--- a/src/HOL/Complex/ROOT.ML Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Complex/ROOT.ML Sun Oct 01 18:29:26 2006 +0200
@@ -5,6 +5,7 @@
The Complex Numbers
*)
+no_document use_thy "Infinite_Set";
with_path "../Real" use_thy "Float";
with_path "../Hyperreal" use_thy "Hyperreal";
time_use_thy "Complex_Main";
--- a/src/HOL/Hyperreal/Filter.thy Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Hyperreal/Filter.thy Sun Oct 01 18:29:26 2006 +0200
@@ -9,7 +9,7 @@
header {* Filters and Ultrafilters *}
theory Filter
-imports Zorn
+imports Zorn Infinite_Set
begin
subsection {* Definitions and basic properties *}
--- a/src/HOL/Infinite_Set.thy Sun Oct 01 18:29:25 2006 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,470 +0,0 @@
-(* Title: HOL/Infnite_Set.thy
- ID: $Id$
- Author: Stephan Merz
-*)
-
-header {* Infinite Sets and Related Concepts*}
-
-theory Infinite_Set
-imports Hilbert_Choice Binomial
-begin
-
-subsection "Infinite Sets"
-
-text {* Some elementary facts about infinite sets, mostly by Stefan Merz.
-Beware! Because "infinite" merely abbreviates a negation, these lemmas may
-not work well with "blast". *}
-
-abbreviation
- infinite :: "'a set \<Rightarrow> bool"
- "infinite S == \<not> finite S"
-
-text {*
- Infinite sets are non-empty, and if we remove some elements
- from an infinite set, the result is still infinite.
-*}
-
-lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
- by auto
-
-lemma infinite_remove:
- "infinite S \<Longrightarrow> infinite (S - {a})"
- by simp
-
-lemma Diff_infinite_finite:
- assumes T: "finite T" and S: "infinite S"
- shows "infinite (S-T)"
- using T
-proof induct
- from S
- show "infinite (S - {})" by auto
-next
- fix T x
- assume ih: "infinite (S-T)"
- have "S - (insert x T) = (S-T) - {x}"
- by (rule Diff_insert)
- with ih
- show "infinite (S - (insert x T))"
- by (simp add: infinite_remove)
-qed
-
-lemma Un_infinite:
- "infinite S \<Longrightarrow> infinite (S \<union> T)"
- by simp
-
-lemma infinite_super:
- assumes T: "S \<subseteq> T" and S: "infinite S"
- shows "infinite T"
-proof (rule ccontr)
- assume "\<not>(infinite T)"
- with T have "finite S" by (simp add: finite_subset)
- with S show False by simp
-qed
-
-text {*
- As a concrete example, we prove that the set of natural
- numbers is infinite.
-*}
-
-lemma finite_nat_bounded:
- assumes S: "finite (S::nat set)"
- shows "\<exists>k. S \<subseteq> {..<k}" (is "\<exists>k. ?bounded S k")
-using S
-proof (induct)
- have "?bounded {} 0" by simp
- thus "\<exists>k. ?bounded {} k" ..
-next
- fix S x
- assume "\<exists>k. ?bounded S k"
- then obtain k where k: "?bounded S k" ..
- show "\<exists>k. ?bounded (insert x S) k"
- proof (cases "x<k")
- case True
- with k show ?thesis by auto
- next
- case False
- with k have "?bounded S (Suc x)" by auto
- thus ?thesis by auto
- qed
-qed
-
-lemma finite_nat_iff_bounded:
- "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})" (is "?lhs = ?rhs")
-proof
- assume ?lhs
- thus ?rhs by (rule finite_nat_bounded)
-next
- assume ?rhs
- then obtain k where "S \<subseteq> {..<k}" ..
- thus "finite S"
- by (rule finite_subset, simp)
-qed
-
-lemma finite_nat_iff_bounded_le:
- "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})" (is "?lhs = ?rhs")
-proof
- assume ?lhs
- then obtain k where "S \<subseteq> {..<k}"
- by (blast dest: finite_nat_bounded)
- hence "S \<subseteq> {..k}" by auto
- thus ?rhs ..
-next
- assume ?rhs
- then obtain k where "S \<subseteq> {..k}" ..
- thus "finite S"
- by (rule finite_subset, simp)
-qed
-
-lemma infinite_nat_iff_unbounded:
- "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"
- (is "?lhs = ?rhs")
-proof
- assume inf: ?lhs
- show ?rhs
- proof (rule ccontr)
- assume "\<not> ?rhs"
- then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast
- hence "S \<subseteq> {..m}"
- by (auto simp add: sym[OF linorder_not_less])
- with inf show "False"
- by (simp add: finite_nat_iff_bounded_le)
- qed
-next
- assume unbounded: ?rhs
- show ?lhs
- proof
- assume "finite S"
- then obtain m where "S \<subseteq> {..m}"
- by (auto simp add: finite_nat_iff_bounded_le)
- hence "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto
- with unbounded show "False" by blast
- qed
-qed
-
-lemma infinite_nat_iff_unbounded_le:
- "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"
- (is "?lhs = ?rhs")
-proof
- assume inf: ?lhs
- show ?rhs
- proof
- fix m
- from inf obtain n where "m<n \<and> n\<in>S"
- by (auto simp add: infinite_nat_iff_unbounded)
- hence "m\<le>n \<and> n\<in>S" by auto
- thus "\<exists>n. m \<le> n \<and> n \<in> S" ..
- qed
-next
- assume unbounded: ?rhs
- show ?lhs
- proof (auto simp add: infinite_nat_iff_unbounded)
- fix m
- from unbounded obtain n where "(Suc m)\<le>n \<and> n\<in>S"
- by blast
- hence "m<n \<and> n\<in>S" by auto
- thus "\<exists>n. m < n \<and> n \<in> S" ..
- qed
-qed
-
-text {*
- For a set of natural numbers to be infinite, it is enough
- to know that for any number larger than some @{text k}, there
- is some larger number that is an element of the set.
-*}
-
-lemma unbounded_k_infinite:
- assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"
- shows "infinite (S::nat set)"
-proof (auto simp add: infinite_nat_iff_unbounded)
- fix m show "\<exists>n. m<n \<and> n\<in>S"
- proof (cases "k<m")
- case True
- with k show ?thesis by blast
- next
- case False
- from k obtain n where "Suc k < n \<and> n\<in>S" by auto
- with False have "m<n \<and> n\<in>S" by auto
- thus ?thesis ..
- qed
-qed
-
-theorem nat_infinite [simp]:
- "infinite (UNIV :: nat set)"
-by (auto simp add: infinite_nat_iff_unbounded)
-
-theorem nat_not_finite [elim]:
- "finite (UNIV::nat set) \<Longrightarrow> R"
-by simp
-
-text {*
- Every infinite set contains a countable subset. More precisely
- we show that a set @{text S} is infinite if and only if there exists
- an injective function from the naturals into @{text S}.
-*}
-
-lemma range_inj_infinite:
- "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)"
-proof
- assume "inj f"
- and "finite (range f)"
- hence "finite (UNIV::nat set)"
- by (auto intro: finite_imageD simp del: nat_infinite)
- thus "False" by simp
-qed
-
-text {*
- The ``only if'' direction is harder because it requires the
- construction of a sequence of pairwise different elements of
- an infinite set @{text S}. The idea is to construct a sequence of
- non-empty and infinite subsets of @{text S} obtained by successively
- removing elements of @{text S}.
-*}
-
-lemma linorder_injI:
- assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y"
- shows "inj f"
-proof (rule inj_onI)
- fix x y
- assume f_eq: "f x = f y"
- show "x = y"
- proof (rule linorder_cases)
- assume "x < y"
- with hyp have "f x \<noteq> f y" by blast
- with f_eq show ?thesis by simp
- next
- assume "x = y"
- thus ?thesis .
- next
- assume "y < x"
- with hyp have "f y \<noteq> f x" by blast
- with f_eq show ?thesis by simp
- qed
-qed
-
-lemma infinite_countable_subset:
- assumes inf: "infinite (S::'a set)"
- shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"
-proof -
- def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
- def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)"
- have Sseq_inf: "\<And>n. infinite (Sseq n)"
- proof -
- fix n
- show "infinite (Sseq n)"
- proof (induct n)
- from inf show "infinite (Sseq 0)"
- by (simp add: Sseq_def)
- next
- fix n
- assume "infinite (Sseq n)" thus "infinite (Sseq (Suc n))"
- by (simp add: Sseq_def infinite_remove)
- qed
- qed
- have Sseq_S: "\<And>n. Sseq n \<subseteq> S"
- proof -
- fix n
- show "Sseq n \<subseteq> S"
- by (induct n, auto simp add: Sseq_def)
- qed
- have Sseq_pick: "\<And>n. pick n \<in> Sseq n"
- proof -
- fix n
- show "pick n \<in> Sseq n"
- proof (unfold pick_def, rule someI_ex)
- from Sseq_inf have "infinite (Sseq n)" .
- hence "Sseq n \<noteq> {}" by auto
- thus "\<exists>x. x \<in> Sseq n" by auto
- qed
- qed
- with Sseq_S have rng: "range pick \<subseteq> S"
- by auto
- have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)"
- proof -
- fix n m
- show "pick n \<notin> Sseq (n + Suc m)"
- by (induct m, auto simp add: Sseq_def pick_def)
- qed
- have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)"
- proof -
- fix n m
- from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" .
- moreover from pick_Sseq_gt
- have "pick n \<notin> Sseq (n + Suc m)" .
- ultimately show "pick n \<noteq> pick (n + Suc m)"
- by auto
- qed
- have inj: "inj pick"
- proof (rule linorder_injI)
- show "!!i j. i<(j::nat) ==> pick i \<noteq> pick j"
- proof
- fix i j
- assume ij: "i<(j::nat)"
- and eq: "pick i = pick j"
- from ij obtain k where "j = i + (Suc k)"
- by (auto simp add: less_iff_Suc_add)
- with pick_pick have "pick i \<noteq> pick j" by simp
- with eq show "False" by simp
- qed
- qed
- from rng inj show ?thesis by auto
-qed
-
-theorem infinite_iff_countable_subset:
- "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
- (is "?lhs = ?rhs")
-by (auto simp add: infinite_countable_subset
- range_inj_infinite infinite_super)
-
-text {*
- For any function with infinite domain and finite range
- there is some element that is the image of infinitely
- many domain elements. In particular, any infinite sequence
- of elements from a finite set contains some element that
- occurs infinitely often.
-*}
-
-theorem inf_img_fin_dom:
- assumes img: "finite (f`A)" and dom: "infinite A"
- shows "\<exists>y \<in> f`A. infinite (f -` {y})"
-proof (rule ccontr)
- assume "\<not> (\<exists>y\<in>f ` A. infinite (f -` {y}))"
- with img have "finite (UN y:f`A. f -` {y})"
- by (blast intro: finite_UN_I)
- moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
- moreover note dom
- ultimately show "False"
- by (simp add: infinite_super)
-qed
-
-theorems inf_img_fin_domE = inf_img_fin_dom[THEN bexE]
-
-
-subsection "Infinitely Many and Almost All"
-
-text {*
- We often need to reason about the existence of infinitely many
- (resp., all but finitely many) objects satisfying some predicate,
- so we introduce corresponding binders and their proof rules.
-*}
-
-definition
- Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "INF " 10)
- INF_def: "Inf_many P \<equiv> infinite {x. P x}"
- Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "MOST " 10)
- MOST_def: "Alm_all P \<equiv> \<not>(INF x. \<not> P x)"
-
-const_syntax (xsymbols)
- Inf_many (binder "\<exists>\<^sub>\<infinity>" 10)
- Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)
-
-const_syntax (HTML output)
- Inf_many (binder "\<exists>\<^sub>\<infinity>" 10)
- Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)
-
-lemma INF_EX:
- "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
- unfolding INF_def
-proof (rule ccontr)
- assume inf: "infinite {x. P x}"
- and notP: "\<not>(\<exists>x. P x)"
- from notP have "{x. P x} = {}" by simp
- hence "finite {x. P x}" by simp
- with inf show "False" by simp
-qed
-
-lemma MOST_iff_finiteNeg:
- "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
-by (simp add: MOST_def INF_def)
-
-lemma ALL_MOST:
- "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
-by (simp add: MOST_iff_finiteNeg)
-
-lemma INF_mono:
- assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"
- shows "\<exists>\<^sub>\<infinity>x. Q x"
-proof -
- from inf have "infinite {x. P x}" by (unfold INF_def)
- moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
- ultimately show ?thesis
- by (simp add: INF_def infinite_super)
-qed
-
-lemma MOST_mono:
- "\<lbrakk> \<forall>\<^sub>\<infinity>x. P x; \<And>x. P x \<Longrightarrow> Q x \<rbrakk> \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x"
-by (unfold MOST_def, blast intro: INF_mono)
-
-lemma INF_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
-by (simp add: INF_def infinite_nat_iff_unbounded)
-
-lemma INF_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"
-by (simp add: INF_def infinite_nat_iff_unbounded_le)
-
-lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"
-by (simp add: MOST_def INF_nat)
-
-lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"
-by (simp add: MOST_def INF_nat_le)
-
-
-subsection "Enumeration of an Infinite Set"
-
-text{*The set's element type must be wellordered (e.g. the natural numbers)*}
-consts
- enumerate :: "'a::wellorder set => (nat => 'a::wellorder)"
-
-primrec
- enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
- enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
-
-lemma enumerate_Suc':
- "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
-by simp
-
-lemma enumerate_in_set [rule_format]: "\<forall>S. infinite S --> enumerate S n : S"
-apply (induct n)
- apply (force intro: LeastI dest!:infinite_imp_nonempty)
-apply (auto iff: finite_Diff_singleton)
-done
-
-declare enumerate_0 [simp del] enumerate_Suc [simp del]
-
-lemma enumerate_step [rule_format]:
- "\<forall>S. infinite S --> enumerate S n < enumerate S (Suc n)"
-apply (induct n, clarify)
- apply (rule order_le_neq_trans)
- apply (simp add: enumerate_0 Least_le enumerate_in_set)
- apply (simp only: enumerate_Suc')
- apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
- apply (blast intro: sym)
- apply (simp add: enumerate_in_set del: Diff_iff)
-apply (simp add: enumerate_Suc')
-done
-
-lemma enumerate_mono: "[|m<n; infinite S|] ==> enumerate S m < enumerate S n"
-apply (erule less_Suc_induct)
-apply (auto intro: enumerate_step)
-done
-
-
-subsection "Miscellaneous"
-
-text {*
- A few trivial lemmas about sets that contain at most one element.
- These simplify the reasoning about deterministic automata.
-*}
-
-definition
- atmost_one :: "'a set \<Rightarrow> bool"
- "atmost_one S \<equiv> \<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y"
-
-lemma atmost_one_empty: "S={} \<Longrightarrow> atmost_one S"
- by (simp add: atmost_one_def)
-
-lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
- by (simp add: atmost_one_def)
-
-lemma atmost_one_unique [elim]: "\<lbrakk> atmost_one S; x \<in> S; y \<in> S \<rbrakk> \<Longrightarrow> y=x"
- by (simp add: atmost_one_def)
-
-end
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Infinite_Set.thy Sun Oct 01 18:29:26 2006 +0200
@@ -0,0 +1,468 @@
+(* Title: HOL/Infnite_Set.thy
+ ID: $Id$
+ Author: Stephan Merz
+*)
+
+header {* Infinite Sets and Related Concepts *}
+
+theory Infinite_Set
+imports Hilbert_Choice Binomial
+begin
+
+subsection "Infinite Sets"
+
+text {*
+ Some elementary facts about infinite sets, mostly by Stefan Merz.
+ Beware! Because "infinite" merely abbreviates a negation, these
+ lemmas may not work well with @{text "blast"}.
+*}
+
+abbreviation
+ infinite :: "'a set \<Rightarrow> bool"
+ "infinite S == \<not> finite S"
+
+text {*
+ Infinite sets are non-empty, and if we remove some elements from an
+ infinite set, the result is still infinite.
+*}
+
+lemma infinite_imp_nonempty: "infinite S ==> S \<noteq> {}"
+ by auto
+
+lemma infinite_remove:
+ "infinite S \<Longrightarrow> infinite (S - {a})"
+ by simp
+
+lemma Diff_infinite_finite:
+ assumes T: "finite T" and S: "infinite S"
+ shows "infinite (S - T)"
+ using T
+proof induct
+ from S
+ show "infinite (S - {})" by auto
+next
+ fix T x
+ assume ih: "infinite (S - T)"
+ have "S - (insert x T) = (S - T) - {x}"
+ by (rule Diff_insert)
+ with ih
+ show "infinite (S - (insert x T))"
+ by (simp add: infinite_remove)
+qed
+
+lemma Un_infinite: "infinite S \<Longrightarrow> infinite (S \<union> T)"
+ by simp
+
+lemma infinite_super:
+ assumes T: "S \<subseteq> T" and S: "infinite S"
+ shows "infinite T"
+proof
+ assume "finite T"
+ with T have "finite S" by (simp add: finite_subset)
+ with S show False by simp
+qed
+
+text {*
+ As a concrete example, we prove that the set of natural numbers is
+ infinite.
+*}
+
+lemma finite_nat_bounded:
+ assumes S: "finite (S::nat set)"
+ shows "\<exists>k. S \<subseteq> {..<k}" (is "\<exists>k. ?bounded S k")
+using S
+proof induct
+ have "?bounded {} 0" by simp
+ then show "\<exists>k. ?bounded {} k" ..
+next
+ fix S x
+ assume "\<exists>k. ?bounded S k"
+ then obtain k where k: "?bounded S k" ..
+ show "\<exists>k. ?bounded (insert x S) k"
+ proof (cases "x < k")
+ case True
+ with k show ?thesis by auto
+ next
+ case False
+ with k have "?bounded S (Suc x)" by auto
+ then show ?thesis by auto
+ qed
+qed
+
+lemma finite_nat_iff_bounded:
+ "finite (S::nat set) = (\<exists>k. S \<subseteq> {..<k})" (is "?lhs = ?rhs")
+proof
+ assume ?lhs
+ then show ?rhs by (rule finite_nat_bounded)
+next
+ assume ?rhs
+ then obtain k where "S \<subseteq> {..<k}" ..
+ then show "finite S"
+ by (rule finite_subset) simp
+qed
+
+lemma finite_nat_iff_bounded_le:
+ "finite (S::nat set) = (\<exists>k. S \<subseteq> {..k})" (is "?lhs = ?rhs")
+proof
+ assume ?lhs
+ then obtain k where "S \<subseteq> {..<k}"
+ by (blast dest: finite_nat_bounded)
+ then have "S \<subseteq> {..k}" by auto
+ then show ?rhs ..
+next
+ assume ?rhs
+ then obtain k where "S \<subseteq> {..k}" ..
+ then show "finite S"
+ by (rule finite_subset) simp
+qed
+
+lemma infinite_nat_iff_unbounded:
+ "infinite (S::nat set) = (\<forall>m. \<exists>n. m<n \<and> n\<in>S)"
+ (is "?lhs = ?rhs")
+proof
+ assume ?lhs
+ show ?rhs
+ proof (rule ccontr)
+ assume "\<not> ?rhs"
+ then obtain m where m: "\<forall>n. m<n \<longrightarrow> n\<notin>S" by blast
+ then have "S \<subseteq> {..m}"
+ by (auto simp add: sym [OF linorder_not_less])
+ with `?lhs` show False
+ by (simp add: finite_nat_iff_bounded_le)
+ qed
+next
+ assume ?rhs
+ show ?lhs
+ proof
+ assume "finite S"
+ then obtain m where "S \<subseteq> {..m}"
+ by (auto simp add: finite_nat_iff_bounded_le)
+ then have "\<forall>n. m<n \<longrightarrow> n\<notin>S" by auto
+ with `?rhs` show False by blast
+ qed
+qed
+
+lemma infinite_nat_iff_unbounded_le:
+ "infinite (S::nat set) = (\<forall>m. \<exists>n. m\<le>n \<and> n\<in>S)"
+ (is "?lhs = ?rhs")
+proof
+ assume ?lhs
+ show ?rhs
+ proof
+ fix m
+ from `?lhs` obtain n where "m<n \<and> n\<in>S"
+ by (auto simp add: infinite_nat_iff_unbounded)
+ then have "m\<le>n \<and> n\<in>S" by simp
+ then show "\<exists>n. m \<le> n \<and> n \<in> S" ..
+ qed
+next
+ assume ?rhs
+ show ?lhs
+ proof (auto simp add: infinite_nat_iff_unbounded)
+ fix m
+ from `?rhs` obtain n where "Suc m \<le> n \<and> n\<in>S"
+ by blast
+ then have "m<n \<and> n\<in>S" by simp
+ then show "\<exists>n. m < n \<and> n \<in> S" ..
+ qed
+qed
+
+text {*
+ For a set of natural numbers to be infinite, it is enough to know
+ that for any number larger than some @{text k}, there is some larger
+ number that is an element of the set.
+*}
+
+lemma unbounded_k_infinite:
+ assumes k: "\<forall>m. k<m \<longrightarrow> (\<exists>n. m<n \<and> n\<in>S)"
+ shows "infinite (S::nat set)"
+proof -
+ {
+ fix m have "\<exists>n. m<n \<and> n\<in>S"
+ proof (cases "k<m")
+ case True
+ with k show ?thesis by blast
+ next
+ case False
+ from k obtain n where "Suc k < n \<and> n\<in>S" by auto
+ with False have "m<n \<and> n\<in>S" by auto
+ then show ?thesis ..
+ qed
+ }
+ then show ?thesis
+ by (auto simp add: infinite_nat_iff_unbounded)
+qed
+
+lemma nat_infinite [simp]: "infinite (UNIV :: nat set)"
+ by (auto simp add: infinite_nat_iff_unbounded)
+
+lemma nat_not_finite [elim]: "finite (UNIV::nat set) \<Longrightarrow> R"
+ by simp
+
+text {*
+ Every infinite set contains a countable subset. More precisely we
+ show that a set @{text S} is infinite if and only if there exists an
+ injective function from the naturals into @{text S}.
+*}
+
+lemma range_inj_infinite:
+ "inj (f::nat \<Rightarrow> 'a) \<Longrightarrow> infinite (range f)"
+proof
+ assume "inj f"
+ and "finite (range f)"
+ then have "finite (UNIV::nat set)"
+ by (auto intro: finite_imageD simp del: nat_infinite)
+ then show False by simp
+qed
+
+text {*
+ The ``only if'' direction is harder because it requires the
+ construction of a sequence of pairwise different elements of an
+ infinite set @{text S}. The idea is to construct a sequence of
+ non-empty and infinite subsets of @{text S} obtained by successively
+ removing elements of @{text S}.
+*}
+
+lemma linorder_injI:
+ assumes hyp: "!!x y. x < (y::'a::linorder) ==> f x \<noteq> f y"
+ shows "inj f"
+proof (rule inj_onI)
+ fix x y
+ assume f_eq: "f x = f y"
+ show "x = y"
+ proof (rule linorder_cases)
+ assume "x < y"
+ with hyp have "f x \<noteq> f y" by blast
+ with f_eq show ?thesis by simp
+ next
+ assume "x = y"
+ then show ?thesis .
+ next
+ assume "y < x"
+ with hyp have "f y \<noteq> f x" by blast
+ with f_eq show ?thesis by simp
+ qed
+qed
+
+lemma infinite_countable_subset:
+ assumes inf: "infinite (S::'a set)"
+ shows "\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S"
+proof -
+ def Sseq \<equiv> "nat_rec S (\<lambda>n T. T - {SOME e. e \<in> T})"
+ def pick \<equiv> "\<lambda>n. (SOME e. e \<in> Sseq n)"
+ have Sseq_inf: "\<And>n. infinite (Sseq n)"
+ proof -
+ fix n
+ show "infinite (Sseq n)"
+ proof (induct n)
+ from inf show "infinite (Sseq 0)"
+ by (simp add: Sseq_def)
+ next
+ fix n
+ assume "infinite (Sseq n)" then show "infinite (Sseq (Suc n))"
+ by (simp add: Sseq_def infinite_remove)
+ qed
+ qed
+ have Sseq_S: "\<And>n. Sseq n \<subseteq> S"
+ proof -
+ fix n
+ show "Sseq n \<subseteq> S"
+ by (induct n) (auto simp add: Sseq_def)
+ qed
+ have Sseq_pick: "\<And>n. pick n \<in> Sseq n"
+ proof -
+ fix n
+ show "pick n \<in> Sseq n"
+ proof (unfold pick_def, rule someI_ex)
+ from Sseq_inf have "infinite (Sseq n)" .
+ then have "Sseq n \<noteq> {}" by auto
+ then show "\<exists>x. x \<in> Sseq n" by auto
+ qed
+ qed
+ with Sseq_S have rng: "range pick \<subseteq> S"
+ by auto
+ have pick_Sseq_gt: "\<And>n m. pick n \<notin> Sseq (n + Suc m)"
+ proof -
+ fix n m
+ show "pick n \<notin> Sseq (n + Suc m)"
+ by (induct m) (auto simp add: Sseq_def pick_def)
+ qed
+ have pick_pick: "\<And>n m. pick n \<noteq> pick (n + Suc m)"
+ proof -
+ fix n m
+ from Sseq_pick have "pick (n + Suc m) \<in> Sseq (n + Suc m)" .
+ moreover from pick_Sseq_gt
+ have "pick n \<notin> Sseq (n + Suc m)" .
+ ultimately show "pick n \<noteq> pick (n + Suc m)"
+ by auto
+ qed
+ have inj: "inj pick"
+ proof (rule linorder_injI)
+ fix i j :: nat
+ assume "i < j"
+ show "pick i \<noteq> pick j"
+ proof
+ assume eq: "pick i = pick j"
+ from `i < j` obtain k where "j = i + Suc k"
+ by (auto simp add: less_iff_Suc_add)
+ with pick_pick have "pick i \<noteq> pick j" by simp
+ with eq show False by simp
+ qed
+ qed
+ from rng inj show ?thesis by auto
+qed
+
+lemma infinite_iff_countable_subset:
+ "infinite S = (\<exists>f. inj (f::nat \<Rightarrow> 'a) \<and> range f \<subseteq> S)"
+ by (auto simp add: infinite_countable_subset range_inj_infinite infinite_super)
+
+text {*
+ For any function with infinite domain and finite range there is some
+ element that is the image of infinitely many domain elements. In
+ particular, any infinite sequence of elements from a finite set
+ contains some element that occurs infinitely often.
+*}
+
+lemma inf_img_fin_dom:
+ assumes img: "finite (f`A)" and dom: "infinite A"
+ shows "\<exists>y \<in> f`A. infinite (f -` {y})"
+proof (rule ccontr)
+ assume "\<not> ?thesis"
+ with img have "finite (UN y:f`A. f -` {y})" by (blast intro: finite_UN_I)
+ moreover have "A \<subseteq> (UN y:f`A. f -` {y})" by auto
+ moreover note dom
+ ultimately show False by (simp add: infinite_super)
+qed
+
+lemma inf_img_fin_domE:
+ assumes "finite (f`A)" and "infinite A"
+ obtains y where "y \<in> f`A" and "infinite (f -` {y})"
+ using prems by (blast dest: inf_img_fin_dom)
+
+
+subsection "Infinitely Many and Almost All"
+
+text {*
+ We often need to reason about the existence of infinitely many
+ (resp., all but finitely many) objects satisfying some predicate, so
+ we introduce corresponding binders and their proof rules.
+*}
+
+definition
+ Inf_many :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "INF " 10)
+ "Inf_many P = infinite {x. P x}"
+ Alm_all :: "('a \<Rightarrow> bool) \<Rightarrow> bool" (binder "MOST " 10)
+ "Alm_all P = (\<not> (INF x. \<not> P x))"
+
+const_syntax (xsymbols)
+ Inf_many (binder "\<exists>\<^sub>\<infinity>" 10)
+ Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)
+
+const_syntax (HTML output)
+ Inf_many (binder "\<exists>\<^sub>\<infinity>" 10)
+ Alm_all (binder "\<forall>\<^sub>\<infinity>" 10)
+
+lemma INF_EX:
+ "(\<exists>\<^sub>\<infinity>x. P x) \<Longrightarrow> (\<exists>x. P x)"
+ unfolding Inf_many_def
+proof (rule ccontr)
+ assume inf: "infinite {x. P x}"
+ assume "\<not> ?thesis" then have "{x. P x} = {}" by simp
+ then have "finite {x. P x}" by simp
+ with inf show False by simp
+qed
+
+lemma MOST_iff_finiteNeg: "(\<forall>\<^sub>\<infinity>x. P x) = finite {x. \<not> P x}"
+ by (simp add: Alm_all_def Inf_many_def)
+
+lemma ALL_MOST: "\<forall>x. P x \<Longrightarrow> \<forall>\<^sub>\<infinity>x. P x"
+ by (simp add: MOST_iff_finiteNeg)
+
+lemma INF_mono:
+ assumes inf: "\<exists>\<^sub>\<infinity>x. P x" and q: "\<And>x. P x \<Longrightarrow> Q x"
+ shows "\<exists>\<^sub>\<infinity>x. Q x"
+proof -
+ from inf have "infinite {x. P x}" unfolding Inf_many_def .
+ moreover from q have "{x. P x} \<subseteq> {x. Q x}" by auto
+ ultimately show ?thesis
+ by (simp add: Inf_many_def infinite_super)
+qed
+
+lemma MOST_mono: "\<forall>\<^sub>\<infinity>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> \<forall>\<^sub>\<infinity>x. Q x"
+ unfolding Alm_all_def by (blast intro: INF_mono)
+
+lemma INF_nat: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m<n \<and> P n)"
+ by (simp add: Inf_many_def infinite_nat_iff_unbounded)
+
+lemma INF_nat_le: "(\<exists>\<^sub>\<infinity>n. P (n::nat)) = (\<forall>m. \<exists>n. m\<le>n \<and> P n)"
+ by (simp add: Inf_many_def infinite_nat_iff_unbounded_le)
+
+lemma MOST_nat: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m<n \<longrightarrow> P n)"
+ by (simp add: Alm_all_def INF_nat)
+
+lemma MOST_nat_le: "(\<forall>\<^sub>\<infinity>n. P (n::nat)) = (\<exists>m. \<forall>n. m\<le>n \<longrightarrow> P n)"
+ by (simp add: Alm_all_def INF_nat_le)
+
+
+subsection "Enumeration of an Infinite Set"
+
+text {*
+ The set's element type must be wellordered (e.g. the natural numbers).
+*}
+
+consts
+ enumerate :: "'a::wellorder set => (nat => 'a::wellorder)"
+primrec
+ enumerate_0: "enumerate S 0 = (LEAST n. n \<in> S)"
+ enumerate_Suc: "enumerate S (Suc n) = enumerate (S - {LEAST n. n \<in> S}) n"
+
+lemma enumerate_Suc':
+ "enumerate S (Suc n) = enumerate (S - {enumerate S 0}) n"
+ by simp
+
+lemma enumerate_in_set: "infinite S \<Longrightarrow> enumerate S n : S"
+ apply (induct n arbitrary: S)
+ apply (fastsimp intro: LeastI dest!: infinite_imp_nonempty)
+ apply (fastsimp iff: finite_Diff_singleton)
+ done
+
+declare enumerate_0 [simp del] enumerate_Suc [simp del]
+
+lemma enumerate_step: "infinite S \<Longrightarrow> enumerate S n < enumerate S (Suc n)"
+ apply (induct n arbitrary: S)
+ apply (rule order_le_neq_trans)
+ apply (simp add: enumerate_0 Least_le enumerate_in_set)
+ apply (simp only: enumerate_Suc')
+ apply (subgoal_tac "enumerate (S - {enumerate S 0}) 0 : S - {enumerate S 0}")
+ apply (blast intro: sym)
+ apply (simp add: enumerate_in_set del: Diff_iff)
+ apply (simp add: enumerate_Suc')
+ done
+
+lemma enumerate_mono: "m<n \<Longrightarrow> infinite S \<Longrightarrow> enumerate S m < enumerate S n"
+ apply (erule less_Suc_induct)
+ apply (auto intro: enumerate_step)
+ done
+
+
+subsection "Miscellaneous"
+
+text {*
+ A few trivial lemmas about sets that contain at most one element.
+ These simplify the reasoning about deterministic automata.
+*}
+
+definition
+ atmost_one :: "'a set \<Rightarrow> bool"
+ "atmost_one S = (\<forall>x y. x\<in>S \<and> y\<in>S \<longrightarrow> x=y)"
+
+lemma atmost_one_empty: "S = {} \<Longrightarrow> atmost_one S"
+ by (simp add: atmost_one_def)
+
+lemma atmost_one_singleton: "S = {x} \<Longrightarrow> atmost_one S"
+ by (simp add: atmost_one_def)
+
+lemma atmost_one_unique [elim]: "atmost_one S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> y = x"
+ by (simp add: atmost_one_def)
+
+end
--- a/src/HOL/Library/Library.thy Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Library/Library.thy Sun Oct 01 18:29:26 2006 +0200
@@ -1,3 +1,4 @@
+(* $Id$ *)
(*<*)
theory Library
imports
@@ -23,6 +24,7 @@
Commutative_Ring
Coinductive_List
AssocList
+ Infinite_Set
begin
end
(*>*)
--- a/src/HOL/Nominal/Nominal.thy Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Nominal/Nominal.thy Sun Oct 01 18:29:26 2006 +0200
@@ -1,7 +1,7 @@
(* $Id$ *)
theory Nominal
-imports Main
+imports Main Infinite_Set
uses
("nominal_atoms.ML")
("nominal_package.ML")
--- a/src/HOL/Nominal/ROOT.ML Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Nominal/ROOT.ML Sun Oct 01 18:29:26 2006 +0200
@@ -5,4 +5,5 @@
The nominal datatype package.
*)
+no_document use_thy "Infinite_Set";
use_thy "Nominal";
--- a/src/HOL/NumberTheory/Finite2.thy Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/NumberTheory/Finite2.thy Sun Oct 01 18:29:26 2006 +0200
@@ -6,7 +6,7 @@
header {*Finite Sets and Finite Sums*}
theory Finite2
-imports IntFact
+imports IntFact Infinite_Set
begin
text{*
--- a/src/HOL/NumberTheory/ROOT.ML Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/NumberTheory/ROOT.ML Sun Oct 01 18:29:26 2006 +0200
@@ -1,5 +1,6 @@
(* $Id$ *)
+no_document use_thy "Infinite_Set";
no_document use_thy "Permutation";
no_document use_thy "Primes";
--- a/src/HOL/Reconstruction.thy Sun Oct 01 18:29:25 2006 +0200
+++ b/src/HOL/Reconstruction.thy Sun Oct 01 18:29:26 2006 +0200
@@ -7,7 +7,7 @@
header{* Reconstructing external resolution proofs *}
theory Reconstruction
-imports Hilbert_Choice Map Infinite_Set Extraction
+imports Hilbert_Choice Map Extraction
uses "Tools/polyhash.ML"
"Tools/ATP/AtpCommunication.ML"
"Tools/ATP/watcher.ML"