--- a/src/HOL/IsaMakefile Thu Feb 19 09:42:23 2009 -0800
+++ b/src/HOL/IsaMakefile Thu Feb 19 12:03:31 2009 -0800
@@ -312,6 +312,7 @@
Library/Euclidean_Space.thy Library/Glbs.thy Library/normarith.ML \
Library/Executable_Set.thy Library/Infinite_Set.thy \
Library/FuncSet.thy Library/Permutations.thy Library/Determinants.thy\
+ Library/Bit.thy \
Library/Finite_Cartesian_Product.thy \
Library/FrechetDeriv.thy \
Library/Fundamental_Theorem_Algebra.thy \
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Bit.thy Thu Feb 19 12:03:31 2009 -0800
@@ -0,0 +1,125 @@
+(* Title: Bit.thy
+ Author: Brian Huffman
+*)
+
+header {* The Field of Integers mod 2 *}
+
+theory Bit
+imports Main
+begin
+
+subsection {* Bits as a datatype *}
+
+typedef (open) bit = "UNIV :: bool set" ..
+
+instantiation bit :: "{zero, one}"
+begin
+
+definition zero_bit_def:
+ "0 = Abs_bit False"
+
+definition one_bit_def:
+ "1 = Abs_bit True"
+
+instance ..
+
+end
+
+rep_datatype (bit) "0::bit" "1::bit"
+proof -
+ fix P and x :: bit
+ assume "P (0::bit)" and "P (1::bit)"
+ then have "\<forall>b. P (Abs_bit b)"
+ unfolding zero_bit_def one_bit_def
+ by (simp add: all_bool_eq)
+ then show "P x"
+ by (induct x) simp
+next
+ show "(0::bit) \<noteq> (1::bit)"
+ unfolding zero_bit_def one_bit_def
+ by (simp add: Abs_bit_inject)
+qed
+
+lemma bit_not_0_iff [iff]: "(x::bit) \<noteq> 0 \<longleftrightarrow> x = 1"
+ by (induct x) simp_all
+
+lemma bit_not_1_iff [iff]: "(x::bit) \<noteq> 1 \<longleftrightarrow> x = 0"
+ by (induct x) simp_all
+
+
+subsection {* Type @{typ bit} forms a field *}
+
+instantiation bit :: "{field, division_by_zero}"
+begin
+
+definition plus_bit_def:
+ "x + y = (case x of 0 \<Rightarrow> y | 1 \<Rightarrow> (case y of 0 \<Rightarrow> 1 | 1 \<Rightarrow> 0))"
+
+definition times_bit_def:
+ "x * y = (case x of 0 \<Rightarrow> 0 | 1 \<Rightarrow> y)"
+
+definition uminus_bit_def [simp]:
+ "- x = (x :: bit)"
+
+definition minus_bit_def [simp]:
+ "x - y = (x + y :: bit)"
+
+definition inverse_bit_def [simp]:
+ "inverse x = (x :: bit)"
+
+definition divide_bit_def [simp]:
+ "x / y = (x * y :: bit)"
+
+lemmas field_bit_defs =
+ plus_bit_def times_bit_def minus_bit_def uminus_bit_def
+ divide_bit_def inverse_bit_def
+
+instance proof
+qed (unfold field_bit_defs, auto split: bit.split)
+
+end
+
+lemma bit_1_plus_1 [simp]: "1 + 1 = (0 :: bit)"
+ unfolding plus_bit_def by simp
+
+lemma bit_add_self [simp]: "x + x = (0 :: bit)"
+ by (cases x) simp_all
+
+lemma bit_add_self_left [simp]: "x + (x + y) = (y :: bit)"
+ by simp
+
+lemma bit_mult_eq_1_iff [simp]: "x * y = (1 :: bit) \<longleftrightarrow> x = 1 \<and> y = 1"
+ unfolding times_bit_def by (simp split: bit.split)
+
+text {* Not sure whether the next two should be simp rules. *}
+
+lemma bit_add_eq_0_iff: "x + y = (0 :: bit) \<longleftrightarrow> x = y"
+ unfolding plus_bit_def by (simp split: bit.split)
+
+lemma bit_add_eq_1_iff: "x + y = (1 :: bit) \<longleftrightarrow> x \<noteq> y"
+ unfolding plus_bit_def by (simp split: bit.split)
+
+
+subsection {* Numerals at type @{typ bit} *}
+
+instantiation bit :: number_ring
+begin
+
+definition number_of_bit_def:
+ "(number_of w :: bit) = of_int w"
+
+instance proof
+qed (rule number_of_bit_def)
+
+end
+
+text {* All numerals reduce to either 0 or 1. *}
+
+lemma bit_number_of_even [simp]: "number_of (Int.Bit0 w) = (0 :: bit)"
+ by (simp only: number_of_Bit0 add_0_left bit_add_self)
+
+lemma bit_number_of_odd [simp]: "number_of (Int.Bit1 w) = (1 :: bit)"
+ by (simp only: number_of_Bit1 add_assoc bit_add_self
+ monoid_add_class.add_0_right)
+
+end
--- a/src/HOL/Library/Library.thy Thu Feb 19 09:42:23 2009 -0800
+++ b/src/HOL/Library/Library.thy Thu Feb 19 12:03:31 2009 -0800
@@ -5,6 +5,7 @@
AssocList
BigO
Binomial
+ Bit
Boolean_Algebra
Char_ord
Code_Char_chr