first step in using "fof" rather than "cnf" in TPTP problems
authorblanchet
Fri, 23 Jul 2010 15:04:49 +0200
changeset 37961 6a48c85a211a
parent 37960 e557d511c791
child 37962 d7dbe01f48d7
first step in using "fof" rather than "cnf" in TPTP problems
src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML
src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML	Fri Jul 23 14:07:35 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_proof_reconstruct.ML	Fri Jul 23 15:04:49 2010 +0200
@@ -529,14 +529,14 @@
 (** EXTRACTING LEMMAS **)
 
 (* A list consisting of the first number in each line is returned.
-   TSTP: Interesting lines have the form "cnf(108, axiom, ...)", where the
+   TSTP: Interesting lines have the form "fof(108, axiom, ...)", where the
    number (108) is extracted.
    SPASS: Lines have the form "108[0:Inp] ...", where the first number (108) is
    extracted. *)
-fun extract_clause_numbers_in_atp_proof atp_proof =
+fun extract_formula_numbers_in_atp_proof atp_proof =
   let
     val tokens_of = String.tokens (not o is_ident_char)
-    fun extract_num ("cnf" :: num :: "axiom" :: _) = Int.fromString num
+    fun extract_num ("fof" :: num :: "axiom" :: _) = Int.fromString num
       | extract_num (num :: "0" :: "Inp" :: _) = Int.fromString num
       | extract_num _ = NONE
   in atp_proof |> split_lines |> map_filter (extract_num o tokens_of) end
@@ -579,7 +579,7 @@
                       i) =
   let
     val raw_lemmas =
-      atp_proof |> extract_clause_numbers_in_atp_proof
+      atp_proof |> extract_formula_numbers_in_atp_proof
                 |> filter (is_axiom_clause_number thm_names)
                 |> map (fn i => Vector.sub (thm_names, i - 1))
     val (chained_lemmas, other_lemmas) =
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML	Fri Jul 23 14:07:35 2010 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_tptp_format.ML	Fri Jul 23 15:04:49 2010 +0200
@@ -27,23 +27,44 @@
 
 (** ATP problem **)
 
-datatype 'a atp_term = ATerm of 'a * 'a atp_term list
-type 'a atp_literal = bool * 'a atp_term
-datatype 'a problem_line = Cnf of string * kind * 'a atp_literal list
+datatype 'a fo_term = ATerm of 'a * 'a fo_term list
+datatype quantifier = AForall | AExists
+datatype connective = ANot | AAnd | AOr | AImplies | AIff
+datatype 'a formula =
+  AQuant of quantifier * 'a list * 'a formula |
+  AConn of connective * 'a formula list |
+  APred of 'a fo_term
+
+fun mk_anot phi = AConn (ANot, [phi])
+
+datatype 'a problem_line = Fof of string * kind * 'a formula
 type 'a problem = (string * 'a problem_line list) list
 
-fun string_for_atp_term (ATerm (s, [])) = s
-  | string_for_atp_term (ATerm (s, ts)) =
-    s ^ "(" ^ commas (map string_for_atp_term ts) ^ ")"
-fun string_for_atp_literal (pos, ATerm ("equal", [t1, t2])) =
-    string_for_atp_term t1 ^ " " ^ (if pos then "=" else "!=") ^ " " ^
-    string_for_atp_term t2
-  | string_for_atp_literal (pos, t) =
-    (if pos then "" else "~ ") ^ string_for_atp_term t
-fun string_for_problem_line (Cnf (ident, kind, lits)) =
-  "cnf(" ^ ident ^ ", " ^
-  (case kind of Axiom => "axiom" | Conjecture => "negated_conjecture") ^ ",\n" ^
-  "    (" ^ space_implode " | " (map string_for_atp_literal lits) ^ ")).\n"
+fun string_for_term (ATerm (s, [])) = s
+  | string_for_term (ATerm (s, ts)) =
+    if s = "equal" then space_implode " = " (map string_for_term ts)
+    else s ^ "(" ^ commas (map string_for_term ts) ^ ")"
+fun string_for_quantifier AForall = "!"
+  | string_for_quantifier AExists = "?"
+fun string_for_connective ANot = "~"
+  | string_for_connective AAnd = "&"
+  | string_for_connective AOr = "|"
+  | string_for_connective AImplies = "=>"
+  | string_for_connective AIff = "<=>"
+fun string_for_formula (AQuant (q, xs, phi)) =
+    string_for_quantifier q ^ " [" ^ commas xs ^ "] : " ^
+    string_for_formula phi
+  | string_for_formula (AConn (c, [phi])) =
+    string_for_connective c ^ " " ^ string_for_formula phi
+  | string_for_formula (AConn (c, phis)) =
+    "(" ^ space_implode (" " ^ string_for_connective c ^ " ")
+                        (map string_for_formula phis) ^ ")"
+  | string_for_formula (APred tm) = string_for_term tm
+
+fun string_for_problem_line (Fof (ident, kind, phi)) =
+  "fof(" ^ ident ^ ", " ^
+  (case kind of Axiom => "axiom" | Conjecture => "conjecture") ^ ",\n" ^
+  "    (" ^ string_for_formula phi ^ ")).\n"
 fun strings_for_problem problem =
   "% This file was generated by Isabelle (most likely Sledgehammer)\n\
   \% " ^ timestamp () ^ "\n" ::
@@ -97,11 +118,17 @@
           end
       in add 0 |> apsnd SOME end
 
-fun nice_atp_term (ATerm (name, ts)) =
-  nice_name name ##>> pool_map nice_atp_term ts #>> ATerm
-fun nice_atp_literal (pos, t) = nice_atp_term t #>> pair pos
-fun nice_problem_line (Cnf (ident, kind, lits)) =
-  pool_map nice_atp_literal lits #>> (fn lits => Cnf (ident, kind, lits))
+
+fun nice_term (ATerm (name, ts)) =
+  nice_name name ##>> pool_map nice_term ts #>> ATerm
+fun nice_formula (AQuant (q, xs, phi)) =
+    pool_map nice_name xs ##>> nice_formula phi
+    #>> (fn (xs, phi) => AQuant (q, xs, phi))
+  | nice_formula (AConn (c, phis)) =
+    pool_map nice_formula phis #>> curry AConn c
+  | nice_formula (APred tm) = nice_term tm #>> APred
+fun nice_problem_line (Fof (ident, kind, phi)) =
+  nice_formula phi #>> (fn phi => Fof (ident, kind, phi))
 fun nice_problem problem =
   pool_map (fn (heading, lines) =>
                pool_map nice_problem_line lines #>> pair heading) problem
@@ -117,12 +144,12 @@
 
 fun wrap_type ty t = ATerm ((type_wrapper_name, type_wrapper_name), [ty, t])
 
-fun atp_term_for_combtyp (CombTVar name) = ATerm (name, [])
-  | atp_term_for_combtyp (CombTFree name) = ATerm (name, [])
-  | atp_term_for_combtyp (CombType (name, tys)) =
-    ATerm (name, map atp_term_for_combtyp tys)
+fun fo_term_for_combtyp (CombTVar name) = ATerm (name, [])
+  | fo_term_for_combtyp (CombTFree name) = ATerm (name, [])
+  | fo_term_for_combtyp (CombType (name, tys)) =
+    ATerm (name, map fo_term_for_combtyp tys)
 
-fun atp_term_for_combterm full_types top_level u =
+fun fo_term_for_combterm full_types top_level u =
   let
     val (head, args) = strip_combterm_comb u
     val (x, ty_args) =
@@ -135,58 +162,67 @@
           (name, if full_types then [] else ty_args)
       | CombVar (name, _) => (name, [])
       | CombApp _ => raise Fail "impossible \"CombApp\""
-    val t = ATerm (x, map atp_term_for_combtyp ty_args @
-                      map (atp_term_for_combterm full_types false) args)
+    val t = ATerm (x, map fo_term_for_combtyp ty_args @
+                      map (fo_term_for_combterm full_types false) args)
   in
-    if full_types then wrap_type (atp_term_for_combtyp (type_of_combterm u)) t
+    if full_types then wrap_type (fo_term_for_combtyp (type_of_combterm u)) t
     else t
   end
 
-fun atp_literal_for_literal full_types (FOLLiteral (pos, t)) =
-  (pos, atp_term_for_combterm full_types true t)
+fun fo_literal_for_literal full_types (FOLLiteral (pos, t)) =
+  (pos, fo_term_for_combterm full_types true t)
 
-fun atp_literal_for_type_literal pos (TyLitVar (class, name)) =
+fun fo_literal_for_type_literal pos (TyLitVar (class, name)) =
     (pos, ATerm (class, [ATerm (name, [])]))
-  | atp_literal_for_type_literal pos (TyLitFree (class, name)) =
+  | fo_literal_for_type_literal pos (TyLitFree (class, name)) =
     (pos, ATerm (class, [ATerm (name, [])]))
 
-fun atp_literals_for_axiom full_types
-                           (FOLClause {literals, ctypes_sorts, ...}) =
-  map (atp_literal_for_literal full_types) literals @
-  map (atp_literal_for_type_literal false)
+fun formula_for_fo_literal (pos, t) = APred t |> not pos ? mk_anot
+fun formula_for_fo_literals [] = APred (ATerm (("$false", "$false"), []))
+  | formula_for_fo_literals (lit :: lits) =
+    AConn (AOr, [formula_for_fo_literal lit, formula_for_fo_literals lits])
+
+fun formula_for_axiom full_types (FOLClause {literals, ctypes_sorts, ...}) =
+  map (fo_literal_for_literal full_types) literals @
+  map (fo_literal_for_type_literal false)
       (type_literals_for_types ctypes_sorts)
+  |> formula_for_fo_literals
 
 fun problem_line_for_axiom full_types
         (clause as FOLClause {axiom_name, clause_id, kind, ...}) =
-  Cnf (hol_ident axiom_name clause_id, kind,
-       atp_literals_for_axiom full_types clause)
+  Fof (hol_ident axiom_name clause_id, kind,
+       formula_for_axiom full_types clause)
 
 fun problem_line_for_class_rel_clause
         (ClassRelClause {axiom_name, subclass, superclass, ...}) =
   let val ty_arg = ATerm (("T", "T"), []) in
-    Cnf (ascii_of axiom_name, Axiom, [(false, ATerm (subclass, [ty_arg])),
-                                      (true, ATerm (superclass, [ty_arg]))])
+    Fof (ascii_of axiom_name, Axiom,
+         AConn (AImplies, [APred (ATerm (subclass, [ty_arg])),
+                           APred (ATerm (superclass, [ty_arg]))]))
   end
 
-fun atp_literal_for_arity_literal (TConsLit (c, t, args)) =
+fun fo_literal_for_arity_literal (TConsLit (c, t, args)) =
     (true, ATerm (c, [ATerm (t, map (fn arg => ATerm (arg, [])) args)]))
-  | atp_literal_for_arity_literal (TVarLit (c, sort)) =
+  | fo_literal_for_arity_literal (TVarLit (c, sort)) =
     (false, ATerm (c, [ATerm (sort, [])]))
 
 fun problem_line_for_arity_clause
         (ArityClause {axiom_name, conclLit, premLits, ...}) =
-  Cnf (arity_clause_prefix ^ ascii_of axiom_name, Axiom,
-       map atp_literal_for_arity_literal (conclLit :: premLits))
+  Fof (arity_clause_prefix ^ ascii_of axiom_name, Axiom,
+       map fo_literal_for_arity_literal (conclLit :: premLits)
+       |> formula_for_fo_literals)
 
 fun problem_line_for_conjecture full_types
         (clause as FOLClause {axiom_name, clause_id, kind, literals, ...}) =
-  Cnf (hol_ident axiom_name clause_id, kind,
-       map (atp_literal_for_literal full_types) literals)
+  Fof (hol_ident axiom_name clause_id, kind,
+       map (fo_literal_for_literal full_types) literals
+       |> formula_for_fo_literals |> mk_anot)
 
 fun atp_free_type_literals_for_conjecture (FOLClause {ctypes_sorts, ...}) =
-  map (atp_literal_for_type_literal true) (type_literals_for_types ctypes_sorts)
+  map (fo_literal_for_type_literal true) (type_literals_for_types ctypes_sorts)
 
-fun problem_line_for_free_type lit = Cnf ("tfree_tcs", Conjecture, [lit])
+fun problem_line_for_free_type lit =
+  Fof ("tfree_tcs", Conjecture, formula_for_fo_literal lit)
 fun problem_lines_for_free_types conjectures =
   let
     val litss = map atp_free_type_literals_for_conjecture conjectures
@@ -197,10 +233,10 @@
 
 type const_info = {min_arity: int, max_arity: int, sub_level: bool}
 
-fun is_atp_variable s = Char.isUpper (String.sub (s, 0))
+fun is_variable s = Char.isUpper (String.sub (s, 0))
 
 fun consider_term top_level (ATerm ((s, _), ts)) =
-  (if is_atp_variable s then
+  (if is_variable s then
      I
    else
      let val n = length ts in
@@ -212,8 +248,11 @@
                 sub_level = sub_level orelse not top_level})
      end)
   #> fold (consider_term (top_level andalso s = type_wrapper_name)) ts
-fun consider_literal (_, t) = consider_term true t
-fun consider_problem_line (Cnf (_, _, lits)) = fold consider_literal lits
+fun consider_formula (AQuant (_, _, phi)) = consider_formula phi
+  | consider_formula (AConn (_, phis)) = fold consider_formula phis
+  | consider_formula (APred tm) = consider_term true tm
+
+fun consider_problem_line (Fof (_, _, phi)) = consider_formula phi
 fun consider_problem problem = fold (fold consider_problem_line o snd) problem
 
 fun const_table_for_problem explicit_apply problem =
@@ -288,21 +327,43 @@
   else
     t |> not (is_predicate const_tab s) ? boolify
 
-fun repair_literal thy full_types const_tab (pos, t) =
-  (pos, t |> repair_applications_in_term thy full_types const_tab
-          |> repair_predicates_in_term const_tab)
-fun repair_problem_line thy full_types const_tab (Cnf (ident, kind, lits)) =
-  Cnf (ident, kind, map (repair_literal thy full_types const_tab) lits)
-fun repair_problem_with_const_table thy full_types const_tab problem =
-  map (apsnd (map (repair_problem_line thy full_types const_tab))) problem
-fun repair_problem thy full_types explicit_apply problem =
-  repair_problem_with_const_table thy full_types
+fun close_universally phi =
+  let
+    fun term_vars bounds (ATerm (name as (s, _), tms)) =
+        (is_variable s andalso not (member (op =) bounds name))
+          ? insert (op =) name
+        #> fold (term_vars bounds) tms
+    fun formula_vars bounds (AQuant (q, xs, phi)) =
+        formula_vars (xs @ bounds) phi
+      | formula_vars bounds (AConn (_, phis)) = fold (formula_vars bounds) phis
+      | formula_vars bounds (APred tm) = term_vars bounds tm
+  in
+    case formula_vars [] phi [] of [] => phi | xs => AQuant (AForall, xs, phi)
+  end
+
+fun repair_formula thy explicit_forall full_types const_tab =
+  let
+    fun aux (AQuant (q, xs, phi)) = AQuant (q, xs, aux phi)
+      | aux (AConn (c, phis)) = AConn (c, map aux phis)
+      | aux (APred tm) =
+        APred (tm |> repair_applications_in_term thy full_types const_tab
+                  |> repair_predicates_in_term const_tab)
+  in aux #> explicit_forall ? close_universally end
+
+fun repair_problem_line thy explicit_forall full_types const_tab
+                        (Fof (ident, kind, phi)) =
+  Fof (ident, kind, repair_formula thy explicit_forall full_types const_tab phi)
+val repair_problem_with_const_table = map o apsnd o map oooo repair_problem_line
+
+fun repair_problem thy explicit_forall full_types explicit_apply problem =
+  repair_problem_with_const_table thy explicit_forall full_types
       (const_table_for_problem explicit_apply problem) problem
 
 fun write_tptp_file thy readable_names full_types explicit_apply file
                     (conjectures, axiom_clauses, extra_clauses, helper_clauses,
                      class_rel_clauses, arity_clauses) =
   let
+    val explicit_forall = true (* FIXME *)
     val axiom_lines = map (problem_line_for_axiom full_types) axiom_clauses
     val class_rel_lines =
       map problem_line_for_class_rel_clause class_rel_clauses
@@ -311,13 +372,14 @@
     val conjecture_lines =
       map (problem_line_for_conjecture full_types) conjectures
     val tfree_lines = problem_lines_for_free_types conjectures
-    val problem = [("Relevant facts", axiom_lines),
-                   ("Class relationships", class_rel_lines),
-                   ("Arity declarations", arity_lines),
-                   ("Helper facts", helper_lines),
-                   ("Conjectures", conjecture_lines),
-                   ("Type variables", tfree_lines)]
-                  |> repair_problem thy full_types explicit_apply
+    val problem =
+      [("Relevant facts", axiom_lines),
+       ("Class relationships", class_rel_lines),
+       ("Arity declarations", arity_lines),
+       ("Helper facts", helper_lines),
+       ("Conjectures", conjecture_lines),
+       ("Type variables", tfree_lines)]
+      |> repair_problem thy explicit_forall full_types explicit_apply
     val (problem, pool) = nice_problem problem (empty_name_pool readable_names)
     val conjecture_offset =
       length axiom_lines + length class_rel_lines + length arity_lines