--- a/src/HOL/Algebra/Sylow.thy Tue Jan 17 13:59:10 2017 +0100
+++ b/src/HOL/Algebra/Sylow.thy Tue Jan 17 14:56:15 2017 +0100
@@ -3,100 +3,94 @@
*)
theory Sylow
-imports Coset Exponent
+ imports Coset Exponent
begin
-text \<open>
- See also @{cite "Kammueller-Paulson:1999"}.
-\<close>
+text \<open>See also @{cite "Kammueller-Paulson:1999"}.\<close>
+
+text \<open>The combinatorial argument is in theory @{theory Exponent}.\<close>
-text\<open>The combinatorial argument is in theory Exponent\<close>
-
-lemma le_extend_mult:
- fixes c::nat shows "\<lbrakk>0 < c; a \<le> b\<rbrakk> \<Longrightarrow> a \<le> b * c"
-by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less zero_less_iff_neq_zero)
+lemma le_extend_mult: "\<lbrakk>0 < c; a \<le> b\<rbrakk> \<Longrightarrow> a \<le> b * c"
+ for c :: nat
+ by (metis divisors_zero dvd_triv_left leI less_le_trans nat_dvd_not_less zero_less_iff_neq_zero)
locale sylow = group +
fixes p and a and m and calM and RelM
- assumes prime_p: "prime p"
- and order_G: "order(G) = (p^a) * m"
- and finite_G [iff]: "finite (carrier G)"
- defines "calM == {s. s \<subseteq> carrier(G) & card(s) = p^a}"
- and "RelM == {(N1,N2). N1 \<in> calM & N2 \<in> calM &
- (\<exists>g \<in> carrier(G). N1 = (N2 #> g) )}"
+ assumes prime_p: "prime p"
+ and order_G: "order G = (p^a) * m"
+ and finite_G[iff]: "finite (carrier G)"
+ defines "calM \<equiv> {s. s \<subseteq> carrier G \<and> card s = p^a}"
+ and "RelM \<equiv> {(N1, N2). N1 \<in> calM \<and> N2 \<in> calM \<and> (\<exists>g \<in> carrier G. N1 = N2 #> g)}"
begin
lemma RelM_refl_on: "refl_on calM RelM"
-apply (auto simp add: refl_on_def RelM_def calM_def)
-apply (blast intro!: coset_mult_one [symmetric])
-done
+ by (auto simp: refl_on_def RelM_def calM_def) (blast intro!: coset_mult_one [symmetric])
lemma RelM_sym: "sym RelM"
proof (unfold sym_def RelM_def, clarify)
fix y g
- assume "y \<in> calM"
+ assume "y \<in> calM"
and g: "g \<in> carrier G"
- hence "y = y #> g #> (inv g)" by (simp add: coset_mult_assoc calM_def)
- thus "\<exists>g'\<in>carrier G. y = y #> g #> g'" by (blast intro: g)
+ then have "y = y #> g #> (inv g)"
+ by (simp add: coset_mult_assoc calM_def)
+ then show "\<exists>g'\<in>carrier G. y = y #> g #> g'"
+ by (blast intro: g)
qed
lemma RelM_trans: "trans RelM"
-by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
+ by (auto simp add: trans_def RelM_def calM_def coset_mult_assoc)
lemma RelM_equiv: "equiv calM RelM"
-apply (unfold equiv_def)
-apply (blast intro: RelM_refl_on RelM_sym RelM_trans)
-done
+ unfolding equiv_def by (blast intro: RelM_refl_on RelM_sym RelM_trans)
-lemma M_subset_calM_prep: "M' \<in> calM // RelM ==> M' \<subseteq> calM"
-apply (unfold RelM_def)
-apply (blast elim!: quotientE)
-done
+lemma M_subset_calM_prep: "M' \<in> calM // RelM \<Longrightarrow> M' \<subseteq> calM"
+ unfolding RelM_def by (blast elim!: quotientE)
end
-subsection\<open>Main Part of the Proof\<close>
+subsection \<open>Main Part of the Proof\<close>
locale sylow_central = sylow +
fixes H and M1 and M
- assumes M_in_quot: "M \<in> calM // RelM"
- and not_dvd_M: "~(p ^ Suc(multiplicity p m) dvd card(M))"
- and M1_in_M: "M1 \<in> M"
- defines "H == {g. g\<in>carrier G & M1 #> g = M1}"
-
+ assumes M_in_quot: "M \<in> calM // RelM"
+ and not_dvd_M: "\<not> (p ^ Suc (multiplicity p m) dvd card M)"
+ and M1_in_M: "M1 \<in> M"
+ defines "H \<equiv> {g. g \<in> carrier G \<and> M1 #> g = M1}"
begin
lemma M_subset_calM: "M \<subseteq> calM"
by (rule M_in_quot [THEN M_subset_calM_prep])
-lemma card_M1: "card(M1) = p^a"
+lemma card_M1: "card M1 = p^a"
using M1_in_M M_subset_calM calM_def by blast
-
+
lemma exists_x_in_M1: "\<exists>x. x \<in> M1"
-using prime_p [THEN prime_gt_Suc_0_nat] card_M1
-by (metis Suc_lessD card_eq_0_iff empty_subsetI equalityI gr_implies_not0 nat_zero_less_power_iff subsetI)
+ using prime_p [THEN prime_gt_Suc_0_nat] card_M1
+ by (metis Suc_lessD card_eq_0_iff empty_subsetI equalityI gr_implies_not0 nat_zero_less_power_iff subsetI)
lemma M1_subset_G [simp]: "M1 \<subseteq> carrier G"
- using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast
+ using M1_in_M M_subset_calM calM_def mem_Collect_eq subsetCE by blast
lemma M1_inj_H: "\<exists>f \<in> H\<rightarrow>M1. inj_on f H"
proof -
from exists_x_in_M1 obtain m1 where m1M: "m1 \<in> M1"..
- have m1G: "m1 \<in> carrier G" by (simp add: m1M M1_subset_G [THEN subsetD])
+ have m1: "m1 \<in> carrier G"
+ by (simp add: m1M M1_subset_G [THEN subsetD])
show ?thesis
proof
show "inj_on (\<lambda>z\<in>H. m1 \<otimes> z) H"
- by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1G)
+ by (simp add: inj_on_def l_cancel [of m1 x y, THEN iffD1] H_def m1)
show "restrict (op \<otimes> m1) H \<in> H \<rightarrow> M1"
proof (rule restrictI)
- fix z assume zH: "z \<in> H"
+ fix z
+ assume zH: "z \<in> H"
show "m1 \<otimes> z \<in> M1"
proof -
from zH
have zG: "z \<in> carrier G" and M1zeq: "M1 #> z = M1"
by (auto simp add: H_def)
show ?thesis
- by (rule subst [OF M1zeq], simp add: m1M zG rcosI)
+ by (rule subst [OF M1zeq]) (simp add: m1M zG rcosI)
qed
qed
qed
@@ -104,247 +98,235 @@
end
-subsection\<open>Discharging the Assumptions of \<open>sylow_central\<close>\<close>
+
+subsection \<open>Discharging the Assumptions of \<open>sylow_central\<close>\<close>
context sylow
begin
lemma EmptyNotInEquivSet: "{} \<notin> calM // RelM"
-by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
+ by (blast elim!: quotientE dest: RelM_equiv [THEN equiv_class_self])
-lemma existsM1inM: "M \<in> calM // RelM ==> \<exists>M1. M1 \<in> M"
+lemma existsM1inM: "M \<in> calM // RelM \<Longrightarrow> \<exists>M1. M1 \<in> M"
using RelM_equiv equiv_Eps_in by blast
-lemma zero_less_o_G: "0 < order(G)"
+lemma zero_less_o_G: "0 < order G"
by (simp add: order_def card_gt_0_iff carrier_not_empty)
lemma zero_less_m: "m > 0"
using zero_less_o_G by (simp add: order_G)
-lemma card_calM: "card(calM) = (p^a) * m choose p^a"
-by (simp add: calM_def n_subsets order_G [symmetric] order_def)
+lemma card_calM: "card calM = (p^a) * m choose p^a"
+ by (simp add: calM_def n_subsets order_G [symmetric] order_def)
lemma zero_less_card_calM: "card calM > 0"
-by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
+ by (simp add: card_calM zero_less_binomial le_extend_mult zero_less_m)
-lemma max_p_div_calM:
- "~ (p ^ Suc(multiplicity p m) dvd card(calM))"
+lemma max_p_div_calM: "\<not> (p ^ Suc (multiplicity p m) dvd card calM)"
proof
assume "p ^ Suc (multiplicity p m) dvd card calM"
- with zero_less_card_calM prime_p
+ with zero_less_card_calM prime_p
have "Suc (multiplicity p m) \<le> multiplicity p (card calM)"
by (intro multiplicity_geI) auto
- hence "multiplicity p m < multiplicity p (card calM)" by simp
+ then have "multiplicity p m < multiplicity p (card calM)" by simp
also have "multiplicity p m = multiplicity p (card calM)"
by (simp add: const_p_fac prime_p zero_less_m card_calM)
finally show False by simp
qed
lemma finite_calM: "finite calM"
- unfolding calM_def
- by (rule_tac B = "Pow (carrier G) " in finite_subset) auto
+ unfolding calM_def by (rule finite_subset [where B = "Pow (carrier G)"]) auto
-lemma lemma_A1:
- "\<exists>M \<in> calM // RelM. ~ (p ^ Suc(multiplicity p m) dvd card(M))"
+lemma lemma_A1: "\<exists>M \<in> calM // RelM. \<not> (p ^ Suc (multiplicity p m) dvd card M)"
using RelM_equiv equiv_imp_dvd_card finite_calM max_p_div_calM by blast
end
-subsubsection\<open>Introduction and Destruct Rules for @{term H}\<close>
+
+subsubsection \<open>Introduction and Destruct Rules for \<open>H\<close>\<close>
-lemma (in sylow_central) H_I: "[|g \<in> carrier G; M1 #> g = M1|] ==> g \<in> H"
-by (simp add: H_def)
-
-lemma (in sylow_central) H_into_carrier_G: "x \<in> H ==> x \<in> carrier G"
-by (simp add: H_def)
+lemma (in sylow_central) H_I: "\<lbrakk>g \<in> carrier G; M1 #> g = M1\<rbrakk> \<Longrightarrow> g \<in> H"
+ by (simp add: H_def)
-lemma (in sylow_central) in_H_imp_eq: "g : H ==> M1 #> g = M1"
-by (simp add: H_def)
+lemma (in sylow_central) H_into_carrier_G: "x \<in> H \<Longrightarrow> x \<in> carrier G"
+ by (simp add: H_def)
-lemma (in sylow_central) H_m_closed: "[| x\<in>H; y\<in>H|] ==> x \<otimes> y \<in> H"
-apply (unfold H_def)
-apply (simp add: coset_mult_assoc [symmetric])
-done
+lemma (in sylow_central) in_H_imp_eq: "g \<in> H \<Longrightarrow> M1 #> g = M1"
+ by (simp add: H_def)
+
+lemma (in sylow_central) H_m_closed: "\<lbrakk>x \<in> H; y \<in> H\<rbrakk> \<Longrightarrow> x \<otimes> y \<in> H"
+ by (simp add: H_def coset_mult_assoc [symmetric])
lemma (in sylow_central) H_not_empty: "H \<noteq> {}"
-apply (simp add: H_def)
-apply (rule exI [of _ \<one>], simp)
-done
+ apply (simp add: H_def)
+ apply (rule exI [of _ \<one>])
+ apply simp
+ done
lemma (in sylow_central) H_is_subgroup: "subgroup H G"
-apply (rule subgroupI)
-apply (rule subsetI)
-apply (erule H_into_carrier_G)
-apply (rule H_not_empty)
-apply (simp add: H_def, clarify)
-apply (erule_tac P = "%z. lhs(z) = M1" for lhs in subst)
-apply (simp add: coset_mult_assoc )
-apply (blast intro: H_m_closed)
-done
+ apply (rule subgroupI)
+ apply (rule subsetI)
+ apply (erule H_into_carrier_G)
+ apply (rule H_not_empty)
+ apply (simp add: H_def)
+ apply clarify
+ apply (erule_tac P = "\<lambda>z. lhs z = M1" for lhs in subst)
+ apply (simp add: coset_mult_assoc )
+ apply (blast intro: H_m_closed)
+ done
lemma (in sylow_central) rcosetGM1g_subset_G:
- "[| g \<in> carrier G; x \<in> M1 #> g |] ==> x \<in> carrier G"
-by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
+ "\<lbrakk>g \<in> carrier G; x \<in> M1 #> g\<rbrakk> \<Longrightarrow> x \<in> carrier G"
+ by (blast intro: M1_subset_G [THEN r_coset_subset_G, THEN subsetD])
lemma (in sylow_central) finite_M1: "finite M1"
-by (rule finite_subset [OF M1_subset_G finite_G])
+ by (rule finite_subset [OF M1_subset_G finite_G])
-lemma (in sylow_central) finite_rcosetGM1g: "g\<in>carrier G ==> finite (M1 #> g)"
+lemma (in sylow_central) finite_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> finite (M1 #> g)"
using rcosetGM1g_subset_G finite_G M1_subset_G cosets_finite rcosetsI by blast
-lemma (in sylow_central) M1_cardeq_rcosetGM1g:
- "g \<in> carrier G ==> card(M1 #> g) = card(M1)"
-by (simp (no_asm_simp) add: card_cosets_equal rcosetsI)
+lemma (in sylow_central) M1_cardeq_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> card (M1 #> g) = card M1"
+ by (simp add: card_cosets_equal rcosetsI)
-lemma (in sylow_central) M1_RelM_rcosetGM1g:
- "g \<in> carrier G ==> (M1, M1 #> g) \<in> RelM"
-apply (simp add: RelM_def calM_def card_M1)
-apply (rule conjI)
- apply (blast intro: rcosetGM1g_subset_G)
-apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
-apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
-done
+lemma (in sylow_central) M1_RelM_rcosetGM1g: "g \<in> carrier G \<Longrightarrow> (M1, M1 #> g) \<in> RelM"
+ apply (simp add: RelM_def calM_def card_M1)
+ apply (rule conjI)
+ apply (blast intro: rcosetGM1g_subset_G)
+ apply (simp add: card_M1 M1_cardeq_rcosetGM1g)
+ apply (metis M1_subset_G coset_mult_assoc coset_mult_one r_inv_ex)
+ done
-subsection\<open>Equal Cardinalities of @{term M} and the Set of Cosets\<close>
+subsection \<open>Equal Cardinalities of \<open>M\<close> and the Set of Cosets\<close>
-text\<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
+text \<open>Injections between @{term M} and @{term "rcosets\<^bsub>G\<^esub> H"} show that
their cardinalities are equal.\<close>
-lemma ElemClassEquiv:
- "[| equiv A r; C \<in> A // r |] ==> \<forall>x \<in> C. \<forall>y \<in> C. (x,y)\<in>r"
-by (unfold equiv_def quotient_def sym_def trans_def, blast)
+lemma ElemClassEquiv: "\<lbrakk>equiv A r; C \<in> A // r\<rbrakk> \<Longrightarrow> \<forall>x \<in> C. \<forall>y \<in> C. (x, y) \<in> r"
+ unfolding equiv_def quotient_def sym_def trans_def by blast
-lemma (in sylow_central) M_elem_map:
- "M2 \<in> M ==> \<exists>g. g \<in> carrier G & M1 #> g = M2"
-apply (cut_tac M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]])
-apply (simp add: RelM_def)
-apply (blast dest!: bspec)
-done
+lemma (in sylow_central) M_elem_map: "M2 \<in> M \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> M1 #> g = M2"
+ using M1_in_M M_in_quot [THEN RelM_equiv [THEN ElemClassEquiv]]
+ by (simp add: RelM_def) (blast dest!: bspec)
lemmas (in sylow_central) M_elem_map_carrier =
- M_elem_map [THEN someI_ex, THEN conjunct1]
+ M_elem_map [THEN someI_ex, THEN conjunct1]
lemmas (in sylow_central) M_elem_map_eq =
- M_elem_map [THEN someI_ex, THEN conjunct2]
+ M_elem_map [THEN someI_ex, THEN conjunct2]
lemma (in sylow_central) M_funcset_rcosets_H:
- "(%x:M. H #> (SOME g. g \<in> carrier G & M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
+ "(\<lambda>x\<in>M. H #> (SOME g. g \<in> carrier G \<and> M1 #> g = x)) \<in> M \<rightarrow> rcosets H"
by (metis (lifting) H_is_subgroup M_elem_map_carrier rcosetsI restrictI subgroup_imp_subset)
lemma (in sylow_central) inj_M_GmodH: "\<exists>f \<in> M \<rightarrow> rcosets H. inj_on f M"
-apply (rule bexI)
-apply (rule_tac [2] M_funcset_rcosets_H)
-apply (rule inj_onI, simp)
-apply (rule trans [OF _ M_elem_map_eq])
-prefer 2 apply assumption
-apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
-apply (rule coset_mult_inv1)
-apply (erule_tac [2] M_elem_map_carrier)+
-apply (rule_tac [2] M1_subset_G)
-apply (rule coset_join1 [THEN in_H_imp_eq])
-apply (rule_tac [3] H_is_subgroup)
-prefer 2 apply (blast intro: M_elem_map_carrier)
-apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
-done
+ apply (rule bexI)
+ apply (rule_tac [2] M_funcset_rcosets_H)
+ apply (rule inj_onI, simp)
+ apply (rule trans [OF _ M_elem_map_eq])
+ prefer 2 apply assumption
+ apply (rule M_elem_map_eq [symmetric, THEN trans], assumption)
+ apply (rule coset_mult_inv1)
+ apply (erule_tac [2] M_elem_map_carrier)+
+ apply (rule_tac [2] M1_subset_G)
+ apply (rule coset_join1 [THEN in_H_imp_eq])
+ apply (rule_tac [3] H_is_subgroup)
+ prefer 2 apply (blast intro: M_elem_map_carrier)
+ apply (simp add: coset_mult_inv2 H_def M_elem_map_carrier subset_eq)
+ done
subsubsection\<open>The Opposite Injection\<close>
-lemma (in sylow_central) H_elem_map:
- "H1 \<in> rcosets H ==> \<exists>g. g \<in> carrier G & H #> g = H1"
-by (auto simp add: RCOSETS_def)
+lemma (in sylow_central) H_elem_map: "H1 \<in> rcosets H \<Longrightarrow> \<exists>g. g \<in> carrier G \<and> H #> g = H1"
+ by (auto simp: RCOSETS_def)
lemmas (in sylow_central) H_elem_map_carrier =
- H_elem_map [THEN someI_ex, THEN conjunct1]
+ H_elem_map [THEN someI_ex, THEN conjunct1]
lemmas (in sylow_central) H_elem_map_eq =
- H_elem_map [THEN someI_ex, THEN conjunct2]
+ H_elem_map [THEN someI_ex, THEN conjunct2]
lemma (in sylow_central) rcosets_H_funcset_M:
"(\<lambda>C \<in> rcosets H. M1 #> (@g. g \<in> carrier G \<and> H #> g = C)) \<in> rcosets H \<rightarrow> M"
-apply (simp add: RCOSETS_def)
-apply (fast intro: someI2
- intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g])
-done
+ apply (simp add: RCOSETS_def)
+ apply (fast intro: someI2
+ intro!: M1_in_M in_quotient_imp_closed [OF RelM_equiv M_in_quot _ M1_RelM_rcosetGM1g])
+ done
-text\<open>close to a duplicate of \<open>inj_M_GmodH\<close>\<close>
-lemma (in sylow_central) inj_GmodH_M:
- "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
-apply (rule bexI)
-apply (rule_tac [2] rcosets_H_funcset_M)
-apply (rule inj_onI)
-apply (simp)
-apply (rule trans [OF _ H_elem_map_eq])
-prefer 2 apply assumption
-apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
-apply (rule coset_mult_inv1)
-apply (erule_tac [2] H_elem_map_carrier)+
-apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
-apply (rule coset_join2)
-apply (blast intro: H_elem_map_carrier)
-apply (rule H_is_subgroup)
-apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
-done
+text \<open>Close to a duplicate of \<open>inj_M_GmodH\<close>.\<close>
+lemma (in sylow_central) inj_GmodH_M: "\<exists>g \<in> rcosets H\<rightarrow>M. inj_on g (rcosets H)"
+ apply (rule bexI)
+ apply (rule_tac [2] rcosets_H_funcset_M)
+ apply (rule inj_onI)
+ apply (simp)
+ apply (rule trans [OF _ H_elem_map_eq])
+ prefer 2 apply assumption
+ apply (rule H_elem_map_eq [symmetric, THEN trans], assumption)
+ apply (rule coset_mult_inv1)
+ apply (erule_tac [2] H_elem_map_carrier)+
+ apply (rule_tac [2] H_is_subgroup [THEN subgroup.subset])
+ apply (rule coset_join2)
+ apply (blast intro: H_elem_map_carrier)
+ apply (rule H_is_subgroup)
+ apply (simp add: H_I coset_mult_inv2 H_elem_map_carrier)
+ done
-lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow(carrier G)"
-by (auto simp add: calM_def)
+lemma (in sylow_central) calM_subset_PowG: "calM \<subseteq> Pow (carrier G)"
+ by (auto simp: calM_def)
lemma (in sylow_central) finite_M: "finite M"
-by (metis M_subset_calM finite_calM rev_finite_subset)
+ by (metis M_subset_calM finite_calM rev_finite_subset)
-lemma (in sylow_central) cardMeqIndexH: "card(M) = card(rcosets H)"
-apply (insert inj_M_GmodH inj_GmodH_M)
-apply (blast intro: card_bij finite_M H_is_subgroup
- rcosets_subset_PowG [THEN finite_subset]
- finite_Pow_iff [THEN iffD2])
-done
+lemma (in sylow_central) cardMeqIndexH: "card M = card (rcosets H)"
+ apply (insert inj_M_GmodH inj_GmodH_M)
+ apply (blast intro: card_bij finite_M H_is_subgroup
+ rcosets_subset_PowG [THEN finite_subset]
+ finite_Pow_iff [THEN iffD2])
+ done
-lemma (in sylow_central) index_lem: "card(M) * card(H) = order(G)"
-by (simp add: cardMeqIndexH lagrange H_is_subgroup)
+lemma (in sylow_central) index_lem: "card M * card H = order G"
+ by (simp add: cardMeqIndexH lagrange H_is_subgroup)
-lemma (in sylow_central) lemma_leq1: "p^a \<le> card(H)"
-apply (rule dvd_imp_le)
- apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
- prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
-apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd
- zero_less_m)
-done
+lemma (in sylow_central) lemma_leq1: "p^a \<le> card H"
+ apply (rule dvd_imp_le)
+ apply (rule div_combine [OF prime_imp_prime_elem[OF prime_p] not_dvd_M])
+ prefer 2 apply (blast intro: subgroup.finite_imp_card_positive H_is_subgroup)
+ apply (simp add: index_lem order_G power_add mult_dvd_mono multiplicity_dvd zero_less_m)
+ done
-lemma (in sylow_central) lemma_leq2: "card(H) \<le> p^a"
-apply (subst card_M1 [symmetric])
-apply (cut_tac M1_inj_H)
-apply (blast intro!: M1_subset_G intro:
- card_inj H_into_carrier_G finite_subset [OF _ finite_G])
-done
+lemma (in sylow_central) lemma_leq2: "card H \<le> p^a"
+ apply (subst card_M1 [symmetric])
+ apply (cut_tac M1_inj_H)
+ apply (blast intro!: M1_subset_G intro: card_inj H_into_carrier_G finite_subset [OF _ finite_G])
+ done
-lemma (in sylow_central) card_H_eq: "card(H) = p^a"
-by (blast intro: le_antisym lemma_leq1 lemma_leq2)
+lemma (in sylow_central) card_H_eq: "card H = p^a"
+ by (blast intro: le_antisym lemma_leq1 lemma_leq2)
-lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G & card(H) = p^a"
-apply (cut_tac lemma_A1, clarify)
-apply (frule existsM1inM, clarify)
-apply (subgoal_tac "sylow_central G p a m M1 M")
- apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
-apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms calM_def RelM_def)
-done
+lemma (in sylow) sylow_thm: "\<exists>H. subgroup H G \<and> card H = p^a"
+ using lemma_A1
+ apply clarify
+ apply (frule existsM1inM, clarify)
+ apply (subgoal_tac "sylow_central G p a m M1 M")
+ apply (blast dest: sylow_central.H_is_subgroup sylow_central.card_H_eq)
+ apply (simp add: sylow_central_def sylow_central_axioms_def sylow_axioms calM_def RelM_def)
+ done
-text\<open>Needed because the locale's automatic definition refers to
- @{term "semigroup G"} and @{term "group_axioms G"} rather than
+text \<open>Needed because the locale's automatic definition refers to
+ @{term "semigroup G"} and @{term "group_axioms G"} rather than
simply to @{term "group G"}.\<close>
-lemma sylow_eq: "sylow G p a m = (group G & sylow_axioms G p a m)"
-by (simp add: sylow_def group_def)
+lemma sylow_eq: "sylow G p a m \<longleftrightarrow> group G \<and> sylow_axioms G p a m"
+ by (simp add: sylow_def group_def)
subsection \<open>Sylow's Theorem\<close>
theorem sylow_thm:
- "[| prime p; group(G); order(G) = (p^a) * m; finite (carrier G)|]
- ==> \<exists>H. subgroup H G & card(H) = p^a"
-apply (rule sylow.sylow_thm [of G p a m])
-apply (simp add: sylow_eq sylow_axioms_def)
-done
+ "\<lbrakk>prime p; group G; order G = (p^a) * m; finite (carrier G)\<rbrakk>
+ \<Longrightarrow> \<exists>H. subgroup H G \<and> card H = p^a"
+ by (rule sylow.sylow_thm [of G p a m]) (simp add: sylow_eq sylow_axioms_def)
end