misc tuning and modernization;
authorwenzelm
Tue, 17 Jan 2017 14:56:15 +0100
changeset 64912 68f0465d956b
parent 64911 f0e07600de47
child 64913 3a9eb793fa10
misc tuning and modernization;
src/HOL/Algebra/Sylow.thy
--- a/src/HOL/Algebra/Sylow.thy	Tue Jan 17 13:59:10 2017 +0100
+++ b/src/HOL/Algebra/Sylow.thy	Tue Jan 17 14:56:15 2017 +0100
@@ -3,100 +3,94 @@
 *)
 
 theory Sylow
-imports Coset Exponent
+  imports Coset Exponent
 begin
 
-text \<open>
-  See also @{cite "Kammueller-Paulson:1999"}.
-\<close>
+text \<open>See also @{cite "Kammueller-Paulson:1999"}.\<close>
+
+text \<open>The combinatorial argument is in theory @{theory Exponent}.\<close>
 
-text\<open>The combinatorial argument is in theory Exponent\<close>
-
-lemma le_extend_mult: 
-  fixes c::nat shows "\<lbrakk>0 < c; a \<le> b\<rbrakk> \<Longrightarrow> a \<le> b * c"
-by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less zero_less_iff_neq_zero)
+lemma le_extend_mult: "\<lbrakk>0 < c; a \<le> b\<rbrakk> \<Longrightarrow> a \<le> b * c"
+  for c :: nat
+  by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less zero_less_iff_neq_zero)
 
 locale sylow = group +
   fixes p and a and m and calM and RelM
-  assumes prime_p:   "prime p"
-      and order_G:   "order(G) = (p^a) * m"
-      and finite_G [iff]:  "finite (carrier G)"
-  defines "calM == {s. s \<subseteq> carrier(G) & card(s) = p^a}"
-      and "RelM == {(N1,N2). N1 \<in> calM & N2 \<in> calM &
-                             (\<exists>g \<in> carrier(G). N1 = (N2 #> g) )}"
+  assumes prime_p: "prime p"
+    and order_G: "order G = (p^a) * m"
+    and finite_G[iff]: "finite (carrier G)"
+  defines "calM \<equiv> {s. s \<subseteq> carrier G \<and> card s = p^a}"
+    and "RelM \<equiv> {(N1, N2). N1 \<in> calM \<and> N2 \<in> calM \<and> (\<exists>g \<in> carrier G. N1 = N2 #> g)}"
 begin
 
 lemma RelM_refl_on: "refl_on calM RelM"
-apply (auto simp add: refl_on_def RelM_def calM_def)
-apply (blast intro!: coset_mult_one [symmetric])
-done
+  by (auto simp: refl_on_def RelM_def calM_def) (blast intro!: coset_mult_one [symmetric])
 
 lemma RelM_sym: "sym RelM"
 proof (unfold sym_def RelM_def, clarify)
   fix y g
-  assume   "y \<in> calM"
+  assume "y \<in> calM"
     and g: "g \<in> carrier G"
-  hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
-  thus "\<exists>g'\<in>carrier G. y = y #> g #> g'" by (blast intro: g)
+  then have "y = y #> g #> (inv g)"
+    by (simp add: coset_mult_assoc calM_def)
+  then show "\<exists>g'\<in>carrier G. y = y #> g #> g'"
+    by (blast intro: g)
 qed
 
 lemma RelM_trans: "trans RelM"
-by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
+  by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
 
 lemma RelM_equiv: "equiv calM RelM"
-apply (unfold equiv_def)
-apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
-done
+  unfolding equiv_def by (blast intro: RelM_refl_on RelM_sym RelM_trans)
 
-lemma M_subset_calM_prep: "M' \<in> calM // RelM  ==> M' \<subseteq> calM"
-apply (unfold RelM_def)
-apply (blast elim!: quotientE)
-done
+lemma M_subset_calM_prep: "M' \<in> calM // RelM  \<Longrightarrow> M' \<subseteq> calM"
+  unfolding RelM_def by (blast elim!: quotientE)
 
 end
 
-subsection\<open>Main Part of the Proof\<close>
+subsection \<open>Main Part of the Proof\<close>
 
 locale sylow_central = sylow +
   fixes H and M1 and M
-  assumes M_in_quot:  "M \<in> calM // RelM"
-      and not_dvd_M:  "~(p ^ Suc(multiplicity p m) dvd card(M))"
-      and M1_in_M:    "M1 \<in> M"
-  defines "H == {g. g\<in>carrier G & M1 #> g = M1}"
-
+  assumes M_in_quot: "M \<in> calM // RelM"
+    and not_dvd_M: "\<not> (p ^ Suc (multiplicity p m) dvd card M)"
+    and M1_in_M: "M1 \<in> M"
+  defines "H \<equiv> {g. g \<in> carrier G \<and> M1 #> g = M1}"
 begin
 
 lemma M_subset_calM: "M \<subseteq> calM"
   by (rule M_in_quot [THEN M_subset_calM_prep])
 
-lemma card_M1: "card(M1) = p^a"
+lemma card_M1: "card M1 = p^a"
   using M1_in_M M_subset_calM calM_def by blast
- 
+
 lemma exists_x_in_M1: "\<exists>x. x \<in> M1"
-using prime_p [THEN prime_gt_Suc_0_nat] card_M1
-by (metis Suc_lessD card_eq_0_iff empty_subsetI equalityI gr_implies_not0 nat_zero_less_power_iff subsetI)
+  using prime_p [THEN prime_gt_Suc_0_nat] card_M1
+  by (metis Suc_lessD card_eq_0_iff empty_subsetI equalityI gr_implies_not0 nat_zero_less_power_iff subsetI)
 
 lemma M1_subset_G [simp]: "M1 \<subseteq> carrier G"
-  using M1_in_M  M_subset_calM calM_def mem_Collect_eq subsetCE by blast
+  using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast
 
 lemma M1_inj_H: "\<exists>f \<in> H\<rightarrow>M1. inj_on f H"
 proof -
   from exists_x_in_M1 obtain m1 where m1M: "m1 \<in> M1"..
-  have m1G: "m1 \<in> carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
+  have m1: "m1 \<in> carrier G"
+    by (simp add: m1M M1_subset_G [THEN subsetD])
   show ?thesis
   proof
     show "inj_on (\<lambda>z\<in>H. m1 \<otimes> z) H"
-      by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G)
+      by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1)
     show "restrict (op \<otimes> m1) H \<in> H \<rightarrow> M1"
     proof (rule restrictI)
-      fix z assume zH: "z \<in> H"
+      fix z
+      assume zH: "z \<in> H"
       show "m1 \<otimes> z \<in> M1"
       proof -
         from zH
         have zG: "z \<in> carrier G" and M1zeq: "M1 #> z = M1"
           by (auto simp add: H_def)
         show ?thesis
-          by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
+          by (rule subst [OF M1zeq]) (simp add: m1M zG rcosI)
       qed
     qed
   qed
@@ -104,247 +98,235 @@
 
 end
 
-subsection\<open>Discharging the Assumptions of \<open>sylow_central\<close>\<close>
+
+subsection \<open>Discharging the Assumptions of \<open>sylow_central\<close>\<close>
 
 context sylow
 begin
 
 lemma EmptyNotInEquivSet: "{} \<notin> calM // RelM"
-by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
+  by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
 
-lemma existsM1inM: "M \<in> calM // RelM ==> \<exists>M1. M1 \<in> M"
+lemma existsM1inM: "M \<in> calM // RelM \<Longrightarrow> \<exists>M1. M1 \<in> M"
   using RelM_equiv equiv_Eps_in by blast
 
-lemma zero_less_o_G: "0 < order(G)"
+lemma zero_less_o_G: "0 < order G"
   by (simp add: order_def card_gt_0_iff carrier_not_empty)
 
 lemma zero_less_m: "m > 0"
   using zero_less_o_G by (simp add: order_G)
 
-lemma card_calM: "card(calM) = (p^a) * m choose p^a"
-by (simp add: calM_def n_subsets order_G [symmetric] order_def)
+lemma card_calM: "card calM = (p^a) * m choose p^a"
+  by (simp add: calM_def n_subsets order_G [symmetric] order_def)
 
 lemma zero_less_card_calM: "card calM > 0"
-by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
+  by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
 
-lemma max_p_div_calM:
-     "~ (p ^ Suc(multiplicity p m) dvd card(calM))"
+lemma max_p_div_calM: "\<not> (p ^ Suc (multiplicity p m) dvd card calM)"
 proof
   assume "p ^ Suc (multiplicity p m) dvd card calM"
-  with zero_less_card_calM prime_p 
+  with zero_less_card_calM prime_p
   have "Suc (multiplicity p m) \<le> multiplicity p (card calM)"
     by (intro multiplicity_geI) auto
-  hence "multiplicity p m < multiplicity p (card calM)" by simp
+  then have "multiplicity p m < multiplicity p (card calM)" by simp
   also have "multiplicity p m = multiplicity p (card calM)"
     by (simp add: const_p_fac prime_p zero_less_m card_calM)
   finally show False by simp
 qed
 
 lemma finite_calM: "finite calM"
-  unfolding calM_def
-  by (rule_tac B = "Pow (carrier G) " in finite_subset) auto
+  unfolding calM_def by (rule finite_subset [where B = "Pow (carrier G)"]) auto
 
-lemma lemma_A1:
-     "\<exists>M \<in> calM // RelM. ~ (p ^ Suc(multiplicity p m) dvd card(M))"
+lemma lemma_A1: "\<exists>M \<in> calM // RelM. \<not> (p ^ Suc (multiplicity p m) dvd card M)"
   using RelM_equiv equiv_imp_dvd_card finite_calM max_p_div_calM by blast
 
 end
 
-subsubsection\<open>Introduction and Destruct Rules for @{term H}\<close>
+
+subsubsection \<open>Introduction and Destruct Rules for \<open>H\<close>\<close>
 
-lemma (in sylow_central) H_I: "[|g \<in> carrier G; M1 #> g = M1|] ==> g \<in> H"
-by (simp add: H_def)
-
-lemma (in sylow_central) H_into_carrier_G: "x \<in> H ==> x \<in> carrier G"
-by (simp add: H_def)
+lemma (in sylow_central) H_I: "\<lbrakk>g \<in> carrier G; M1 #> g = M1\<rbrakk> \<Longrightarrow> g \<in> H"
+  by (simp add: H_def)
 
-lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
-by (simp add: H_def)
+lemma (in sylow_central) H_into_carrier_G: "x \<in> H \<Longrightarrow> x \<in> carrier G"
+  by (simp add: H_def)
 
-lemma (in sylow_central) H_m_closed: "[| x\<in>H; y\<in>H|] ==> x \<otimes> y \<in> H"
-apply (unfold H_def)
-apply (simp add: coset_mult_assoc [symmetric])
-done
+lemma (in sylow_central) in_H_imp_eq: "g \<in> H \<Longrightarrow> M1 #> g = M1"
+  by (simp add: H_def)
+
+lemma (in sylow_central) H_m_closed: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
+  by (simp add: H_def coset_mult_assoc [symmetric])
 
 lemma (in sylow_central) H_not_empty: "H \<noteq> {}"
-apply (simp add: H_def)
-apply (rule exI [of _ \<one>], simp)
-done
+  apply (simp add: H_def)
+  apply (rule exI [of _ \<one>])
+  apply simp
+  done
 
 lemma (in sylow_central) H_is_subgroup: "subgroup H G"
-apply (rule subgroupI)
-apply (rule subsetI)
-apply (erule H_into_carrier_G)
-apply (rule H_not_empty)
-apply (simp add: H_def, clarify)
-apply (erule_tac P = "%z. lhs(z) = M1" for lhs in subst)
-apply (simp add: coset_mult_assoc )
-apply (blast intro: H_m_closed)
-done
+  apply (rule subgroupI)
+     apply (rule subsetI)
+     apply (erule H_into_carrier_G)
+    apply (rule H_not_empty)
+   apply (simp add: H_def)
+   apply clarify
+   apply (erule_tac P = "\<lambda>z. lhs z = M1" for lhs in subst)
+   apply (simp add: coset_mult_assoc )
+  apply (blast intro: H_m_closed)
+  done
 
 
 lemma (in sylow_central) rcosetGM1g_subset_G:
-     "[| g \<in> carrier G; x \<in> M1 #>  g |] ==> x \<in> carrier G"
-by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
+  "\<lbrakk>g \<in> carrier G; x \<in> M1 #> g\<rbrakk> \<Longrightarrow> x \<in> carrier G"
+  by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
 
 lemma (in sylow_central) finite_M1: "finite M1"
-by (rule finite_subset [OF M1_subset_G finite_G])
+  by (rule finite_subset [OF M1_subset_G finite_G])
 
-lemma (in sylow_central) finite_rcosetGM1g: "g\<in>carrier G ==> finite (M1 #> g)"
+lemma (in sylow_central) finite_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> finite (M1 #> g)"
   using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI by blast
 
-lemma (in sylow_central) M1_cardeq_rcosetGM1g:
-     "g \<in> carrier G ==> card(M1 #> g) = card(M1)"
-by (simp (no_asm_simp) add: card_cosets_equal rcosetsI)
+lemma (in sylow_central) M1_cardeq_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> card (M1 #> g) = card M1"
+  by (simp add: card_cosets_equal rcosetsI)
 
-lemma (in sylow_central) M1_RelM_rcosetGM1g:
-     "g \<in> carrier G ==> (M1, M1 #> g) \<in> RelM"
-apply (simp add: RelM_def calM_def card_M1)
-apply (rule conjI)
- apply (blast intro: rcosetGM1g_subset_G)
-apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
-apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
-done
+lemma (in sylow_central) M1_RelM_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> (M1, M1 #> g) \<in> RelM"
+  apply (simp add: RelM_def calM_def card_M1)
+  apply (rule conjI)
+   apply (blast intro: rcosetGM1g_subset_G)
+  apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
+  apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
+  done
 
 
-subsection\<open>Equal Cardinalities of @{term M} and the Set of Cosets\<close>
+subsection \<open>Equal Cardinalities of \<open>M\<close> and the Set of Cosets\<close>
 
-text\<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
+text \<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
  their cardinalities are equal.\<close>
 
-lemma ElemClassEquiv:
-     "[| equiv A r; C \<in> A // r |] ==> \<forall>x \<in> C. \<forall>y \<in> C. (x,y)\<in>r"
-by (unfold equiv_def quotient_def sym_def trans_def, blast)
+lemma ElemClassEquiv: "\<lbrakk>equiv A r; C \<in> A // r\<rbrakk> \<Longrightarrow> \<forall>x \<in> C. \<forall>y \<in> C. (x, y) \<in> r"
+  unfolding equiv_def quotient_def sym_def trans_def by blast
 
-lemma (in sylow_central) M_elem_map:
-     "M2 \<in> M ==> \<exists>g. g \<in> carrier G & M1 #> g = M2"
-apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
-apply (simp add: RelM_def)
-apply (blast dest!: bspec)
-done
+lemma (in sylow_central) M_elem_map: "M2 \<in> M \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> M1 #> g = M2"
+  using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
+  by (simp add: RelM_def) (blast dest!: bspec)
 
 lemmas (in sylow_central) M_elem_map_carrier =
-        M_elem_map [THEN someI_ex, THEN conjunct1]
+  M_elem_map [THEN someI_ex, THEN conjunct1]
 
 lemmas (in sylow_central) M_elem_map_eq =
-        M_elem_map [THEN someI_ex, THEN conjunct2]
+  M_elem_map [THEN someI_ex, THEN conjunct2]
 
 lemma (in sylow_central) M_funcset_rcosets_H:
-     "(%x:M. H #> (SOME g. g \<in> carrier G & M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
+  "(\<lambda>x\<in>M. H #> (SOME g. g \<in> carrier G \<and> M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
   by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup_imp_subset)
 
 lemma (in sylow_central) inj_M_GmodH: "\<exists>f \<in> M \<rightarrow> rcosets H. inj_on f M"
-apply (rule bexI)
-apply (rule_tac [2] M_funcset_rcosets_H)
-apply (rule inj_onI, simp)
-apply (rule trans [OF _ M_elem_map_eq])
-prefer 2 apply assumption
-apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
-apply (rule coset_mult_inv1)
-apply (erule_tac [2] M_elem_map_carrier)+
-apply (rule_tac [2] M1_subset_G)
-apply (rule coset_join1 [THEN in_H_imp_eq])
-apply (rule_tac [3] H_is_subgroup)
-prefer 2 apply (blast intro: M_elem_map_carrier)
-apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
-done
+  apply (rule bexI)
+   apply (rule_tac [2] M_funcset_rcosets_H)
+  apply (rule inj_onI, simp)
+  apply (rule trans [OF _ M_elem_map_eq])
+   prefer 2 apply assumption
+  apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
+  apply (rule coset_mult_inv1)
+     apply (erule_tac [2] M_elem_map_carrier)+
+   apply (rule_tac [2] M1_subset_G)
+  apply (rule coset_join1 [THEN in_H_imp_eq])
+    apply (rule_tac [3] H_is_subgroup)
+   prefer 2 apply (blast intro: M_elem_map_carrier)
+  apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
+  done
 
 
 subsubsection\<open>The Opposite Injection\<close>
 
-lemma (in sylow_central) H_elem_map:
-     "H1 \<in> rcosets H ==> \<exists>g. g \<in> carrier G & H #> g = H1"
-by (auto simp add: RCOSETS_def)
+lemma (in sylow_central) H_elem_map: "H1 \<in> rcosets H \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> H #> g = H1"
+  by (auto simp: RCOSETS_def)
 
 lemmas (in sylow_central) H_elem_map_carrier =
-        H_elem_map [THEN someI_ex, THEN conjunct1]
+  H_elem_map [THEN someI_ex, THEN conjunct1]
 
 lemmas (in sylow_central) H_elem_map_eq =
-        H_elem_map [THEN someI_ex, THEN conjunct2]
+  H_elem_map [THEN someI_ex, THEN conjunct2]
 
 lemma (in sylow_central) rcosets_H_funcset_M:
   "(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
-apply (simp add: RCOSETS_def)
-apply (fast intro: someI2
-            intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
-done
+  apply (simp add: RCOSETS_def)
+  apply (fast intro: someI2
+      intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _  M1_RelM_rcosetGM1g])
+  done
 
-text\<open>close to a duplicate of \<open>inj_M_GmodH\<close>\<close>
-lemma (in sylow_central) inj_GmodH_M:
-     "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
-apply (rule bexI)
-apply (rule_tac [2] rcosets_H_funcset_M)
-apply (rule inj_onI)
-apply (simp)
-apply (rule trans [OF _ H_elem_map_eq])
-prefer 2 apply assumption
-apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
-apply (rule coset_mult_inv1)
-apply (erule_tac [2] H_elem_map_carrier)+
-apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
-apply (rule coset_join2)
-apply (blast intro: H_elem_map_carrier)
-apply (rule H_is_subgroup)
-apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
-done
+text \<open>Close to a duplicate of \<open>inj_M_GmodH\<close>.\<close>
+lemma (in sylow_central) inj_GmodH_M: "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
+  apply (rule bexI)
+   apply (rule_tac [2] rcosets_H_funcset_M)
+  apply (rule inj_onI)
+  apply (simp)
+  apply (rule trans [OF _ H_elem_map_eq])
+   prefer 2 apply assumption
+  apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
+  apply (rule coset_mult_inv1)
+     apply (erule_tac [2] H_elem_map_carrier)+
+   apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
+  apply (rule coset_join2)
+    apply (blast intro: H_elem_map_carrier)
+   apply (rule H_is_subgroup)
+  apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
+  done
 
-lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow(carrier G)"
-by (auto simp add: calM_def)
+lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow (carrier G)"
+  by (auto simp: calM_def)
 
 
 lemma (in sylow_central) finite_M: "finite M"
-by (metis M_subset_calM finite_calM rev_finite_subset)
+  by (metis M_subset_calM finite_calM rev_finite_subset)
 
-lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
-apply (insert inj_M_GmodH inj_GmodH_M)
-apply (blast intro: card_bij finite_M H_is_subgroup
-             rcosets_subset_PowG [THEN finite_subset]
-             finite_Pow_iff [THEN iffD2])
-done
+lemma (in sylow_central) cardMeqIndexH: "card M = card (rcosets H)"
+  apply (insert inj_M_GmodH inj_GmodH_M)
+  apply (blast intro: card_bij finite_M H_is_subgroup
+      rcosets_subset_PowG [THEN finite_subset]
+      finite_Pow_iff [THEN iffD2])
+  done
 
-lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
-by (simp add: cardMeqIndexH lagrange H_is_subgroup)
+lemma (in sylow_central) index_lem: "card M * card H = order G"
+  by (simp add: cardMeqIndexH lagrange H_is_subgroup)
 
-lemma (in sylow_central) lemma_leq1: "p^a \<le> card(H)"
-apply (rule dvd_imp_le)
- apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
- prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
-apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd
-                 zero_less_m)
-done
+lemma (in sylow_central) lemma_leq1: "p^a \<le> card H"
+  apply (rule dvd_imp_le)
+   apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
+   prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
+  apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd zero_less_m)
+  done
 
-lemma (in sylow_central) lemma_leq2: "card(H) \<le> p^a"
-apply (subst card_M1 [symmetric])
-apply (cut_tac M1_inj_H)
-apply (blast intro!: M1_subset_G intro:
-             card_inj H_into_carrier_G finite_subset [OF _ finite_G])
-done
+lemma (in sylow_central) lemma_leq2: "card H \<le> p^a"
+  apply (subst card_M1 [symmetric])
+  apply (cut_tac M1_inj_H)
+  apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset [OF _ finite_G])
+  done
 
-lemma (in sylow_central) card_H_eq: "card(H) = p^a"
-by (blast intro: le_antisym lemma_leq1 lemma_leq2)
+lemma (in sylow_central) card_H_eq: "card H = p^a"
+  by (blast intro: le_antisym lemma_leq1 lemma_leq2)
 
-lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G & card(H) = p^a"
-apply (cut_tac lemma_A1, clarify)
-apply (frule existsM1inM, clarify)
-apply (subgoal_tac "sylow_central G p a m M1 M")
- apply (blast dest:  sylow_central.H_is_subgroup sylow_central.card_H_eq)
-apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms calM_def RelM_def)
-done
+lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G \<and> card H = p^a"
+  using lemma_A1
+  apply clarify
+  apply (frule existsM1inM, clarify)
+  apply (subgoal_tac "sylow_central G p a m M1 M")
+   apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
+  apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms calM_def RelM_def)
+  done
 
-text\<open>Needed because the locale's automatic definition refers to
-   @{term "semigroup G"} and @{term "group_axioms G"} rather than
+text \<open>Needed because the locale's automatic definition refers to
+  @{term "semigroup G"} and @{term "group_axioms G"} rather than
   simply to @{term "group G"}.\<close>
-lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
-by (simp add: sylow_def group_def)
+lemma sylow_eq: "sylow G p a m \<longleftrightarrow> group G \<and> sylow_axioms G p a m"
+  by (simp add: sylow_def group_def)
 
 
 subsection \<open>Sylow's Theorem\<close>
 
 theorem sylow_thm:
-     "[| prime p;  group(G);  order(G) = (p^a) * m; finite (carrier G)|]
-      ==> \<exists>H. subgroup H G & card(H) = p^a"
-apply (rule sylow.sylow_thm [of G p a m])
-apply (simp add: sylow_eq sylow_axioms_def)
-done
+  "\<lbrakk>prime p; group G; order G = (p^a) * m; finite (carrier G)\<rbrakk>
+    \<Longrightarrow> \<exists>H. subgroup H G \<and> card H = p^a"
+  by (rule sylow.sylow_thm [of G p a m]) (simp add: sylow_eq sylow_axioms_def)
 
 end