Added typed IMP
authornipkow
Thu, 02 Jun 2011 10:10:23 +0200
changeset 43150 69bc4dafcc53
parent 43146 09f74fda1b1d
child 43151 9f368cdb4b09
Added typed IMP
src/HOL/IMP/Poly_Types.thy
src/HOL/IMP/ROOT.ML
src/HOL/IMP/Types.thy
src/HOL/IsaMakefile
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Poly_Types.thy	Thu Jun 02 10:10:23 2011 +0200
@@ -0,0 +1,71 @@
+theory Poly_Types imports Types begin
+
+subsection "Type Variables"
+
+datatype ty = Ity | Rty | TV nat
+
+text{* Everything else remains the same. *}
+
+type_synonym tyenv = "name \<Rightarrow> ty"
+
+inductive atyping :: "tyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool"
+  ("(1_/ \<turnstile>p/ (_ :/ _))" [50,0,50] 50)
+where
+"\<Gamma> \<turnstile>p Ic i : Ity" |
+"\<Gamma> \<turnstile>p Rc r : Rty" |
+"\<Gamma> \<turnstile>p V x : \<Gamma> x" |
+"\<Gamma> \<turnstile>p a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile>p a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile>p Plus a1 a2 : \<tau>"
+
+inductive btyping :: "tyenv \<Rightarrow> bexp \<Rightarrow> bool" (infix "\<turnstile>p" 50)
+where
+"\<Gamma> \<turnstile>p B bv" |
+"\<Gamma> \<turnstile>p b \<Longrightarrow> \<Gamma> \<turnstile>p Not b" |
+"\<Gamma> \<turnstile>p b1 \<Longrightarrow> \<Gamma> \<turnstile>p b2 \<Longrightarrow> \<Gamma> \<turnstile>p And b1 b2" |
+"\<Gamma> \<turnstile>p a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile>p a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile>p Less a1 a2"
+
+inductive ctyping :: "tyenv \<Rightarrow> com \<Rightarrow> bool" (infix "\<turnstile>p" 50) where
+"\<Gamma> \<turnstile>p SKIP" |
+"\<Gamma> \<turnstile>p a : \<Gamma>(x) \<Longrightarrow> \<Gamma> \<turnstile>p x ::= a" |
+"\<Gamma> \<turnstile>p c1 \<Longrightarrow> \<Gamma> \<turnstile>p c2 \<Longrightarrow> \<Gamma> \<turnstile>p c1;c2" |
+"\<Gamma> \<turnstile>p b \<Longrightarrow> \<Gamma> \<turnstile>p c1 \<Longrightarrow> \<Gamma> \<turnstile>p c2 \<Longrightarrow> \<Gamma> \<turnstile>p IF b THEN c1 ELSE c2" |
+"\<Gamma> \<turnstile>p b \<Longrightarrow> \<Gamma> \<turnstile>p c \<Longrightarrow> \<Gamma> \<turnstile>p WHILE b DO c"
+
+fun type :: "val \<Rightarrow> ty" where
+"type (Iv i) = Ity" |
+"type (Rv r) = Rty"
+
+definition styping :: "tyenv \<Rightarrow> state \<Rightarrow> bool" (infix "\<turnstile>p" 50)
+where "\<Gamma> \<turnstile>p s  \<longleftrightarrow>  (\<forall>x. type (s x) = \<Gamma> x)"
+
+fun tsubst :: "(nat \<Rightarrow> ty) \<Rightarrow> ty \<Rightarrow> ty" where
+"tsubst S (TV n) = S n" |
+"tsubst S t = t"
+
+
+subsection{* Typing is Preserved by Substitution *}
+
+lemma subst_atyping: "E \<turnstile>p a : t \<Longrightarrow> tsubst S \<circ> E \<turnstile>p a : tsubst S t"
+apply(induct rule: atyping.induct)
+apply(auto intro: atyping.intros)
+done
+
+lemma subst_btyping: "E \<turnstile>p (b::bexp) \<Longrightarrow> tsubst S \<circ> E \<turnstile>p b"
+apply(induct rule: btyping.induct)
+apply(auto intro: btyping.intros)
+apply(drule subst_atyping[where S=S])
+apply(drule subst_atyping[where S=S])
+apply(simp add: o_def btyping.intros)
+done
+
+lemma subst_ctyping: "E \<turnstile>p (c::com) \<Longrightarrow> tsubst S \<circ> E \<turnstile>p c"
+apply(induct rule: ctyping.induct)
+apply(auto intro: ctyping.intros)
+apply(drule subst_atyping[where S=S])
+apply(simp add: o_def ctyping.intros)
+apply(drule subst_btyping[where S=S])
+apply(simp add: o_def ctyping.intros)
+apply(drule subst_btyping[where S=S])
+apply(simp add: o_def ctyping.intros)
+done
+
+end
--- a/src/HOL/IMP/ROOT.ML	Thu Jun 02 08:55:08 2011 +0200
+++ b/src/HOL/IMP/ROOT.ML	Thu Jun 02 10:10:23 2011 +0200
@@ -3,8 +3,8 @@
  "ASM",
  "Small_Step",
  "Denotation",
- "Compiler"(*,
- "Poly_Types",
+ "Compiler",
+ "Poly_Types"(*,
  "Sec_Typing",
  "Sec_TypingT",
  "Def_Ass_Sound_Big",
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/IMP/Types.thy	Thu Jun 02 10:10:23 2011 +0200
@@ -0,0 +1,204 @@
+header "A Typed Language"
+
+theory Types imports Star Complex_Main begin
+
+subsection "Arithmetic Expressions"
+
+datatype val = Iv int | Rv real
+
+type_synonym name = string
+type_synonym state = "name \<Rightarrow> val"
+
+datatype aexp =  Ic int | Rc real | V name | Plus aexp aexp
+
+inductive taval :: "aexp \<Rightarrow> state \<Rightarrow> val \<Rightarrow> bool" where
+"taval (Ic i) s (Iv i)" |
+"taval (Rc r) s (Rv r)" |
+"taval (V x) s (s x)" |
+"taval a1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2)
+ \<Longrightarrow> taval (Plus a1 a2) s (Iv(i1+i2))" |
+"taval a\<^isub>1 s (Rv r1) \<Longrightarrow> taval a2 s (Rv r2)
+ \<Longrightarrow> taval (Plus a1 a2) s (Rv(r1+r2))"
+
+inductive_cases [elim!]:
+  "taval (Ic i) s v"  "taval (Rc i) s v"
+  "taval (V x) s v"
+  "taval (Plus a1 a2) s v"
+
+subsection "Boolean Expressions"
+
+datatype bexp = B bool | Not bexp | And bexp bexp | Less aexp aexp
+
+inductive tbval :: "bexp \<Rightarrow> state \<Rightarrow> bool \<Rightarrow> bool" where
+"tbval (B bv) s bv" |
+"tbval b s bv \<Longrightarrow> tbval (Not b) s (\<not> bv)" |
+"tbval b\<^isub>1 s bv1 \<Longrightarrow> tbval b2 s bv2 \<Longrightarrow> tbval (And b1 b2) s (bv1 & bv2)" |
+"taval a\<^isub>1 s (Iv i1) \<Longrightarrow> taval a2 s (Iv i2) \<Longrightarrow> tbval (Less a1 a2) s (i1 < i2)" |
+"taval a\<^isub>1 s (Rv r1) \<Longrightarrow> taval a2 s (Rv r2) \<Longrightarrow> tbval (Less a1 a2) s (r1 < r2)"
+
+subsection "Syntax of Commands"
+(* a copy of Com.thy - keep in sync! *)
+
+datatype
+  com = SKIP 
+      | Assign name aexp         ("_ ::= _" [1000, 61] 61)
+      | Semi   com  com          ("_; _"  [60, 61] 60)
+      | If     bexp com com     ("IF _ THEN _ ELSE _"  [0, 0, 61] 61)
+      | While  bexp com         ("WHILE _ DO _"  [0, 61] 61)
+
+
+subsection "Small-Step Semantics of Commands"
+
+inductive
+  small_step :: "(com \<times> state) \<Rightarrow> (com \<times> state) \<Rightarrow> bool" (infix "\<rightarrow>" 55)
+where
+Assign:  "taval a s v \<Longrightarrow> (x ::= a, s) \<rightarrow> (SKIP, s(x := v))" |
+
+Semi1:   "(SKIP;c,s) \<rightarrow> (c,s)" |
+Semi2:   "(c1,s) \<rightarrow> (c1',s') \<Longrightarrow> (c1;c2,s) \<rightarrow> (c1';c2,s')" |
+
+IfTrue:  "tbval b s True \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c1,s)" |
+IfFalse: "tbval b s False \<Longrightarrow> (IF b THEN c1 ELSE c2,s) \<rightarrow> (c2,s)" |
+
+While:   "(WHILE b DO c,s) \<rightarrow> (IF b THEN c; WHILE b DO c ELSE SKIP,s)"
+
+lemmas small_step_induct = small_step.induct[split_format(complete)]
+
+subsection "The Type System"
+
+datatype ty = Ity | Rty
+
+type_synonym tyenv = "name \<Rightarrow> ty"
+
+inductive atyping :: "tyenv \<Rightarrow> aexp \<Rightarrow> ty \<Rightarrow> bool"
+  ("(1_/ \<turnstile>/ (_ :/ _))" [50,0,50] 50)
+where
+Ic_ty: "\<Gamma> \<turnstile> Ic i : Ity" |
+Rc_ty: "\<Gamma> \<turnstile> Rc r : Rty" |
+V_ty: "\<Gamma> \<turnstile> V x : \<Gamma> x" |
+Plus_ty: "\<Gamma> \<turnstile> a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> Plus a1 a2 : \<tau>"
+
+text{* Warning: the ``:'' notation leads to syntactic ambiguities,
+i.e. multiple parse trees, because ``:'' also stands for set membership.
+In most situations Isabelle's type system will reject all but one parse tree,
+but will still inform you of the potential ambiguity. *}
+
+inductive btyping :: "tyenv \<Rightarrow> bexp \<Rightarrow> bool" (infix "\<turnstile>" 50)
+where
+B_ty: "\<Gamma> \<turnstile> B bv" |
+Not_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> Not b" |
+And_ty: "\<Gamma> \<turnstile> b1 \<Longrightarrow> \<Gamma> \<turnstile> b2 \<Longrightarrow> \<Gamma> \<turnstile> And b1 b2" |
+Less_ty: "\<Gamma> \<turnstile> a1 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> a2 : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> Less a1 a2"
+
+inductive ctyping :: "tyenv \<Rightarrow> com \<Rightarrow> bool" (infix "\<turnstile>" 50) where
+Skip_ty: "\<Gamma> \<turnstile> SKIP" |
+Assign_ty: "\<Gamma> \<turnstile> a : \<Gamma>(x) \<Longrightarrow> \<Gamma> \<turnstile> x ::= a" |
+Semi_ty: "\<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> c1;c2" |
+If_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c1 \<Longrightarrow> \<Gamma> \<turnstile> c2 \<Longrightarrow> \<Gamma> \<turnstile> IF b THEN c1 ELSE c2" |
+While_ty: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> WHILE b DO c"
+
+inductive_cases [elim!]:
+  "\<Gamma> \<turnstile> x ::= a"  "\<Gamma> \<turnstile> c1;c2"
+  "\<Gamma> \<turnstile> IF b THEN c1 ELSE c2"
+  "\<Gamma> \<turnstile> WHILE b DO c"
+
+subsection "Well-typed Programs Do Not Get Stuck"
+
+fun type :: "val \<Rightarrow> ty" where
+"type (Iv i) = Ity" |
+"type (Rv r) = Rty"
+
+lemma [simp]: "type v = Ity \<longleftrightarrow> (\<exists>i. v = Iv i)"
+by (cases v) simp_all
+
+lemma [simp]: "type v = Rty \<longleftrightarrow> (\<exists>r. v = Rv r)"
+by (cases v) simp_all
+
+definition styping :: "tyenv \<Rightarrow> state \<Rightarrow> bool" (infix "\<turnstile>" 50)
+where "\<Gamma> \<turnstile> s  \<longleftrightarrow>  (\<forall>x. type (s x) = \<Gamma> x)"
+
+lemma apreservation:
+  "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> taval a s v \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> type v = \<tau>"
+apply(induct arbitrary: v rule: atyping.induct)
+apply (fastsimp simp: styping_def)+
+done
+
+lemma aprogress: "\<Gamma> \<turnstile> a : \<tau> \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. taval a s v"
+proof(induct rule: atyping.induct)
+  case (Plus_ty \<Gamma> a1 t a2)
+  then obtain v1 v2 where v: "taval a1 s v1" "taval a2 s v2" by blast
+  show ?case
+  proof (cases v1)
+    case Iv
+    with Plus_ty(1,3,5) v show ?thesis
+      by(fastsimp intro: taval.intros(4) dest!: apreservation)
+  next
+    case Rv
+    with Plus_ty(1,3,5) v show ?thesis
+      by(fastsimp intro: taval.intros(5) dest!: apreservation)
+  qed
+qed (auto intro: taval.intros)
+
+lemma bprogress: "\<Gamma> \<turnstile> b \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<exists>v. tbval b s v"
+proof(induct rule: btyping.induct)
+  case (Less_ty \<Gamma> a1 t a2)
+  then obtain v1 v2 where v: "taval a1 s v1" "taval a2 s v2"
+    by (metis aprogress)
+  show ?case
+  proof (cases v1)
+    case Iv
+    with Less_ty v show ?thesis
+      by (fastsimp intro!: tbval.intros(4) dest!:apreservation)
+  next
+    case Rv
+    with Less_ty v show ?thesis
+      by (fastsimp intro!: tbval.intros(5) dest!:apreservation)
+  qed
+qed (auto intro: tbval.intros)
+
+theorem progress:
+  "\<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c \<noteq> SKIP \<Longrightarrow> \<exists>cs'. (c,s) \<rightarrow> cs'"
+proof(induct rule: ctyping.induct)
+  case Skip_ty thus ?case by simp
+next
+  case Assign_ty 
+  thus ?case by (metis Assign aprogress)
+next
+  case Semi_ty thus ?case by simp (metis Semi1 Semi2)
+next
+  case (If_ty \<Gamma> b c1 c2)
+  then obtain bv where "tbval b s bv" by (metis bprogress)
+  show ?case
+  proof(cases bv)
+    assume "bv"
+    with `tbval b s bv` show ?case by simp (metis IfTrue)
+  next
+    assume "\<not>bv"
+    with `tbval b s bv` show ?case by simp (metis IfFalse)
+  qed
+next
+  case While_ty show ?case by (metis While)
+qed
+
+theorem styping_preservation:
+  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> \<Gamma> \<turnstile> s'"
+proof(induct rule: small_step_induct)
+  case Assign thus ?case
+    by (auto simp: styping_def) (metis Assign(1,3) apreservation)
+qed auto
+
+theorem ctyping_preservation:
+  "(c,s) \<rightarrow> (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> c'"
+by (induct rule: small_step_induct) (auto simp: ctyping.intros)
+
+abbreviation small_steps :: "com * state \<Rightarrow> com * state \<Rightarrow> bool" (infix "\<rightarrow>*" 55)
+where "x \<rightarrow>* y == star small_step x y"
+
+theorem type_sound:
+  "(c,s) \<rightarrow>* (c',s') \<Longrightarrow> \<Gamma> \<turnstile> c \<Longrightarrow> \<Gamma> \<turnstile> s \<Longrightarrow> c' \<noteq> SKIP
+   \<Longrightarrow> \<exists>cs''. (c',s') \<rightarrow> cs''"
+apply(induct rule:star_induct)
+apply (metis progress)
+by (metis styping_preservation ctyping_preservation)
+
+end
--- a/src/HOL/IsaMakefile	Thu Jun 02 08:55:08 2011 +0200
+++ b/src/HOL/IsaMakefile	Thu Jun 02 10:10:23 2011 +0200
@@ -528,7 +528,7 @@
 
 $(LOG)/HOL-IMP.gz: $(OUT)/HOL IMP/ASM.thy IMP/AExp.thy IMP/BExp.thy	\
   IMP/Big_Step.thy IMP/Com.thy IMP/Compiler.thy IMP/Denotation.thy 	\
-  IMP/Small_Step.thy IMP/Star.thy					\
+  IMP/Poly_Types.thy IMP/Small_Step.thy IMP/Star.thy IMP/Types.thy	\
   IMP/ROOT.ML IMP/document/root.tex IMP/document/root.bib
 	@$(ISABELLE_TOOL) usedir -g true $(OUT)/HOL IMP