--- a/src/Doc/Tutorial/Protocol/Message.thy Wed Dec 30 20:11:19 2015 +0100
+++ b/src/Doc/Tutorial/Protocol/Message.thy Wed Dec 30 20:12:26 2015 +0100
@@ -79,16 +79,12 @@
*}
(*<*)
-text{*Concrete syntax: messages appear as {|A,B,NA|}, etc...*}
+text{*Concrete syntax: messages appear as \<open>\<lbrace>A,B,NA\<rbrace>\<close>, etc...*}
syntax
- "_MTuple" :: "['a, args] => 'a * 'b" ("(2{|_,/ _|})")
-
-syntax (xsymbols)
"_MTuple" :: "['a, args] => 'a * 'b" ("(2\<lbrace>_,/ _\<rbrace>)")
-
translations
- "{|x, y, z|}" == "{|x, {|y, z|}|}"
- "{|x, y|}" == "CONST MPair x y"
+ "\<lbrace>x, y, z\<rbrace>" == "\<lbrace>x, \<lbrace>y, z\<rbrace>\<rbrace>"
+ "\<lbrace>x, y\<rbrace>" == "CONST MPair x y"
definition keysFor :: "msg set => key set" where
@@ -103,8 +99,8 @@
for H :: "msg set"
where
Inj [intro]: "X \<in> H ==> X \<in> parts H"
- | Fst: "{|X,Y|} \<in> parts H ==> X \<in> parts H"
- | Snd: "{|X,Y|} \<in> parts H ==> Y \<in> parts H"
+ | Fst: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> X \<in> parts H"
+ | Snd: "\<lbrace>X,Y\<rbrace> \<in> parts H ==> Y \<in> parts H"
| Body: "Crypt K X \<in> parts H ==> X \<in> parts H"
@@ -159,7 +155,7 @@
lemma keysFor_insert_Key [simp]: "keysFor (insert (Key K) H) = keysFor H"
by (unfold keysFor_def, auto)
-lemma keysFor_insert_MPair [simp]: "keysFor (insert {|X,Y|} H) = keysFor H"
+lemma keysFor_insert_MPair [simp]: "keysFor (insert \<lbrace>X,Y\<rbrace> H) = keysFor H"
by (unfold keysFor_def, auto)
lemma keysFor_insert_Crypt [simp]:
@@ -176,7 +172,7 @@
subsection{*Inductive relation "parts"*}
lemma MPair_parts:
- "[| {|X,Y|} \<in> parts H;
+ "[| \<lbrace>X,Y\<rbrace> \<in> parts H;
[| X \<in> parts H; Y \<in> parts H |] ==> P |] ==> P"
by (blast dest: parts.Fst parts.Snd)
@@ -313,8 +309,8 @@
done
lemma parts_insert_MPair [simp]:
- "parts (insert {|X,Y|} H) =
- insert {|X,Y|} (parts (insert X (insert Y H)))"
+ "parts (insert \<lbrace>X,Y\<rbrace> H) =
+ insert \<lbrace>X,Y\<rbrace> (parts (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule parts.induct, auto)
@@ -375,7 +371,7 @@
text{*Making it safe speeds up proofs*}
lemma MPair_analz [elim!]:
- "[| {|X,Y|} \<in> analz H;
+ "[| \<lbrace>X,Y\<rbrace> \<in> analz H;
[| X \<in> analz H; Y \<in> analz H |] ==> P
|] ==> P"
by (blast dest: analz.Fst analz.Snd)
@@ -447,8 +443,8 @@
done
lemma analz_insert_MPair [simp]:
- "analz (insert {|X,Y|} H) =
- insert {|X,Y|} (analz (insert X (insert Y H)))"
+ "analz (insert \<lbrace>X,Y\<rbrace> H) =
+ insert \<lbrace>X,Y\<rbrace> (analz (insert X (insert Y H)))"
apply (rule equalityI)
apply (rule subsetI)
apply (erule analz.induct, auto)
@@ -565,7 +561,7 @@
text{*If there are no pairs or encryptions then analz does nothing*}
lemma analz_trivial:
- "[| \<forall>X Y. {|X,Y|} \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
+ "[| \<forall>X Y. \<lbrace>X,Y\<rbrace> \<notin> H; \<forall>X K. Crypt K X \<notin> H |] ==> analz H = H"
apply safe
apply (erule analz.induct, blast+)
done
@@ -606,7 +602,7 @@
by (auto, erule synth.induct, auto)
inductive_cases Key_synth [elim!]: "Key K \<in> synth H"
-inductive_cases MPair_synth [elim!]: "{|X,Y|} \<in> synth H"
+inductive_cases MPair_synth [elim!]: "\<lbrace>X,Y\<rbrace> \<in> synth H"
inductive_cases Crypt_synth [elim!]: "Crypt K X \<in> synth H"
lemma analz_synth_Un [simp]: "analz (synth G \<union> H) = analz (G \<union> H) \<union> synth G"
@@ -769,7 +765,7 @@
text{*Without this equation, other rules for synth and analz would yield
redundant cases*}
lemma MPair_synth_analz [iff]:
- "({|X,Y|} \<in> synth (analz H)) =
+ "(\<lbrace>X,Y\<rbrace> \<in> synth (analz H)) =
(X \<in> synth (analz H) & Y \<in> synth (analz H))"
by blast