--- a/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Thu Apr 26 22:47:22 2018 +0100
+++ b/src/HOL/Analysis/Cartesian_Euclidean_Space.thy Fri Apr 27 12:43:05 2018 +0100
@@ -300,8 +300,6 @@
"box (vec a) (vec b) = {} \<longleftrightarrow> box a b = {}"
by (auto simp: Basis_vec_def mem_box box_eq_empty inner_axis)
-lemma norm_eq_0_imp: "norm x = 0 ==> x = (0::real ^'n)" by (metis norm_eq_zero)
-
lemma norm_axis_1 [simp]: "norm (axis m (1::real)) = 1"
by (simp add: inner_axis' norm_eq_1)
@@ -314,12 +312,6 @@
lemma vector_mul_rcancel[simp]: "a *s x = b *s x \<longleftrightarrow> (a::real) = b \<or> x = 0"
by (metis eq_iff_diff_eq_0 vector_mul_eq_0 vector_sub_rdistrib)
-lemma vector_mul_lcancel_imp: "a \<noteq> (0::real) ==> a *s x = a *s y ==> (x = y)"
- by (metis vector_mul_lcancel)
-
-lemma vector_mul_rcancel_imp: "x \<noteq> 0 \<Longrightarrow> (a::real) *s x = b *s x ==> a = b"
- by (metis vector_mul_rcancel)
-
lemma component_le_norm_cart: "\<bar>x$i\<bar> \<le> norm x"
apply (simp add: norm_vec_def)
apply (rule member_le_L2_set, simp_all)
@@ -604,7 +596,7 @@
sum.delta[OF finite] cong del: if_weak_cong)
done
-lemma matrix_vector_mul_component: "((A::real^_^_) *v x)$k = (A$k) \<bullet> x"
+lemma matrix_vector_mul_component: "(A *v x)$k = (A$k) \<bullet> x"
by (simp add: matrix_vector_mult_def inner_vec_def)
lemma dot_lmul_matrix: "((x::real ^_) v* A) \<bullet> y = x \<bullet> (A *v y)"
@@ -643,12 +635,10 @@
by (metis transpose_transpose)
lemma matrix_mult_transpose_dot_column:
- fixes A :: "real^'n^'n"
shows "transpose A ** A = (\<chi> i j. (column i A) \<bullet> (column j A))"
by (simp add: matrix_matrix_mult_def vec_eq_iff transpose_def column_def inner_vec_def)
lemma matrix_mult_transpose_dot_row:
- fixes A :: "real^'n^'n"
shows "A ** transpose A = (\<chi> i j. (row i A) \<bullet> (row j A))"
by (simp add: matrix_matrix_mult_def vec_eq_iff transpose_def row_def inner_vec_def)
@@ -704,12 +694,11 @@
lemma matrix_scaleR: "(matrix (( *\<^sub>R) r)) = mat r"
by (simp add: mat_def matrix_def axis_def if_distrib cong: if_cong)
-lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::real ^ _))"
- by (simp add: linear_iff matrix_vector_mult_def vec_eq_iff
- field_simps sum_distrib_left sum.distrib)
+lemma matrix_vector_mul_linear: "linear(\<lambda>x. A *v (x::('a::real_algebra_1) ^ _))"
+ by (simp add: linear_iff matrix_vector_mult_def vec_eq_iff field_simps sum.distrib scaleR_right.sum)
lemma
- fixes A :: "real^'n^'m"
+ fixes A :: "'a::{euclidean_space,real_algebra_1}^'n^'m"
shows matrix_vector_mult_linear_continuous_at [continuous_intros]: "isCont (( *v) A) z"
and matrix_vector_mult_linear_continuous_on [continuous_intros]: "continuous_on S (( *v) A)"
by (simp_all add: linear_linear linear_continuous_at linear_continuous_on matrix_vector_mul_linear)
@@ -795,7 +784,7 @@
by (metis assms inj_on_inverseI invertible_def matrix_vector_mul_assoc matrix_vector_mul_lid)
lemma scalar_invertible:
- fixes A :: "real^'m^'n"
+ fixes A :: "('a::real_algebra_1)^'m^'n"
assumes "k \<noteq> 0" and "invertible A"
shows "invertible (k *\<^sub>R A)"
proof -
@@ -809,7 +798,7 @@
qed
lemma scalar_invertible_iff:
- fixes A :: "real^'m^'n"
+ fixes A :: "('a::real_algebra_1)^'m^'n"
assumes "k \<noteq> 0" and "invertible A"
shows "invertible (k *\<^sub>R A) \<longleftrightarrow> k \<noteq> 0 \<and> invertible A"
by (simp add: assms scalar_invertible)
--- a/src/HOL/Analysis/Determinants.thy Thu Apr 26 22:47:22 2018 +0100
+++ b/src/HOL/Analysis/Determinants.thy Fri Apr 27 12:43:05 2018 +0100
@@ -804,21 +804,15 @@
unfolding invertible_right_inverse
unfolding matrix_right_invertible_independent_rows
by blast
- have *: "\<And>(a::real^'n) b. a + b = 0 \<Longrightarrow> -a = b"
- apply (drule_tac f="(+) (- a)" in cong[OF refl])
- apply (simp only: ab_left_minus add.assoc[symmetric])
- apply simp
- done
have thr0: "- row i A = sum (\<lambda>j. (1/ c i) *s (c j *s row j A)) (?U - {i})"
- apply (rule vector_mul_lcancel_imp[OF ci])
- using c ci unfolding sum.remove[OF fU iU] sum_cmul
- apply (auto simp add: field_simps *)
- done
+ unfolding sum_cmul
+ using c ci
+ by (auto simp add: sum.remove[OF fU iU] eq_vector_fraction_iff add_eq_0_iff)
have thr: "- row i A \<in> span {row j A| j. j \<noteq> i}"
unfolding thr0
apply (rule span_sum)
apply simp
- apply (rule span_mul [where 'a="real^'n"])
+ apply (rule span_mul)
apply (rule span_superset)
apply auto
done