--- a/src/HOL/Algebra/Group.thy Tue Feb 21 09:17:53 2012 +0100
+++ b/src/HOL/Algebra/Group.thy Tue Feb 21 10:30:57 2012 +0100
@@ -41,7 +41,7 @@
begin
definition "int_pow G a z =
(let p = nat_rec \<one>\<^bsub>G\<^esub> (%u b. b \<otimes>\<^bsub>G\<^esub> a)
- in if neg z then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))"
+ in if z < 0 then inv\<^bsub>G\<^esub> (p (nat (-z))) else p (nat z))"
end
locale monoid =
@@ -391,7 +391,7 @@
text {* Power *}
lemma (in group) int_pow_def2:
- "a (^) (z::int) = (if neg z then inv (a (^) (nat (-z))) else a (^) (nat z))"
+ "a (^) (z::int) = (if z < 0 then inv (a (^) (nat (-z))) else a (^) (nat z))"
by (simp add: int_pow_def nat_pow_def Let_def)
lemma (in group) int_pow_0 [simp]: