subst integrable_iff_bounded, simp add: assms(1)[of n])
 qed (auto simp add: assms Limsup_bounded)
 
+lemma tendsto_set_lebesgue_integral_at_right:
+  fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
+  assumes "a < b" and sets: "\<And>a'. a' \<in> {a<..b} \<Longrightarrow> {a'..b} \<in> sets M"
+      and "set_integrable M {a<..b} f"
+  shows   "((\<lambda>a'. set_lebesgue_integral M {a'..b} f) \<longlongrightarrow>
+             set_lebesgue_integral M {a<..b} f) (at_right a)"
+proof (rule tendsto_at_right_sequentially[OF assms(1)], goal_cases)
+  case (1 S)
+  have eq: "(\<Union>n. {S n..b}) = {a<..b}"
+  proof safe
+    fix x n assume "x \<in> {S n..b}"
+    with 1(1,2)[of n] show "x \<in> {a<..b}" by auto
+  next
+    fix x assume "x \<in> {a<..b}"
+    with order_tendstoD[OF \<open>S \<longlonglongrightarrow> a\<close>, of x] show "x \<in> (\<Union>n. {S n..b})"
+      by (force simp: eventually_at_top_linorder dest: less_imp_le)
+  qed
+  have "(\<lambda>n. set_lebesgue_integral M {S n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {S n..b}) f"
+    by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le)
+  with eq show ?case by simp
+qed
+
+
+text \<open>
+  The next lemmas relate convergence of integrals over an interval to
+  improper integrals.
+\<close>
+lemma tendsto_set_lebesgue_integral_at_left:
+  fixes a b :: real and f :: "real \<Rightarrow> 'a :: {banach,second_countable_topology}"
+  assumes "a < b" and sets: "\<And>b'. b' \<in> {a..<b} \<Longrightarrow> {a..b'} \<in> sets M"
+      and "set_integrable M {a..<b} f"
+  shows   "((\<lambda>b'. set_lebesgue_integral M {a..b'} f) \<longlongrightarrow>
+             set_lebesgue_integral M {a..<b} f) (at_left b)"
+proof (rule tendsto_at_left_sequentially[OF assms(1)], goal_cases)
+  case (1 S)
+  have eq: "(\<Union>n. {a..S n}) = {a..<b}"
+  proof safe
+    fix x n assume "x \<in> {a..S n}"
+    with 1(1,2)[of n] show "x \<in> {a..<b}" by auto
+  next
+    fix x assume "x \<in> {a..<b}"
+    with order_tendstoD[OF \<open>S \<longlonglongrightarrow> b\<close>, of x] show "x \<in> (\<Union>n. {a..S n})"
+      by (force simp: eventually_at_top_linorder dest: less_imp_le)
+  qed
+  have "(\<lambda>n. set_lebesgue_integral M {a..S n} f) \<longlonglongrightarrow> set_lebesgue_integral M (\<Union>n. {a..S n}) f"
+    by (rule set_integral_cont_up) (insert assms 1, auto simp: eq incseq_def decseq_def less_imp_le)
+  with eq show ?case by simp
+qed
+
+lemma tendsto_set_lebesgue_integral_at_top:
+  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
+  assumes sets: "\<And>b. b \<ge> a \<Longrightarrow> {a..b} \<in> sets M"
+      and int: "set_integrable M {a..} f"
+  shows "((\<lambda>b. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {a..} f) at_top"
+proof (rule tendsto_at_topI_sequentially)
+  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
+  show "(\<lambda>n. set_lebesgue_integral M {a..X n} f) \<longlonglongrightarrow> set_lebesgue_integral M {a..} f"
+    unfolding set_lebesgue_integral_def
+  proof (rule integral_dominated_convergence)
+    show "integrable M (\<lambda>x. indicat_real {a..} x *\<^sub>R norm (f x))"
+      using integrable_norm[OF int[unfolded set_integrable_def]] by simp
+    show "AE x in M. (\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
+    proof
+      fix x
+      from \<open>filterlim X at_top sequentially\<close>
+      have "eventually (\<lambda>n. x \<le> X n) sequentially"
+        unfolding filterlim_at_top_ge[where c=x] by auto
+      then show "(\<lambda>n. indicator {a..X n} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {a..} x *\<^sub>R f x"
+        by (intro Lim_eventually) (auto split: split_indicator elim!: eventually_mono)
+    qed
+    fix n show "AE x in M. norm (indicator {a..X n} x *\<^sub>R f x) \<le> 
+                             indicator {a..} x *\<^sub>R norm (f x)"
+      by (auto split: split_indicator)
+  next
+    from int show "(\<lambda>x. indicat_real {a..} x *\<^sub>R f x) \<in> borel_measurable M"
+      by (simp add: set_integrable_def)
+  next
+    fix n :: nat
+    from sets have "{a..X n} \<in> sets M" by (cases "X n \<ge> a") auto
+    with int have "set_integrable M {a..X n} f"
+      by (rule set_integrable_subset) auto
+    thus "(\<lambda>x. indicat_real {a..X n} x *\<^sub>R f x) \<in> borel_measurable M"
+      by (simp add: set_integrable_def)
+  qed
+qed
+
+lemma tendsto_set_lebesgue_integral_at_bot:
+  fixes f :: "real \<Rightarrow> 'a::{banach, second_countable_topology}"
+  assumes sets: "\<And>a. a \<le> b \<Longrightarrow> {a..b} \<in> sets M"
+      and int: "set_integrable M {..b} f"
+    shows "((\<lambda>a. set_lebesgue_integral M {a..b} f) \<longlongrightarrow> set_lebesgue_integral M {..b} f) at_bot"
+proof (rule tendsto_at_botI_sequentially)
+  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_bot sequentially"
+  show "(\<lambda>n. set_lebesgue_integral M {X n..b} f) \<longlonglongrightarrow> set_lebesgue_integral M {..b} f"
+    unfolding set_lebesgue_integral_def
+  proof (rule integral_dominated_convergence)
+    show "integrable M (\<lambda>x. indicat_real {..b} x *\<^sub>R norm (f x))"
+      using integrable_norm[OF int[unfolded set_integrable_def]] by simp
+    show "AE x in M. (\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
+    proof
+      fix x
+      from \<open>filterlim X at_bot sequentially\<close>
+      have "eventually (\<lambda>n. x \<ge> X n) sequentially"
+        unfolding filterlim_at_bot_le[where c=x] by auto
+      then show "(\<lambda>n. indicator {X n..b} x *\<^sub>R f x) \<longlonglongrightarrow> indicat_real {..b} x *\<^sub>R f x"
+        by (intro Lim_eventually) (auto split: split_indicator elim!: eventually_mono)
+    qed
+    fix n show "AE x in M. norm (indicator {X n..b} x *\<^sub>R f x) \<le> 
+                             indicator {..b} x *\<^sub>R norm (f x)"
+      by (auto split: split_indicator)
+  next
+    from int show "(\<lambda>x. indicat_real {..b} x *\<^sub>R f x) \<in> borel_measurable M"
+      by (simp add: set_integrable_def)
+  next
+    fix n :: nat
+    from sets have "{X n..b} \<in> sets M" by (cases "X n \<le> b") auto
+    with int have "set_integrable M {X n..b} f"
+      by (rule set_integrable_subset) auto
+    thus "(\<lambda>x. indicat_real {X n..b} x *\<^sub>R f x) \<in> borel_measurable M"
+      by (simp add: set_integrable_def)
+  qed
+qed
+
 end
--- a/src/HOL/Archimedean_Field.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Archimedean_Field.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -707,6 +707,9 @@
 lemma frac_of_int [simp]: "frac (of_int z) = 0"
   by (simp add: frac_def)
 
+lemma frac_frac [simp]: "frac (frac x) = frac x"
+  by (simp add: frac_def)
+
 lemma floor_add: "\<lfloor>x + y\<rfloor> = (if frac x + frac y < 1 then \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor> else (\<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>) + 1)"
 proof -
   have "x + y < 1 + (of_int \<lfloor>x\<rfloor> + of_int \<lfloor>y\<rfloor>) \<Longrightarrow> \<lfloor>x + y\<rfloor> = \<lfloor>x\<rfloor> + \<lfloor>y\<rfloor>"
@@ -743,6 +746,14 @@
   apply (meson frac_lt_1 less_iff_diff_less_0 not_le not_less_iff_gr_or_eq)
   done
 
+lemma frac_in_Ints_iff [simp]: "frac x \<in> \<int> \<longleftrightarrow> x \<in> \<int>"
+proof safe
+  assume "frac x \<in> \<int>"
+  hence "of_int \<lfloor>x\<rfloor> + frac x \<in> \<int>" by auto
+  also have "of_int \<lfloor>x\<rfloor> + frac x = x" by (simp add: frac_def)
+  finally show "x \<in> \<int>" .
+qed (auto simp: frac_def)
+
 
 subsection \<open>Rounding to the nearest integer\<close>
 
--- a/src/HOL/Complex.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Complex.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -623,6 +623,27 @@
 lemma sums_cnj: "((\<lambda>x. cnj(f x)) sums cnj l) \<longleftrightarrow> (f sums l)"
   by (simp add: sums_def lim_cnj cnj_sum [symmetric] del: cnj_sum)
 
+lemma differentiable_cnj_iff:
+  "(\<lambda>z. cnj (f z)) differentiable at x within A \<longleftrightarrow> f differentiable at x within A"
+proof
+  assume "(\<lambda>z. cnj (f z)) differentiable at x within A"
+  then obtain D where "((\<lambda>z. cnj (f z)) has_derivative D) (at x within A)"
+    by (auto simp: differentiable_def)
+  from has_derivative_cnj[OF this] show "f differentiable at x within A"
+    by (auto simp: differentiable_def)
+next
+  assume "f differentiable at x within A"
+  then obtain D where "(f has_derivative D) (at x within A)"
+    by (auto simp: differentiable_def)
+  from has_derivative_cnj[OF this] show "(\<lambda>z. cnj (f z)) differentiable at x within A"
+    by (auto simp: differentiable_def)
+qed
+
+lemma has_vector_derivative_cnj [derivative_intros]:
+  assumes "(f has_vector_derivative f') (at z within A)"
+  shows   "((\<lambda>z. cnj (f z)) has_vector_derivative cnj f') (at z within A)"
+  using assms by (auto simp: has_vector_derivative_complex_iff intro: derivative_intros)
+
 
 subsection \<open>Basic Lemmas\<close>
 
@@ -778,9 +799,15 @@
 lemma sgn_cis [simp]: "sgn (cis a) = cis a"
   by (simp add: sgn_div_norm)
 
+lemma cis_2pi [simp]: "cis (2 * pi) = 1"
+  by (simp add: cis.ctr complex_eq_iff)
+
 lemma cis_neq_zero [simp]: "cis a \<noteq> 0"
   by (metis norm_cis norm_zero zero_neq_one)
 
+lemma cis_cnj: "cnj (cis t) = cis (-t)"
+  by (simp add: complex_eq_iff)
+
 lemma cis_mult: "cis a * cis b = cis (a + b)"
   by (simp add: complex_eq_iff cos_add sin_add)
 
@@ -802,6 +829,15 @@
 lemma cis_pi [simp]: "cis pi = -1"
   by (simp add: complex_eq_iff)
 
+lemma cis_pi_half[simp]: "cis (pi / 2) = \<i>"
+  by (simp add: cis.ctr complex_eq_iff)
+
+lemma cis_minus_pi_half[simp]: "cis (-(pi / 2)) = -\<i>"
+  by (simp add: cis.ctr complex_eq_iff)
+
+lemma cis_multiple_2pi[simp]: "n \<in> \<int> \<Longrightarrow> cis (2 * pi * n) = 1"
+  by (auto elim!: Ints_cases simp: cis.ctr one_complex.ctr)
+
 
 subsubsection \<open>$r(\cos \theta + i \sin \theta)$\<close>
 
@@ -847,6 +883,11 @@
 
 subsubsection \<open>Complex exponential\<close>
 
+lemma exp_Reals_eq:
+  assumes "z \<in> \<real>"
+  shows   "exp z = of_real (exp (Re z))"
+  using assms by (auto elim!: Reals_cases simp: exp_of_real)
+
 lemma cis_conv_exp: "cis b = exp (\<i> * b)"
 proof -
   have "(\<i> * complex_of_real b) ^ n /\<^sub>R fact n =
@@ -901,6 +942,10 @@
 lemma exp_two_pi_i' [simp]: "exp (\<i> * (of_real pi * 2)) = 1"
   by (metis exp_two_pi_i mult.commute)
 
+lemma continuous_on_cis [continuous_intros]:
+  "continuous_on A f \<Longrightarrow> continuous_on A (\<lambda>x. cis (f x))"
+  by (auto simp: cis_conv_exp intro!: continuous_intros)
+
 
 subsubsection \<open>Complex argument\<close>
 
--- a/src/HOL/GCD.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/GCD.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -110,7 +110,7 @@
   assumes "a \<in> A"
   shows "a \<^bold>* F A = F A"
   using assms by (induct A rule: infinite_finite_induct)
-    (auto simp add: left_commute [of a])
+    (auto simp: left_commute [of a])
 
 lemma union:
   "F (A \<union> B) = F A \<^bold>* F B"
@@ -239,7 +239,7 @@
 
 lemma is_unit_gcd_iff [simp]:
   "is_unit (gcd a b) \<longleftrightarrow> gcd a b = 1"
-  by (cases "a = 0 \<and> b = 0") (auto simp add: unit_factor_gcd dest: is_unit_unit_factor)
+  by (cases "a = 0 \<and> b = 0") (auto simp: unit_factor_gcd dest: is_unit_unit_factor)
 
 sublocale gcd: abel_semigroup gcd
 proof
@@ -569,20 +569,17 @@
 lemma normalize_lcm_right: "lcm a (normalize b) = lcm a b"
   by (fact lcm.normalize_right_idem)
 
-lemma gcd_mult_unit1: "is_unit a \<Longrightarrow> gcd (b * a) c = gcd b c"
-  apply (rule gcdI)
-     apply simp_all
-  apply (rule dvd_trans)
-   apply (rule gcd_dvd1)
-  apply (simp add: unit_simps)
-  done
+lemma gcd_mult_unit1: 
+  assumes "is_unit a" shows "gcd (b * a) c = gcd b c"
+proof -
+  have "gcd (b * a) c dvd b"
+    using assms local.dvd_mult_unit_iff by blast
+  then show ?thesis
+    by (rule gcdI) simp_all
+qed
 
 lemma gcd_mult_unit2: "is_unit a \<Longrightarrow> gcd b (c * a) = gcd b c"
-  apply (subst gcd.commute)
-  apply (subst gcd_mult_unit1)
-   apply assumption
-  apply (rule gcd.commute)
-  done
+  using gcd.commute gcd_mult_unit1 by auto
 
 lemma gcd_div_unit1: "is_unit a \<Longrightarrow> gcd (b div a) c = gcd b c"
   by (erule is_unitE [of _ b]) (simp add: gcd_mult_unit1)
@@ -652,13 +649,13 @@
   "a dvd d \<and> b dvd d \<and> normalize d = d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
   by rule (auto intro: lcmI simp: lcm_least lcm_eq_0_iff)
 
-lemma lcm_proj1_if_dvd: "b dvd a \<Longrightarrow> lcm a b = normalize a"
-  apply (cases "a = 0")
-   apply simp
-  apply (rule sym)
-  apply (rule lcmI)
-     apply simp_all
-  done
+lemma lcm_proj1_if_dvd:
+  assumes "b dvd a" shows "lcm a b = normalize a"
+proof (cases "a = 0")
+  case False
+  then show ?thesis
+    using assms gcd_proj2_if_dvd lcm_mult_gcd local.lcm_gcd by auto
+qed auto
 
 lemma lcm_proj2_if_dvd: "a dvd b \<Longrightarrow> lcm a b = normalize b"
   using lcm_proj1_if_dvd [of a b] by (simp add: ac_simps)
@@ -841,14 +838,12 @@
   by (blast intro: Lcm_least dvd_Lcm)
 
 lemma Lcm_Un: "Lcm (A \<union> B) = lcm (Lcm A) (Lcm B)"
-  apply (rule lcmI)
-     apply (blast intro: Lcm_subset)
-    apply (blast intro: Lcm_subset)
-   apply (intro Lcm_least ballI, elim UnE)
-    apply (rule dvd_trans, erule dvd_Lcm, assumption)
-   apply (rule dvd_trans, erule dvd_Lcm, assumption)
-  apply simp
-  done
+proof -
+  have "\<And>d. \<lbrakk>Lcm A dvd d; Lcm B dvd d\<rbrakk> \<Longrightarrow> Lcm (A \<union> B) dvd d"
+    by (meson UnE local.Lcm_least local.dvd_Lcm local.dvd_trans)
+  then show ?thesis
+    by (meson Lcm_subset local.lcm_unique local.normalize_Lcm sup.cobounded1 sup.cobounded2)
+qed
 
 lemma Gcd_0_iff [simp]: "Gcd A = 0 \<longleftrightarrow> A \<subseteq> {0}"
   (is "?P \<longleftrightarrow> ?Q")
@@ -963,7 +958,7 @@
 next
   case False
   with assms show ?thesis
-    by (induct A rule: finite_ne_induct) (auto simp add: lcm_eq_0_iff)
+    by (induct A rule: finite_ne_induct) (auto simp: lcm_eq_0_iff)
 qed
 
 lemma Gcd_image_normalize [simp]: "Gcd (normalize ` A) = Gcd A"
@@ -996,25 +991,25 @@
 lemma dvd_Gcd_iff: "x dvd Gcd A \<longleftrightarrow> (\<forall>y\<in>A. x dvd y)"
   by (blast dest: dvd_GcdD intro: Gcd_greatest)
 
-lemma Gcd_mult: "Gcd (( * ) c ` A) = normalize c * Gcd A"
+lemma Gcd_mult: "Gcd (( *) c ` A) = normalize c * Gcd A"
 proof (cases "c = 0")
   case True
   then show ?thesis by auto
 next
   case [simp]: False
-  have "Gcd (( * ) c ` A) div c dvd Gcd A"
+  have "Gcd (( *) c ` A) div c dvd Gcd A"
     by (intro Gcd_greatest, subst div_dvd_iff_mult)
        (auto intro!: Gcd_greatest Gcd_dvd simp: mult.commute[of _ c])
-  then have "Gcd (( * ) c ` A) dvd c * Gcd A"
+  then have "Gcd (( *) c ` A) dvd c * Gcd A"
     by (subst (asm) div_dvd_iff_mult) (auto intro: Gcd_greatest simp: mult_ac)
   also have "c * Gcd A = (normalize c * Gcd A) * unit_factor c"
     by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)
-  also have "Gcd (( * ) c ` A) dvd \<dots> \<longleftrightarrow> Gcd (( * ) c ` A) dvd normalize c * Gcd A"
+  also have "Gcd (( *) c ` A) dvd \<dots> \<longleftrightarrow> Gcd (( *) c ` A) dvd normalize c * Gcd A"
     by (simp add: dvd_mult_unit_iff)
-  finally have "Gcd (( * ) c ` A) dvd normalize c * Gcd A" .
-  moreover have "normalize c * Gcd A dvd Gcd (( * ) c ` A)"
+  finally have "Gcd (( *) c ` A) dvd normalize c * Gcd A" .
+  moreover have "normalize c * Gcd A dvd Gcd (( *) c ` A)"
     by (intro Gcd_greatest) (auto intro: mult_dvd_mono Gcd_dvd)
-  ultimately have "normalize (Gcd (( * ) c ` A)) = normalize (normalize c * Gcd A)"
+  ultimately have "normalize (Gcd (( *) c ` A)) = normalize (normalize c * Gcd A)"
     by (rule associatedI)
   then show ?thesis
     by (simp add: normalize_mult)
@@ -1035,10 +1030,10 @@
 
 lemma Lcm_mult:
   assumes "A \<noteq> {}"
-  shows "Lcm (( * ) c ` A) = normalize c * Lcm A"
+  shows "Lcm (( *) c ` A) = normalize c * Lcm A"
 proof (cases "c = 0")
   case True
-  with assms have "( * ) c ` A = {0}"
+  with assms have "( *) c ` A = {0}"
     by auto
   with True show ?thesis by auto
 next
@@ -1047,23 +1042,23 @@
     by blast
   have "c dvd c * x"
     by simp
-  also from x have "c * x dvd Lcm (( * ) c ` A)"
+  also from x have "c * x dvd Lcm (( *) c ` A)"
     by (intro dvd_Lcm) auto
-  finally have dvd: "c dvd Lcm (( * ) c ` A)" .
-
-  have "Lcm A dvd Lcm (( * ) c ` A) div c"
+  finally have dvd: "c dvd Lcm (( *) c ` A)" .
+
+  have "Lcm A dvd Lcm (( *) c ` A) div c"
     by (intro Lcm_least dvd_mult_imp_div)
       (auto intro!: Lcm_least dvd_Lcm simp: mult.commute[of _ c])
-  then have "c * Lcm A dvd Lcm (( * ) c ` A)"
+  then have "c * Lcm A dvd Lcm (( *) c ` A)"
     by (subst (asm) dvd_div_iff_mult) (auto intro!: Lcm_least simp: mult_ac dvd)
   also have "c * Lcm A = (normalize c * Lcm A) * unit_factor c"
     by (subst unit_factor_mult_normalize [symmetric]) (simp only: mult_ac)
-  also have "\<dots> dvd Lcm (( * ) c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (( * ) c ` A)"
+  also have "\<dots> dvd Lcm (( *) c ` A) \<longleftrightarrow> normalize c * Lcm A dvd Lcm (( *) c ` A)"
     by (simp add: mult_unit_dvd_iff)
-  finally have "normalize c * Lcm A dvd Lcm (( * ) c ` A)" .
-  moreover have "Lcm (( * ) c ` A) dvd normalize c * Lcm A"
+  finally have "normalize c * Lcm A dvd Lcm (( *) c ` A)" .
+  moreover have "Lcm (( *) c ` A) dvd normalize c * Lcm A"
     by (intro Lcm_least) (auto intro: mult_dvd_mono dvd_Lcm)
-  ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (( * ) c ` A))"
+  ultimately have "normalize (normalize c * Lcm A) = normalize (Lcm (( *) c ` A))"
     by (rule associatedI)
   then show ?thesis
     by (simp add: normalize_mult)
@@ -1240,7 +1235,7 @@
 
 lemma Lcm_fin_0_iff:
   "Lcm\<^sub>f\<^sub>i\<^sub>n A = 0 \<longleftrightarrow> 0 \<in> A" if "finite A"
-  using that by (induct A) (auto simp add: lcm_eq_0_iff)
+  using that by (induct A) (auto simp: lcm_eq_0_iff)
 
 lemma Lcm_fin_1_iff:
   "Lcm\<^sub>f\<^sub>i\<^sub>n A = 1 \<longleftrightarrow> (\<forall>a\<in>A. is_unit a) \<and> finite A"
@@ -1452,7 +1447,7 @@
   from this [symmetric] have "?g * ?a' = (?g * ?g') * ka'" "?g * ?b' = (?g * ?g') * kb'"
     by (simp_all add: mult.assoc mult.left_commute [of "gcd a b"])
   then have dvdgg':"?g * ?g' dvd a" "?g* ?g' dvd b"
-    by (auto simp add: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
+    by (auto simp: dvd_mult_div_cancel [OF dvdg(1)] dvd_mult_div_cancel [OF dvdg(2)] dvd_def)
   have "?g \<noteq> 0"
     using assms by simp
   moreover from gcd_greatest [OF dvdgg'] have "?g * ?g' dvd ?g" .
@@ -1480,11 +1475,12 @@
 lemma gcd_coprime_exists:
   assumes "gcd a b \<noteq> 0"
   shows "\<exists>a' b'. a = a' * gcd a b \<and> b = b' * gcd a b \<and> coprime a' b'"
-  apply (rule_tac x = "a div gcd a b" in exI)
-  apply (rule_tac x = "b div gcd a b" in exI)
-  using assms
-  apply (auto intro: div_gcd_coprime)
-  done
+proof -
+  have "coprime (a div gcd a b) (b div gcd a b)"
+    using assms div_gcd_coprime by auto
+  then show ?thesis
+    by force
+qed
 
 lemma pow_divides_pow_iff [simp]:
   "a ^ n dvd b ^ n \<longleftrightarrow> a dvd b" if "n > 0"
@@ -1628,7 +1624,7 @@
     by simp
   also note gcd_mult_distrib
   also have "unit_factor (gcd a b ^ n) = 1"
-    using False by (auto simp add: unit_factor_power unit_factor_gcd)
+    using False by (auto simp: unit_factor_power unit_factor_gcd)
   also have "(gcd a b) ^ n * (a div gcd a b) ^ n = a ^ n"
     by (simp add: ac_simps div_power dvd_power_same)
   also have "(gcd a b) ^ n * (b div gcd a b) ^ n = b ^ n"
@@ -1809,16 +1805,16 @@
   for i j :: int
   by (simp only: lcm_int_def)
 
-lemma gcd_nat_induct:
+lemma gcd_nat_induct [case_names base step]:
   fixes m n :: nat
   assumes "\<And>m. P m 0"
     and "\<And>m n. 0 < n \<Longrightarrow> P n (m mod n) \<Longrightarrow> P m n"
   shows "P m n"
-  apply (rule gcd_nat.induct)
-  apply (case_tac "y = 0")
-  using assms
-   apply simp_all
-  done
+proof (induction m n rule: gcd_nat.induct)
+  case (1 x y)
+  then show ?case
+    using assms neq0_conv by blast
+qed
 
 lemma gcd_neg1_int [simp]: "gcd (- x) y = gcd x y"
   for x y :: int
@@ -1856,7 +1852,7 @@
     and "x \<le> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> P (lcm (- x) y)"
     and "x \<le> 0 \<Longrightarrow> y \<le> 0 \<Longrightarrow> P (lcm (- x) (- y))"
   shows "P (lcm x y)"
-  using assms by (auto simp add: lcm_neg1_int lcm_neg2_int) arith
+  using assms by (auto simp: lcm_neg1_int lcm_neg2_int) arith
 
 lemma lcm_ge_0_int [simp]: "lcm x y \<ge> 0"
   for x y :: int
@@ -1907,7 +1903,7 @@
 
 lemma gcd_idem_int: "gcd x x = \<bar>x\<bar>"
   for x :: int
-  by (auto simp add: gcd_int_def)
+  by (auto simp: gcd_int_def)
 
 declare gcd_nat.simps [simp del]
 
@@ -1921,13 +1917,10 @@
   fix m n :: nat
   show "gcd m n dvd m" and "gcd m n dvd n"
   proof (induct m n rule: gcd_nat_induct)
-    fix m n :: nat
-    assume "gcd n (m mod n) dvd m mod n"
-      and "gcd n (m mod n) dvd n"
+    case (step m n)
     then have "gcd n (m mod n) dvd m"
-      by (rule dvd_mod_imp_dvd)
-    moreover assume "0 < n"
-    ultimately show "gcd m n dvd m"
+      by (metis dvd_mod_imp_dvd)
+    with step show "gcd m n dvd m"
       by (simp add: gcd_non_0_nat)
   qed (simp_all add: gcd_0_nat gcd_non_0_nat)
 next
@@ -1979,25 +1972,16 @@
 
 lemma gcd_unique_nat: "d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
   for d a :: nat
-  apply auto
-  apply (rule dvd_antisym)
-   apply (erule (1) gcd_greatest)
-  apply auto
-  done
+  using gcd_unique by fastforce
 
 lemma gcd_unique_int:
   "d \<ge> 0 \<and> d dvd a \<and> d dvd b \<and> (\<forall>e. e dvd a \<and> e dvd b \<longrightarrow> e dvd d) \<longleftrightarrow> d = gcd a b"
   for d a :: int
-  apply (cases "d = 0")
-   apply simp
-  apply (rule iffI)
-   apply (rule zdvd_antisym_nonneg)
-      apply (auto intro: gcd_greatest)
-  done
+  using zdvd_antisym_nonneg by auto
 
 interpretation gcd_nat:
   semilattice_neutr_order gcd "0::nat" Rings.dvd "\<lambda>m n. m dvd n \<and> m \<noteq> n"
-  by standard (auto simp add: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans)
+  by standard (auto simp: gcd_unique_nat [symmetric] intro: dvd_antisym dvd_trans)
 
 lemma gcd_proj1_if_dvd_int [simp]: "x dvd y \<Longrightarrow> gcd x y = \<bar>x\<bar>"
   for x y :: int
@@ -2013,11 +1997,11 @@
 lemma gcd_mult_distrib_nat: "k * gcd m n = gcd (k * m) (k * n)"
   for k m n :: nat
   \<comment> \<open>@{cite \<open>page 27\<close> davenport92}\<close>
-  apply (induct m n rule: gcd_nat_induct)
-   apply simp
-  apply (cases "k = 0")
-   apply (simp_all add: gcd_non_0_nat)
-  done
+proof (induct m n rule: gcd_nat_induct)
+  case (step m n)
+  then show ?case
+    by (metis gcd_mult_distrib' gcd_red_nat)
+qed auto
 
 lemma gcd_mult_distrib_int: "\<bar>k\<bar> * gcd m n = gcd (k * m) (k * n)"
   for k m n :: int
@@ -2033,34 +2017,49 @@
 
 lemma gcd_diff2_nat: "n \<ge> m \<Longrightarrow> gcd (n - m) n = gcd m n"
   for m n :: nat
-  apply (subst gcd.commute)
-  apply (subst gcd_diff1_nat [symmetric])
-   apply auto
-  apply (subst gcd.commute)
-  apply (subst gcd_diff1_nat)
-   apply assumption
-  apply (rule gcd.commute)
-  done
-
-lemma gcd_non_0_int: "y > 0 \<Longrightarrow> gcd x y = gcd y (x mod y)"
-  for x y :: int
-  apply (frule_tac b = y and a = x in pos_mod_sign)
-  apply (simp del: Euclidean_Division.pos_mod_sign add: gcd_int_def abs_if nat_mod_distrib)
-  apply (auto simp add: gcd_non_0_nat nat_mod_distrib [symmetric] zmod_zminus1_eq_if)
-  apply (frule_tac a = x in pos_mod_bound)
-  apply (subst (1 2) gcd.commute)
-  apply (simp del: Euclidean_Division.pos_mod_bound add: nat_diff_distrib gcd_diff2_nat nat_le_eq_zle)
-  done
+  by (metis gcd.commute gcd_add2 gcd_diff1_nat le_add_diff_inverse2)
+
+lemma gcd_non_0_int: 
+  fixes x y :: int
+  assumes "y > 0" shows "gcd x y = gcd y (x mod y)"
+proof (cases "x mod y = 0")
+  case False
+  then have neg: "x mod y = y - (- x) mod y"
+    by (simp add: zmod_zminus1_eq_if)
+  have xy: "0 \<le> x mod y" 
+    by (simp add: assms)
+  show ?thesis
+  proof (cases "x < 0")
+    case True
+    have "nat (- x mod y) \<le> nat y"
+      by (simp add: assms dual_order.order_iff_strict)
+    moreover have "gcd (nat (- x)) (nat y) = gcd (nat (- x mod y)) (nat y)"
+      using True assms gcd_non_0_nat nat_mod_distrib by auto
+    ultimately have "gcd (nat (- x)) (nat y) = gcd (nat y) (nat (x mod y))"
+      using assms 
+      by (simp add: neg nat_diff_distrib') (metis gcd.commute gcd_diff2_nat)
+    with assms \<open>0 \<le> x mod y\<close> show ?thesis
+      by (simp add: True dual_order.order_iff_strict gcd_int_def)
+  next
+    case False
+    with assms xy have "gcd (nat x) (nat y) = gcd (nat y) (nat x mod nat y)"
+      using gcd_red_nat by blast
+    with False assms show ?thesis
+      by (simp add: gcd_int_def nat_mod_distrib)
+  qed
+qed (use assms in auto)
 
 lemma gcd_red_int: "gcd x y = gcd y (x mod y)"
   for x y :: int
-  apply (cases "y = 0")
-   apply force
-  apply (cases "y > 0")
-   apply (subst gcd_non_0_int, auto)
-  apply (insert gcd_non_0_int [of "- y" "- x"])
-  apply auto
-  done
+proof (cases y "0::int" rule: linorder_cases)
+  case less
+  with gcd_non_0_int [of "- y" "- x"] show ?thesis
+    by auto
+next
+  case greater
+  with gcd_non_0_int [of y x] show ?thesis
+    by auto
+qed auto
 
 (* TODO: differences, and all variations of addition rules
     as simplification rules for nat and int *)
@@ -2092,34 +2091,34 @@
 qed
 
 lemma Max_divisors_self_nat [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::nat. d dvd n} = n"
-  apply (rule antisym)
-   apply (fastforce intro: Max_le_iff[THEN iffD2] simp: dvd_imp_le)
-  apply simp
-  done
-
-lemma Max_divisors_self_int [simp]: "n \<noteq> 0 \<Longrightarrow> Max {d::int. d dvd n} = \<bar>n\<bar>"
-  apply (rule antisym)
-   apply (rule Max_le_iff [THEN iffD2])
-     apply (auto intro: abs_le_D1 dvd_imp_le_int)
-  done
-
-lemma gcd_is_Max_divisors_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
-  for m n :: nat
-  apply (rule Max_eqI[THEN sym])
-    apply (metis finite_Collect_conjI finite_divisors_nat)
-   apply simp
-   apply (metis Suc_diff_1 Suc_neq_Zero dvd_imp_le gcd_greatest_iff gcd_pos_nat)
-  apply simp
-  done
-
-lemma gcd_is_Max_divisors_int: "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> gcd m n = Max {d. d dvd m \<and> d dvd n}"
-  for m n :: int
-  apply (rule Max_eqI[THEN sym])
-    apply (metis finite_Collect_conjI finite_divisors_int)
-   apply simp
-   apply (metis gcd_greatest_iff gcd_pos_int zdvd_imp_le)
-  apply simp
-  done
+  by (fastforce intro: antisym Max_le_iff[THEN iffD2] simp: dvd_imp_le)
+
+lemma Max_divisors_self_int [simp]: 
+  assumes "n \<noteq> 0" shows "Max {d::int. d dvd n} = \<bar>n\<bar>"
+proof (rule antisym)
+  show "Max {d. d dvd n} \<le> \<bar>n\<bar>"
+    using assms by (auto intro: abs_le_D1 dvd_imp_le_int intro!: Max_le_iff [THEN iffD2])
+qed (simp add: assms)
+
+lemma gcd_is_Max_divisors_nat:
+  fixes m n :: nat
+  assumes "n > 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}"
+proof (rule Max_eqI[THEN sym], simp_all)
+  show "finite {d. d dvd m \<and> d dvd n}"
+    by (simp add: \<open>n > 0\<close>)
+  show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n"
+    by (simp add: \<open>n > 0\<close> dvd_imp_le)
+qed
+
+lemma gcd_is_Max_divisors_int:
+  fixes m n :: int
+  assumes "n \<noteq> 0" shows "gcd m n = Max {d. d dvd m \<and> d dvd n}"
+proof (rule Max_eqI[THEN sym], simp_all)
+  show "finite {d. d dvd m \<and> d dvd n}"
+    by (simp add: \<open>n \<noteq> 0\<close>)
+  show "\<And>y. y dvd m \<and> y dvd n \<Longrightarrow> y \<le> gcd m n"
+    by (simp add: \<open>n \<noteq> 0\<close> zdvd_imp_le)
+qed
 
 lemma gcd_code_int [code]: "gcd k l = \<bar>if l = 0 then k else gcd l (\<bar>k\<bar> mod \<bar>l\<bar>)\<bar>"
   for k l :: int
@@ -2178,25 +2177,22 @@
 
 declare bezw.simps [simp del]
 
-lemma bezw_aux: "fst (bezw x y) * int x + snd (bezw x y) * int y = int (gcd x y)"
+
+lemma bezw_aux: "int (gcd x y) = fst (bezw x y) * int x + snd (bezw x y) * int y"
 proof (induct x y rule: gcd_nat_induct)
-  fix m :: nat
-  show "fst (bezw m 0) * int m + snd (bezw m 0) * int 0 = int (gcd m 0)"
-    by auto
-next
-  fix m n :: nat
-  assume ngt0: "n > 0"
-    and ih: "fst (bezw n (m mod n)) * int n + snd (bezw n (m mod n)) * int (m mod n) =
-      int (gcd n (m mod n))"
-  then show "fst (bezw m n) * int m + snd (bezw m n) * int n = int (gcd m n)"
-    apply (simp add: bezw_non_0 gcd_non_0_nat)
-    apply (erule subst)
-    apply (simp add: field_simps)
-    apply (subst div_mult_mod_eq [of m n, symmetric])
-      (* applying simp here undoes the last substitution! what is procedure cancel_div_mod? *)
-    apply (simp only: NO_MATCH_def field_simps of_nat_add of_nat_mult)
-    done
-qed
+  case (step m n)
+  then have "fst (bezw m n) * int m + snd (bezw m n) * int n - int (gcd m n) 
+             = int m * snd (bezw n (m mod n)) -
+               (int (m mod n) * snd (bezw n (m mod n)) + int n * (int (m div n) * snd (bezw n (m mod n))))"
+    by (simp add: bezw_non_0 gcd_non_0_nat field_simps)
+  also have "\<dots> = int m * snd (bezw n (m mod n)) - (int (m mod n) + int (n * (m div n))) * snd (bezw n (m mod n))"
+    by (simp add: distrib_right)
+  also have "\<dots> = 0"
+    by (metis cancel_comm_monoid_add_class.diff_cancel mod_mult_div_eq of_nat_add)
+  finally show ?case
+    by simp
+qed auto
+
 
 lemma bezout_int: "\<exists>u v. u * x + v * y = gcd x y"
   for x y :: int
@@ -2204,13 +2200,9 @@
   have aux: "x \<ge> 0 \<Longrightarrow> y \<ge> 0 \<Longrightarrow> \<exists>u v. u * x + v * y = gcd x y" for x y :: int
     apply (rule_tac x = "fst (bezw (nat x) (nat y))" in exI)
     apply (rule_tac x = "snd (bezw (nat x) (nat y))" in exI)
-    apply (unfold gcd_int_def)
-    apply simp
-    apply (subst bezw_aux [symmetric])
-    apply auto
-    done
+    by (simp add: bezw_aux gcd_int_def)
   consider "x \<ge> 0" "y \<ge> 0" | "x \<ge> 0" "y \<le> 0" | "x \<le> 0" "y \<ge> 0" | "x \<le> 0" "y \<le> 0"
-    by atomize_elim auto
+    using linear by blast
   then show ?thesis
   proof cases
     case 1
@@ -2218,48 +2210,29 @@
   next
     case 2
     then show ?thesis
-      apply -
-      apply (insert aux [of x "-y"])
-      apply auto
-      apply (rule_tac x = u in exI)
-      apply (rule_tac x = "-v" in exI)
-      apply (subst gcd_neg2_int [symmetric])
-      apply auto
-      done
+      using aux [of x "-y"]
+      by (metis gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le)
   next
     case 3
     then show ?thesis
-      apply -
-      apply (insert aux [of "-x" y])
-      apply auto
-      apply (rule_tac x = "-u" in exI)
-      apply (rule_tac x = v in exI)
-      apply (subst gcd_neg1_int [symmetric])
-      apply auto
-      done
+      using aux [of "-x" y]
+      by (metis gcd.commute gcd_neg2_int mult.commute mult_minus_right neg_0_le_iff_le)
   next
     case 4
     then show ?thesis
-      apply -
-      apply (insert aux [of "-x" "-y"])
-      apply auto
-      apply (rule_tac x = "-u" in exI)
-      apply (rule_tac x = "-v" in exI)
-      apply (subst gcd_neg1_int [symmetric])
-      apply (subst gcd_neg2_int [symmetric])
-      apply auto
-      done
+      using aux [of "-x" "-y"]
+      by (metis diff_0 diff_ge_0_iff_ge gcd_neg1_int gcd_neg2_int mult.commute mult_minus_right)
   qed
 qed
 
 
 text \<open>Versions of Bezout for \<open>nat\<close>, by Amine Chaieb.\<close>
 
-lemma ind_euclid:
+lemma Euclid_induct [case_names swap zero add]:
   fixes P :: "nat \<Rightarrow> nat \<Rightarrow> bool"
-  assumes c: " \<forall>a b. P a b \<longleftrightarrow> P b a"
-    and z: "\<forall>a. P a 0"
-    and add: "\<forall>a b. P a b \<longrightarrow> P a (a + b)"
+  assumes c: "\<And>a b. P a b \<longleftrightarrow> P b a"
+    and z: "\<And>a. P a 0"
+    and add: "\<And>a b. P a b \<longrightarrow> P a (a + b)"
   shows "P a b"
 proof (induct "a + b" arbitrary: a b rule: less_induct)
   case less
@@ -2302,53 +2275,32 @@
 qed
 
 lemma bezout_lemma_nat:
-  assumes ex: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
-    (a * x = b * y + d \<or> b * x = a * y + d)"
-  shows "\<exists>d x y. d dvd a \<and> d dvd a + b \<and>
-    (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
-  using ex
-  apply clarsimp
-  apply (rule_tac x="d" in exI)
-  apply simp
-  apply (case_tac "a * x = b * y + d")
-   apply simp_all
-   apply (rule_tac x="x + y" in exI)
-   apply (rule_tac x="y" in exI)
-   apply algebra
-  apply (rule_tac x="x" in exI)
-  apply (rule_tac x="x + y" in exI)
-  apply algebra
-  done
-
-lemma bezout_add_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
-    (a * x = b * y + d \<or> b * x = a * y + d)"
-  apply (induct a b rule: ind_euclid)
-    apply blast
-   apply clarify
-   apply (rule_tac x="a" in exI)
-   apply simp
-  apply clarsimp
-  apply (rule_tac x="d" in exI)
-  apply (case_tac "a * x = b * y + d")
-   apply simp_all
-   apply (rule_tac x="x+y" in exI)
-   apply (rule_tac x="y" in exI)
-   apply algebra
-  apply (rule_tac x="x" in exI)
-  apply (rule_tac x="x+y" in exI)
-  apply algebra
-  done
-
-lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and>
-    (a * x - b * y = d \<or> b * x - a * y = d)"
-  using bezout_add_nat[of a b]
-  apply clarsimp
-  apply (rule_tac x="d" in exI)
-  apply simp
-  apply (rule_tac x="x" in exI)
-  apply (rule_tac x="y" in exI)
+  fixes d::nat
+  shows "\<lbrakk>d dvd a; d dvd b; a * x = b * y + d \<or> b * x = a * y + d\<rbrakk>
+    \<Longrightarrow> \<exists>x y. d dvd a \<and> d dvd a + b \<and> (a * x = (a + b) * y + d \<or> (a + b) * x = a * y + d)"
   apply auto
-  done
+  apply (metis add_mult_distrib2 left_add_mult_distrib)
+  apply (rule_tac x=x in exI)
+  by (metis add_mult_distrib2 mult.commute add.assoc)
+
+lemma bezout_add_nat: 
+  "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x = b * y + d \<or> b * x = a * y + d)"
+proof (induct a b rule: Euclid_induct)
+  case (swap a b)
+  then show ?case
+    by blast
+next
+  case (zero a)
+  then show ?case
+    by fastforce    
+next
+  case (add a b)
+  then show ?case
+    by (meson bezout_lemma_nat)
+qed
+
+lemma bezout1_nat: "\<exists>(d::nat) x y. d dvd a \<and> d dvd b \<and> (a * x - b * y = d \<or> b * x - a * y = d)"
+  using bezout_add_nat[of a b]  by (metis add_diff_cancel_left')
 
 lemma bezout_add_strong_nat:
   fixes a b :: nat
@@ -2356,7 +2308,7 @@
   shows "\<exists>d x y. d dvd a \<and> d dvd b \<and> a * x = b * y + d"
 proof -
   consider d x y where "d dvd a" "d dvd b" "a * x = b * y + d"
-    | d x y where "d dvd a" "d dvd b" "b * x = a * y + d"
+         | d x y where "d dvd a" "d dvd b" "b * x = a * y + d"
     using bezout_add_nat [of a b] by blast
   then show ?thesis
   proof cases
@@ -2377,13 +2329,7 @@
       proof cases
         case 1
         with a H show ?thesis
-          apply simp
-          apply (rule exI[where x = b])
-          apply simp
-          apply (rule exI[where x = b])
-          apply (rule exI[where x = "a - 1"])
-          apply (simp add: diff_mult_distrib2)
-          done
+          by (metis Suc_pred add.commute mult.commute mult_Suc_right neq0_conv)
       next
         case 2
         show ?thesis
@@ -2410,13 +2356,7 @@
           then have "a * ((b - 1) * y) = b * (x * (b - 1) - d) + d"
             by (simp only: diff_mult_distrib2 ac_simps)
           with H(1,2) show ?thesis
-            apply -
-            apply (rule exI [where x = d])
-            apply simp
-            apply (rule exI [where x = "(b - 1) * y"])
-            apply (rule exI [where x = "x * (b - 1) - d"])
-            apply simp
-            done
+            by blast
         qed
       qed
     qed
@@ -2451,17 +2391,11 @@
   
 lemma prod_gcd_lcm_nat: "m * n = gcd m n * lcm m n"
   for m n :: nat
-  unfolding lcm_nat_def
-  by (simp add: dvd_mult_div_cancel [OF gcd_dvd_prod])
+  by simp
 
 lemma prod_gcd_lcm_int: "\<bar>m\<bar> * \<bar>n\<bar> = gcd m n * lcm m n"
   for m n :: int
-  unfolding lcm_int_def gcd_int_def
-  apply (subst of_nat_mult [symmetric])
-  apply (subst prod_gcd_lcm_nat [symmetric])
-  apply (subst nat_abs_mult_distrib [symmetric])
-  apply (simp add: abs_mult)
-  done
+  by simp
 
 lemma lcm_pos_nat: "m > 0 \<Longrightarrow> n > 0 \<Longrightarrow> lcm m n > 0"
   for m n :: nat
@@ -2473,7 +2407,7 @@
 
 lemma dvd_pos_nat: "n > 0 \<Longrightarrow> m dvd n \<Longrightarrow> m > 0"  (* FIXME move *)
   for m n :: nat
-  by (cases m) auto
+  by auto
 
 lemma lcm_unique_nat:
   "a dvd d \<and> b dvd d \<and> (\<forall>e. a dvd e \<and> b dvd e \<longrightarrow> d dvd e) \<longleftrightarrow> d = lcm a b"
@@ -2487,17 +2421,11 @@
 
 lemma lcm_proj2_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm x y = y"
   for x y :: nat
-  apply (rule sym)
-  apply (subst lcm_unique_nat [symmetric])
-  apply auto
-  done
+  by (simp add: lcm_proj2_if_dvd)
 
 lemma lcm_proj2_if_dvd_int [simp]: "x dvd y \<Longrightarrow> lcm x y = \<bar>y\<bar>"
   for x y :: int
-  apply (rule sym)
-  apply (subst lcm_unique_int [symmetric])
-  apply auto
-  done
+  by (simp add: lcm_proj2_if_dvd)
 
 lemma lcm_proj1_if_dvd_nat [simp]: "x dvd y \<Longrightarrow> lcm y x = y"
   for x y :: nat
@@ -2551,7 +2479,7 @@
   by (simp add: Lcm_nat_def del: One_nat_def)
 
 lemma Lcm_nat_insert: "Lcm (insert n M) = lcm n (Lcm M)" for n :: nat
-  by (cases "finite M") (auto simp add: Lcm_nat_def simp del: One_nat_def)
+  by (cases "finite M") (auto simp: Lcm_nat_def simp del: One_nat_def)
 
 lemma Lcm_nat_infinite: "infinite M \<Longrightarrow> Lcm M = 0" for M :: "nat set"
   by (simp add: Lcm_nat_def)
@@ -2595,9 +2523,9 @@
   fix N :: "nat set"
   fix n :: nat
   show "Gcd N dvd n" if "n \<in> N"
-    using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)
+    using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def)
   show "n dvd Gcd N" if "\<And>m. m \<in> N \<Longrightarrow> n dvd m"
-    using that by (induct N rule: infinite_finite_induct) (auto simp add: Gcd_nat_def)
+    using that by (induct N rule: infinite_finite_induct) (auto simp: Gcd_nat_def)
   show "n dvd Lcm N" if "n \<in> N"
     using that by (induct N rule: infinite_finite_induct) auto
   show "Lcm N dvd n" if "\<And>m. m \<in> N \<Longrightarrow> m dvd n"
@@ -2629,52 +2557,51 @@
   from fin show "Gcd M \<le> Max (\<Inter>m\<in>M. {d. d dvd m})"
     by (auto intro: Max_ge Gcd_dvd)
   from fin show "Max (\<Inter>m\<in>M. {d. d dvd m}) \<le> Gcd M"
-    apply (rule Max.boundedI)
-     apply auto
-    apply (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat)
-    done
+  proof (rule Max.boundedI, simp_all)
+    show "(\<Inter>m\<in>M. {d. d dvd m}) \<noteq> {}"
+      by auto
+    show "\<And>a. \<forall>x\<in>M. a dvd x \<Longrightarrow> a \<le> Gcd M"
+      by (meson Gcd_dvd Gcd_greatest \<open>0 < m\<close> \<open>m \<in> M\<close> dvd_imp_le dvd_pos_nat)
+  qed
 qed
 
 lemma Gcd_remove0_nat: "finite M \<Longrightarrow> Gcd M = Gcd (M - {0})"
   for M :: "nat set"
-  apply (induct pred: finite)
-   apply simp
-  apply (case_tac "x = 0")
-   apply simp
-  apply (subgoal_tac "insert x F - {0} = insert x (F - {0})")
-   apply simp
-  apply blast
-  done
+proof (induct pred: finite)
+  case (insert x M)
+  then show ?case
+    by (simp add: insert_Diff_if)
+qed auto
 
 lemma Lcm_in_lcm_closed_set_nat:
-  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M \<in> M"
-  for M :: "nat set"
-  apply (induct rule: finite_linorder_min_induct)
-   apply simp
-  apply simp
-  apply (subgoal_tac "\<forall>m n. m \<in> A \<longrightarrow> n \<in> A \<longrightarrow> lcm m n \<in> A")
-   apply simp
-   apply(case_tac "A = {}")
-    apply simp
-   apply simp
-  apply (metis lcm_pos_nat lcm_unique_nat linorder_neq_iff nat_dvd_not_less not_less0)
-  done
+  fixes M :: "nat set" 
+  assumes "finite M" "M \<noteq> {}" "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M"
+  shows "Lcm M \<in> M"
+  using assms
+proof (induction M rule: finite_linorder_min_induct)
+  case (insert x M)
+  then have "\<And>m n. m \<in> M \<Longrightarrow> n \<in> M \<Longrightarrow> lcm m n \<in> M"
+    by (metis dvd_lcm1 gr0I insert_iff lcm_pos_nat nat_dvd_not_less)
+  with insert show ?case
+    by simp (metis Lcm_nat_empty One_nat_def dvd_1_left dvd_lcm2)
+qed auto
 
 lemma Lcm_eq_Max_nat:
-  "finite M \<Longrightarrow> M \<noteq> {} \<Longrightarrow> 0 \<notin> M \<Longrightarrow> \<forall>m n. m \<in> M \<longrightarrow> n \<in> M \<longrightarrow> lcm m n \<in> M \<Longrightarrow> Lcm M = Max M"
-  for M :: "nat set"
-  apply (rule antisym)
-   apply (rule Max_ge)
-    apply assumption
-   apply (erule (2) Lcm_in_lcm_closed_set_nat)
-  apply (auto simp add: not_le Lcm_0_iff dvd_imp_le leD le_neq_trans)
-  done
+  fixes M :: "nat set" 
+  assumes M: "finite M" "M \<noteq> {}" "0 \<notin> M" and lcm: "\<And>m n. \<lbrakk>m \<in> M; n \<in> M\<rbrakk> \<Longrightarrow> lcm m n \<in> M"
+  shows "Lcm M = Max M"
+proof (rule antisym)
+  show "Lcm M \<le> Max M"
+    by (simp add: Lcm_in_lcm_closed_set_nat \<open>finite M\<close> \<open>M \<noteq> {}\<close> lcm)
+  show "Max M \<le> Lcm M"
+    by (meson Lcm_0_iff Max_in M dvd_Lcm dvd_imp_le le_0_eq not_le)
+qed
 
 lemma mult_inj_if_coprime_nat:
-  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> \<forall>a\<in>A. \<forall>b\<in>B. coprime (f a) (g b) \<Longrightarrow>
+  "inj_on f A \<Longrightarrow> inj_on g B \<Longrightarrow> (\<And>a b. \<lbrakk>a\<in>A; b\<in>B\<rbrakk> \<Longrightarrow> coprime (f a) (g b)) \<Longrightarrow>
     inj_on (\<lambda>(a, b). f a * g b) (A \<times> B)"
   for f :: "'a \<Rightarrow> nat" and g :: "'b \<Rightarrow> nat"
-  by (auto simp add: inj_on_def coprime_crossproduct_nat simp del: One_nat_def)
+  by (auto simp: inj_on_def coprime_crossproduct_nat simp del: One_nat_def)
 
 
 subsubsection \<open>Setwise GCD and LCM for integers\<close>
--- a/src/HOL/Int.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Int.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -892,6 +892,9 @@
   apply (rule of_int_minus [symmetric])
   done
 
+lemma minus_in_Ints_iff: "-x \<in> \<int> \<longleftrightarrow> x \<in> \<int>"
+  using Ints_minus[of x] Ints_minus[of "-x"] by auto
+
 lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>"
   apply (auto simp add: Ints_def)
   apply (rule range_eqI)
--- a/src/HOL/Library/FuncSet.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Library/FuncSet.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -163,8 +163,6 @@
 
 lemma compose_assoc:
   assumes "f \<in> A \<rightarrow> B"
-    and "g \<in> B \<rightarrow> C"
-    and "h \<in> C \<rightarrow> D"
   shows "compose A h (compose A g f) = compose A (compose B h g) f"
   using assms by (simp add: fun_eq_iff Pi_def compose_def restrict_def)
 
--- a/src/HOL/Library/datatype_records.ML	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Library/datatype_records.ML	Sat Aug 11 16:02:55 2018 +0200
@@ -7,10 +7,10 @@
 
   val mk_update_defs: string -> local_theory -> local_theory
 
-  val bnf_record: binding -> ctr_options -> (binding option * (typ * sort)) list ->
+  val record: binding -> ctr_options -> (binding option * (typ * sort)) list ->
     (binding * typ) list -> local_theory -> local_theory
 
-  val bnf_record_cmd: binding -> ctr_options_cmd ->
+  val record_cmd: binding -> ctr_options_cmd ->
     (binding option * (string * string option)) list -> (binding * string) list -> local_theory ->
     local_theory
 
@@ -35,21 +35,31 @@
   val extend = I
 )
 
+fun mk_eq_dummy (lhs, rhs) =
+  Const (@{const_name HOL.eq}, dummyT --> dummyT --> @{typ bool}) $ lhs $ rhs
+
+val dummify = map_types (K dummyT)
+fun repeat_split_tac ctxt thm = REPEAT_ALL_NEW (CHANGED o Splitter.split_tac ctxt [thm])
+
 fun mk_update_defs typ_name lthy =
   let
     val short_name = Long_Name.base_name typ_name
+    val {ctrs, casex, selss, split, sel_thmss, injects, ...} =
+      the (Ctr_Sugar.ctr_sugar_of lthy typ_name)
+    val ctr = case ctrs of [ctr] => ctr | _ => error "Datatype_Records.mk_update_defs: expected only single constructor"
+    val sels = case selss of [sels] => sels | _ => error "Datatype_Records.mk_update_defs: expected selectors"
+    val sels_dummy = map dummify sels
+    val ctr_dummy = dummify ctr
+    val casex_dummy = dummify casex
+    val len = length sels
 
-    val {ctrs, casex, selss, ...} = the (Ctr_Sugar.ctr_sugar_of lthy typ_name)
-    val ctr = case ctrs of [ctr] => ctr | _ => error "BNF_Record.mk_update_defs: expected only single constructor"
-    val sels = case selss of [sels] => sels | _ => error "BNF_Record.mk_update_defs: expected selectors"
-    val ctr_dummy = Const (fst (dest_Const ctr), dummyT)
-    val casex_dummy = Const (fst (dest_Const casex), dummyT)
-
-    val len = length sels
+    val simp_thms = flat sel_thmss @ injects
 
     fun mk_name sel =
       Binding.name ("update_" ^ Long_Name.base_name (fst (dest_Const sel)))
 
+    val thms_binding = (@{binding record_simps}, @{attributes [simp]})
+
     fun mk_t idx =
       let
         val body =
@@ -59,22 +69,143 @@
         Abs ("f", dummyT, casex_dummy $ body)
       end
 
-    fun define name t =
-      Local_Theory.define ((name, NoSyn), ((Binding.empty, @{attributes [datatype_record_update, code]}), t)) #> snd
+    fun simp_only_tac ctxt =
+      REPEAT_ALL_NEW (resolve_tac ctxt @{thms impI allI}) THEN'
+        asm_full_simp_tac (put_simpset HOL_basic_ss ctxt addsimps simp_thms)
+
+    fun prove ctxt defs ts n =
+      let
+        val t = nth ts n
+
+        val sel_dummy = nth sels_dummy n
+        val t_dummy = dummify t
+        fun tac {context = ctxt, ...} =
+          Goal.conjunction_tac 1 THEN
+            Local_Defs.unfold_tac ctxt defs THEN
+            PARALLEL_ALLGOALS (repeat_split_tac ctxt split THEN' simp_only_tac ctxt)
+
+        val sel_upd_same_thm =
+          let
+            val ([f, x], ctxt') = Variable.add_fixes ["f", "x"] ctxt
+            val f = Free (f, dummyT)
+            val x = Free (x, dummyT)
+
+            val lhs = sel_dummy $ (t_dummy $ f $ x)
+            val rhs = f $ (sel_dummy $ x)
+            val prop = Syntax.check_term ctxt' (HOLogic.mk_Trueprop (mk_eq_dummy (lhs, rhs)))
+          in
+            [Goal.prove_future ctxt' [] [] prop tac]
+            |> Variable.export ctxt' ctxt
+          end
+
+        val sel_upd_diff_thms =
+          let
+            val ([f, x], ctxt') = Variable.add_fixes ["f", "x"] ctxt
+            val f = Free (f, dummyT)
+            val x = Free (x, dummyT)
+
+            fun lhs sel = sel $ (t_dummy $ f $ x)
+            fun rhs sel = sel $ x
+            fun eq sel = (lhs sel, rhs sel)
+            fun is_n i = i = n
+            val props =
+              sels_dummy ~~ (0 upto len - 1)
+              |> filter_out (is_n o snd)
+              |> map (HOLogic.mk_Trueprop o mk_eq_dummy o eq o fst)
+              |> Syntax.check_terms ctxt'
+          in
+            if length props > 0 then
+              Goal.prove_common ctxt' (SOME ~1) [] [] props tac
+              |> Variable.export ctxt' ctxt
+            else
+              []
+          end
+
+        val upd_comp_thm =
+          let
+            val ([f, g, x], ctxt') = Variable.add_fixes ["f", "g", "x"] ctxt
+            val f = Free (f, dummyT)
+            val g = Free (g, dummyT)
+            val x = Free (x, dummyT)
 
-    val lthy' =
-      Local_Theory.map_background_naming (Name_Space.qualified_path false (Binding.name short_name)) lthy
+            val lhs = t_dummy $ f $ (t_dummy $ g $ x)
+            val rhs = t_dummy $ Abs ("a", dummyT, f $ (g $ Bound 0)) $ x
+            val prop = Syntax.check_term ctxt' (HOLogic.mk_Trueprop (mk_eq_dummy (lhs, rhs)))
+          in
+            [Goal.prove_future ctxt' [] [] prop tac]
+            |> Variable.export ctxt' ctxt
+          end
+
+        val upd_comm_thms =
+          let
+            fun prop i ctxt =
+              let
+                val ([f, g, x], ctxt') = Variable.variant_fixes ["f", "g", "x"] ctxt
+                val self = t_dummy $ Free (f, dummyT)
+                val other = dummify (nth ts i) $ Free (g, dummyT)
+                val lhs = other $ (self $ Free (x, dummyT))
+                val rhs = self $ (other $ Free (x, dummyT))
+              in
+                (HOLogic.mk_Trueprop (mk_eq_dummy (lhs, rhs)), ctxt')
+              end
+            val (props, ctxt') = fold_map prop (0 upto n - 1) ctxt
+            val props = Syntax.check_terms ctxt' props
+          in
+            if length props > 0 then
+              Goal.prove_common ctxt' (SOME ~1) [] [] props tac
+              |> Variable.export ctxt' ctxt
+            else
+              []
+          end
+
+        val upd_sel_thm =
+          let
+            val ([x], ctxt') = Variable.add_fixes ["x"] ctxt
+
+            val lhs = t_dummy $ Abs("_", dummyT, (sel_dummy $ Free(x, dummyT))) $ Free (x, dummyT)
+            val rhs = Free (x, dummyT)
+            val prop = Syntax.check_term ctxt (HOLogic.mk_Trueprop (mk_eq_dummy (lhs, rhs)))
+          in
+            [Goal.prove_future ctxt [] [] prop tac]
+            |> Variable.export ctxt' ctxt
+          end
+      in
+        sel_upd_same_thm @ sel_upd_diff_thms @ upd_comp_thm @ upd_comm_thms @ upd_sel_thm
+      end
+
+    fun define name t =
+      Local_Theory.define ((name, NoSyn), ((Binding.empty, @{attributes [datatype_record_update, code]}),t))
+      #> apfst (apsnd snd)
+
+    val (updates, (lthy'', lthy')) =
+      lthy
+      |> Local_Theory.open_target
+      |> snd
+      |> Local_Theory.map_background_naming (Name_Space.qualified_path false (Binding.name short_name))
+      |> @{fold_map 2} define (map mk_name sels) (Syntax.check_terms lthy (map mk_t (0 upto len - 1)))
+      ||> `Local_Theory.close_target
+
+    val phi = Proof_Context.export_morphism lthy' lthy''
+
+    val (update_ts, update_defs) =
+      split_list updates
+      |>> map (Morphism.term phi)
+      ||> map (Morphism.thm phi)
+
+    val thms = flat (map (prove lthy'' update_defs update_ts) (0 upto len-1))
 
     fun insert sel =
       Symtab.insert op = (fst (dest_Const sel), Local_Theory.full_name lthy' (mk_name sel))
   in
-    lthy'
-    |> @{fold 2} define (map mk_name sels) (Syntax.check_terms lthy (map mk_t (0 upto len - 1)))
+    lthy''
+    |> Local_Theory.map_background_naming (Name_Space.mandatory_path short_name)
+    |> Local_Theory.note (thms_binding, thms)
+    |> snd
+    |> Local_Theory.restore_background_naming lthy
     |> Local_Theory.background_theory (Data.map (fold insert sels))
-    |> Local_Theory.restore_background_naming lthy
   end
 
-fun bnf_record binding opts tyargs args lthy =
+fun record binding opts tyargs args lthy =
   let
     val constructor =
       (((Binding.empty, Binding.map_name (fn c => "make_" ^ c) binding), args), NoSyn)
@@ -93,8 +224,8 @@
     lthy'
   end
 
-fun bnf_record_cmd binding opts tyargs args lthy =
-  bnf_record binding (opts lthy)
+fun record_cmd binding opts tyargs args lthy =
+  record binding (opts lthy)
     (map (apsnd (apfst (Syntax.parse_typ lthy) o apsnd (Typedecl.read_constraint lthy))) tyargs)
     (map (apsnd (Syntax.parse_typ lthy)) args) lthy
 
@@ -172,7 +303,7 @@
     @{command_keyword datatype_record}
     "Defines a record based on the BNF/datatype machinery"
     (parser >> (fn (((ctr_options, tyargs), binding), args) =>
-      bnf_record_cmd binding ctr_options tyargs args))
+      record_cmd binding ctr_options tyargs args))
 
 val setup =
    (Sign.parse_translation
--- a/src/HOL/Limits.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Limits.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1316,6 +1316,16 @@
     and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
   by auto
 
+lemma tendsto_at_botI_sequentially:
+  fixes f :: "real \<Rightarrow> 'b::first_countable_topology"
+  assumes *: "\<And>X. filterlim X at_bot sequentially \<Longrightarrow> (\<lambda>n. f (X n)) \<longlonglongrightarrow> y"
+  shows "(f \<longlongrightarrow> y) at_bot"
+  unfolding filterlim_at_bot_mirror
+proof (rule tendsto_at_topI_sequentially)
+  fix X :: "nat \<Rightarrow> real" assume "filterlim X at_top sequentially"
+  thus "(\<lambda>n. f (-X n)) \<longlonglongrightarrow> y" by (intro *) (auto simp: filterlim_uminus_at_top)
+qed
+
 lemma filterlim_at_infinity_imp_filterlim_at_top:
   assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
   assumes "eventually (\<lambda>x. f x > 0) F"
--- a/src/HOL/List.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/List.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1,5 +1,5 @@
 (*  Title:      HOL/List.thy
-    Author:     Tobias Nipkow
+    Author:     Tobias Nipkow; proofs tidied by LCP
 *)
 
 section \<open>The datatype of finite lists\<close>
@@ -166,7 +166,7 @@
 
 primrec upt :: "nat \<Rightarrow> nat \<Rightarrow> nat list" ("(1[_..</_'])") where
 upt_0: "[i..<0] = []" |
-upt_Suc: "[i..<(Suc j)] = (if i <= j then [i..<j] @ [j] else [])"
+upt_Suc: "[i..<(Suc j)] = (if i \<le> j then [i..<j] @ [j] else [])"
 
 definition insert :: "'a \<Rightarrow> 'a list \<Rightarrow> 'a list" where
 "insert x xs = (if x \<in> set xs then xs else x # xs)"
@@ -834,11 +834,9 @@
 
 lemma Suc_length_conv:
   "(Suc n = length xs) = (\<exists>y ys. xs = y # ys \<and> length ys = n)"
-apply (induct xs, simp, simp)
-apply blast
-done
-
-lemma impossible_Cons: "length xs <= length ys ==> xs = x # ys = False"
+  by (induct xs; simp; blast)
+
+lemma impossible_Cons: "length xs \<le> length ys ==> xs = x # ys = False"
 by (induct xs) auto
 
 lemma list_induct2 [consumes 1, case_names Nil Cons]:
@@ -846,10 +844,8 @@
    (\<And>x xs y ys. length xs = length ys \<Longrightarrow> P xs ys \<Longrightarrow> P (x#xs) (y#ys))
    \<Longrightarrow> P xs ys"
 proof (induct xs arbitrary: ys)
-  case Nil then show ?case by simp
-next
   case (Cons x xs ys) then show ?case by (cases ys) simp_all
-qed
+qed simp
 
 lemma list_induct3 [consumes 2, case_names Nil Cons]:
   "length xs = length ys \<Longrightarrow> length ys = length zs \<Longrightarrow> P [] [] [] \<Longrightarrow>
@@ -960,19 +956,15 @@
 lemma append_eq_append_conv [simp]:
   "length xs = length ys \<or> length us = length vs
   ==> (xs@us = ys@vs) = (xs=ys \<and> us=vs)"
-apply (induct xs arbitrary: ys)
- apply (case_tac ys, simp, force)
-apply (case_tac ys, force, simp)
-done
+  by (induct xs arbitrary: ys; case_tac ys; force)
 
 lemma append_eq_append_conv2: "(xs @ ys = zs @ ts) =
   (\<exists>us. xs = zs @ us \<and> us @ ys = ts \<or> xs @ us = zs \<and> ys = us @ ts)"
-apply (induct xs arbitrary: ys zs ts)
- apply fastforce
-apply(case_tac zs)
- apply simp
-apply fastforce
-done
+proof (induct xs arbitrary: ys zs ts)
+  case (Cons x xs)
+  then show ?case
+    by (case_tac zs) auto
+qed fastforce
 
 lemma same_append_eq [iff, induct_simp]: "(xs @ ys = xs @ zs) = (ys = zs)"
 by simp
@@ -1152,15 +1144,14 @@
 qed
 
 lemma map_inj_on:
- "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
-  ==> xs = ys"
-apply(frule map_eq_imp_length_eq)
-apply(rotate_tac -1)
-apply(induct rule:list_induct2)
- apply simp
-apply(simp)
-apply (blast intro:sym)
-done
+  assumes map: "map f xs = map f ys" and inj: "inj_on f (set xs Un set ys)"
+  shows "xs = ys"
+  using map_eq_imp_length_eq [OF map] assms
+proof (induct rule: list_induct2)
+  case (Cons x xs y ys)
+  then show ?case
+    by (auto intro: sym)
+qed auto
 
 lemma inj_on_map_eq_map:
   "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
@@ -1177,21 +1168,13 @@
 by (iprover dest: map_injective injD intro: inj_onI)
 
 lemma inj_mapD: "inj (map f) ==> inj f"
-  apply (unfold inj_def)
-  apply clarify
-  apply (erule_tac x = "[x]" in allE)
-  apply (erule_tac x = "[y]" in allE)
-  apply auto
-  done
+  by (metis (no_types, hide_lams) injI list.inject list.simps(9) the_inv_f_f)
 
 lemma inj_map[iff]: "inj (map f) = inj f"
 by (blast dest: inj_mapD intro: inj_mapI)
 
 lemma inj_on_mapI: "inj_on f (\<Union>(set ` A)) \<Longrightarrow> inj_on (map f) A"
-apply(rule inj_onI)
-apply(erule map_inj_on)
-apply(blast intro:inj_onI dest:inj_onD)
-done
+  by (blast intro:inj_onI dest:inj_onD map_inj_on)
 
 lemma map_idI: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = x) \<Longrightarrow> map f xs = xs"
 by (induct xs, auto)
@@ -1248,9 +1231,11 @@
 by (cases xs) auto
 
 lemma rev_is_rev_conv [iff]: "(rev xs = rev ys) = (xs = ys)"
-apply (induct xs arbitrary: ys, force)
-apply (case_tac ys, simp, force)
-done
+proof  (induct xs arbitrary: ys)
+  case (Cons a xs)
+  then show ?case 
+    by (case_tac ys) auto
+qed force
 
 lemma inj_on_rev[iff]: "inj_on rev A"
 by(simp add:inj_on_def)
@@ -1481,11 +1466,12 @@
 by (induct xs) simp_all
 
 lemma filter_id_conv: "(filter P xs = xs) = (\<forall>x\<in>set xs. P x)"
-apply (induct xs)
- apply auto
-apply(cut_tac P=P and xs=xs in length_filter_le)
-apply simp
-done
+proof (induct xs)
+  case (Cons x xs)
+  then show ?case
+    using length_filter_le
+    by (simp add: impossible_Cons)
+qed auto
 
 lemma filter_map: "filter P (map f xs) = map f (filter (P \<circ> f) xs)"
 by (induct xs) simp_all
@@ -1503,9 +1489,7 @@
   case Nil thus ?case by simp
 next
   case (Cons x xs) thus ?case
-    apply (auto split:if_split_asm)
-    using length_filter_le[of P xs] apply arith
-  done
+    using Suc_le_eq by fastforce
 qed
 
 lemma length_filter_conv_card:
@@ -1573,17 +1557,17 @@
 lemma filter_eq_ConsD:
   "filter P ys = x#xs \<Longrightarrow>
   \<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs"
-by(rule Cons_eq_filterD) simp
+  by(rule Cons_eq_filterD) simp
 
 lemma filter_eq_Cons_iff:
   "(filter P ys = x#xs) =
   (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
-by(auto dest:filter_eq_ConsD)
+  by(auto dest:filter_eq_ConsD)
 
 lemma Cons_eq_filter_iff:
   "(x#xs = filter P ys) =
   (\<exists>us vs. ys = us @ x # vs \<and> (\<forall>u\<in>set us. \<not> P u) \<and> P x \<and> xs = filter P vs)"
-by(auto dest:Cons_eq_filterD)
+  by(auto dest:Cons_eq_filterD)
 
 lemma inj_on_filter_key_eq:
   assumes "inj_on f (insert y (set xs))"
@@ -1592,24 +1576,22 @@
 
 lemma filter_cong[fundef_cong]:
   "xs = ys \<Longrightarrow> (\<And>x. x \<in> set ys \<Longrightarrow> P x = Q x) \<Longrightarrow> filter P xs = filter Q ys"
-apply simp
-apply(erule thin_rl)
-by (induct ys) simp_all
+  by (induct ys arbitrary: xs) auto
 
 
 subsubsection \<open>List partitioning\<close>
 
 primrec partition :: "('a \<Rightarrow> bool) \<Rightarrow>'a list \<Rightarrow> 'a list \<times> 'a list" where
-"partition P [] = ([], [])" |
-"partition P (x # xs) =
+  "partition P [] = ([], [])" |
+  "partition P (x # xs) =
   (let (yes, no) = partition P xs
    in if P x then (x # yes, no) else (yes, x # no))"
 
 lemma partition_filter1: "fst (partition P xs) = filter P xs"
-by (induct xs) (auto simp add: Let_def split_def)
+  by (induct xs) (auto simp add: Let_def split_def)
 
 lemma partition_filter2: "snd (partition P xs) = filter (Not \<circ> P) xs"
-by (induct xs) (auto simp add: Let_def split_def)
+  by (induct xs) (auto simp add: Let_def split_def)
 
 lemma partition_P:
   assumes "partition P xs = (yes, no)"
@@ -1631,8 +1613,8 @@
 
 lemma partition_filter_conv[simp]:
   "partition f xs = (filter f xs,filter (Not \<circ> f) xs)"
-unfolding partition_filter2[symmetric]
-unfolding partition_filter1[symmetric] by simp
+  unfolding partition_filter2[symmetric]
+  unfolding partition_filter1[symmetric] by simp
 
 declare partition.simps[simp del]
 
@@ -1640,28 +1622,28 @@
 subsubsection \<open>@{const concat}\<close>
 
 lemma concat_append [simp]: "concat (xs @ ys) = concat xs @ concat ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma concat_eq_Nil_conv [simp]: "(concat xss = []) = (\<forall>xs \<in> set xss. xs = [])"
-by (induct xss) auto
+  by (induct xss) auto
 
 lemma Nil_eq_concat_conv [simp]: "([] = concat xss) = (\<forall>xs \<in> set xss. xs = [])"
-by (induct xss) auto
+  by (induct xss) auto
 
 lemma set_concat [simp]: "set (concat xs) = (UN x:set xs. set x)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma concat_map_singleton[simp]: "concat(map (%x. [f x]) xs) = map f xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma map_concat: "map f (concat xs) = concat (map (map f) xs)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma filter_concat: "filter p (concat xs) = concat (map (filter p) xs)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma rev_concat: "rev (concat xs) = concat (map rev (rev xs))"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma concat_eq_concat_iff: "\<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> length xs = length ys ==> (concat xs = concat ys) = (xs = ys)"
 proof (induct xs arbitrary: ys)
@@ -1670,66 +1652,78 @@
 qed (auto)
 
 lemma concat_injective: "concat xs = concat ys ==> length xs = length ys ==> \<forall>(x, y) \<in> set (zip xs ys). length x = length y ==> xs = ys"
-by (simp add: concat_eq_concat_iff)
+  by (simp add: concat_eq_concat_iff)
 
 
 subsubsection \<open>@{const nth}\<close>
 
 lemma nth_Cons_0 [simp, code]: "(x # xs)!0 = x"
-by auto
+  by auto
 
 lemma nth_Cons_Suc [simp, code]: "(x # xs)!(Suc n) = xs!n"
-by auto
+  by auto
 
 declare nth.simps [simp del]
 
 lemma nth_Cons_pos[simp]: "0 < n \<Longrightarrow> (x#xs) ! n = xs ! (n - 1)"
-by(auto simp: Nat.gr0_conv_Suc)
+  by(auto simp: Nat.gr0_conv_Suc)
 
 lemma nth_append:
   "(xs @ ys)!n = (if n < length xs then xs!n else ys!(n - length xs))"
-apply (induct xs arbitrary: n, simp)
-apply (case_tac n, auto)
-done
+proof (induct xs arbitrary: n)
+  case (Cons x xs)
+  then show ?case
+    using less_Suc_eq_0_disj by auto
+qed simp
 
 lemma nth_append_length [simp]: "(xs @ x # ys) ! length xs = x"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma nth_append_length_plus[simp]: "(xs @ ys) ! (length xs + n) = ys ! n"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma nth_map [simp]: "n < length xs ==> (map f xs)!n = f(xs!n)"
-apply (induct xs arbitrary: n, simp)
-apply (case_tac n, auto)
-done
+proof (induct xs arbitrary: n)
+  case (Cons x xs)
+  then show ?case
+    using less_Suc_eq_0_disj by auto
+qed simp
 
 lemma nth_tl: "n < length (tl xs) \<Longrightarrow> tl xs ! n = xs ! Suc n"
-by (induction xs) auto
+  by (induction xs) auto
 
 lemma hd_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd xs = xs!0"
-by(cases xs) simp_all
+  by(cases xs) simp_all
 
 
 lemma list_eq_iff_nth_eq:
   "(xs = ys) = (length xs = length ys \<and> (\<forall>i<length xs. xs!i = ys!i))"
-apply(induct xs arbitrary: ys)
- apply force
-apply(case_tac ys)
- apply simp
-apply(simp add:nth_Cons split:nat.split)apply blast
-done
+proof (induct xs arbitrary: ys)
+  case (Cons x xs ys)
+  show ?case 
+  proof (cases ys)
+    case (Cons y ys)
+    then show ?thesis
+      using Cons.hyps by fastforce
+  qed simp
+qed force
 
 lemma set_conv_nth: "set xs = {xs!i | i. i < length xs}"
-apply (induct xs, simp, simp)
-apply safe
-apply (metis nat.case(1) nth.simps zero_less_Suc)
-apply (metis less_Suc_eq_0_disj nth_Cons_Suc)
-apply (case_tac i, simp)
-apply (metis diff_Suc_Suc nat.case(2) nth.simps zero_less_diff)
-done
+proof (induct xs)
+  case (Cons x xs)
+  have "insert x {xs ! i |i. i < length xs} = {(x # xs) ! i |i. i < Suc (length xs)}" (is "?L=?R")
+  proof
+    show "?L \<subseteq> ?R"
+      by force
+    show "?R \<subseteq> ?L"
+      using less_Suc_eq_0_disj by auto
+  qed
+  with Cons show ?case
+    by simp
+qed simp
 
 lemma in_set_conv_nth: "(x \<in> set xs) = (\<exists>i < length xs. xs!i = x)"
-by(auto simp:set_conv_nth)
+  by(auto simp:set_conv_nth)
 
 lemma nth_equal_first_eq:
   assumes "x \<notin> set xs"
@@ -1761,18 +1755,18 @@
 qed
 
 lemma list_ball_nth: "\<lbrakk>n < length xs; \<forall>x \<in> set xs. P x\<rbrakk> \<Longrightarrow> P(xs!n)"
-by (auto simp add: set_conv_nth)
+  by (auto simp add: set_conv_nth)
 
 lemma nth_mem [simp]: "n < length xs \<Longrightarrow> xs!n \<in> set xs"
-by (auto simp add: set_conv_nth)
+  by (auto simp add: set_conv_nth)
 
 lemma all_nth_imp_all_set:
   "\<lbrakk>\<forall>i < length xs. P(xs!i); x \<in> set xs\<rbrakk> \<Longrightarrow> P x"
-by (auto simp add: set_conv_nth)
+  by (auto simp add: set_conv_nth)
 
 lemma all_set_conv_all_nth:
   "(\<forall>x \<in> set xs. P x) = (\<forall>i. i < length xs \<longrightarrow> P (xs ! i))"
-by (auto simp add: set_conv_nth)
+  by (auto simp add: set_conv_nth)
 
 lemma rev_nth:
   "n < size xs \<Longrightarrow> rev xs ! n = xs ! (length xs - Suc n)"
@@ -1816,149 +1810,141 @@
 subsubsection \<open>@{const list_update}\<close>
 
 lemma length_list_update [simp]: "length(xs[i:=x]) = length xs"
-by (induct xs arbitrary: i) (auto split: nat.split)
+  by (induct xs arbitrary: i) (auto split: nat.split)
 
 lemma nth_list_update:
-"i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
-by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
+  "i < length xs==> (xs[i:=x])!j = (if i = j then x else xs!j)"
+  by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
 
 lemma nth_list_update_eq [simp]: "i < length xs ==> (xs[i:=x])!i = x"
-by (simp add: nth_list_update)
+  by (simp add: nth_list_update)
 
 lemma nth_list_update_neq [simp]: "i \<noteq> j ==> xs[i:=x]!j = xs!j"
-by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
+  by (induct xs arbitrary: i j) (auto simp add: nth_Cons split: nat.split)
 
 lemma list_update_id[simp]: "xs[i := xs!i] = xs"
-by (induct xs arbitrary: i) (simp_all split:nat.splits)
+  by (induct xs arbitrary: i) (simp_all split:nat.splits)
 
 lemma list_update_beyond[simp]: "length xs \<le> i \<Longrightarrow> xs[i:=x] = xs"
-apply (induct xs arbitrary: i)
- apply simp
-apply (case_tac i)
-apply simp_all
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs i)
+  then show ?case
+    by (metis leD length_list_update list_eq_iff_nth_eq nth_list_update_neq)
+qed simp
 
 lemma list_update_nonempty[simp]: "xs[k:=x] = [] \<longleftrightarrow> xs=[]"
-by (simp only: length_0_conv[symmetric] length_list_update)
+  by (simp only: length_0_conv[symmetric] length_list_update)
 
 lemma list_update_same_conv:
   "i < length xs ==> (xs[i := x] = xs) = (xs!i = x)"
-by (induct xs arbitrary: i) (auto split: nat.split)
+  by (induct xs arbitrary: i) (auto split: nat.split)
 
 lemma list_update_append1:
   "i < size xs \<Longrightarrow> (xs @ ys)[i:=x] = xs[i:=x] @ ys"
-by (induct xs arbitrary: i)(auto split:nat.split)
+  by (induct xs arbitrary: i)(auto split:nat.split)
 
 lemma list_update_append:
   "(xs @ ys) [n:= x] =
   (if n < length xs then xs[n:= x] @ ys else xs @ (ys [n-length xs:= x]))"
-by (induct xs arbitrary: n) (auto split:nat.splits)
+  by (induct xs arbitrary: n) (auto split:nat.splits)
 
 lemma list_update_length [simp]:
   "(xs @ x # ys)[length xs := y] = (xs @ y # ys)"
-by (induct xs, auto)
+  by (induct xs, auto)
 
 lemma map_update: "map f (xs[k:= y]) = (map f xs)[k := f y]"
-by(induct xs arbitrary: k)(auto split:nat.splits)
+  by(induct xs arbitrary: k)(auto split:nat.splits)
 
 lemma rev_update:
   "k < length xs \<Longrightarrow> rev (xs[k:= y]) = (rev xs)[length xs - k - 1 := y]"
-by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits)
+  by (induct xs arbitrary: k) (auto simp: list_update_append split:nat.splits)
 
 lemma update_zip:
   "(zip xs ys)[i:=xy] = zip (xs[i:=fst xy]) (ys[i:=snd xy])"
-by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split)
-
-lemma set_update_subset_insert: "set(xs[i:=x]) <= insert x (set xs)"
-by (induct xs arbitrary: i) (auto split: nat.split)
+  by (induct ys arbitrary: i xy xs) (auto, case_tac xs, auto split: nat.split)
+
+lemma set_update_subset_insert: "set(xs[i:=x]) \<le> insert x (set xs)"
+  by (induct xs arbitrary: i) (auto split: nat.split)
 
 lemma set_update_subsetI: "\<lbrakk>set xs \<subseteq> A; x \<in> A\<rbrakk> \<Longrightarrow> set(xs[i := x]) \<subseteq> A"
-by (blast dest!: set_update_subset_insert [THEN subsetD])
+  by (blast dest!: set_update_subset_insert [THEN subsetD])
 
 lemma set_update_memI: "n < length xs \<Longrightarrow> x \<in> set (xs[n := x])"
-by (induct xs arbitrary: n) (auto split:nat.splits)
+  by (induct xs arbitrary: n) (auto split:nat.splits)
 
 lemma list_update_overwrite[simp]:
   "xs [i := x, i := y] = xs [i := y]"
-apply (induct xs arbitrary: i) apply simp
-apply (case_tac i, simp_all)
-done
+  by (induct xs arbitrary: i) (simp_all split: nat.split)
 
 lemma list_update_swap:
   "i \<noteq> i' \<Longrightarrow> xs [i := x, i' := x'] = xs [i' := x', i := x]"
-apply (induct xs arbitrary: i i')
- apply simp
-apply (case_tac i, case_tac i')
-  apply auto
-apply (case_tac i')
-apply auto
-done
+  by (induct xs arbitrary: i i') (simp_all split: nat.split)
 
 lemma list_update_code [code]:
   "[][i := y] = []"
   "(x # xs)[0 := y] = y # xs"
   "(x # xs)[Suc i := y] = x # xs[i := y]"
-by simp_all
+  by simp_all
 
 
 subsubsection \<open>@{const last} and @{const butlast}\<close>
 
 lemma last_snoc [simp]: "last (xs @ [x]) = x"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma butlast_snoc [simp]: "butlast (xs @ [x]) = xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma last_ConsL: "xs = [] \<Longrightarrow> last(x#xs) = x"
-by simp
+  by simp
 
 lemma last_ConsR: "xs \<noteq> [] \<Longrightarrow> last(x#xs) = last xs"
-by simp
+  by simp
 
 lemma last_append: "last(xs @ ys) = (if ys = [] then last xs else last ys)"
-by (induct xs) (auto)
+  by (induct xs) (auto)
 
 lemma last_appendL[simp]: "ys = [] \<Longrightarrow> last(xs @ ys) = last xs"
-by(simp add:last_append)
+  by(simp add:last_append)
 
 lemma last_appendR[simp]: "ys \<noteq> [] \<Longrightarrow> last(xs @ ys) = last ys"
-by(simp add:last_append)
+  by(simp add:last_append)
 
 lemma last_tl: "xs = [] \<or> tl xs \<noteq> [] \<Longrightarrow>last (tl xs) = last xs"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma butlast_tl: "butlast (tl xs) = tl (butlast xs)"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma hd_rev: "xs \<noteq> [] \<Longrightarrow> hd(rev xs) = last xs"
-by(rule rev_exhaust[of xs]) simp_all
+  by(rule rev_exhaust[of xs]) simp_all
 
 lemma last_rev: "xs \<noteq> [] \<Longrightarrow> last(rev xs) = hd xs"
-by(cases xs) simp_all
+  by(cases xs) simp_all
 
 lemma last_in_set[simp]: "as \<noteq> [] \<Longrightarrow> last as \<in> set as"
-by (induct as) auto
+  by (induct as) auto
 
 lemma length_butlast [simp]: "length (butlast xs) = length xs - 1"
-by (induct xs rule: rev_induct) auto
+  by (induct xs rule: rev_induct) auto
 
 lemma butlast_append:
   "butlast (xs @ ys) = (if ys = [] then butlast xs else xs @ butlast ys)"
-by (induct xs arbitrary: ys) auto
+  by (induct xs arbitrary: ys) auto
 
 lemma append_butlast_last_id [simp]:
   "xs \<noteq> [] \<Longrightarrow> butlast xs @ [last xs] = xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma in_set_butlastD: "x \<in> set (butlast xs) \<Longrightarrow> x \<in> set xs"
-by (induct xs) (auto split: if_split_asm)
+  by (induct xs) (auto split: if_split_asm)
 
 lemma in_set_butlast_appendI:
   "x \<in> set (butlast xs) \<or> x \<in> set (butlast ys) \<Longrightarrow> x \<in> set (butlast (xs @ ys))"
-by (auto dest: in_set_butlastD simp add: butlast_append)
+  by (auto dest: in_set_butlastD simp add: butlast_append)
 
 lemma last_drop[simp]: "n < length xs \<Longrightarrow> last (drop n xs) = last xs"
-by (induct xs arbitrary: n)(auto split:nat.split)
+  by (induct xs arbitrary: n)(auto split:nat.split)
 
 lemma nth_butlast:
   assumes "n < length (butlast xs)" shows "butlast xs ! n = xs ! n"
@@ -1970,164 +1956,173 @@
 qed simp
 
 lemma last_conv_nth: "xs\<noteq>[] \<Longrightarrow> last xs = xs!(length xs - 1)"
-by(induct xs)(auto simp:neq_Nil_conv)
+  by(induct xs)(auto simp:neq_Nil_conv)
 
 lemma butlast_conv_take: "butlast xs = take (length xs - 1) xs"
-by (induction xs rule: induct_list012) simp_all
+  by (induction xs rule: induct_list012) simp_all
 
 lemma last_list_update:
   "xs \<noteq> [] \<Longrightarrow> last(xs[k:=x]) = (if k = size xs - 1 then x else last xs)"
-by (auto simp: last_conv_nth)
+  by (auto simp: last_conv_nth)
 
 lemma butlast_list_update:
   "butlast(xs[k:=x]) =
   (if k = size xs - 1 then butlast xs else (butlast xs)[k:=x])"
-by(cases xs rule:rev_cases)(auto simp: list_update_append split: nat.splits)
+  by(cases xs rule:rev_cases)(auto simp: list_update_append split: nat.splits)
 
 lemma last_map: "xs \<noteq> [] \<Longrightarrow> last (map f xs) = f (last xs)"
-by (cases xs rule: rev_cases) simp_all
+  by (cases xs rule: rev_cases) simp_all
 
 lemma map_butlast: "map f (butlast xs) = butlast (map f xs)"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma snoc_eq_iff_butlast:
   "xs @ [x] = ys \<longleftrightarrow> (ys \<noteq> [] \<and> butlast ys = xs \<and> last ys = x)"
-by fastforce
+  by fastforce
 
 corollary longest_common_suffix:
   "\<exists>ss xs' ys'. xs = xs' @ ss \<and> ys = ys' @ ss
        \<and> (xs' = [] \<or> ys' = [] \<or> last xs' \<noteq> last ys')"
-using longest_common_prefix[of "rev xs" "rev ys"]
-unfolding rev_swap rev_append by (metis last_rev rev_is_Nil_conv)
+  using longest_common_prefix[of "rev xs" "rev ys"]
+  unfolding rev_swap rev_append by (metis last_rev rev_is_Nil_conv)
 
 
 subsubsection \<open>@{const take} and @{const drop}\<close>
 
 lemma take_0: "take 0 xs = []"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma drop_0: "drop 0 xs = xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma take0[simp]: "take 0 = (\<lambda>xs. [])"
-by(rule ext) (rule take_0)
+  by(rule ext) (rule take_0)
 
 lemma drop0[simp]: "drop 0 = (\<lambda>x. x)"
-by(rule ext) (rule drop_0)
+  by(rule ext) (rule drop_0)
 
 lemma take_Suc_Cons [simp]: "take (Suc n) (x # xs) = x # take n xs"
-by simp
+  by simp
 
 lemma drop_Suc_Cons [simp]: "drop (Suc n) (x # xs) = drop n xs"
-by simp
+  by simp
 
 declare take_Cons [simp del] and drop_Cons [simp del]
 
 lemma take_Suc: "xs \<noteq> [] \<Longrightarrow> take (Suc n) xs = hd xs # take n (tl xs)"
-by(clarsimp simp add:neq_Nil_conv)
+  by(clarsimp simp add:neq_Nil_conv)
 
 lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
-by(cases xs, simp_all)
+  by(cases xs, simp_all)
 
 lemma hd_take[simp]: "j > 0 \<Longrightarrow> hd (take j xs) = hd xs"
-by (metis gr0_conv_Suc list.sel(1) take.simps(1) take_Suc)
+  by (metis gr0_conv_Suc list.sel(1) take.simps(1) take_Suc)
 
 lemma take_tl: "take n (tl xs) = tl (take (Suc n) xs)"
-by (induct xs arbitrary: n) simp_all
+  by (induct xs arbitrary: n) simp_all
 
 lemma drop_tl: "drop n (tl xs) = tl(drop n xs)"
-by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split)
+  by(induct xs arbitrary: n, simp_all add:drop_Cons drop_Suc split:nat.split)
 
 lemma tl_take: "tl (take n xs) = take (n - 1) (tl xs)"
-by (cases n, simp, cases xs, auto)
+  by (cases n, simp, cases xs, auto)
 
 lemma tl_drop: "tl (drop n xs) = drop n (tl xs)"
-by (simp only: drop_tl)
+  by (simp only: drop_tl)
 
 lemma nth_via_drop: "drop n xs = y#ys \<Longrightarrow> xs!n = y"
-by (induct xs arbitrary: n, simp)(auto simp: drop_Cons nth_Cons split: nat.splits)
+  by (induct xs arbitrary: n, simp)(auto simp: drop_Cons nth_Cons split: nat.splits)
 
 lemma take_Suc_conv_app_nth:
   "i < length xs \<Longrightarrow> take (Suc i) xs = take i xs @ [xs!i]"
-apply (induct xs arbitrary: i, simp)
-apply (case_tac i, auto)
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs) then show ?case
+    by (case_tac i, auto)
+qed simp
 
 lemma Cons_nth_drop_Suc:
   "i < length xs \<Longrightarrow> (xs!i) # (drop (Suc i) xs) = drop i xs"
-apply (induct xs arbitrary: i, simp)
-apply (case_tac i, auto)
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs) then show ?case
+    by (case_tac i, auto)
+qed simp
 
 lemma length_take [simp]: "length (take n xs) = min (length xs) n"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
 
 lemma length_drop [simp]: "length (drop n xs) = (length xs - n)"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
-
-lemma take_all [simp]: "length xs <= n ==> take n xs = xs"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
-
-lemma drop_all [simp]: "length xs <= n ==> drop n xs = []"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+
+lemma take_all [simp]: "length xs \<le> n ==> take n xs = xs"
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+
+lemma drop_all [simp]: "length xs \<le> n ==> drop n xs = []"
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
 
 lemma take_append [simp]:
   "take n (xs @ ys) = (take n xs @ take (n - length xs) ys)"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
 
 lemma drop_append [simp]:
   "drop n (xs @ ys) = drop n xs @ drop (n - length xs) ys"
-by (induct n arbitrary: xs) (auto, case_tac xs, auto)
+  by (induct n arbitrary: xs) (auto, case_tac xs, auto)
 
 lemma take_take [simp]: "take n (take m xs) = take (min n m) xs"
-apply (induct m arbitrary: xs n, auto)
- apply (case_tac xs, auto)
-apply (case_tac n, auto)
-done
+proof (induct m arbitrary: xs n)
+  case (Suc m) then show ?case
+    by (case_tac xs; case_tac n; simp)
+qed auto
 
 lemma drop_drop [simp]: "drop n (drop m xs) = drop (n + m) xs"
-apply (induct m arbitrary: xs, auto)
- apply (case_tac xs, auto)
-done
+proof (induct m arbitrary: xs)
+  case (Suc m) then show ?case
+    by (case_tac xs; simp)
+qed auto
 
 lemma take_drop: "take n (drop m xs) = drop m (take (n + m) xs)"
-apply (induct m arbitrary: xs n, auto)
- apply (case_tac xs, auto)
-done
+proof (induct m arbitrary: xs n)
+  case (Suc m) then show ?case
+    by (case_tac xs; case_tac n; simp)
+qed auto
 
 lemma drop_take: "drop n (take m xs) = take (m-n) (drop n xs)"
-by(induct xs arbitrary: m n)(auto simp: take_Cons drop_Cons split: nat.split)
+  by(induct xs arbitrary: m n)(auto simp: take_Cons drop_Cons split: nat.split)
 
 lemma append_take_drop_id [simp]: "take n xs @ drop n xs = xs"
-apply (induct n arbitrary: xs, auto)
-apply (case_tac xs, auto)
-done
+proof (induct n arbitrary: xs)
+  case (Suc n) then show ?case
+    by (case_tac xs; simp)
+qed auto
 
 lemma take_eq_Nil[simp]: "(take n xs = []) = (n = 0 \<or> xs = [])"
-by(induct xs arbitrary: n)(auto simp: take_Cons split:nat.split)
-
-lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs <= n)"
-by (induct xs arbitrary: n) (auto simp: drop_Cons split:nat.split)
+  by(induct xs arbitrary: n)(auto simp: take_Cons split:nat.split)
+
+lemma drop_eq_Nil[simp]: "(drop n xs = []) = (length xs \<le> n)"
+  by (induct xs arbitrary: n) (auto simp: drop_Cons split:nat.split)
 
 lemma take_map: "take n (map f xs) = map f (take n xs)"
-apply (induct n arbitrary: xs, auto)
- apply (case_tac xs, auto)
-done
+proof (induct n arbitrary: xs)
+  case (Suc n) then show ?case
+    by (case_tac xs; simp)
+qed auto
 
 lemma drop_map: "drop n (map f xs) = map f (drop n xs)"
-apply (induct n arbitrary: xs, auto)
- apply (case_tac xs, auto)
-done
+proof (induct n arbitrary: xs)
+  case (Suc n) then show ?case
+    by (case_tac xs; simp)
+qed auto
 
 lemma rev_take: "rev (take i xs) = drop (length xs - i) (rev xs)"
-apply (induct xs arbitrary: i, auto)
- apply (case_tac i, auto)
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs) then show ?case
+    by (case_tac i, auto)
+qed simp
 
 lemma rev_drop: "rev (drop i xs) = take (length xs - i) (rev xs)"
-apply (induct xs arbitrary: i, auto)
- apply (case_tac i, auto)
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs) then show ?case
+    by (case_tac i, auto)
+qed simp
 
 lemma drop_rev: "drop n (rev xs) = rev (take (length xs - n) xs)"
   by (cases "length xs < n") (auto simp: rev_take)
@@ -2136,87 +2131,87 @@
   by (cases "length xs < n") (auto simp: rev_drop)
 
 lemma nth_take [simp]: "i < n ==> (take n xs)!i = xs!i"
-apply (induct xs arbitrary: i n, auto)
- apply (case_tac n, blast)
-apply (case_tac i, auto)
-done
+proof (induct xs arbitrary: i n)
+  case (Cons x xs) then show ?case
+    by (case_tac n; case_tac i; simp)
+qed auto
 
 lemma nth_drop [simp]:
-  "n <= length xs ==> (drop n xs)!i = xs!(n + i)"
-apply (induct n arbitrary: xs i, auto)
- apply (case_tac xs, auto)
-done
+  "n \<le> length xs ==> (drop n xs)!i = xs!(n + i)"
+proof (induct n arbitrary: xs)
+  case (Suc n) then show ?case
+    by (case_tac xs; simp)
+qed auto
 
 lemma butlast_take:
-  "n <= length xs ==> butlast (take n xs) = take (n - 1) xs"
-by (simp add: butlast_conv_take min.absorb1 min.absorb2)
+  "n \<le> length xs ==> butlast (take n xs) = take (n - 1) xs"
+  by (simp add: butlast_conv_take min.absorb1 min.absorb2)
 
 lemma butlast_drop: "butlast (drop n xs) = drop n (butlast xs)"
-by (simp add: butlast_conv_take drop_take ac_simps)
+  by (simp add: butlast_conv_take drop_take ac_simps)
 
 lemma take_butlast: "n < length xs ==> take n (butlast xs) = take n xs"
-by (simp add: butlast_conv_take min.absorb1)
+  by (simp add: butlast_conv_take min.absorb1)
 
 lemma drop_butlast: "drop n (butlast xs) = butlast (drop n xs)"
-by (simp add: butlast_conv_take drop_take ac_simps)
+  by (simp add: butlast_conv_take drop_take ac_simps)
 
 lemma hd_drop_conv_nth: "n < length xs \<Longrightarrow> hd(drop n xs) = xs!n"
-by(simp add: hd_conv_nth)
+  by(simp add: hd_conv_nth)
 
 lemma set_take_subset_set_take:
-  "m <= n \<Longrightarrow> set(take m xs) <= set(take n xs)"
-apply (induct xs arbitrary: m n)
- apply simp
-apply (case_tac n)
-apply (auto simp: take_Cons)
-done
+  "m \<le> n \<Longrightarrow> set(take m xs) \<le> set(take n xs)"
+proof (induct xs arbitrary: m n)
+  case (Cons x xs m n) then show ?case
+    by (cases n) (auto simp: take_Cons)
+qed simp
 
 lemma set_take_subset: "set(take n xs) \<subseteq> set xs"
-by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split)
+  by(induct xs arbitrary: n)(auto simp:take_Cons split:nat.split)
 
 lemma set_drop_subset: "set(drop n xs) \<subseteq> set xs"
-by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split)
+  by(induct xs arbitrary: n)(auto simp:drop_Cons split:nat.split)
 
 lemma set_drop_subset_set_drop:
-  "m >= n \<Longrightarrow> set(drop m xs) <= set(drop n xs)"
-apply(induct xs arbitrary: m n)
- apply(auto simp:drop_Cons split:nat.split)
-by (metis set_drop_subset subset_iff)
+  "m \<ge> n \<Longrightarrow> set(drop m xs) \<le> set(drop n xs)"
+proof (induct xs arbitrary: m n)
+  case (Cons x xs m n)
+  then show ?case
+    by (clarsimp simp: drop_Cons split: nat.split) (metis set_drop_subset subset_iff)
+qed simp
 
 lemma in_set_takeD: "x \<in> set(take n xs) \<Longrightarrow> x \<in> set xs"
-using set_take_subset by fast
+  using set_take_subset by fast
 
 lemma in_set_dropD: "x \<in> set(drop n xs) \<Longrightarrow> x \<in> set xs"
-using set_drop_subset by fast
+  using set_drop_subset by fast
 
 lemma append_eq_conv_conj:
   "(xs @ ys = zs) = (xs = take (length xs) zs \<and> ys = drop (length xs) zs)"
-apply (induct xs arbitrary: zs, simp, clarsimp)
- apply (case_tac zs, auto)
-done
+proof (induct xs arbitrary: zs)
+  case (Cons x xs zs) then show ?case
+    by (cases zs, auto)
+qed auto
 
 lemma take_add:  "take (i+j) xs = take i xs @ take j (drop i xs)"
-apply (induct xs arbitrary: i, auto)
- apply (case_tac i, simp_all)
-done
+proof (induct xs arbitrary: i)
+  case (Cons x xs i) then show ?case
+    by (cases i, auto)
+qed auto
 
 lemma append_eq_append_conv_if:
   "(xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>1 @ ys\<^sub>2) =
   (if size xs\<^sub>1 \<le> size ys\<^sub>1
    then xs\<^sub>1 = take (size xs\<^sub>1) ys\<^sub>1 \<and> xs\<^sub>2 = drop (size xs\<^sub>1) ys\<^sub>1 @ ys\<^sub>2
    else take (size ys\<^sub>1) xs\<^sub>1 = ys\<^sub>1 \<and> drop (size ys\<^sub>1) xs\<^sub>1 @ xs\<^sub>2 = ys\<^sub>2)"
-apply(induct xs\<^sub>1 arbitrary: ys\<^sub>1)
- apply simp
-apply(case_tac ys\<^sub>1)
-apply simp_all
-done
+proof (induct xs\<^sub>1 arbitrary: ys\<^sub>1)
+  case (Cons a xs\<^sub>1 ys\<^sub>1) then show ?case
+    by (cases ys\<^sub>1, auto)
+qed auto
 
 lemma take_hd_drop:
   "n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (Suc n) xs"
-apply(induct xs arbitrary: n)
- apply simp
-apply(simp add:drop_Cons split:nat.split)
-done
+  by (induct xs arbitrary: n) (simp_all add:drop_Cons split:nat.split)
 
 lemma id_take_nth_drop:
   "i < length xs \<Longrightarrow> xs = take i xs @ xs!i # drop (Suc i) xs"
@@ -2225,15 +2220,15 @@
   hence "xs = take (Suc i) xs @ drop (Suc i) xs" by auto
   moreover
   from si have "take (Suc i) xs = take i xs @ [xs!i]"
-    apply (rule_tac take_Suc_conv_app_nth) by arith
+    using take_Suc_conv_app_nth by blast
   ultimately show ?thesis by auto
 qed
 
 lemma take_update_cancel[simp]: "n \<le> m \<Longrightarrow> take n (xs[m := y]) = take n xs"
-by(simp add: list_eq_iff_nth_eq)
+  by(simp add: list_eq_iff_nth_eq)
 
 lemma drop_update_cancel[simp]: "n < m \<Longrightarrow> drop m (xs[n := x]) = drop m xs"
-by(simp add: list_eq_iff_nth_eq)
+  by(simp add: list_eq_iff_nth_eq)
 
 lemma upd_conv_take_nth_drop:
   "i < length xs \<Longrightarrow> xs[i:=a] = take i xs @ a # drop (Suc i) xs"
@@ -2247,105 +2242,107 @@
 qed
 
 lemma take_update_swap: "take m (xs[n := x]) = (take m xs)[n := x]"
-apply(cases "n \<ge> length xs")
- apply simp
-apply(simp add: upd_conv_take_nth_drop take_Cons drop_take min_def diff_Suc
-  split: nat.split)
-done
-
-lemma drop_update_swap: "m \<le> n \<Longrightarrow> drop m (xs[n := x]) = (drop m xs)[n-m := x]"
-apply(cases "n \<ge> length xs")
- apply simp
-apply(simp add: upd_conv_take_nth_drop drop_take)
-done
+proof (cases "n \<ge> length xs")
+  case False
+  then show ?thesis
+    by (simp add: upd_conv_take_nth_drop take_Cons drop_take min_def diff_Suc split: nat.split)
+qed auto
+
+lemma drop_update_swap: 
+  assumes "m \<le> n" shows "drop m (xs[n := x]) = (drop m xs)[n-m := x]"
+proof (cases "n \<ge> length xs")
+  case False
+  with assms show ?thesis
+    by (simp add: upd_conv_take_nth_drop drop_take)
+qed auto
 
 lemma nth_image: "l \<le> size xs \<Longrightarrow> nth xs ` {0..<l} = set(take l xs)"
-by(auto simp: set_conv_nth image_def) (metis Suc_le_eq nth_take order_trans)
+  by(auto simp: set_conv_nth image_def) (metis Suc_le_eq nth_take order_trans)
 
 
 subsubsection \<open>@{const takeWhile} and @{const dropWhile}\<close>
 
 lemma length_takeWhile_le: "length (takeWhile P xs) \<le> length xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_dropWhile_id [simp]: "takeWhile P xs @ dropWhile P xs = xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_append1 [simp]:
   "\<lbrakk>x \<in> set xs; \<not>P(x)\<rbrakk> \<Longrightarrow> takeWhile P (xs @ ys) = takeWhile P xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_append2 [simp]:
   "(\<And>x. x \<in> set xs \<Longrightarrow> P x) \<Longrightarrow> takeWhile P (xs @ ys) = xs @ takeWhile P ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_tail: "\<not> P x \<Longrightarrow> takeWhile P (xs @ (x#l)) = takeWhile P xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_nth: "j < length (takeWhile P xs) \<Longrightarrow> takeWhile P xs ! j = xs ! j"
-apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto
+  by (metis nth_append takeWhile_dropWhile_id)
 
 lemma dropWhile_nth: "j < length (dropWhile P xs) \<Longrightarrow>
   dropWhile P xs ! j = xs ! (j + length (takeWhile P xs))"
-apply (subst (3) takeWhile_dropWhile_id[symmetric]) unfolding nth_append by auto
+  by (metis add.commute nth_append_length_plus takeWhile_dropWhile_id)
 
 lemma length_dropWhile_le: "length (dropWhile P xs) \<le> length xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_append1 [simp]:
   "\<lbrakk>x \<in> set xs; \<not>P(x)\<rbrakk> \<Longrightarrow> dropWhile P (xs @ ys) = (dropWhile P xs)@ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_append2 [simp]:
   "(\<And>x. x \<in> set xs \<Longrightarrow> P(x)) ==> dropWhile P (xs @ ys) = dropWhile P ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_append3:
   "\<not> P y \<Longrightarrow>dropWhile P (xs @ y # ys) = dropWhile P xs @ y # ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_last:
   "x \<in> set xs \<Longrightarrow> \<not> P x \<Longrightarrow> last (dropWhile P xs) = last xs"
-by (auto simp add: dropWhile_append3 in_set_conv_decomp)
+  by (auto simp add: dropWhile_append3 in_set_conv_decomp)
 
 lemma set_dropWhileD: "x \<in> set (dropWhile P xs) \<Longrightarrow> x \<in> set xs"
-by (induct xs) (auto split: if_split_asm)
+  by (induct xs) (auto split: if_split_asm)
 
 lemma set_takeWhileD: "x \<in> set (takeWhile P xs) \<Longrightarrow> x \<in> set xs \<and> P x"
-by (induct xs) (auto split: if_split_asm)
+  by (induct xs) (auto split: if_split_asm)
 
 lemma takeWhile_eq_all_conv[simp]:
   "(takeWhile P xs = xs) = (\<forall>x \<in> set xs. P x)"
-by(induct xs, auto)
+  by(induct xs, auto)
 
 lemma dropWhile_eq_Nil_conv[simp]:
   "(dropWhile P xs = []) = (\<forall>x \<in> set xs. P x)"
-by(induct xs, auto)
+  by(induct xs, auto)
 
 lemma dropWhile_eq_Cons_conv:
   "(dropWhile P xs = y#ys) = (xs = takeWhile P xs @ y # ys \<and> \<not> P y)"
-by(induct xs, auto)
+  by(induct xs, auto)
 
 lemma distinct_takeWhile[simp]: "distinct xs ==> distinct (takeWhile P xs)"
-by (induct xs) (auto dest: set_takeWhileD)
+  by (induct xs) (auto dest: set_takeWhileD)
 
 lemma distinct_dropWhile[simp]: "distinct xs ==> distinct (dropWhile P xs)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_map: "takeWhile P (map f xs) = map f (takeWhile (P \<circ> f) xs)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_map: "dropWhile P (map f xs) = map f (dropWhile (P \<circ> f) xs)"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_eq_take: "takeWhile P xs = take (length (takeWhile P xs)) xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_eq_drop: "dropWhile P xs = drop (length (takeWhile P xs)) xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma hd_dropWhile: "dropWhile P xs \<noteq> [] \<Longrightarrow> \<not> P (hd (dropWhile P xs))"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma takeWhile_eq_filter:
   assumes "\<And> x. x \<in> set (dropWhile P xs) \<Longrightarrow> \<not> P x"
@@ -2386,12 +2383,12 @@
       thus "\<not> P (xs ! n')" using Cons by auto
     qed
     ultimately show ?thesis by simp
-   qed
+  qed
 qed
 
 lemma nth_length_takeWhile:
   "length (takeWhile P xs) < length xs \<Longrightarrow> \<not> P (xs ! length (takeWhile P xs))"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma length_takeWhile_less_P_nth:
   assumes all: "\<And> i. i < j \<Longrightarrow> P (xs ! i)" and "j \<le> length xs"
@@ -2404,47 +2401,46 @@
 
 lemma takeWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
   takeWhile (\<lambda>y. y \<noteq> x) (rev xs) = rev (tl (dropWhile (\<lambda>y. y \<noteq> x) xs))"
-by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
+  by(induct xs) (auto simp: takeWhile_tail[where l="[]"])
 
 lemma dropWhile_neq_rev: "\<lbrakk>distinct xs; x \<in> set xs\<rbrakk> \<Longrightarrow>
   dropWhile (\<lambda>y. y \<noteq> x) (rev xs) = x # rev (takeWhile (\<lambda>y. y \<noteq> x) xs)"
-apply(induct xs)
- apply simp
-apply auto
-apply(subst dropWhile_append2)
-apply auto
-done
+proof (induct xs)
+  case (Cons a xs)
+  then show ?case
+    by(auto, subst dropWhile_append2, auto)
+qed simp
 
 lemma takeWhile_not_last:
   "distinct xs \<Longrightarrow> takeWhile (\<lambda>y. y \<noteq> last xs) xs = butlast xs"
-by(induction xs rule: induct_list012) auto
+  by(induction xs rule: induct_list012) auto
 
 lemma takeWhile_cong [fundef_cong]:
   "\<lbrakk>l = k; \<And>x. x \<in> set l \<Longrightarrow> P x = Q x\<rbrakk>
   \<Longrightarrow> takeWhile P l = takeWhile Q k"
-by (induct k arbitrary: l) (simp_all)
+  by (induct k arbitrary: l) (simp_all)
 
 lemma dropWhile_cong [fundef_cong]:
   "\<lbrakk>l = k; \<And>x. x \<in> set l \<Longrightarrow> P x = Q x\<rbrakk>
   \<Longrightarrow> dropWhile P l = dropWhile Q k"
-by (induct k arbitrary: l, simp_all)
+  by (induct k arbitrary: l, simp_all)
 
 lemma takeWhile_idem [simp]:
   "takeWhile P (takeWhile P xs) = takeWhile P xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma dropWhile_idem [simp]:
   "dropWhile P (dropWhile P xs) = dropWhile P xs"
-by (induct xs) auto
+  by (induct xs) auto
 
 
 subsubsection \<open>@{const zip}\<close>
 
 lemma zip_Nil [simp]: "zip [] ys = []"
-by (induct ys) auto
+  by (induct ys) auto
 
 lemma zip_Cons_Cons [simp]: "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
-by simp
+  by simp
 
 declare zip_Cons [simp del]
 
@@ -2452,15 +2448,15 @@
   "zip [] ys = []"
   "zip xs [] = []"
   "zip (x # xs) (y # ys) = (x, y) # zip xs ys"
-by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+
+  by (fact zip_Nil zip.simps(1) zip_Cons_Cons)+
 
 lemma zip_Cons1:
   "zip (x#xs) ys = (case ys of [] \<Rightarrow> [] | y#ys \<Rightarrow> (x,y)#zip xs ys)"
-by(auto split:list.split)
+  by(auto split:list.split)
 
 lemma length_zip [simp]:
   "length (zip xs ys) = min (length xs) (length ys)"
-by (induct xs ys rule:list_induct2') auto
+  by (induct xs ys rule:list_induct2') auto
 
 lemma zip_obtain_same_length:
   assumes "\<And>zs ws n. length zs = length ws \<Longrightarrow> n = min (length xs) (length ys)
@@ -2482,21 +2478,21 @@
 lemma zip_append1:
   "zip (xs @ ys) zs =
   zip xs (take (length xs) zs) @ zip ys (drop (length xs) zs)"
-by (induct xs zs rule:list_induct2') auto
+  by (induct xs zs rule:list_induct2') auto
 
 lemma zip_append2:
   "zip xs (ys @ zs) =
   zip (take (length ys) xs) ys @ zip (drop (length ys) xs) zs"
-by (induct xs ys rule:list_induct2') auto
+  by (induct xs ys rule:list_induct2') auto
 
 lemma zip_append [simp]:
   "[| length xs = length us |] ==>
   zip (xs@ys) (us@vs) = zip xs us @ zip ys vs"
-by (simp add: zip_append1)
+  by (simp add: zip_append1)
 
 lemma zip_rev:
   "length xs = length ys ==> zip (rev xs) (rev ys) = rev (zip xs ys)"
-by (induct rule:list_induct2, simp_all)
+  by (induct rule:list_induct2, simp_all)
 
 lemma zip_map_map:
   "zip (map f xs) (map g ys) = map (\<lambda> (x, y). (f x, g y)) (zip xs ys)"
@@ -2511,66 +2507,66 @@
 
 lemma zip_map1:
   "zip (map f xs) ys = map (\<lambda>(x, y). (f x, y)) (zip xs ys)"
-using zip_map_map[of f xs "\<lambda>x. x" ys] by simp
+  using zip_map_map[of f xs "\<lambda>x. x" ys] by simp
 
 lemma zip_map2:
   "zip xs (map f ys) = map (\<lambda>(x, y). (x, f y)) (zip xs ys)"
-using zip_map_map[of "\<lambda>x. x" xs f ys] by simp
+  using zip_map_map[of "\<lambda>x. x" xs f ys] by simp
 
 lemma map_zip_map:
   "map f (zip (map g xs) ys) = map (%(x,y). f(g x, y)) (zip xs ys)"
-by (auto simp: zip_map1)
+  by (auto simp: zip_map1)
 
 lemma map_zip_map2:
   "map f (zip xs (map g ys)) = map (%(x,y). f(x, g y)) (zip xs ys)"
-by (auto simp: zip_map2)
+  by (auto simp: zip_map2)
 
 text\<open>Courtesy of Andreas Lochbihler:\<close>
 lemma zip_same_conv_map: "zip xs xs = map (\<lambda>x. (x, x)) xs"
-by(induct xs) auto
+  by(induct xs) auto
 
 lemma nth_zip [simp]:
   "[| i < length xs; i < length ys|] ==> (zip xs ys)!i = (xs!i, ys!i)"
-apply (induct ys arbitrary: i xs, simp)
-apply (case_tac xs)
- apply (simp_all add: nth.simps split: nat.split)
-done
+proof (induct ys arbitrary: i xs)
+  case (Cons y ys)
+  then show ?case
+    by (cases xs) (simp_all add: nth.simps split: nat.split)
+qed auto
 
 lemma set_zip:
   "set (zip xs ys) = {(xs!i, ys!i) | i. i < min (length xs) (length ys)}"
-by(simp add: set_conv_nth cong: rev_conj_cong)
+  by(simp add: set_conv_nth cong: rev_conj_cong)
 
 lemma zip_same: "((a,b) \<in> set (zip xs xs)) = (a \<in> set xs \<and> a = b)"
-by(induct xs) auto
-
-lemma zip_update:
-  "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
-by(rule sym, simp add: update_zip)
+  by(induct xs) auto
+
+lemma zip_update: "zip (xs[i:=x]) (ys[i:=y]) = (zip xs ys)[i:=(x,y)]"
+  by (simp add: update_zip)
 
 lemma zip_replicate [simp]:
   "zip (replicate i x) (replicate j y) = replicate (min i j) (x,y)"
-apply (induct i arbitrary: j, auto)
-apply (case_tac j, auto)
-done
+proof (induct i arbitrary: j)
+  case (Suc i)
+  then show ?case
+    by (cases j, auto)
+qed auto
 
 lemma zip_replicate1: "zip (replicate n x) ys = map (Pair x) (take n ys)"
-by(induction ys arbitrary: n)(case_tac [2] n, simp_all)
-
-lemma take_zip:
-  "take n (zip xs ys) = zip (take n xs) (take n ys)"
-apply (induct n arbitrary: xs ys)
- apply simp
-apply (case_tac xs, simp)
-apply (case_tac ys, simp_all)
-done
-
-lemma drop_zip:
-  "drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
-apply (induct n arbitrary: xs ys)
- apply simp
-apply (case_tac xs, simp)
-apply (case_tac ys, simp_all)
-done
+  by(induction ys arbitrary: n)(case_tac [2] n, simp_all)
+
+lemma take_zip: "take n (zip xs ys) = zip (take n xs) (take n ys)"
+proof (induct n arbitrary: xs ys)
+  case (Suc n)
+  then show ?case
+    by (case_tac xs; case_tac ys; simp)
+qed simp
+
+lemma drop_zip: "drop n (zip xs ys) = zip (drop n xs) (drop n ys)"
+proof (induct n arbitrary: xs ys)
+  case (Suc n)
+  then show ?case
+    by (case_tac xs; case_tac ys; simp)
+qed simp
 
 lemma zip_takeWhile_fst: "zip (takeWhile P xs) ys = takeWhile (P \<circ> fst) (zip xs ys)"
 proof (induct xs arbitrary: ys)
@@ -2583,26 +2579,26 @@
 qed simp
 
 lemma set_zip_leftD: "(x,y)\<in> set (zip xs ys) \<Longrightarrow> x \<in> set xs"
-by (induct xs ys rule:list_induct2') auto
+  by (induct xs ys rule:list_induct2') auto
 
 lemma set_zip_rightD: "(x,y)\<in> set (zip xs ys) \<Longrightarrow> y \<in> set ys"
-by (induct xs ys rule:list_induct2') auto
+  by (induct xs ys rule:list_induct2') auto
 
 lemma in_set_zipE:
   "(x,y) \<in> set(zip xs ys) \<Longrightarrow> (\<lbrakk> x \<in> set xs; y \<in> set ys \<rbrakk> \<Longrightarrow> R) \<Longrightarrow> R"
-by(blast dest: set_zip_leftD set_zip_rightD)
+  by(blast dest: set_zip_leftD set_zip_rightD)
 
 lemma zip_map_fst_snd: "zip (map fst zs) (map snd zs) = zs"
-by (induct zs) simp_all
+  by (induct zs) simp_all
 
 lemma zip_eq_conv:
   "length xs = length ys \<Longrightarrow> zip xs ys = zs \<longleftrightarrow> map fst zs = xs \<and> map snd zs = ys"
-by (auto simp add: zip_map_fst_snd)
+  by (auto simp add: zip_map_fst_snd)
 
 lemma in_set_zip:
   "p \<in> set (zip xs ys) \<longleftrightarrow> (\<exists>n. xs ! n = fst p \<and> ys ! n = snd p
   \<and> n < length xs \<and> n < length ys)"
-by (cases p) (auto simp add: set_zip)
+  by (cases p) (auto simp add: set_zip)
 
 lemma in_set_impl_in_set_zip1:
   assumes "length xs = length ys"
@@ -2636,25 +2632,25 @@
 
 lemma list_all2_lengthD [intro?]:
   "list_all2 P xs ys ==> length xs = length ys"
-by (simp add: list_all2_iff)
+  by (simp add: list_all2_iff)
 
 lemma list_all2_Nil [iff, code]: "list_all2 P [] ys = (ys = [])"
-by (simp add: list_all2_iff)
+  by (simp add: list_all2_iff)
 
 lemma list_all2_Nil2 [iff, code]: "list_all2 P xs [] = (xs = [])"
-by (simp add: list_all2_iff)
+  by (simp add: list_all2_iff)
 
 lemma list_all2_Cons [iff, code]:
   "list_all2 P (x # xs) (y # ys) = (P x y \<and> list_all2 P xs ys)"
-by (auto simp add: list_all2_iff)
+  by (auto simp add: list_all2_iff)
 
 lemma list_all2_Cons1:
   "list_all2 P (x # xs) ys = (\<exists>z zs. ys = z # zs \<and> P x z \<and> list_all2 P xs zs)"
-by (cases ys) auto
+  by (cases ys) auto
 
 lemma list_all2_Cons2:
   "list_all2 P xs (y # ys) = (\<exists>z zs. xs = z # zs \<and> P z y \<and> list_all2 P zs ys)"
-by (cases xs) auto
+  by (cases xs) auto
 
 lemma list_all2_induct
   [consumes 1, case_names Nil Cons, induct set: list_all2]:
@@ -2663,59 +2659,69 @@
   assumes Cons: "\<And>x xs y ys.
     \<lbrakk>P x y; list_all2 P xs ys; R xs ys\<rbrakk> \<Longrightarrow> R (x # xs) (y # ys)"
   shows "R xs ys"
-using P
-by (induct xs arbitrary: ys) (auto simp add: list_all2_Cons1 Nil Cons)
+  using P
+  by (induct xs arbitrary: ys) (auto simp add: list_all2_Cons1 Nil Cons)
 
 lemma list_all2_rev [iff]:
   "list_all2 P (rev xs) (rev ys) = list_all2 P xs ys"
-by (simp add: list_all2_iff zip_rev cong: conj_cong)
+  by (simp add: list_all2_iff zip_rev cong: conj_cong)
 
 lemma list_all2_rev1:
   "list_all2 P (rev xs) ys = list_all2 P xs (rev ys)"
-by (subst list_all2_rev [symmetric]) simp
+  by (subst list_all2_rev [symmetric]) simp
 
 lemma list_all2_append1:
   "list_all2 P (xs @ ys) zs =
   (\<exists>us vs. zs = us @ vs \<and> length us = length xs \<and> length vs = length ys \<and>
-    list_all2 P xs us \<and> list_all2 P ys vs)"
-apply (simp add: list_all2_iff zip_append1)
-apply (rule iffI)
- apply (rule_tac x = "take (length xs) zs" in exI)
- apply (rule_tac x = "drop (length xs) zs" in exI)
- apply (force split: nat_diff_split simp add: min_def, clarify)
-apply (simp add: ball_Un)
-done
+    list_all2 P xs us \<and> list_all2 P ys vs)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs
+    apply (rule_tac x = "take (length xs) zs" in exI)
+    apply (rule_tac x = "drop (length xs) zs" in exI)
+    apply (force split: nat_diff_split simp add: list_all2_iff zip_append1)
+    done
+next
+  assume ?rhs
+  then show ?lhs
+    by (auto simp add: list_all2_iff)
+qed
 
 lemma list_all2_append2:
   "list_all2 P xs (ys @ zs) =
   (\<exists>us vs. xs = us @ vs \<and> length us = length ys \<and> length vs = length zs \<and>
-    list_all2 P us ys \<and> list_all2 P vs zs)"
-apply (simp add: list_all2_iff zip_append2)
-apply (rule iffI)
- apply (rule_tac x = "take (length ys) xs" in exI)
- apply (rule_tac x = "drop (length ys) xs" in exI)
- apply (force split: nat_diff_split simp add: min_def, clarify)
-apply (simp add: ball_Un)
-done
+    list_all2 P us ys \<and> list_all2 P vs zs)" (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs
+    apply (rule_tac x = "take (length ys) xs" in exI)
+    apply (rule_tac x = "drop (length ys) xs" in exI)
+    apply (force split: nat_diff_split simp add: list_all2_iff zip_append2)
+    done
+next
+  assume ?rhs
+  then show ?lhs
+    by (auto simp add: list_all2_iff)
+qed
 
 lemma list_all2_append:
   "length xs = length ys \<Longrightarrow>
   list_all2 P (xs@us) (ys@vs) = (list_all2 P xs ys \<and> list_all2 P us vs)"
-by (induct rule:list_induct2, simp_all)
+  by (induct rule:list_induct2, simp_all)
 
 lemma list_all2_appendI [intro?, trans]:
   "\<lbrakk> list_all2 P a b; list_all2 P c d \<rbrakk> \<Longrightarrow> list_all2 P (a@c) (b@d)"
-by (simp add: list_all2_append list_all2_lengthD)
+  by (simp add: list_all2_append list_all2_lengthD)
 
 lemma list_all2_conv_all_nth:
   "list_all2 P xs ys =
   (length xs = length ys \<and> (\<forall>i < length xs. P (xs!i) (ys!i)))"
-by (force simp add: list_all2_iff set_zip)
+  by (force simp add: list_all2_iff set_zip)
 
 lemma list_all2_trans:
   assumes tr: "!!a b c. P1 a b ==> P2 b c ==> P3 a c"
   shows "!!bs cs. list_all2 P1 as bs ==> list_all2 P2 bs cs ==> list_all2 P3 as cs"
-        (is "!!bs cs. PROP ?Q as bs cs")
+    (is "!!bs cs. PROP ?Q as bs cs")
 proof (induct as)
   fix x xs bs assume I1: "!!bs cs. PROP ?Q xs bs cs"
   show "!!cs. PROP ?Q (x # xs) bs cs"
@@ -2728,100 +2734,98 @@
 
 lemma list_all2_all_nthI [intro?]:
   "length a = length b \<Longrightarrow> (\<And>n. n < length a \<Longrightarrow> P (a!n) (b!n)) \<Longrightarrow> list_all2 P a b"
-by (simp add: list_all2_conv_all_nth)
+  by (simp add: list_all2_conv_all_nth)
 
 lemma list_all2I:
   "\<forall>x \<in> set (zip a b). case_prod P x \<Longrightarrow> length a = length b \<Longrightarrow> list_all2 P a b"
-by (simp add: list_all2_iff)
+  by (simp add: list_all2_iff)
 
 lemma list_all2_nthD:
   "\<lbrakk> list_all2 P xs ys; p < size xs \<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
-by (simp add: list_all2_conv_all_nth)
+  by (simp add: list_all2_conv_all_nth)
 
 lemma list_all2_nthD2:
   "\<lbrakk>list_all2 P xs ys; p < size ys\<rbrakk> \<Longrightarrow> P (xs!p) (ys!p)"
-by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
+  by (frule list_all2_lengthD) (auto intro: list_all2_nthD)
 
 lemma list_all2_map1:
   "list_all2 P (map f as) bs = list_all2 (\<lambda>x y. P (f x) y) as bs"
-by (simp add: list_all2_conv_all_nth)
+  by (simp add: list_all2_conv_all_nth)
 
 lemma list_all2_map2:
   "list_all2 P as (map f bs) = list_all2 (\<lambda>x y. P x (f y)) as bs"
-by (auto simp add: list_all2_conv_all_nth)
+  by (auto simp add: list_all2_conv_all_nth)
 
 lemma list_all2_refl [intro?]:
   "(\<And>x. P x x) \<Longrightarrow> list_all2 P xs xs"
-by (simp add: list_all2_conv_all_nth)
+  by (simp add: list_all2_conv_all_nth)
 
 lemma list_all2_update_cong:
   "\<lbrakk> list_all2 P xs ys; P x y \<rbrakk> \<Longrightarrow> list_all2 P (xs[i:=x]) (ys[i:=y])"
-by (cases "i < length ys") (auto simp add: list_all2_conv_all_nth nth_list_update)
+  by (cases "i < length ys") (auto simp add: list_all2_conv_all_nth nth_list_update)
 
 lemma list_all2_takeI [simp,intro?]:
   "list_all2 P xs ys \<Longrightarrow> list_all2 P (take n xs) (take n ys)"
-apply (induct xs arbitrary: n ys)
- apply simp
-apply (clarsimp simp add: list_all2_Cons1)
-apply (case_tac n)
-apply auto
-done
+proof (induct xs arbitrary: n ys)
+  case (Cons x xs)
+  then show ?case
+    by (cases n) (auto simp: list_all2_Cons1)
+qed auto
 
 lemma list_all2_dropI [simp,intro?]:
-  "list_all2 P as bs \<Longrightarrow> list_all2 P (drop n as) (drop n bs)"
-apply (induct as arbitrary: n bs, simp)
-apply (clarsimp simp add: list_all2_Cons1)
-apply (case_tac n, simp, simp)
-done
+  "list_all2 P xs ys \<Longrightarrow> list_all2 P (drop n xs) (drop n ys)"
+proof (induct xs arbitrary: n ys)
+  case (Cons x xs)
+  then show ?case
+    by (cases n) (auto simp: list_all2_Cons1)
+qed auto
 
 lemma list_all2_mono [intro?]:
   "list_all2 P xs ys \<Longrightarrow> (\<And>xs ys. P xs ys \<Longrightarrow> Q xs ys) \<Longrightarrow> list_all2 Q xs ys"
-apply (induct xs arbitrary: ys, simp)
-apply (case_tac ys, auto)
-done
+  by (rule list.rel_mono_strong)
 
 lemma list_all2_eq:
   "xs = ys \<longleftrightarrow> list_all2 (=) xs ys"
-by (induct xs ys rule: list_induct2') auto
+  by (induct xs ys rule: list_induct2') auto
 
 lemma list_eq_iff_zip_eq:
   "xs = ys \<longleftrightarrow> length xs = length ys \<and> (\<forall>(x,y) \<in> set (zip xs ys). x = y)"
-by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong)
+  by(auto simp add: set_zip list_all2_eq list_all2_conv_all_nth cong: conj_cong)
 
 lemma list_all2_same: "list_all2 P xs xs \<longleftrightarrow> (\<forall>x\<in>set xs. P x x)"
-by(auto simp add: list_all2_conv_all_nth set_conv_nth)
+  by(auto simp add: list_all2_conv_all_nth set_conv_nth)
 
 lemma zip_assoc:
   "zip xs (zip ys zs) = map (\<lambda>((x, y), z). (x, y, z)) (zip (zip xs ys) zs)"
-by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
+  by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
 
 lemma zip_commute: "zip xs ys = map (\<lambda>(x, y). (y, x)) (zip ys xs)"
-by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
+  by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
 
 lemma zip_left_commute:
   "zip xs (zip ys zs) = map (\<lambda>(y, (x, z)). (x, y, z)) (zip ys (zip xs zs))"
-by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
+  by(rule list_all2_all_nthI[where P="(=)", unfolded list.rel_eq]) simp_all
 
 lemma zip_replicate2: "zip xs (replicate n y) = map (\<lambda>x. (x, y)) (take n xs)"
-by(subst zip_commute)(simp add: zip_replicate1)
+  by(subst zip_commute)(simp add: zip_replicate1)
 
 subsubsection \<open>@{const List.product} and @{const product_lists}\<close>
 
 lemma product_concat_map:
   "List.product xs ys = concat (map (\<lambda>x. map (\<lambda>y. (x,y)) ys) xs)"
-by(induction xs) (simp)+
+  by(induction xs) (simp)+
 
 lemma set_product[simp]: "set (List.product xs ys) = set xs \<times> set ys"
-by (induct xs) auto
+  by (induct xs) auto
 
 lemma length_product [simp]:
   "length (List.product xs ys) = length xs * length ys"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma product_nth:
   assumes "n < length xs * length ys"
   shows "List.product xs ys ! n = (xs ! (n div length ys), ys ! (n mod length ys))"
-using assms proof (induct xs arbitrary: n)
+  using assms proof (induct xs arbitrary: n)
   case Nil then show ?case by simp
 next
   case (Cons x xs n)
@@ -2832,7 +2836,7 @@
 
 lemma in_set_product_lists_length:
   "xs \<in> set (product_lists xss) \<Longrightarrow> length xs = length xss"
-by (induct xss arbitrary: xs) auto
+  by (induct xss arbitrary: xs) auto
 
 lemma product_lists_set:
   "set (product_lists xss) = {xs. list_all2 (\<lambda>x ys. x \<in> set ys) xs xss}" (is "?L = Collect ?R")
@@ -2851,25 +2855,25 @@
 lemma fold_simps [code]: \<comment> \<open>eta-expanded variant for generated code -- enables tail-recursion optimisation in Scala\<close>
   "fold f [] s = s"
   "fold f (x # xs) s = fold f xs (f x s)"
-by simp_all
+  by simp_all
 
 lemma fold_remove1_split:
   "\<lbrakk> \<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f x \<circ> f y = f y \<circ> f x;
     x \<in> set xs \<rbrakk>
   \<Longrightarrow> fold f xs = fold f (remove1 x xs) \<circ> f x"
-by (induct xs) (auto simp add: comp_assoc)
+  by (induct xs) (auto simp add: comp_assoc)
 
 lemma fold_cong [fundef_cong]:
   "a = b \<Longrightarrow> xs = ys \<Longrightarrow> (\<And>x. x \<in> set xs \<Longrightarrow> f x = g x)
     \<Longrightarrow> fold f xs a = fold g ys b"
-by (induct ys arbitrary: a b xs) simp_all
+  by (induct ys arbitrary: a b xs) simp_all
 
 lemma fold_id: "(\<And>x. x \<in> set xs \<Longrightarrow> f x = id) \<Longrightarrow> fold f xs = id"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma fold_commute:
   "(\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h) \<Longrightarrow> h \<circ> fold g xs = fold f xs \<circ> h"
-by (induct xs) (simp_all add: fun_eq_iff)
+  by (induct xs) (simp_all add: fun_eq_iff)
 
 lemma fold_commute_apply:
   assumes "\<And>x. x \<in> set xs \<Longrightarrow> h \<circ> g x = f x \<circ> h"
@@ -2882,41 +2886,41 @@
 lemma fold_invariant:
   "\<lbrakk> \<And>x. x \<in> set xs \<Longrightarrow> Q x;  P s;  \<And>x s. Q x \<Longrightarrow> P s \<Longrightarrow> P (f x s) \<rbrakk>
   \<Longrightarrow> P (fold f xs s)"
-by (induct xs arbitrary: s) simp_all
+  by (induct xs arbitrary: s) simp_all
 
 lemma fold_append [simp]: "fold f (xs @ ys) = fold f ys \<circ> fold f xs"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma fold_map [code_unfold]: "fold g (map f xs) = fold (g \<circ> f) xs"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma fold_filter:
   "fold f (filter P xs) = fold (\<lambda>x. if P x then f x else id) xs"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma fold_rev:
   "(\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y)
   \<Longrightarrow> fold f (rev xs) = fold f xs"
-by (induct xs) (simp_all add: fold_commute_apply fun_eq_iff)
+  by (induct xs) (simp_all add: fold_commute_apply fun_eq_iff)
 
 lemma fold_Cons_rev: "fold Cons xs = append (rev xs)"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma rev_conv_fold [code]: "rev xs = fold Cons xs []"
-by (simp add: fold_Cons_rev)
+  by (simp add: fold_Cons_rev)
 
 lemma fold_append_concat_rev: "fold append xss = append (concat (rev xss))"
-by (induct xss) simp_all
+  by (induct xss) simp_all
 
 text \<open>@{const Finite_Set.fold} and @{const fold}\<close>
 
 lemma (in comp_fun_commute) fold_set_fold_remdups:
   "Finite_Set.fold f y (set xs) = fold f (remdups xs) y"
-by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm insert_absorb)
+  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm insert_absorb)
 
 lemma (in comp_fun_idem) fold_set_fold:
   "Finite_Set.fold f y (set xs) = fold f xs y"
-by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm)
+  by (rule sym, induct xs arbitrary: y) (simp_all add: fold_fun_left_comm)
 
 lemma union_set_fold [code]: "set xs \<union> A = fold Set.insert xs A"
 proof -
@@ -2927,7 +2931,7 @@
 
 lemma union_coset_filter [code]:
   "List.coset xs \<union> A = List.coset (List.filter (\<lambda>x. x \<notin> A) xs)"
-by auto
+  by auto
 
 lemma minus_set_fold [code]: "A - set xs = fold Set.remove xs A"
 proof -
@@ -2939,15 +2943,15 @@
 
 lemma minus_coset_filter [code]:
   "A - List.coset xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
-by auto
+  by auto
 
 lemma inter_set_filter [code]:
   "A \<inter> set xs = set (List.filter (\<lambda>x. x \<in> A) xs)"
-by auto
+  by auto
 
 lemma inter_coset_fold [code]:
   "A \<inter> List.coset xs = fold Set.remove xs A"
-by (simp add: Diff_eq [symmetric] minus_set_fold)
+  by (simp add: Diff_eq [symmetric] minus_set_fold)
 
 lemma (in semilattice_set) set_eq_fold [code]:
   "F (set (x # xs)) = fold f xs x"
@@ -2995,82 +2999,82 @@
 text \<open>Correspondence\<close>
 
 lemma foldr_conv_fold [code_abbrev]: "foldr f xs = fold f (rev xs)"
-by (induct xs) simp_all
+  by (induct xs) simp_all
 
 lemma foldl_conv_fold: "foldl f s xs = fold (\<lambda>x s. f s x) xs s"
-by (induct xs arbitrary: s) simp_all
+  by (induct xs arbitrary: s) simp_all
 
 lemma foldr_conv_foldl: \<comment> \<open>The ``Third Duality Theorem'' in Bird \& Wadler:\<close>
   "foldr f xs a = foldl (\<lambda>x y. f y x) a (rev xs)"
-by (simp add: foldr_conv_fold foldl_conv_fold)
+  by (simp add: foldr_conv_fold foldl_conv_fold)
 
 lemma foldl_conv_foldr:
   "foldl f a xs = foldr (\<lambda>x y. f y x) (rev xs) a"
-by (simp add: foldr_conv_fold foldl_conv_fold)
+  by (simp add: foldr_conv_fold foldl_conv_fold)
 
 lemma foldr_fold:
   "(\<And>x y. x \<in> set xs \<Longrightarrow> y \<in> set xs \<Longrightarrow> f y \<circ> f x = f x \<circ> f y)
   \<Longrightarrow> foldr f xs = fold f xs"
-unfolding foldr_conv_fold by (rule fold_rev)
+  unfolding foldr_conv_fold by (rule fold_rev)
 
 lemma foldr_cong [fundef_cong]:
   "a = b \<Longrightarrow> l = k \<Longrightarrow> (\<And>a x. x \<in> set l \<Longrightarrow> f x a = g x a) \<Longrightarrow> foldr f l a = foldr g k b"
-by (auto simp add: foldr_conv_fold intro!: fold_cong)
+  by (auto simp add: foldr_conv_fold intro!: fold_cong)
 
 lemma foldl_cong [fundef_cong]:
   "a = b \<Longrightarrow> l = k \<Longrightarrow> (\<And>a x. x \<in> set l \<Longrightarrow> f a x = g a x) \<Longrightarrow> foldl f a l = foldl g b k"
-by (auto simp add: foldl_conv_fold intro!: fold_cong)
+  by (auto simp add: foldl_conv_fold intro!: fold_cong)
 
 lemma foldr_append [simp]: "foldr f (xs @ ys) a = foldr f xs (foldr f ys a)"
-by (simp add: foldr_conv_fold)
+  by (simp add: foldr_conv_fold)
 
 lemma foldl_append [simp]: "foldl f a (xs @ ys) = foldl f (foldl f a xs) ys"
-by (simp add: foldl_conv_fold)
+  by (simp add: foldl_conv_fold)
 
 lemma foldr_map [code_unfold]: "foldr g (map f xs) a = foldr (g \<circ> f) xs a"
-by (simp add: foldr_conv_fold fold_map rev_map)
+  by (simp add: foldr_conv_fold fold_map rev_map)
 
 lemma foldr_filter:
   "foldr f (filter P xs) = foldr (\<lambda>x. if P x then f x else id) xs"
-by (simp add: foldr_conv_fold rev_filter fold_filter)
+  by (simp add: foldr_conv_fold rev_filter fold_filter)
 
 lemma foldl_map [code_unfold]:
   "foldl g a (map f xs) = foldl (\<lambda>a x. g a (f x)) a xs"
-by (simp add: foldl_conv_fold fold_map comp_def)
+  by (simp add: foldl_conv_fold fold_map comp_def)
 
 lemma concat_conv_foldr [code]:
   "concat xss = foldr append xss []"
-by (simp add: fold_append_concat_rev foldr_conv_fold)
+  by (simp add: fold_append_concat_rev foldr_conv_fold)
 
 
 subsubsection \<open>@{const upt}\<close>
 
 lemma upt_rec[code]: "[i..<j] = (if i<j then i#[Suc i..<j] else [])"
-\<comment> \<open>simp does not terminate!\<close>
-by (induct j) auto
+  \<comment> \<open>simp does not terminate!\<close>
+  by (induct j) auto
 
 lemmas upt_rec_numeral[simp] = upt_rec[of "numeral m" "numeral n"] for m n
 
-lemma upt_conv_Nil [simp]: "j <= i ==> [i..<j] = []"
-by (subst upt_rec) simp
-
-lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j <= i)"
-by(induct j)simp_all
+lemma upt_conv_Nil [simp]: "j \<le> i ==> [i..<j] = []"
+  by (subst upt_rec) simp
+
+lemma upt_eq_Nil_conv[simp]: "([i..<j] = []) = (j = 0 \<or> j \<le> i)"
+  by(induct j)simp_all
 
 lemma upt_eq_Cons_conv:
- "([i..<j] = x#xs) = (i < j \<and> i = x \<and> [i+1..<j] = xs)"
-apply(induct j arbitrary: x xs)
- apply simp
-apply(clarsimp simp add: append_eq_Cons_conv)
-apply arith
-done
-
-lemma upt_Suc_append: "i <= j ==> [i..<(Suc j)] = [i..<j]@[j]"
-\<comment> \<open>Only needed if \<open>upt_Suc\<close> is deleted from the simpset.\<close>
-by simp
+  "([i..<j] = x#xs) = (i < j \<and> i = x \<and> [i+1..<j] = xs)"
+proof (induct j arbitrary: x xs)
+  case (Suc j)
+  then show ?case
+    by (simp add: upt_rec)
+qed simp
+
+lemma upt_Suc_append: "i \<le> j ==> [i..<(Suc j)] = [i..<j]@[j]"
+  \<comment> \<open>Only needed if \<open>upt_Suc\<close> is deleted from the simpset.\<close>
+  by simp
 
 lemma upt_conv_Cons: "i < j ==> [i..<j] = i # [Suc i..<j]"
-by (simp add: upt_rec)
+  by (simp add: upt_rec)
 
 lemma upt_conv_Cons_Cons: \<comment> \<open>no precondition\<close>
   "m # n # ns = [m..<q] \<longleftrightarrow> n # ns = [Suc m..<q]"
@@ -3081,90 +3085,79 @@
 qed
 
 lemma upt_add_eq_append: "i<=j ==> [i..<j+k] = [i..<j]@[j..<j+k]"
-\<comment> \<open>LOOPS as a simprule, since \<open>j <= j\<close>.\<close>
-by (induct k) auto
+  \<comment> \<open>LOOPS as a simprule, since \<open>j \<le> j\<close>.\<close>
+  by (induct k) auto
 
 lemma length_upt [simp]: "length [i..<j] = j - i"
-by (induct j) (auto simp add: Suc_diff_le)
+  by (induct j) (auto simp add: Suc_diff_le)
 
 lemma nth_upt [simp]: "i + k < j ==> [i..<j] ! k = i + k"
-by (induct j) (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
+  by (induct j) (auto simp add: less_Suc_eq nth_append split: nat_diff_split)
 
 lemma hd_upt[simp]: "i < j \<Longrightarrow> hd[i..<j] = i"
-by(simp add:upt_conv_Cons)
+  by(simp add:upt_conv_Cons)
 
 lemma tl_upt: "tl [m..<n] = [Suc m..<n]"
-by (simp add: upt_rec)
+  by (simp add: upt_rec)
 
 lemma last_upt[simp]: "i < j \<Longrightarrow> last[i..<j] = j - 1"
-by(cases j)(auto simp: upt_Suc_append)
-
-lemma take_upt [simp]: "i+m <= n ==> take m [i..<n] = [i..<i+m]"
-apply (induct m arbitrary: i, simp)
-apply (subst upt_rec)
-apply (rule sym)
-apply (subst upt_rec)
-apply (simp del: upt.simps)
-done
+  by(cases j)(auto simp: upt_Suc_append)
+
+lemma take_upt [simp]: "i+m \<le> n ==> take m [i..<n] = [i..<i+m]"
+proof (induct m arbitrary: i)
+  case (Suc m)
+  then show ?case
+    by (subst take_Suc_conv_app_nth) auto
+qed simp
 
 lemma drop_upt[simp]: "drop m [i..<j] = [i+m..<j]"
-by(induct j) auto
+  by(induct j) auto
 
 lemma map_Suc_upt: "map Suc [m..<n] = [Suc m..<Suc n]"
-by (induct n) auto
+  by (induct n) auto
 
 lemma map_add_upt: "map (\<lambda>i. i + n) [0..<m] = [n..<m + n]"
-by (induct m) simp_all
+  by (induct m) simp_all
 
 lemma nth_map_upt: "i < n-m ==> (map f [m..<n]) ! i = f(m+i)"
-apply (induct n m  arbitrary: i rule: diff_induct)
-  prefer 3 apply (subst map_Suc_upt[symmetric])
-  apply (auto simp add: less_diff_conv)
-done
+proof (induct n m  arbitrary: i rule: diff_induct)
+  case (3 x y)
+  then show ?case
+    by (metis add.commute length_upt less_diff_conv nth_map nth_upt)
+qed auto
 
 lemma map_decr_upt: "map (\<lambda>n. n - Suc 0) [Suc m..<Suc n] = [m..<n]"
-by (induct n) simp_all
+  by (induct n) simp_all
 
 lemma map_upt_Suc: "map f [0 ..< Suc n] = f 0 # map (\<lambda>i. f (Suc i)) [0 ..< n]"
-by (induct n arbitrary: f) auto
-
+  by (induct n arbitrary: f) auto
 
 lemma nth_take_lemma:
   "k \<le> length xs \<Longrightarrow> k \<le> length ys \<Longrightarrow>
      (\<And>i. i < k \<longrightarrow> xs!i = ys!i) \<Longrightarrow> take k xs = take k ys"
-apply (atomize, induct k arbitrary: xs ys)
-apply (simp_all add: less_Suc_eq_0_disj all_conj_distrib, clarify)
-txt \<open>Both lists must be non-empty\<close>
-apply (case_tac xs, simp)
-apply (case_tac ys, clarify)
- apply (simp (no_asm_use))
-apply clarify
-txt \<open>prenexing's needed, not miniscoping\<close>
-apply (simp (no_asm_use) add: all_simps [symmetric] del: all_simps)
-apply blast
-done
+proof (induct k arbitrary: xs ys)
+  case (Suc k)
+  then show ?case
+    apply (simp add: less_Suc_eq_0_disj)
+    by (simp add: Suc.prems(3) take_Suc_conv_app_nth)
+qed simp
 
 lemma nth_equalityI:
   "[| length xs = length ys; \<forall>i < length xs. xs!i = ys!i |] ==> xs = ys"
-by (frule nth_take_lemma [OF le_refl eq_imp_le]) simp_all
+  by (frule nth_take_lemma [OF le_refl eq_imp_le]) simp_all
 
 lemma map_nth:
   "map (\<lambda>i. xs ! i) [0..<length xs] = xs"
-by (rule nth_equalityI, auto)
+  by (rule nth_equalityI, auto)
 
 lemma list_all2_antisym:
   "\<lbrakk> (\<And>x y. \<lbrakk>P x y; Q y x\<rbrakk> \<Longrightarrow> x = y); list_all2 P xs ys; list_all2 Q ys xs \<rbrakk>
   \<Longrightarrow> xs = ys"
-apply (simp add: list_all2_conv_all_nth)
-apply (rule nth_equalityI, blast, simp)
-done
+  by (simp add: list_all2_conv_all_nth nth_equalityI)
 
 lemma take_equalityI: "(\<forall>i. take i xs = take i ys) ==> xs = ys"
 \<comment> \<open>The famous take-lemma.\<close>
-apply (drule_tac x = "max (length xs) (length ys)" in spec)
-apply (simp add: le_max_iff_disj)
-done
-
+  by (metis length_take min.commute order_refl take_all)
 
 lemma take_Cons':
   "take n (x # xs) = (if n = 0 then [] else x # take (n - 1) xs)"
@@ -3241,7 +3234,7 @@
 qed
 
 lemma nth_upto: "i + int k \<le> j \<Longrightarrow> [i..j] ! k = i + int k"
-apply(induction i j arbitrary: k rule: upto.induct)
+  apply(induction i j arbitrary: k rule: upto.induct)
 apply(subst upto_rec1)
 apply(auto simp add: nth_Cons')
 done
@@ -3307,17 +3300,16 @@
 lemma remdups_eq_nil_right_iff [simp]: "([] = remdups x) = (x = [])"
 by (induct x, auto)
 
-lemma length_remdups_leq[iff]: "length(remdups xs) <= length xs"
+lemma length_remdups_leq[iff]: "length(remdups xs) \<le> length xs"
 by (induct xs) auto
 
 lemma length_remdups_eq[iff]:
   "(length (remdups xs) = length xs) = (remdups xs = xs)"
-apply(induct xs)
- apply auto
-apply(subgoal_tac "length (remdups xs) <= length xs")
- apply arith
-apply(rule length_remdups_leq)
-done
+proof (induct xs)
+  case (Cons a xs)
+  then show ?case
+    by simp (metis Suc_n_not_le_n impossible_Cons length_remdups_leq)
+qed auto
 
 lemma remdups_filter: "remdups(filter P xs) = filter P (remdups xs)"
 by (induct xs) auto
@@ -3343,31 +3335,38 @@
 done
 
 lemma distinct_take[simp]: "distinct xs \<Longrightarrow> distinct (take i xs)"
-apply(induct xs arbitrary: i)
- apply simp
-apply (case_tac i)
- apply simp_all
-apply(blast dest:in_set_takeD)
-done
+proof (induct xs arbitrary: i)
+  case (Cons a xs)
+  then show ?case
+    by (metis Cons.prems append_take_drop_id distinct_append)
+qed auto
 
 lemma distinct_drop[simp]: "distinct xs \<Longrightarrow> distinct (drop i xs)"
-apply(induct xs arbitrary: i)
- apply simp
-apply (case_tac i)
- apply simp_all
-done
+proof (induct xs arbitrary: i)
+  case (Cons a xs)
+  then show ?case
+    by (metis Cons.prems append_take_drop_id distinct_append)
+qed auto
 
 lemma distinct_list_update:
-assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
-shows "distinct (xs[i:=a])"
+  assumes d: "distinct xs" and a: "a \<notin> set xs - {xs!i}"
+  shows "distinct (xs[i:=a])"
 proof (cases "i < length xs")
   case True
-  with a have "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
-    apply (drule_tac id_take_nth_drop) by simp
-  with d True show ?thesis
-    apply (simp add: upd_conv_take_nth_drop)
-    apply (drule subst [OF id_take_nth_drop]) apply assumption
-    apply simp apply (cases "a = xs!i") apply simp by blast
+  with a have anot: "a \<notin> set (take i xs @ xs ! i # drop (Suc i) xs) - {xs!i}"
+    by simp (metis in_set_dropD in_set_takeD)
+  show ?thesis
+  proof (cases "a = xs!i")
+    case True
+    with d show ?thesis
+      by auto
+  next
+    case False
+    then show ?thesis
+      using d anot \<open>i < length xs\<close> 
+      apply (simp add: upd_conv_take_nth_drop)
+      by (metis disjoint_insert(1) distinct_append id_take_nth_drop set_simps(2))
+  qed
 next
   case False with d show ?thesis by auto
 qed
@@ -3382,22 +3381,14 @@
 text \<open>It is best to avoid this indexed version of distinct, but
 sometimes it is useful.\<close>
 
-lemma distinct_conv_nth:
-"distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j \<longrightarrow> xs!i \<noteq> xs!j)"
-apply (induct xs, simp, simp)
-apply (rule iffI, clarsimp)
- apply (case_tac i)
-apply (case_tac j, simp)
-apply (simp add: set_conv_nth)
- apply (case_tac j)
-apply (clarsimp simp add: set_conv_nth, simp)
-apply (rule conjI)
- apply (clarsimp simp add: set_conv_nth)
- apply (erule_tac x = 0 in allE, simp)
- apply (erule_tac x = "Suc i" in allE, simp, clarsimp)
-apply (erule_tac x = "Suc i" in allE, simp)
-apply (erule_tac x = "Suc j" in allE, simp)
-done
+lemma distinct_conv_nth: "distinct xs = (\<forall>i < size xs. \<forall>j < size xs. i \<noteq> j \<longrightarrow> xs!i \<noteq> xs!j)"
+proof (induct xs)
+  case (Cons x xs)
+  show ?case
+    apply (auto simp add: Cons nth_Cons split: nat.split_asm)
+    apply (metis Suc_less_eq2 in_set_conv_nth less_not_refl zero_less_Suc)+
+    done
+qed auto
 
 lemma nth_eq_iff_index_eq:
   "\<lbrakk> distinct xs; i < length xs; j < length xs \<rbrakk> \<Longrightarrow> (xs!i = xs!j) = (i = j)"
@@ -3422,7 +3413,7 @@
 
 lemma distinct_swap[simp]: "\<lbrakk> i < size xs; j < size xs \<rbrakk> \<Longrightarrow>
   distinct(xs[i := xs!j, j := xs!i]) = distinct xs"
-apply (simp add: distinct_conv_nth nth_list_update)
+  apply (simp add: distinct_conv_nth nth_list_update)
 apply safe
 apply metis+
 done
@@ -3436,8 +3427,6 @@
 
 lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
 proof (induct xs)
-  case Nil thus ?case by simp
-next
   case (Cons x xs)
   show ?case
   proof (cases "x \<in> set xs")
@@ -3450,17 +3439,20 @@
     ultimately have False by simp
     thus ?thesis ..
   qed
-qed
+qed simp
 
 lemma distinct_length_filter: "distinct xs \<Longrightarrow> length (filter P xs) = card ({x. P x} Int set xs)"
 by (induct xs) (auto)
 
 lemma not_distinct_decomp: "\<not> distinct ws \<Longrightarrow> \<exists>xs ys zs y. ws = xs@[y]@ys@[y]@zs"
-apply (induct n == "length ws" arbitrary:ws) apply simp
-apply(case_tac ws) apply simp
-apply (simp split:if_split_asm)
-apply (metis Cons_eq_appendI eq_Nil_appendI split_list)
-done
+proof (induct n == "length ws" arbitrary:ws)
+  case (Suc n ws)
+  then show ?case
+    using length_Suc_conv [of ws n]
+    apply (auto simp: eq_commute)
+     apply (metis append_Nil in_set_conv_decomp_first)
+    by (metis append_Cons)
+qed simp
 
 lemma not_distinct_conv_prefix:
   defines "dec as xs y ys \<equiv> y \<in> set xs \<and> distinct xs \<and> as = xs @ y # ys"
@@ -3692,7 +3684,6 @@
         then have "Suc 0 \<notin> f ` {0 ..< length (x1 # x2 # xs)}" by auto
         then show False using f_img \<open>2 \<le> length ys\<close> by auto
       qed
-
       obtain ys' where "ys = x1 # x2 # ys'"
         using \<open>2 \<le> length ys\<close> f_nth[of 0] f_nth[of 1]
         apply (cases ys)
@@ -3717,10 +3708,7 @@
           using Suc0_le_f_Suc f_mono by (auto simp: f'_def mono_iff_le_Suc le_diff_iff)
       next
         have "f' ` {0 ..< length (x2 # xs)} = (\<lambda>x. f x - 1) ` {0 ..< length (x1 # x2 #xs)}"
-          apply safe
-          apply (rename_tac [!] n,  case_tac [!] n)
-          apply (auto simp: f'_def \<open>f 0 = 0\<close> \<open>f (Suc 0) = Suc 0\<close> intro: rev_image_eqI)
-          done
+          by (auto simp: f'_def \<open>f 0 = 0\<close> \<open>f (Suc 0) = Suc 0\<close> image_def Bex_def less_Suc_eq_0_disj)
         also have "\<dots> = (\<lambda>x. x - 1) ` f ` {0 ..< length (x1 # x2 #xs)}"
           by (auto simp: image_comp)
         also have "\<dots> = (\<lambda>x. x - 1) ` {0 ..< length ys}"
@@ -3887,10 +3875,12 @@
 
 lemma sum_count_set:
   "set xs \<subseteq> X \<Longrightarrow> finite X \<Longrightarrow> sum (count_list xs) X = length xs"
-apply(induction xs arbitrary: X)
- apply simp
-apply (simp add: sum.If_cases)
-by (metis Diff_eq sum.remove)
+proof (induction xs arbitrary: X)
+  case (Cons x xs)
+  then show ?case
+    apply (auto simp: sum.If_cases sum.remove)
+    by (metis (no_types) Cons.IH Cons.prems(2) diff_eq sum.remove)
+qed simp
 
 
 subsubsection \<open>@{const List.extract}\<close>
@@ -3933,23 +3923,13 @@
 
 lemma in_set_remove1[simp]:
   "a \<noteq> b \<Longrightarrow> a \<in> set(remove1 b xs) = (a \<in> set xs)"
-apply (induct xs)
- apply auto
-done
+  by (induct xs) auto
 
 lemma set_remove1_subset: "set(remove1 x xs) \<subseteq> set xs"
-apply(induct xs)
- apply simp
-apply simp
-apply blast
-done
+  by (induct xs) auto
 
 lemma set_remove1_eq [simp]: "distinct xs \<Longrightarrow> set(remove1 x xs) = set xs - {x}"
-apply(induct xs)
- apply simp
-apply simp
-apply blast
-done
+  by (induct xs) auto
 
 lemma length_remove1:
   "length(remove1 x xs) = (if x \<in> set xs then length xs - 1 else length xs)"
@@ -4069,9 +4049,7 @@
 text\<open>Courtesy of Matthias Daum:\<close>
 lemma append_replicate_commute:
   "replicate n x @ replicate k x = replicate k x @ replicate n x"
-apply (simp add: replicate_add [symmetric])
-apply (simp add: add.commute)
-done
+  by (metis add.commute replicate_add)
 
 text\<open>Courtesy of Andreas Lochbihler:\<close>
 lemma filter_replicate:
@@ -4092,23 +4070,24 @@
 
 text\<open>Courtesy of Matthias Daum (2 lemmas):\<close>
 lemma take_replicate[simp]: "take i (replicate k x) = replicate (min i k) x"
-apply (case_tac "k \<le> i")
- apply  (simp add: min_def)
-apply (drule not_le_imp_less)
-apply (simp add: min_def)
-apply (subgoal_tac "replicate k x = replicate i x @ replicate (k - i) x")
- apply  simp
-apply (simp add: replicate_add [symmetric])
-done
+proof (cases "k \<le> i")
+  case True
+  then show ?thesis
+    by (simp add: min_def)
+next
+  case False
+  then have "replicate k x = replicate i x @ replicate (k - i) x"
+    by (simp add: replicate_add [symmetric])
+  then show ?thesis
+    by (simp add: min_def)
+qed
 
 lemma drop_replicate[simp]: "drop i (replicate k x) = replicate (k-i) x"
-apply (induct k arbitrary: i)
- apply simp
-apply clarsimp
-apply (case_tac i)
- apply simp
-apply clarsimp
-done
+proof (induct k arbitrary: i)
+  case (Suc k)
+  then show ?case
+    by (simp add: drop_Cons')
+qed simp
 
 lemma set_replicate_Suc: "set (replicate (Suc n) x) = {x}"
 by (induct n) auto
@@ -4150,11 +4129,11 @@
 
 lemma replicate_eq_replicate[simp]:
   "(replicate m x = replicate n y) \<longleftrightarrow> (m=n \<and> (m\<noteq>0 \<longrightarrow> x=y))"
-apply(induct m arbitrary: n)
- apply simp
-apply(induct_tac n)
-apply auto
-done
+proof (induct m arbitrary: n)
+  case (Suc m n)
+  then show ?case
+    by (induct n) auto
+qed simp
 
 lemma replicate_length_filter:
   "replicate (length (filter (\<lambda>y. x = y) xs)) x = filter (\<lambda>y. x = y) xs"
@@ -4241,10 +4220,7 @@
 lemma enumerate_simps [simp, code]:
   "enumerate n [] = []"
   "enumerate n (x # xs) = (n, x) # enumerate (Suc n) xs"
-apply (auto simp add: enumerate_eq_zip not_le)
-apply (cases "n < n + length xs")
- apply (auto simp add: upt_conv_Cons)
-done
+  by (simp_all add: enumerate_eq_zip upt_rec)
 
 lemma length_enumerate [simp]:
   "length (enumerate n xs) = length xs"
@@ -4290,12 +4266,7 @@
 
 lemma enumerate_append_eq:
   "enumerate n (xs @ ys) = enumerate n xs @ enumerate (n + length xs) ys"
-unfolding enumerate_eq_zip
-apply auto
- apply (subst zip_append [symmetric]) apply simp
- apply (subst upt_add_eq_append [symmetric])
- apply (simp_all add: ac_simps)
-done
+  by (simp add: enumerate_eq_zip add.assoc zip_append2)
 
 lemma enumerate_map_upt:
   "enumerate n (map f [n..<m]) = map (\<lambda>k. (k, f k)) [n..<m]"
@@ -4320,31 +4291,37 @@
 lemma rotate1_rotate_swap: "rotate1 (rotate n xs) = rotate n (rotate1 xs)"
 by(simp add:rotate_def funpow_swap1)
 
-lemma rotate1_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate1 xs = xs"
+lemma rotate1_length01[simp]: "length xs \<le> 1 \<Longrightarrow> rotate1 xs = xs"
 by(cases xs) simp_all
 
-lemma rotate_length01[simp]: "length xs <= 1 \<Longrightarrow> rotate n xs = xs"
-apply(induct n)
- apply simp
-apply (simp add:rotate_def)
-done
+lemma rotate_length01[simp]: "length xs \<le> 1 \<Longrightarrow> rotate n xs = xs"
+  by (induct n) (simp_all add:rotate_def)
 
 lemma rotate1_hd_tl: "xs \<noteq> [] \<Longrightarrow> rotate1 xs = tl xs @ [hd xs]"
 by (cases xs) simp_all
 
 lemma rotate_drop_take:
   "rotate n xs = drop (n mod length xs) xs @ take (n mod length xs) xs"
-apply(induct n)
- apply simp
-apply(simp add:rotate_def)
-apply(cases "xs = []")
- apply (simp)
-apply(case_tac "n mod length xs = 0")
- apply(simp add:mod_Suc)
- apply(simp add: rotate1_hd_tl drop_Suc take_Suc)
-apply(simp add:mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
-                take_hd_drop linorder_not_le)
-done
+proof (induct n)
+  case (Suc n)
+  show ?case
+  proof (cases "xs = []")
+    case False
+    then show ?thesis
+    proof (cases "n mod length xs = 0")
+      case True
+      then show ?thesis
+        apply (simp add: mod_Suc)
+        by (simp add: False Suc.hyps drop_Suc rotate1_hd_tl take_Suc)
+    next
+      case False
+      with \<open>xs \<noteq> []\<close> Suc
+      show ?thesis
+        by (simp add: rotate_def mod_Suc rotate1_hd_tl drop_Suc[symmetric] drop_tl[symmetric]
+            take_hd_drop linorder_not_le)
+    qed
+  qed simp
+qed simp
 
 lemma rotate_conv_mod: "rotate n xs = rotate (n mod length xs) xs"
 by(simp add:rotate_drop_take)
@@ -4387,11 +4364,14 @@
     by(simp add:rotate_drop_take rev_drop rev_take)
 qed force
 
-lemma hd_rotate_conv_nth: "xs \<noteq> [] \<Longrightarrow> hd(rotate n xs) = xs!(n mod length xs)"
-apply(simp add:rotate_drop_take hd_append hd_drop_conv_nth hd_conv_nth)
-apply(subgoal_tac "length xs \<noteq> 0")
- prefer 2 apply simp
-using mod_less_divisor[of "length xs" n] by arith
+lemma hd_rotate_conv_nth:
+  assumes "xs \<noteq> []" shows "hd(rotate n xs) = xs!(n mod length xs)"
+proof -
+  have "n mod length xs < length xs"
+    using assms by simp
+  then show ?thesis
+    by (metis drop_eq_Nil hd_append2 hd_drop_conv_nth leD rotate_drop_take)
+qed
 
 lemma rotate_append: "rotate (length l) (l @ q) = q @ l"
   by (induct l arbitrary: q) (auto simp add: rotate1_rotate_swap)
@@ -4410,14 +4390,13 @@
 by(simp add: nths_def length_filter_conv_card cong:conj_cong)
 
 lemma nths_shift_lemma_Suc:
-  "map fst (filter (%p. P(Suc(snd p))) (zip xs is)) =
-   map fst (filter (%p. P(snd p)) (zip xs (map Suc is)))"
-apply(induct xs arbitrary: "is")
- apply simp
-apply (case_tac "is")
- apply simp
-apply simp
-done
+  "map fst (filter (\<lambda>p. P(Suc(snd p))) (zip xs is)) =
+   map fst (filter (\<lambda>p. P(snd p)) (zip xs (map Suc is)))"
+proof (induct xs arbitrary: "is")
+  case (Cons x xs "is")
+  show ?case
+    by (cases "is") (auto simp add: Cons.hyps)
+qed simp
 
 lemma nths_shift_lemma:
   "map fst (filter (\<lambda>p. snd p \<in> A) (zip xs [i..<i + length xs])) =
@@ -4426,26 +4405,26 @@
 
 lemma nths_append:
   "nths (l @ l') A = nths l A @ nths l' {j. j + length l \<in> A}"
-apply (unfold nths_def)
-apply (induct l' rule: rev_induct, simp)
-apply (simp add: upt_add_eq_append[of 0] nths_shift_lemma)
-apply (simp add: add.commute)
-done
+  unfolding nths_def
+proof (induct l' rule: rev_induct)
+  case (snoc x xs)
+  then show ?case
+    by (simp add: upt_add_eq_append[of 0] nths_shift_lemma add.commute)
+qed auto
 
 lemma nths_Cons:
   "nths (x # l) A = (if 0 \<in> A then [x] else []) @ nths l {j. Suc j \<in> A}"
-apply (induct l rule: rev_induct)
- apply (simp add: nths_def)
-apply (simp del: append_Cons add: append_Cons[symmetric] nths_append)
-done
+proof (induct l rule: rev_induct)
+  case (snoc x xs)
+  then show ?case
+    by (simp flip: append_Cons add: nths_append)
+qed (auto simp: nths_def)
 
 lemma nths_map: "nths (map f xs) I = map f (nths xs I)"
 by(induction xs arbitrary: I) (simp_all add: nths_Cons)
 
 lemma set_nths: "set(nths xs I) = {xs!i|i. i<size xs \<and> i \<in> I}"
-apply(induct xs arbitrary: I)
-apply(auto simp: nths_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc)
-done
+  by (induct xs arbitrary: I) (auto simp: nths_Cons nth_Cons split:nat.split dest!: gr0_implies_Suc)
 
 lemma set_nths_subset: "set(nths xs I) \<subseteq> set xs"
 by(auto simp add:set_nths)
@@ -4794,8 +4773,7 @@
     show ?thesis
       unfolding transpose.simps \<open>i = Suc j\<close> nth_Cons_Suc "3.hyps"[OF j_less]
       apply (auto simp: transpose_aux_filter_tail filter_map comp_def length_transpose * ** *** XS_def[symmetric])
-      apply (rule list.exhaust)
-      by auto
+      by (simp add: nth_tl)
   qed
 qed simp_all
 
@@ -4919,11 +4897,7 @@
 qed
 
 lemma infinite_UNIV_listI: "\<not> finite(UNIV::'a list set)"
-apply (rule notI)
-apply (drule finite_maxlen)
-apply clarsimp
-apply (erule_tac x = "replicate n undefined" in allE)
-by simp
+  by (metis UNIV_I finite_maxlen length_replicate less_irrefl)
 
 
 subsection \<open>Sorting\<close>
@@ -4938,10 +4912,11 @@
 by(simp)
 
 lemma sorted_wrt2: "transp P \<Longrightarrow> sorted_wrt P (x # y # zs) = (P x y \<and> sorted_wrt P (y # zs))"
-apply(induction zs arbitrary: x y)
-apply(auto dest: transpD)
-apply (meson transpD)
-done
+proof (induction zs arbitrary: x y)
+  case (Cons z zs)
+  then show ?case
+    by simp (meson transpD)+
+qed auto
 
 lemmas sorted_wrt2_simps = sorted_wrt1 sorted_wrt2
 
@@ -4971,9 +4946,7 @@
 
 lemma sorted_wrt_iff_nth_less:
   "sorted_wrt P xs = (\<forall>i j. i < j \<longrightarrow> j < length xs \<longrightarrow> P (xs ! i) (xs ! j))"
-apply(induction xs)
-apply(auto simp add: in_set_conv_nth Ball_def nth_Cons split: nat.split)
-done
+  by (induction xs) (auto simp add: in_set_conv_nth Ball_def nth_Cons split: nat.split)
 
 lemma sorted_wrt_nth_less:
   "\<lbrakk> sorted_wrt P xs; i < j; j < length xs \<rbrakk> \<Longrightarrow> P (xs ! i) (xs ! j)"
@@ -4983,10 +4956,11 @@
 by(induction n) (auto simp: sorted_wrt_append)
 
 lemma sorted_wrt_upto[simp]: "sorted_wrt (<) [i..j]"
-apply(induction i j rule: upto.induct)
-apply(subst upto.simps)
-apply(simp)
-done
+proof(induct i j rule:upto.induct)
+  case (1 i j)
+  from this show ?case
+    unfolding upto.simps[of i j] by auto
+qed
 
 text \<open>Each element is greater or equal to its index:\<close>
 
@@ -5315,12 +5289,13 @@
 qed
 
 lemma finite_sorted_distinct_unique:
-shows "finite A \<Longrightarrow> \<exists>!xs. set xs = A \<and> sorted xs \<and> distinct xs"
-apply(drule finite_distinct_list)
-apply clarify
-apply(rule_tac a="sort xs" in ex1I)
-apply (auto simp: sorted_distinct_set_unique)
-done
+  assumes "finite A" shows "\<exists>!xs. set xs = A \<and> sorted xs \<and> distinct xs"
+proof -
+  obtain xs where "distinct xs" "A = set xs"
+    using finite_distinct_list [OF assms] by metis
+  then show ?thesis
+    by (rule_tac a="sort xs" in ex1I) (auto simp: sorted_distinct_set_unique)
+qed
 
 lemma insort_insert_key_triv:
   "f x \<in> f ` set xs \<Longrightarrow> insort_insert_key f x xs = xs"
@@ -5719,7 +5694,7 @@
 
 lemmas in_listsI [intro!] = in_listspI [to_set]
 
-lemma lists_eq_set: "lists A = {xs. set xs <= A}"
+lemma lists_eq_set: "lists A = {xs. set xs \<le> A}"
 by auto
 
 lemma lists_empty [simp]: "lists {} = {[]}"
@@ -5743,12 +5718,12 @@
   | insert:  "ListMem x xs \<Longrightarrow> ListMem x (y # xs)"
 
 lemma ListMem_iff: "(ListMem x xs) = (x \<in> set xs)"
-apply (rule iffI)
- apply (induct set: ListMem)
-  apply auto
-apply (induct xs)
- apply (auto intro: ListMem.intros)
-done
+proof
+  show "ListMem x xs \<Longrightarrow> x \<in> set xs"
+    by (induct set: ListMem) auto
+  show "x \<in> set xs \<Longrightarrow> ListMem x xs"
+    by (induct xs) (auto intro: ListMem.intros)
+qed
 
 
 subsubsection \<open>Lists as Cartesian products\<close>
@@ -5791,20 +5766,23 @@
 "lenlex r = inv_image (less_than <*lex*> lex r) (\<lambda>xs. (length xs, xs))"
         \<comment> \<open>Compares lists by their length and then lexicographically\<close>
 
-lemma wf_lexn: "wf r ==> wf (lexn r n)"
-apply (induct n, simp, simp)
-apply(rule wf_subset)
- prefer 2 apply (rule Int_lower1)
-apply(rule wf_map_prod_image)
- prefer 2 apply (rule inj_onI, auto)
-done
+lemma wf_lexn: assumes "wf r" shows "wf (lexn r n)"
+proof (induct n)
+  case (Suc n)
+  have inj: "inj (\<lambda>(x, xs). x # xs)"
+    using assms by (auto simp: inj_on_def)
+  have wf: "wf (map_prod (\<lambda>(x, xs). x # xs) (\<lambda>(x, xs). x # xs) ` (r <*lex*> lexn r n))"
+    by (simp add: Suc.hyps assms wf_lex_prod wf_map_prod_image [OF _ inj])
+  then show ?case
+    by (rule wf_subset) auto
+qed auto
 
 lemma lexn_length:
   "(xs, ys) \<in> lexn r n \<Longrightarrow> length xs = n \<and> length ys = n"
 by (induct n arbitrary: xs ys) auto
 
 lemma wf_lex [intro!]: "wf r ==> wf (lex r)"
-  apply (unfold lex_def)
+  unfolding lex_def
   apply (rule wf_UN)
    apply (simp add: wf_lexn)
   apply (metis DomainE Int_emptyI RangeE lexn_length)
@@ -5907,14 +5885,12 @@
 by (simp add:lex_conv)
 
 lemma Cons_in_lex [simp]:
-    "((x # xs, y # ys) \<in> lex r) =
+  "((x # xs, y # ys) \<in> lex r) =
       ((x, y) \<in> r \<and> length xs = length ys \<or> x = y \<and> (xs, ys) \<in> lex r)"
-apply (simp add: lex_conv)
-apply (rule iffI)
- prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
-apply (case_tac xys, simp, simp)
-apply blast
-  done
+  apply (simp add: lex_conv)
+  apply (rule iffI)
+   prefer 2 apply (blast intro: Cons_eq_appendI, clarify)
+  by (metis hd_append append_Nil list.sel(1) list.sel(3) tl_append2)
 
 lemma lex_append_rightI:
   "(xs, ys) \<in> lex r \<Longrightarrow> length vs = length us \<Longrightarrow> (xs @ us, ys @ vs) \<in> lex r"
@@ -5962,12 +5938,13 @@
 by (unfold lexord_def, induct_tac x, auto)
 
 lemma lexord_cons_cons[simp]:
-     "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r \<or> (a = b \<and> (x,y)\<in> lexord r))"
-  apply (unfold lexord_def, safe, simp_all)
-  apply (case_tac u, simp, simp)
-  apply (case_tac u, simp, clarsimp, blast, blast, clarsimp)
-  apply (erule_tac x="b # u" in allE)
-  by force
+  "((a # x, b # y) \<in> lexord r) = ((a,b)\<in> r \<or> (a = b \<and> (x,y)\<in> lexord r))"
+  unfolding lexord_def
+  apply (safe, simp_all)
+     apply (metis hd_append list.sel(1))
+    apply (metis hd_append list.sel(1) list.sel(3) tl_append2)
+   apply blast
+  by (meson Cons_eq_appendI)
 
 lemmas lexord_simps = lexord_Nil_left lexord_Nil_right lexord_cons_cons
 
@@ -5991,24 +5968,17 @@
      (\<exists>i. i < min(length x)(length y) \<and> take i x = take i y \<and> (x!i,y!i) \<in> r))"
   apply (unfold lexord_def Let_def, clarsimp)
   apply (rule_tac f = "(% a b. a \<or> b)" in arg_cong2)
+  apply (metis Cons_nth_drop_Suc append_eq_conv_conj drop_all list.simps(3) not_le)
   apply auto
-  apply (rule_tac x="hd (drop (length x) y)" in exI)
-  apply (rule_tac x="tl (drop (length x) y)" in exI)
-  apply (erule subst, simp add: min_def)
   apply (rule_tac x ="length u" in exI, simp)
-  apply (rule_tac x ="take i x" in exI)
-  apply (rule_tac x ="x ! i" in exI)
-  apply (rule_tac x ="y ! i" in exI, safe)
-  apply (rule_tac x="drop (Suc i) x" in exI)
-  apply (drule sym, simp add: Cons_nth_drop_Suc)
-  apply (rule_tac x="drop (Suc i) y" in exI)
-  by (simp add: Cons_nth_drop_Suc)
+  by (metis id_take_nth_drop)
 
 \<comment> \<open>lexord is extension of partial ordering List.lex\<close>
 lemma lexord_lex: "(x,y) \<in> lex r = ((x,y) \<in> lexord r \<and> length x = length y)"
-  apply (rule_tac x = y in spec)
-  apply (induct_tac x, clarsimp)
-  by (clarify, case_tac x, simp, force)
+proof (induction x arbitrary: y)
+  case (Cons a x y) then show ?case
+    by (cases y) (force+)
+qed auto
 
 lemma lexord_irreflexive: "\<forall>x. (x,x) \<notin> r \<Longrightarrow> (xs,xs) \<notin> lexord r"
 by (induct xs) auto
@@ -6051,12 +6021,15 @@
 lemma lexord_transI:  "trans r \<Longrightarrow> trans (lexord r)"
 by (rule transI, drule lexord_trans, blast)
 
-lemma lexord_linear: "(\<forall>a b. (a,b)\<in> r \<or> a = b \<or> (b,a) \<in> r) \<Longrightarrow> (x,y) \<in> lexord r \<or> x = y \<or> (y,x) \<in> lexord r"
-  apply (rule_tac x = y in spec)
-  apply (induct_tac x, rule allI)
-  apply (case_tac x, simp, simp)
-  apply (rule allI, case_tac x, simp, simp)
-  by blast
+lemma lexord_linear: "(\<forall>a b. (a,b) \<in> r \<or> a = b \<or> (b,a) \<in> r) \<Longrightarrow> (x,y) \<in> lexord r \<or> x = y \<or> (y,x) \<in> lexord r"
+proof (induction x arbitrary: y)
+  case Nil
+  then show ?case
+    by (metis lexord_Nil_left list.exhaust)
+next
+  case (Cons a x y) then show ?case
+    by (cases y) (force+)
+qed 
 
 lemma lexord_irrefl:
   "irrefl R \<Longrightarrow> irrefl (lexord R)"
@@ -6222,27 +6195,17 @@
 lemma lexordp_eq_trans:
   assumes "lexordp_eq xs ys" and "lexordp_eq ys zs"
   shows "lexordp_eq xs zs"
-using assms
-apply(induct arbitrary: zs)
-apply(case_tac [2-3] zs)
-apply auto
-done
+  using assms
+  by (induct arbitrary: zs) (case_tac zs; auto)+
 
 lemma lexordp_trans:
   assumes "lexordp xs ys" "lexordp ys zs"
   shows "lexordp xs zs"
-using assms
-apply(induct arbitrary: zs)
-apply(case_tac [2-3] zs)
-apply auto
-done
+  using assms
+  by (induct arbitrary: zs) (case_tac zs; auto)+
 
 lemma lexordp_linear: "lexordp xs ys \<or> xs = ys \<or> lexordp ys xs"
-proof(induct xs arbitrary: ys)
-  case Nil thus ?case by(cases ys) simp_all
-next
-  case Cons thus ?case by(cases ys) auto
-qed
+  by(induct xs arbitrary: ys; case_tac ys; fastforce)
 
 lemma lexordp_conv_lexordp_eq: "lexordp xs ys \<longleftrightarrow> lexordp_eq xs ys \<and> \<not> lexordp_eq ys xs"
   (is "?lhs \<longleftrightarrow> ?rhs")
@@ -6260,13 +6223,11 @@
 by(auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl dest: lexordp_eq_antisym)
 
 lemma lexordp_eq_linear: "lexordp_eq xs ys \<or> lexordp_eq ys xs"
-apply(induct xs arbitrary: ys)
-apply(case_tac [!] ys)
-apply auto
-done
+  by (induct xs arbitrary: ys) (case_tac ys; auto)+
 
 lemma lexordp_linorder: "class.linorder lexordp_eq lexordp"
-by unfold_locales(auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl lexordp_eq_antisym intro: lexordp_eq_trans del: disjCI intro: lexordp_eq_linear)
+  by unfold_locales
+     (auto simp add: lexordp_conv_lexordp_eq lexordp_eq_refl lexordp_eq_antisym intro: lexordp_eq_trans del: disjCI intro: lexordp_eq_linear)
 
 end
 
@@ -6294,7 +6255,7 @@
 lemma measures_less: "f x < f y ==> (x, y) \<in> measures (f#fs)"
 by simp
 
-lemma measures_lesseq: "f x <= f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
+lemma measures_lesseq: "f x \<le> f y ==> (x, y) \<in> measures fs ==> (x, y) \<in> measures (f#fs)"
 by auto
 
 
@@ -6404,17 +6365,20 @@
 apply (induct arbitrary: xs set: Wellfounded.acc)
 apply (erule thin_rl)
 apply (erule acc_induct)
-apply (rule accI)
+  apply (rule accI)
 apply (blast)
 done
 
 lemma lists_accD: "xs \<in> lists (Wellfounded.acc r) \<Longrightarrow> xs \<in> Wellfounded.acc (listrel1 r)"
-apply (induct set: lists)
- apply (rule accI)
- apply simp
-apply (rule accI)
-apply (fast dest: acc_downward)
-done
+proof (induct set: lists)
+  case Nil
+  then show ?case
+    by (meson acc.intros not_listrel1_Nil)
+next
+  case (Cons a l)
+  then show ?case
+    by blast
+qed
 
 lemma lists_accI: "xs \<in> Wellfounded.acc (listrel1 r) \<Longrightarrow> xs \<in> lists (Wellfounded.acc r)"
 apply (induct set: Wellfounded.acc)
@@ -6461,10 +6425,7 @@
 
 
 lemma listrel_mono: "r \<subseteq> s \<Longrightarrow> listrel r \<subseteq> listrel s"
-apply clarify
-apply (erule listrel.induct)
-apply (blast intro: listrel.intros)+
-done
+  by (meson listrel_iff_nth subrelI subset_eq)
 
 lemma listrel_subset: "r \<subseteq> A \<times> A \<Longrightarrow> listrel r \<subseteq> lists A \<times> lists A"
 apply clarify
@@ -6479,10 +6440,7 @@
 done
 
 lemma listrel_sym: "sym r \<Longrightarrow> sym (listrel r)"
-apply (auto simp add: sym_def)
-apply (erule listrel.induct)
-apply (blast intro: listrel.intros)+
-done
+  by (simp add: listrel_iff_nth sym_def)
 
 lemma listrel_trans: "trans r \<Longrightarrow> trans (listrel r)"
 apply (simp add: trans_def)
@@ -7138,7 +7096,7 @@
 lemma subset_code [code]:
   "set xs \<le> B \<longleftrightarrow> (\<forall>x\<in>set xs. x \<in> B)"
   "A \<le> List.coset ys \<longleftrightarrow> (\<forall>y\<in>set ys. y \<notin> A)"
-  "List.coset [] \<le> set [] \<longleftrightarrow> False"
+  "List.coset [] \<subseteq> set [] \<longleftrightarrow> False"
   by auto
 
 text \<open>A frequent case -- avoid intermediate sets\<close>
@@ -7367,10 +7325,7 @@
   "(rel_set A ===> rel_set (list_all2 A) ===> rel_set (list_all2 A))
     set_Cons set_Cons"
   unfolding rel_fun_def rel_set_def set_Cons_def
-  apply safe
-  apply (simp add: list_all2_Cons1, fast)
-  apply (simp add: list_all2_Cons2, fast)
-  done
+  by (fastforce simp add: list_all2_Cons1 list_all2_Cons2)
 
 lemma listset_transfer [transfer_rule]:
   "(list_all2 (rel_set A) ===> rel_set (list_all2 A)) listset listset"
--- a/src/HOL/Number_Theory/Cong.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Number_Theory/Cong.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -395,11 +395,8 @@
 
 lemma cong_dvd_modulus_nat: "[x = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> [x = y] (mod n)"
   for x y :: nat
-  apply (auto simp add: cong_iff_lin_nat dvd_def)
-  apply (rule_tac x= "k1 * k" in exI)
-  apply (rule_tac x= "k2 * k" in exI)
-  apply (simp add: field_simps)
-  done
+  unfolding cong_iff_lin_nat dvd_def
+  by (metis mult.commute mult.left_commute)
 
 lemma cong_to_1_nat:
   fixes a :: nat
@@ -433,41 +430,36 @@
   for x y :: nat
   by (auto simp add: cong_altdef_nat le_imp_diff_is_add elim!: dvdE)
 
+
 lemma cong_solve_nat:
   fixes a :: nat
-  assumes "a \<noteq> 0"
   shows "\<exists>x. [a * x = gcd a n] (mod n)"
-proof (cases "n = 0")
+proof (cases "a = 0 \<or> n = 0")
   case True
-  then show ?thesis by force
+  then show ?thesis
+    by (force simp add: cong_0_iff cong_sym)
 next
   case False
   then show ?thesis
-    using bezout_nat [of a n, OF \<open>a \<noteq> 0\<close>]
+    using bezout_nat [of a n]
     by auto (metis cong_add_rcancel_0_nat cong_mult_self_left)
 qed
 
-lemma cong_solve_int: "a \<noteq> 0 \<Longrightarrow> \<exists>x. [a * x = gcd a n] (mod n)"
-  for a :: int
-  apply (cases "n = 0")
-   apply (cases "a \<ge> 0")
-    apply auto
-   apply (rule_tac x = "-1" in exI)
-   apply auto
-  apply (insert bezout_int [of a n], auto)
-  apply (metis cong_iff_lin mult.commute)
-  done
+lemma cong_solve_int:
+  fixes a :: int
+  shows "\<exists>x. [a * x = gcd a n] (mod n)"
+    by (metis bezout_int cong_iff_lin mult.commute)
 
 lemma cong_solve_dvd_nat:
   fixes a :: nat
-  assumes a: "a \<noteq> 0" and b: "gcd a n dvd d"
+  assumes "gcd a n dvd d"
   shows "\<exists>x. [a * x = d] (mod n)"
 proof -
-  from cong_solve_nat [OF a] obtain x where "[a * x = gcd a n](mod n)"
+  from cong_solve_nat [of a] obtain x where "[a * x = gcd a n](mod n)"
     by auto
   then have "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
     using cong_scalar_left by blast
-  also from b have "(d div gcd a n) * gcd a n = d"
+  also from assms have "(d div gcd a n) * gcd a n = d"
     by (rule dvd_div_mult_self)
   also have "(d div gcd a n) * (a * x) = a * (d div gcd a n * x)"
     by auto
@@ -476,10 +468,11 @@
 qed
 
 lemma cong_solve_dvd_int:
-  assumes a: "(a::int) \<noteq> 0" and b: "gcd a n dvd d"
+  fixes a::int
+  assumes b: "gcd a n dvd d"
   shows "\<exists>x. [a * x = d] (mod n)"
 proof -
-  from cong_solve_int [OF a] obtain x where "[a * x = gcd a n](mod n)"
+  from cong_solve_int [of a] obtain x where "[a * x = gcd a n](mod n)"
     by auto
   then have "[(d div gcd a n) * (a * x) = (d div gcd a n) * gcd a n] (mod n)"
     using cong_scalar_left by blast
@@ -493,12 +486,11 @@
 
 lemma cong_solve_coprime_nat:
   "\<exists>x. [a * x = Suc 0] (mod n)" if "coprime a n"
-  using that cong_solve_nat [of a n] by (cases "a = 0") simp_all
+  using that cong_solve_nat [of a n] by auto
 
 lemma cong_solve_coprime_int:
   "\<exists>x. [a * x = 1] (mod n)" if "coprime a n" for a n x :: int
-  using that cong_solve_int [of a n] by (cases "a = 0")
-    (auto simp add: zabs_def split: if_splits)
+  using that cong_solve_int [of a n] by (auto simp add: zabs_def split: if_splits)
 
 lemma coprime_iff_invertible_nat:
   "coprime a m \<longleftrightarrow> (\<exists>x. [a * x = Suc 0] (mod m))" (is "?P \<longleftrightarrow> ?Q")
@@ -529,27 +521,29 @@
 qed
 
 lemma coprime_iff_invertible'_nat:
-  "m > 0 \<Longrightarrow> coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = Suc 0] (mod m))"
-  apply (subst coprime_iff_invertible_nat)
-   apply auto
-  apply (auto simp add: cong_def)
-  apply (metis mod_less_divisor mod_mult_right_eq)
-  done
+  assumes "m > 0"
+  shows "coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = Suc 0] (mod m))"
+proof -
+  have "\<And>b. \<lbrakk>0 < m; [a * b = Suc 0] (mod m)\<rbrakk> \<Longrightarrow> \<exists>b'<m. [a * b' = Suc 0] (mod m)"
+    by (metis cong_def mod_less_divisor [OF assms] mod_mult_right_eq)
+  then show ?thesis
+    using assms coprime_iff_invertible_nat by auto
+qed
 
 lemma coprime_iff_invertible'_int:
-  "m > 0 \<Longrightarrow> coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = 1] (mod m))"
-  for m :: int
-  apply (subst coprime_iff_invertible_int)
-   apply (auto simp add: cong_def)
-  apply (metis mod_mult_right_eq pos_mod_conj)
-  done
+  fixes m :: int
+  assumes "m > 0"
+  shows "coprime a m \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> x < m \<and> [a * x = 1] (mod m))"
+proof -
+  have "\<And>b. \<lbrakk>0 < m; [a * b = 1] (mod m)\<rbrakk> \<Longrightarrow> \<exists>b'<m. [a * b' = 1] (mod m)"
+    by (meson cong_less_unique_int cong_scalar_left cong_sym cong_trans)
+  then show ?thesis
+    by (metis assms coprime_iff_invertible_int cong_def cong_mult_lcancel mod_pos_pos_trivial pos_mod_conj)
+qed
 
 lemma cong_cong_lcm_nat: "[x = y] (mod a) \<Longrightarrow> [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
   for x y :: nat
-  apply (cases "y \<le> x")
-   apply (simp add: cong_altdef_nat)
-  apply (meson cong_altdef_nat cong_sym lcm_least_iff nat_le_linear)
-  done
+  by (meson cong_altdef_nat' lcm_least)
 
 lemma cong_cong_lcm_int: "[x = y] (mod a) \<Longrightarrow> [x = y] (mod b) \<Longrightarrow> [x = y] (mod lcm a b)"
   for x y :: int
@@ -636,10 +630,7 @@
 
 lemma cong_modulus_mult_nat: "[x = y] (mod m * n) \<Longrightarrow> [x = y] (mod m)"
   for x y :: nat
-  apply (cases "y \<le> x")
-   apply (auto simp add: cong_altdef_nat elim: dvd_mult_left)
-  apply (metis cong_def mod_mult_cong_right)
-  done
+  by (metis cong_def mod_mult_cong_right)
 
 lemma cong_less_modulus_unique_nat: "[x = y] (mod m) \<Longrightarrow> x < m \<Longrightarrow> y < m \<Longrightarrow> x = y"
   for x y :: nat
@@ -651,50 +642,28 @@
     and nz: "m1 \<noteq> 0" "m2 \<noteq> 0"
   shows "\<exists>!x. x < m1 * m2 \<and> [x = u1] (mod m1) \<and> [x = u2] (mod m2)"
 proof -
-  from binary_chinese_remainder_nat [OF a] obtain y
-    where "[y = u1] (mod m1)" and "[y = u2] (mod m2)"
-    by blast
+  obtain y where y1: "[y = u1] (mod m1)" and y2: "[y = u2] (mod m2)"
+    using binary_chinese_remainder_nat [OF a] by blast
   let ?x = "y mod (m1 * m2)"
   from nz have less: "?x < m1 * m2"
     by auto
   have 1: "[?x = u1] (mod m1)"
-    apply (rule cong_trans)
-     prefer 2
-     apply (rule \<open>[y = u1] (mod m1)\<close>)
-    apply (rule cong_modulus_mult_nat [of _ _ _ m2])
-    apply simp
-    done
+    using y1 mod_mult_cong_right by blast
   have 2: "[?x = u2] (mod m2)"
-    apply (rule cong_trans)
-     prefer 2
-     apply (rule \<open>[y = u2] (mod m2)\<close>)
-    apply (subst mult.commute)
-    apply (rule cong_modulus_mult_nat [of _ _ _ m1])
-    apply simp
-    done
-  have "\<forall>z. z < m1 * m2 \<and> [z = u1] (mod m1) \<and> [z = u2] (mod m2) \<longrightarrow> z = ?x"
-  proof clarify
-    fix z
-    assume "z < m1 * m2"
-    assume "[z = u1] (mod m1)" and  "[z = u2] (mod m2)"
+    using y2 mod_mult_cong_left by blast
+  have "z = ?x" if "z < m1 * m2" "[z = u1] (mod m1)"  "[z = u2] (mod m2)" for z
+  proof -
     have "[?x = z] (mod m1)"
-      apply (rule cong_trans)
-       apply (rule \<open>[?x = u1] (mod m1)\<close>)
-      apply (rule cong_sym)
-      apply (rule \<open>[z = u1] (mod m1)\<close>)
-      done
+      by (metis "1" cong_def that(2))
     moreover have "[?x = z] (mod m2)"
-      apply (rule cong_trans)
-       apply (rule \<open>[?x = u2] (mod m2)\<close>)
-      apply (rule cong_sym)
-      apply (rule \<open>[z = u2] (mod m2)\<close>)
-      done
+      by (metis "2" cong_def that(3))
     ultimately have "[?x = z] (mod m1 * m2)"
       using a by (auto intro: coprime_cong_mult_nat simp add: mod_mult_cong_left mod_mult_cong_right)
     with \<open>z < m1 * m2\<close> \<open>?x < m1 * m2\<close> show "z = ?x"
       by (auto simp add: cong_def)
   qed
-  with less 1 2 show ?thesis by auto
+  with less 1 2 show ?thesis
+    by blast
  qed
 
 lemma chinese_remainder_nat:
@@ -720,7 +689,7 @@
     ultimately show "\<exists>a. [a = 1] (mod m i) \<and> [a = 0] (mod prod m (A - {i}))"
       by blast
   qed
-  then obtain b where b: "\<forall>i \<in> A. [b i = 1] (mod m i) \<and> [b i = 0] (mod (\<Prod>j \<in> A - {i}. m j))"
+  then obtain b where b: "\<And>i. i \<in> A \<Longrightarrow> [b i = 1] (mod m i) \<and> [b i = 0] (mod (\<Prod>j \<in> A - {i}. m j))"
     by blast
   let ?x = "\<Sum>i\<in>A. (u i) * (b i)"
   show ?thesis
@@ -735,29 +704,32 @@
         by auto
       also have "[u i * b i + (\<Sum>j \<in> A - {i}. u j * b j) =
                   u i * 1 + (\<Sum>j \<in> A - {i}. u j * 0)] (mod m i)"
-        apply (rule cong_add)
-         apply (rule cong_scalar_left)
-        using b a apply blast
-        apply (rule cong_sum)
-        apply (rule cong_scalar_left)
-        using b apply (auto simp add: mod_eq_0_iff_dvd cong_def)
-        apply (rule dvd_trans [of _ "prod m (A - {x})" "b x" for x])
-        using a fin apply auto
-        done
+      proof (intro cong_add cong_scalar_left cong_sum)
+        show "[b i = 1] (mod m i)"
+          using a b by blast
+        show "[b x = 0] (mod m i)" if "x \<in> A - {i}" for x
+        proof -
+          have "x \<in> A" "x \<noteq> i"
+            using that by auto
+          then show ?thesis
+            using a b [OF \<open>x \<in> A\<close>] cong_dvd_modulus_nat fin by blast
+        qed
+      qed
       finally show ?thesis
         by simp
     qed
   qed
 qed
 
-lemma coprime_cong_prod_nat:
-  "[x = y] (mod (\<Prod>i\<in>A. m i))"
-  if "\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j))"
-    and "\<forall>i\<in>A. [x = y] (mod m i)" for x y :: nat
-  using that apply (induct A rule: infinite_finite_induct)
-    apply auto
-  apply (metis coprime_cong_mult_nat prod_coprime_right)
-  done
+lemma coprime_cong_prod_nat: "[x = y] (mod (\<Prod>i\<in>A. m i))"
+  if "\<And>i j. \<lbrakk>i \<in> A; j \<in> A; i \<noteq> j\<rbrakk> \<Longrightarrow> coprime (m i) (m j)"
+    and "\<And>i. i \<in> A \<Longrightarrow> [x = y] (mod m i)" for x y :: nat
+  using that 
+proof (induct A rule: infinite_finite_induct)
+  case (insert x A)
+  then show ?case
+    by simp (metis coprime_cong_mult_nat prod_coprime_right)
+qed auto
 
 lemma chinese_remainder_unique_nat:
   fixes A :: "'a set"
@@ -795,94 +767,4 @@
     by blast
 qed
 
-
-subsection \<open>Aliasses\<close>
-
-lemma cong_altdef_int:
-  "[a = b] (mod m) \<longleftrightarrow> m dvd (a - b)"
-  for a b :: int
-  by (fact cong_iff_dvd_diff)
-
-lemma cong_iff_lin_int: "[a = b] (mod m) \<longleftrightarrow> (\<exists>k. b = a + m * k)"
-  for a b :: int
-  by (fact cong_iff_lin)
-
-lemma cong_minus_int: "[a = b] (mod - m) \<longleftrightarrow> [a = b] (mod m)"
-  for a b :: int
-  by (fact cong_modulus_minus_iff)
-
-lemma cong_add_lcancel_int: "[a + x = a + y] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  for a x y :: int
-  by (fact cong_add_lcancel)
-
-lemma cong_add_rcancel_int: "[x + a = y + a] (mod n) \<longleftrightarrow> [x = y] (mod n)"
-  for a x y :: int
-  by (fact cong_add_rcancel)
-
-lemma cong_add_lcancel_0_int:
-  "[a + x = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
-  for a x :: int
-  by (fact cong_add_lcancel_0)
-
-lemma cong_add_rcancel_0_int:
-  "[x + a = a] (mod n) \<longleftrightarrow> [x = 0] (mod n)"
-  for a x :: int
-  by (fact cong_add_rcancel_0) 
-
-lemma cong_dvd_modulus_int: "[x = y] (mod m) \<Longrightarrow> n dvd m \<Longrightarrow> [x = y] (mod n)"
-  for x y :: int
-  by (fact cong_dvd_modulus)
-
-lemma cong_abs_int:
-  "[x = y] (mod \<bar>m\<bar>) \<longleftrightarrow> [x = y] (mod m)"
-  for x y :: int
-  by (fact cong_abs)
-
-lemma cong_square_int:
-  "prime p \<Longrightarrow> 0 < a \<Longrightarrow> [a * a = 1] (mod p) \<Longrightarrow> [a = 1] (mod p) \<or> [a = - 1] (mod p)"
-  for a :: int
-  by (fact cong_square)
-
-lemma cong_mult_rcancel_int:
-  "[a * k = b * k] (mod m) \<longleftrightarrow> [a = b] (mod m)"
-  if "coprime k m" for a k m :: int
-  using that by (fact cong_mult_rcancel)
-
-lemma cong_mult_lcancel_int:
-  "[k * a = k * b] (mod m) = [a = b] (mod m)"
-  if "coprime k m" for a k m :: int
-  using that by (fact cong_mult_lcancel)
-
-lemma coprime_cong_mult_int:
-  "[a = b] (mod m) \<Longrightarrow> [a = b] (mod n) \<Longrightarrow> coprime m n \<Longrightarrow> [a = b] (mod m * n)"
-  for a b :: int
-  by (fact coprime_cong_mult)
-
-lemma cong_gcd_eq_nat: "[a = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
-  for a b :: nat
-  by (fact cong_gcd_eq)
-
-lemma cong_gcd_eq_int: "[a = b] (mod m) \<Longrightarrow> gcd a m = gcd b m"
-  for a b :: int
-  by (fact cong_gcd_eq)
-
-lemma cong_imp_coprime_nat: "[a = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> coprime b m"
-  for a b :: nat
-  by (fact cong_imp_coprime)
-
-lemma cong_imp_coprime_int: "[a = b] (mod m) \<Longrightarrow> coprime a m \<Longrightarrow> coprime b m"
-  for a b :: int
-  by (fact cong_imp_coprime)
-
-lemma cong_cong_prod_coprime_int:
-  "[x = y] (mod (\<Prod>i\<in>A. m i))" if
-    "(\<forall>i\<in>A. [x = y] (mod m i))"
-    "(\<forall>i\<in>A. (\<forall>j\<in>A. i \<noteq> j \<longrightarrow> coprime (m i) (m j)))"
-  for x y :: int
-  using that by (fact cong_cong_prod_coprime)
-
-lemma cong_modulus_mult_int: "[x = y] (mod m * n) \<Longrightarrow> [x = y] (mod m)"
-  for x y :: int
-  by (fact cong_modulus_mult)
-
 end
--- a/src/HOL/Number_Theory/Euler_Criterion.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Number_Theory/Euler_Criterion.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -48,8 +48,8 @@
     have "[nat \<bar>b\<bar> ^ (p - 1) = 1] (mod p)"
     using p_prime proof (rule fermat_theorem)
       from b p_a_relprime show "\<not> p dvd nat \<bar>b\<bar>"
-        by (auto simp add: cong_altdef_int power2_eq_square)
-          (metis cong_altdef_int cong_dvd_iff dvd_mult2) 
+        by (auto simp add: cong_iff_dvd_diff power2_eq_square)
+          (metis cong_iff_dvd_diff cong_dvd_iff dvd_mult2) 
     qed
     then have "nat \<bar>b\<bar> ^ (p - 1) mod p = 1 mod p"
       by (simp add: cong_def)
@@ -90,13 +90,13 @@
     cong_scalar_right [of "x * y'" 1 "int p" a]
     by (auto simp add: cong_def ac_simps)
   moreover have "y \<in> {0 .. int p - 1}" unfolding y_def using p_ge_2 by auto
-  hence "y \<in> S1" using calculation cong_altdef_int p_a_relprime S1_def by auto
+  hence "y \<in> S1" using calculation cong_iff_dvd_diff p_a_relprime S1_def cong_dvd_iff by fastforce
   ultimately have "P x y" unfolding P_def by blast
   moreover {
     fix y1 y2
     assume "P x y1" "P x y2"
     moreover hence "[y1 = y2] (mod p)" unfolding P_def
-      using co_xp cong_mult_lcancel_int[of x p y1 y2] cong_sym cong_trans by blast
+      using co_xp cong_mult_lcancel[of x p y1 y2] cong_sym cong_trans by blast
     ultimately have "y1 = y2" unfolding P_def S1_def using cong_less_imp_eq_int by auto
   }
   ultimately show ?thesis by blast
@@ -200,7 +200,8 @@
   moreover have "(0::int) ^ ((p - 1) div 2) = 0"
     using zero_power [of "(p - 1) div 2"] assms(2) by simp
   ultimately have "[a ^ ((p - 1) div 2) = 0] (mod p)"
-    using True assms(1) cong_altdef_int prime_dvd_power_int_iff by auto
+    using True assms(1) prime_dvd_power_int_iff
+    by (simp add: cong_iff_dvd_diff)
   then show ?thesis unfolding Legendre_def using True cong_sym
     by auto
 next
--- a/src/HOL/Number_Theory/Gauss.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Number_Theory/Gauss.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -18,7 +18,7 @@
 lemma cong_prime_prod_zero_int:
   "[a * b = 0] (mod p) \<Longrightarrow> prime p \<Longrightarrow> [a = 0] (mod p) \<or> [b = 0] (mod p)"
   for a :: int
-  by (auto simp add: cong_altdef_int prime_dvd_mult_iff)
+  by (simp add: cong_0_iff prime_dvd_mult_iff)
 
 
 locale GAUSS =
@@ -114,11 +114,11 @@
     for x y
   proof -
     from p_a_relprime have "\<not> p dvd a"
-      by (simp add: cong_altdef_int)
+      by (simp add: cong_0_iff)
     with p_prime prime_imp_coprime [of _ "nat \<bar>a\<bar>"]
     have "coprime a (int p)"
       by (simp_all add: ac_simps)
-    with a cong_mult_rcancel_int [of a "int p" x y] have "[x = y] (mod p)"
+    with a cong_mult_rcancel [of a "int p" x y] have "[x = y] (mod p)"
       by simp
     with cong_less_imp_eq_int [of x y p] p_minus_one_l
       order_le_less_trans [of x "(int p - 1) div 2" p]
@@ -127,12 +127,8 @@
       by (metis b c cong_less_imp_eq_int d e zero_less_imp_eq_int of_nat_0_le_iff)
   qed
   show ?thesis
-    apply (insert p_ge_2 p_a_relprime p_minus_one_l)
-    apply (auto simp add: B_def)
-    apply (rule ResSet_image)
-      apply (auto simp add: A_res)
-    apply (auto simp add: A_def *)
-    done
+    using p_ge_2 p_a_relprime p_minus_one_l
+    by (metis "*" A_def A_res B_def GAUSS.ResSet_image GAUSS_axioms greaterThanAtMost_iff odd_p odd_pos of_nat_0_less_iff)
 qed
 
 lemma SR_B_inj: "inj_on (\<lambda>x. x mod p) B"
@@ -149,11 +145,11 @@
     from a have a': "[x * a = y * a](mod p)"
       using cong_def by blast
     from p_a_relprime have "\<not>p dvd a"
-      by (simp add: cong_altdef_int)
+      by (simp add: cong_0_iff)
     with p_prime prime_imp_coprime [of _ "nat \<bar>a\<bar>"]
     have "coprime a (int p)"
       by (simp_all add: ac_simps)  
-    with a' cong_mult_rcancel_int [of a "int p" x y]
+    with a' cong_mult_rcancel [of a "int p" x y]
     have "[x = y] (mod p)" by simp
     with cong_less_imp_eq_int [of x y p] p_minus_one_l
       order_le_less_trans [of x "(int p - 1) div 2" p]
@@ -224,7 +220,7 @@
   "coprime x p" if "x \<in> A"
 proof -
   from A_ncong_p [OF that] have "\<not> int p dvd x"
-    by (simp add: cong_altdef_int)
+    by (simp add: cong_0_iff)
   with p_prime show ?thesis
     by (metis (no_types) coprime_commute prime_imp_coprime prime_nat_int_transfer)
 qed
@@ -370,7 +366,7 @@
   then have "[prod id A * (-1)^(card E) = prod id A * a^(card A)](mod p)"
     by (rule cong_trans) (simp add: aux cong del: prod.strong_cong)
   with A_prod_relprime have "[(- 1) ^ card E = a ^ card A](mod p)"
-    by (metis cong_mult_lcancel_int)
+    by (metis cong_mult_lcancel)
   then show ?thesis
     by (simp add: A_card_eq cong_sym)
 qed
@@ -390,7 +386,8 @@
   moreover have "(-1::int) ^ (card E) = 1 \<or> (-1::int) ^ (card E) = -1"
     using neg_one_even_power neg_one_odd_power by blast
   moreover have "[1 \<noteq> - 1] (mod int p)"
-    using cong_altdef_int nonzero_mod_p[of 2] p_odd_int by fastforce
+    using cong_iff_dvd_diff [where 'a=int] nonzero_mod_p[of 2] p_odd_int   
+    by fastforce
   ultimately show ?thesis
     by (auto simp add: cong_sym)
 qed
--- a/src/HOL/Number_Theory/Pocklington.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Number_Theory/Pocklington.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -121,7 +121,7 @@
   obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)" "\<forall>y. ?P y \<longrightarrow> y = x"
     by blast
   from ma nb x have "coprime x a" "coprime x b"
-    using cong_imp_coprime_nat cong_sym by blast+
+    using cong_imp_coprime cong_sym by blast+
   then have "coprime x (a*b)"
     by simp
   with x show ?thesis
@@ -209,7 +209,7 @@
     by arith+
   from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1"
     by simp
-  from lucas_coprime_lemma[OF n01(3) an1] cong_imp_coprime_nat an1
+  from lucas_coprime_lemma[OF n01(3) an1] cong_imp_coprime an1
   have an: "coprime a n" "coprime (a ^ (n - 1)) n"
     using \<open>n \<ge> 2\<close> by simp_all
   have False if H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "\<exists>m. ?P m")
@@ -716,7 +716,7 @@
         by simp
     qed
     then have b1: "b \<ge> 1" by arith
-    from cong_imp_coprime_nat[OF Cong.cong_diff_nat[OF cong_sym [OF b(1)] cong_refl [of 1] b1]]
+    from cong_imp_coprime[OF Cong.cong_diff_nat[OF cong_sym [OF b(1)] cong_refl [of 1] b1]]
       ath b1 b nqr
     have "coprime (a ^ ((n - 1) div p) - 1) n"
       by simp
@@ -858,7 +858,7 @@
     have "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
       by (simp add: cong_diff_nat)
     then show ?thesis
-      by (metis cong_imp_coprime_nat eq1 p')
+      by (metis cong_imp_coprime eq1 p')
   qed
   with pocklington[OF n qrn[symmetric] nq2 an1] show ?thesis
     by blast
--- a/src/HOL/Number_Theory/Quadratic_Reciprocity.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Number_Theory/Quadratic_Reciprocity.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -93,7 +93,7 @@
 
 lemma Gpq: "GAUSS p q"
   using p_prime pq_neq p_ge_2 q_prime
-  by (auto simp: GAUSS_def cong_altdef_int dest: primes_dvd_imp_eq)
+  by (auto simp: GAUSS_def cong_iff_dvd_diff dest: primes_dvd_imp_eq)
 
 lemma Gqp: "GAUSS q p"
   by (simp add: QRqp QR.Gpq)
@@ -304,7 +304,7 @@
   by (simp add: f_2_def)
 
 lemma f_2_lemma_2: "[f_2 x = int p - x] (mod p)"
-  by (simp add: f_2_def cong_altdef_int)
+  by (simp add: f_2_def cong_iff_dvd_diff)
 
 lemma f_2_lemma_3: "f_2 x \<in> S \<Longrightarrow> x \<in> f_2 ` S"
   using f_2_lemma_1[of x] image_eqI[of x f_2 "f_2 x" S] by presburger
--- a/src/HOL/Real_Vector_Spaces.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Real_Vector_Spaces.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -1012,6 +1012,9 @@
 lemma dist_triangle3: "dist x y \<le> dist a x + dist a y"
   using dist_triangle2 [of x y a] by (simp add: dist_commute)
 
+lemma abs_dist_diff_le: "\<bar>dist a b - dist b c\<bar> \<le> dist a c"
+  using dist_triangle3[of b c a] dist_triangle2[of a b c] by simp
+
 lemma dist_pos_lt: "x \<noteq> y \<Longrightarrow> 0 < dist x y"
   by (simp add: zero_less_dist_iff)
 
--- a/src/HOL/Series.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Series.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -703,6 +703,27 @@
   qed
 qed
 
+lemma summable_Cauchy':
+  fixes f :: "nat \<Rightarrow> 'a :: banach"
+  assumes "eventually (\<lambda>m. \<forall>n\<ge>m. norm (sum f {m..<n}) \<le> g m) sequentially"
+  assumes "filterlim g (nhds 0) sequentially"
+  shows "summable f"
+proof (subst summable_Cauchy, intro allI impI, goal_cases)
+  case (1 e)
+  from order_tendstoD(2)[OF assms(2) this] and assms(1)
+  have "eventually (\<lambda>m. \<forall>n. norm (sum f {m..<n}) < e) at_top"
+  proof eventually_elim
+    case (elim m)
+    show ?case
+    proof
+      fix n
+      from elim show "norm (sum f {m..<n}) < e"
+        by (cases "n \<ge> m") auto
+    qed
+  qed
+  thus ?case by (auto simp: eventually_at_top_linorder)
+qed
+
 context
   fixes f :: "nat \<Rightarrow> 'a::banach"
 begin
--- a/src/HOL/Topological_Spaces.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/Topological_Spaces.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -2131,6 +2131,9 @@
 lemma isCont_def: "isCont f a \<longleftrightarrow> f \<midarrow>a\<rightarrow> f a"
   by (rule continuous_at)
 
+lemma isContD: "isCont f x \<Longrightarrow> f \<midarrow>x\<rightarrow> f x"
+  by (simp add: isCont_def)
+
 lemma isCont_cong:
   assumes "eventually (\<lambda>x. f x = g x) (nhds x)"
   shows "isCont f x \<longleftrightarrow> isCont g x"
--- a/src/HOL/ex/Datatype_Record_Examples.thy	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/HOL/ex/Datatype_Record_Examples.thy	Sat Aug 11 16:02:55 2018 +0200
@@ -45,4 +45,23 @@
 lemma "b_set \<lparr> field_1 = True, field_2 = False \<rparr> = {False}"
   by simp
 
+text \<open>More tests\<close>
+
+datatype_record ('a, 'b) test1 =
+  field_t11 :: 'a
+  field_t12 :: 'b
+  field_t13 :: nat
+  field_t14 :: int
+
+thm test1.record_simps
+
+definition ID where "ID x = x"
+lemma ID_cong[cong]: "ID x = ID x" by (rule refl)
+
+lemma "update_field_t11 f (update_field_t12 g (update_field_t11 h x)) = ID (update_field_t12 g (update_field_t11 (\<lambda>x. f (h x)) x))"
+  apply (simp only: test1.record_simps)
+  apply (subst ID_def)
+  apply (rule refl)
+  done
+
 end
\ No newline at end of file
--- a/src/Pure/ROOT	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/ROOT	Sat Aug 11 16:02:55 2018 +0200
@@ -4,7 +4,7 @@
   description {*
     The Pure logical framework
   *}
-  options [threads = 1]
+  options [threads = 1, export_theory]
   theories
     Pure (global)
     ML_Bootstrap (global)
--- a/src/Pure/Thy/export_theory.ML	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/Thy/export_theory.ML	Sat Aug 11 16:02:55 2018 +0200
@@ -13,6 +13,28 @@
 structure Export_Theory: EXPORT_THEORY =
 struct
 
+(* names for bound variables *)
+
+local
+  fun declare_names (Abs (_, _, b)) = declare_names b
+    | declare_names (t $ u) = declare_names t #> declare_names u
+    | declare_names (Const (c, _)) = Name.declare (Long_Name.base_name c)
+    | declare_names (Free (x, _)) = Name.declare x
+    | declare_names _ = I;
+
+  fun variant_abs bs (Abs (x, T, t)) =
+        let
+          val names = fold Name.declare bs (declare_names t Name.context);
+          val x' = #1 (Name.variant x names);
+          val t' = variant_abs (x' :: bs) t;
+        in Abs (x', T, t') end
+    | variant_abs bs (t $ u) = variant_abs bs t $ variant_abs bs u
+    | variant_abs _ t = t;
+in
+  val named_bounds = variant_abs [];
+end;
+
+
 (* general setup *)
 
 fun setup_presentation f =
@@ -59,9 +81,12 @@
             else
               (case export name decl of
                 NONE => I
-              | SOME body => cons (name, XML.Elem (entity_markup space name, body))))
-          |> sort_by #1 |> map #2
+              | SOME body =>
+                  cons (#serial (Name_Space.the_entry space name),
+                    XML.Elem (entity_markup space name, body))))
+          |> sort (int_ord o apply2 #1) |> map #2
         end;
+
       in if null elems then () else export_body thy export_name elems end;
 
 
@@ -86,7 +111,7 @@
 
     val encode_const =
       let open XML.Encode Term_XML.Encode
-      in triple (list string) typ (option term) end;
+      in triple (list string) typ (option (term o named_bounds)) end;
 
     fun export_const c (T, abbrev) =
       let
@@ -102,31 +127,36 @@
 
     (* axioms and facts *)
 
-    val standard_prop_of =
-      Thm.transfer thy #>
-      Thm.check_hyps (Context.Theory thy) #>
-      Drule.sort_constraint_intr_shyps #>
-      Thm.full_prop_of;
-
-    val encode_props =
-      let open XML.Encode Term_XML.Encode
-      in triple (list (pair string sort)) (list (pair string typ)) (list term) end;
+    fun standard_prop_of raw_thm =
+      let
+        val thm = raw_thm
+          |> Thm.transfer thy
+          |> Thm.check_hyps (Context.Theory thy)
+          |> Thm.strip_shyps;
+        val prop = thm
+          |> Thm.full_prop_of
+          |> Term_Subst.zero_var_indexes;
+      in (Thm.extra_shyps thm, prop) end;
 
-    fun export_props props =
+    fun encode_prop (Ss, prop) =
       let
-        val props' = map Logic.unvarify_global props;
-        val typargs = rev (fold Term.add_tfrees props' []);
-        val args = rev (fold Term.add_frees props' []);
-      in encode_props (typargs, args, props') end;
+        val prop' = Logic.unvarify_global (named_bounds prop);
+        val typargs = rev (Term.add_tfrees prop' []);
+        val sorts = Name.invent (Name.make_context (map #1 typargs)) Name.aT (length Ss) ~~ Ss;
+        val args = rev (Term.add_frees prop' []);
+      in
+        (sorts @ typargs, args, prop') |>
+          let open XML.Encode Term_XML.Encode
+          in triple (list (pair string sort)) (list (pair string typ)) term end
+      end;
 
-    val export_axiom = export_props o single;
-    val export_fact = export_props o Term_Subst.zero_var_indexes_list o map standard_prop_of;
+    val encode_fact = XML.Encode.list encode_prop o map standard_prop_of;
 
     val _ =
-      export_entities "axioms" (K (SOME o export_axiom)) Theory.axiom_space
+      export_entities "axioms" (fn _ => fn t => SOME (encode_prop ([], t))) Theory.axiom_space
         (Theory.axioms_of thy);
     val _ =
-      export_entities "facts" (K (SOME o export_fact)) (Facts.space_of o Global_Theory.facts_of)
+      export_entities "facts" (K (SOME o encode_fact)) (Facts.space_of o Global_Theory.facts_of)
         (Facts.dest_static true [] (Global_Theory.facts_of thy));
 
 
@@ -134,7 +164,7 @@
 
     val encode_class =
       let open XML.Encode Term_XML.Encode
-      in pair (list (pair string typ)) (list term) end;
+      in pair (list (pair string typ)) (list (term o named_bounds)) end;
 
     fun export_class name =
       (case try (Axclass.get_info thy) name of
--- a/src/Pure/Thy/export_theory.scala	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/Thy/export_theory.scala	Sat Aug 11 16:02:55 2018 +0200
@@ -66,8 +66,8 @@
   sealed case class Theory(name: String, parents: List[String],
     types: List[Type],
     consts: List[Const],
-    axioms: List[Axiom],
-    facts: List[Fact],
+    axioms: List[Fact_Single],
+    facts: List[Fact_Multi],
     classes: List[Class],
     typedefs: List[Typedef],
     classrel: List[Classrel],
@@ -75,6 +75,14 @@
   {
     override def toString: String = name
 
+    lazy val entities: Set[Long] =
+      Set.empty[Long] ++
+        types.iterator.map(_.entity.serial) ++
+        consts.iterator.map(_.entity.serial) ++
+        axioms.iterator.map(_.entity.serial) ++
+        facts.iterator.map(_.entity.serial) ++
+        classes.iterator.map(_.entity.serial)
+
     def cache(cache: Term.Cache): Theory =
       Theory(cache.string(name),
         parents.map(cache.string(_)),
@@ -122,18 +130,41 @@
     if (cache.isDefined) theory.cache(cache.get) else theory
   }
 
+  def read_pure_theory(store: Sessions.Store, cache: Option[Term.Cache] = None): Theory =
+  {
+    val session_name = Thy_Header.PURE
+    val theory_name = Thy_Header.PURE
+
+    using(store.open_database(session_name))(db =>
+    {
+      db.transaction {
+        read_theory(Export.Provider.database(db, session_name, theory_name),
+          session_name, theory_name, cache = cache)
+      }
+    })
+  }
+
 
   /* entities */
 
-  sealed case class Entity(name: String, serial: Long, pos: Position.T)
+  object Kind extends Enumeration
   {
-    override def toString: String = name
+    val TYPE = Value("type")
+    val CONST = Value("const")
+    val AXIOM = Value("axiom")
+    val FACT = Value("fact")
+    val CLASS = Value("class")
+  }
+
+  sealed case class Entity(kind: Kind.Value, name: String, serial: Long, pos: Position.T)
+  {
+    override def toString: String = kind.toString + " " + quote(name)
 
     def cache(cache: Term.Cache): Entity =
-      Entity(cache.string(name), serial, cache.position(pos))
+      Entity(kind, cache.string(name), serial, cache.position(pos))
   }
 
-  def decode_entity(tree: XML.Tree): (Entity, XML.Body) =
+  def decode_entity(kind: Kind.Value, tree: XML.Tree): (Entity, XML.Body) =
   {
     def err(): Nothing = throw new XML.XML_Body(List(tree))
 
@@ -142,7 +173,7 @@
         val name = Markup.Name.unapply(props) getOrElse err()
         val serial = Markup.Serial.unapply(props) getOrElse err()
         val pos = props.filter({ case (a, _) => Markup.POSITION_PROPERTIES(a) })
-        (Entity(name, serial, pos), body)
+        (Entity(kind, name, serial, pos), body)
       case _ => err()
     }
   }
@@ -161,7 +192,7 @@
   def read_types(provider: Export.Provider): List[Type] =
     provider.uncompressed_yxml(export_prefix + "types").map((tree: XML.Tree) =>
       {
-        val (entity, body) = decode_entity(tree)
+        val (entity, body) = decode_entity(Kind.TYPE, tree)
         val (args, abbrev) =
         {
           import XML.Decode._
@@ -186,7 +217,7 @@
   def read_consts(provider: Export.Provider): List[Const] =
     provider.uncompressed_yxml(export_prefix + "consts").map((tree: XML.Tree) =>
       {
-        val (entity, body) = decode_entity(tree)
+        val (entity, body) = decode_entity(Kind.CONST, tree)
         val (args, typ, abbrev) =
         {
           import XML.Decode._
@@ -196,56 +227,65 @@
       })
 
 
-  /* axioms and facts */
+  /* facts */
 
-  def decode_props(body: XML.Body):
-    (List[(String, Term.Sort)], List[(String, Term.Typ)], List[Term.Term]) =
+  sealed case class Prop(
+    typargs: List[(String, Term.Sort)],
+    args: List[(String, Term.Typ)],
+    term: Term.Term)
   {
-    import XML.Decode._
-    import Term_XML.Decode._
-    triple(list(pair(string, sort)), list(pair(string, typ)), list(term))(body)
+    def cache(cache: Term.Cache): Prop =
+      Prop(
+        typargs.map({ case (name, sort) => (cache.string(name), cache.sort(sort)) }),
+        args.map({ case (name, typ) => (cache.string(name), cache.typ(typ)) }),
+        cache.term(term))
   }
 
-  sealed case class Axiom(
-    entity: Entity,
-    typargs: List[(String, Term.Sort)],
-    args: List[(String, Term.Typ)],
-    prop: Term.Term)
+  def decode_prop(body: XML.Body): Prop =
   {
-    def cache(cache: Term.Cache): Axiom =
-      Axiom(entity.cache(cache),
-        typargs.map({ case (name, sort) => (cache.string(name), cache.sort(sort)) }),
-        args.map({ case (name, typ) => (cache.string(name), cache.typ(typ)) }),
-        cache.term(prop))
+    val (typargs, args, t) =
+    {
+      import XML.Decode._
+      import Term_XML.Decode._
+      triple(list(pair(string, sort)), list(pair(string, typ)), term)(body)
+    }
+    Prop(typargs, args, t)
   }
 
-  def read_axioms(provider: Export.Provider): List[Axiom] =
+  sealed case class Fact_Single(entity: Entity, prop: Prop)
+  {
+    def cache(cache: Term.Cache): Fact_Single =
+      Fact_Single(entity.cache(cache), prop.cache(cache))
+  }
+
+  sealed case class Fact_Multi(entity: Entity, props: List[Prop])
+  {
+    def cache(cache: Term.Cache): Fact_Multi =
+      Fact_Multi(entity.cache(cache), props.map(_.cache(cache)))
+
+    def split: List[Fact_Single] =
+      props match {
+        case List(prop) => List(Fact_Single(entity, prop))
+        case _ =>
+          for ((prop, i) <- props.zipWithIndex)
+          yield Fact_Single(entity.copy(name = entity.name + "(" + (i + 1) + ")"), prop)
+      }
+  }
+
+  def read_axioms(provider: Export.Provider): List[Fact_Single] =
     provider.uncompressed_yxml(export_prefix + "axioms").map((tree: XML.Tree) =>
       {
-        val (entity, body) = decode_entity(tree)
-        val (typargs, args, List(prop)) = decode_props(body)
-        Axiom(entity, typargs, args, prop)
+        val (entity, body) = decode_entity(Kind.AXIOM, tree)
+        val prop = decode_prop(body)
+        Fact_Single(entity, prop)
       })
 
-  sealed case class Fact(
-    entity: Entity,
-    typargs: List[(String, Term.Sort)],
-    args: List[(String, Term.Typ)],
-    props: List[Term.Term])
-  {
-    def cache(cache: Term.Cache): Fact =
-      Fact(entity.cache(cache),
-        typargs.map({ case (name, sort) => (cache.string(name), cache.sort(sort)) }),
-        args.map({ case (name, typ) => (cache.string(name), cache.typ(typ)) }),
-        props.map(cache.term(_)))
-  }
-
-  def read_facts(provider: Export.Provider): List[Fact] =
+  def read_facts(provider: Export.Provider): List[Fact_Multi] =
     provider.uncompressed_yxml(export_prefix + "facts").map((tree: XML.Tree) =>
       {
-        val (entity, body) = decode_entity(tree)
-        val (typargs, args, props) = decode_props(body)
-        Fact(entity, typargs, args, props)
+        val (entity, body) = decode_entity(Kind.FACT, tree)
+        val props = XML.Decode.list(decode_prop)(body)
+        Fact_Multi(entity, props)
       })
 
 
@@ -263,7 +303,7 @@
   def read_classes(provider: Export.Provider): List[Class] =
     provider.uncompressed_yxml(export_prefix + "classes").map((tree: XML.Tree) =>
       {
-        val (entity, body) = decode_entity(tree)
+        val (entity, body) = decode_entity(Kind.CLASS, tree)
         val (params, axioms) =
         {
           import XML.Decode._
--- a/src/Pure/build-jars	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/build-jars	Sat Aug 11 16:02:55 2018 +0200
@@ -159,6 +159,7 @@
   Tools/update_then.scala
   Tools/update_theorems.scala
   library.scala
+  pure_thy.scala
   term.scala
   term_xml.scala
   ../Tools/Graphview/graph_file.scala
--- a/src/Pure/drule.ML	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/drule.ML	Sat Aug 11 16:02:55 2018 +0200
@@ -98,8 +98,6 @@
   val is_sort_constraint: term -> bool
   val sort_constraintI: thm
   val sort_constraint_eq: thm
-  val sort_constraint_intr: indexname * sort -> thm -> thm
-  val sort_constraint_intr_shyps: thm -> thm
   val with_subgoal: int -> (thm -> thm) -> thm -> thm
   val comp_no_flatten: thm * int -> int -> thm -> thm
   val rename_bvars: (string * string) list -> thm -> thm
@@ -649,26 +647,6 @@
         (Thm.unvarify_global (Context.the_global_context ()) sort_constraintI)))
       (implies_intr_list [A, C] (Thm.assume A)));
 
-val sort_constraint_eq' = Thm.symmetric sort_constraint_eq;
-
-fun sort_constraint_intr tvar thm =
-  Thm.equal_elim
-    (Thm.instantiate
-      ([((("'a", 0), []), Thm.global_ctyp_of (Thm.theory_of_thm thm) (TVar tvar))],
-       [((("A", 0), propT), Thm.cprop_of thm)])
-      sort_constraint_eq') thm;
-
-fun sort_constraint_intr_shyps raw_thm =
-  let val thm = Thm.strip_shyps raw_thm in
-    (case Thm.extra_shyps thm of
-      [] => thm
-    | shyps =>
-        let
-          val names = Name.make_context (map #1 (Thm.fold_terms Term.add_tvar_names thm []));
-          val constraints = map (rpair 0) (Name.invent names Name.aT (length shyps)) ~~ shyps;
-        in Thm.strip_shyps (fold_rev sort_constraint_intr constraints thm) end)
-  end;
-
 end;
 
 
--- a/src/Pure/library.scala	Tue Aug 07 11:39:40 2018 +0200
+++ b/src/Pure/library.scala	Sat Aug 11 16:02:55 2018 +0200
@@ -259,6 +259,15 @@
     result.toList
   }
 
+  def replicate[A](n: Int, a: A): List[A] =
+    if (n < 0) throw new IllegalArgumentException
+    else if (n == 0) Nil
+    else {
+      val res = new mutable.ListBuffer[A]
+      (1 to n).foreach(_ => res += a)
+      res.toList
+    }
+
 
   /* proper values */
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/pure_thy.scala	Sat Aug 11 16:02:55 2018 +0200
@@ -0,0 +1,20 @@
+/*  Title:      Pure/pure_thy.scala
+    Author:     Makarius
+
+Pure theory content.
+*/
+
+package isabelle
+
+
+object Pure_Thy
+{
+  val DUMMY: String = "dummy"
+  val FUN: String = "fun"
+  val PROP: String = "prop"
+  val ITSELF: String = "itself"
+
+  val ALL: String = "Pure.all"
+  val IMP: String = "Pure.imp"
+  val EQ: String = "Pure.eq"
+}