--- a/src/HOL/List.thy Wed Feb 21 12:57:49 2018 +0000
+++ b/src/HOL/List.thy Thu Feb 22 19:48:01 2018 +0100
@@ -388,6 +388,10 @@
abbreviation "insort \<equiv> insort_key (\<lambda>x. x)"
abbreviation "insort_insert \<equiv> insort_insert_key (\<lambda>x. x)"
+definition stable_sort_key :: "(('b \<Rightarrow> 'a) \<Rightarrow> 'b list \<Rightarrow> 'b list) \<Rightarrow> bool" where
+"stable_sort_key sk =
+ (\<forall>f xs k. filter (\<lambda>y. f y = k) (sk f xs) = filter (\<lambda>y. f y = k) xs)"
+
end
@@ -5375,61 +5379,35 @@
lemma sorted_enumerate [simp]: "sorted (map fst (enumerate n xs))"
by (simp add: enumerate_eq_zip)
-text \<open>Stability of function @{const sort_key}:\<close>
-
-lemma sort_key_stable:
- "x \<in> set xs \<Longrightarrow> [y <- sort_key f xs. f y = f x] = [y <- xs. f y = f x]"
-proof (induction xs arbitrary: x)
+text \<open>Stability of @{const sort_key}:\<close>
+
+lemma sort_key_stable: "[y <- sort_key f xs. f y = k] = [y <- xs. f y = k]"
+proof (induction xs)
case Nil thus ?case by simp
next
case (Cons a xs)
thus ?case
- proof (cases "x \<in> set xs")
+ proof (cases "f a = k")
+ case False thus ?thesis
+ using Cons.IH by (metis (mono_tags) filter.simps(2) filter_sort)
+ next
case True
- thus ?thesis
- proof (cases "f a = f x")
- case False thus ?thesis
- using Cons.IH by (metis (mono_tags) True filter.simps(2) filter_sort)
- next
- case True
- hence ler: "[y <- (a # xs). f y = f x] = a # [y <- xs. f y = f a]" by simp
- have "\<forall>y \<in> set (sort_key f [y <- xs. f y = f a]). f y = f a" by simp
- hence "insort_key f a (sort_key f [y <- xs. f y = f a])
- = a # (sort_key f [y <- xs. f y = f a])"
- by (simp add: insort_is_Cons)
- hence lel: "[y <- sort_key f (a # xs). f y = f x] = a # [y <- sort_key f xs. f y = f a]"
- by (metis True filter_sort ler sort_key_simps(2))
- from lel ler show ?thesis using Cons.IH \<open>x \<in> set xs\<close> by (metis True filter_sort)
- qed
- next
- case False
- from Cons.prems have "x = a" by (metis False set_ConsD)
- have ler: "[y <- (a # xs). f y = f a] = a # [y <- xs. f y = f a]" by simp
+ hence ler: "[y <- (a # xs). f y = k] = a # [y <- xs. f y = f a]" by simp
have "\<forall>y \<in> set (sort_key f [y <- xs. f y = f a]). f y = f a" by simp
hence "insort_key f a (sort_key f [y <- xs. f y = f a])
- = a # (sort_key f [y <- xs. f y = f a])"
+ = a # (sort_key f [y <- xs. f y = f a])"
by (simp add: insort_is_Cons)
- hence lel: "[y <- sort_key f (a # xs). f y = f a] = a # [y <- sort_key f xs. f y = f a]"
- by (metis (mono_tags) filter.simps(2) filter_sort sort_key_simps(2))
- show ?thesis (is "?l = ?r")
- proof (cases "f a \<in> set (map f xs)")
- case False
- hence "\<forall>y \<in> set xs. f y \<noteq> f a" by (metis image_eqI set_map)
- hence R: "?r = [a]" using ler \<open>x=a\<close> by simp
- have L: "?l = [a]" using lel \<open>x=a\<close> by (metis R filter_sort insort_key.simps(1) sort_key_simps)
- from L R show ?thesis ..
- next
- case True
- then obtain z where Z: "z \<in> set xs \<and> f z = f a" by auto
- hence L: "[y <- sort_key f xs. f y = f z] = [y <- sort_key f xs. f y = f a]" by simp
- from Z have R: "[y <- xs. f y = f z] = [y <- xs. f y = f a]" by simp
- from L R Z show ?thesis using Cons.IH ler lel \<open>x=a\<close> by metis
- qed
+ hence lel: "[y <- sort_key f (a # xs). f y = k] = a # [y <- sort_key f xs. f y = f a]"
+ by (metis True filter_sort ler sort_key_simps(2))
+ from lel ler show ?thesis using Cons.IH True by (auto)
qed
qed
+corollary stable_sort_key_sort_key: "stable_sort_key sort_key"
+by(simp add: stable_sort_key_def sort_key_stable)
+
lemma sort_key_const: "sort_key (\<lambda>x. c) xs = xs"
-by (metis (mono_tags) filter_False filter_True sort_key_simps(1) sort_key_stable)
+by (metis (mono_tags) filter_True sort_key_stable)
subsubsection \<open>@{const transpose} on sorted lists\<close>
--- a/src/HOL/ex/Radix_Sort.thy Wed Feb 21 12:57:49 2018 +0000
+++ b/src/HOL/ex/Radix_Sort.thy Thu Feb 22 19:48:01 2018 +0100
@@ -56,7 +56,7 @@
lemma sorted_from_radix_sort_step:
"\<lbrakk> cols xss n; i < n; sorted_from (Suc i) xss \<rbrakk> \<Longrightarrow> sorted_from i (sort_key (\<lambda>xs. xs ! i) xss)"
apply (rule sorted_from_Suc2)
-apply (auto simp add: sort_key_stable[of _ xss "%xs. xs!i"] sorted_filter cols_def)
+apply (auto simp add: sort_key_stable sorted_filter cols_def)
done
lemma sorted_from_radix_sort: