split 'Cardinal_Arithmetic' 3-way
authorblanchet
Mon, 18 Nov 2013 18:04:44 +0100
changeset 54474 6d5941722fae
parent 54473 8bee5ca99e63
child 54475 b4d644be252c
split 'Cardinal_Arithmetic' 3-way
src/HOL/Cardinals/Cardinal_Arithmetic.thy
src/HOL/Cardinals/Cardinal_Arithmetic_GFP.thy
src/HOL/Cardinals/Cardinal_Arithmetic_LFP.thy
src/HOL/ROOT
--- a/src/HOL/Cardinals/Cardinal_Arithmetic.thy	Mon Nov 18 18:04:44 2013 +0100
+++ b/src/HOL/Cardinals/Cardinal_Arithmetic.thy	Mon Nov 18 18:04:44 2013 +0100
@@ -8,270 +8,17 @@
 header {* Cardinal Arithmetic  *}
 
 theory Cardinal_Arithmetic
-imports Cardinal_Order_Relation_LFP
+imports Cardinal_Arithmetic_GFP
 begin
 
-text {*
-  The following collection of lemmas should be seen as an user interface to the HOL Theory
-  of cardinals. It is not expected to be complete in any sense, since its
-  development was driven by demand arising from the development of the (co)datatype package.
-*}
-
-(*library candidate*)
-lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f"
-by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
-
-(*should supersede a weaker lemma from the library*)
-lemma dir_image_Field: "Field (dir_image r f) = f ` Field r"
-unfolding dir_image_def Field_def Range_def Domain_def by fastforce
-
-lemma card_order_dir_image:
-  assumes bij: "bij f" and co: "card_order r"
-  shows "card_order (dir_image r f)"
-proof -
-  from assms have "Field (dir_image r f) = UNIV"
-    using card_order_on_Card_order[of UNIV r] unfolding bij_def dir_image_Field by auto
-  moreover from bij have "\<And>x y. (f x = f y) = (x = y)" unfolding bij_def inj_on_def by auto
-  with co have "Card_order (dir_image r f)"
-    using card_order_on_Card_order[of UNIV r] Card_order_ordIso2[OF _ dir_image] by blast
-  ultimately show ?thesis by auto
-qed
-
-(*library candidate*)
-lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r"
-by (rule card_order_on_ordIso)
-
-(*library candidate*)
-lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r"
-by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso)
-
-(*library candidate*)
-lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|"
-by (simp only: ordIso_refl card_of_Card_order)
-
-(*library candidate*)
-lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV"
-using card_order_on_Card_order[of UNIV r] by simp
-
-(*library candidate*)
-lemma card_of_Times_Plus_distrib:
-  "|A <*> (B <+> C)| =o |A <*> B <+> A <*> C|" (is "|?RHS| =o |?LHS|")
-proof -
-  let ?f = "\<lambda>(a, bc). case bc of Inl b \<Rightarrow> Inl (a, b) | Inr c \<Rightarrow> Inr (a, c)"
-  have "bij_betw ?f ?RHS ?LHS" unfolding bij_betw_def inj_on_def by force
-  thus ?thesis using card_of_ordIso by blast
-qed
-
-(*library candidate*)
-lemma Func_Times_Range:
-  "|Func A (B <*> C)| =o |Func A B <*> Func A C|" (is "|?LHS| =o |?RHS|")
-proof -
-  let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined,
-                  \<lambda>x. if x \<in> A then snd (fg x) else undefined)"
-  let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined"
-  have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def
-  proof safe
-    fix f g assume "f \<in> Func A B" "g \<in> Func A C"
-    thus "(f, g) \<in> ?F ` Func A (B \<times> C)"
-      by (intro image_eqI[of _ _ "?G (f, g)"]) (auto simp: Func_def)
-  qed (auto simp: Func_def fun_eq_iff, metis pair_collapse)
-  thus ?thesis using card_of_ordIso by blast
-qed
-
-
-subsection {* Zero *}
-
-definition czero where
-  "czero = card_of {}"
-
-lemma czero_ordIso:
-  "czero =o czero"
-using card_of_empty_ordIso by (simp add: czero_def)
-
-lemma card_of_ordIso_czero_iff_empty:
-  "|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)"
-unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso)
-
-(* A "not czero" Cardinal predicate *)
-abbreviation Cnotzero where
-  "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
-
-(*helper*)
-lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
-by (metis Card_order_iff_ordIso_card_of czero_def)
-
-lemma czeroI:
-  "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
-using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
-
-lemma czeroE:
-  "r =o czero \<Longrightarrow> Field r = {}"
-unfolding czero_def
-by (drule card_of_cong) (simp only: Field_card_of card_of_empty2)
-
-lemma Cnotzero_mono:
-  "\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q"
-apply (rule ccontr)
-apply auto
-apply (drule czeroE)
-apply (erule notE)
-apply (erule czeroI)
-apply (drule card_of_mono2)
-apply (simp only: card_of_empty3)
-done
-
-subsection {* (In)finite cardinals *}
-
-definition cinfinite where
-  "cinfinite r = infinite (Field r)"
-
-abbreviation Cinfinite where
-  "Cinfinite r \<equiv> cinfinite r \<and> Card_order r"
-
-definition cfinite where
-  "cfinite r = finite (Field r)"
-
-abbreviation Cfinite where
-  "Cfinite r \<equiv> cfinite r \<and> Card_order r"
-
-lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
-  unfolding cfinite_def cinfinite_def
-  by (metis card_order_on_well_order_on finite_ordLess_infinite)
-
-lemma natLeq_ordLeq_cinfinite:
-  assumes inf: "Cinfinite r"
-  shows "natLeq \<le>o r"
-proof -
-  from inf have "natLeq \<le>o |Field r|" by (simp add: cinfinite_def infinite_iff_natLeq_ordLeq)
-  also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
-  finally show ?thesis .
-qed
-
-lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
-unfolding cinfinite_def by (metis czeroE finite.emptyI)
-
-lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
-by (metis cinfinite_not_czero)
-
-lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
-by (metis Card_order_ordIso2 card_of_mono2 card_of_ordLeq_infinite cinfinite_def ordIso_iff_ordLeq)
-
-lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
-by (metis card_of_mono2 card_of_ordLeq_infinite cinfinite_def)
-
 
 subsection {* Binary sum *}
 
-definition csum (infixr "+c" 65) where
-  "r1 +c r2 \<equiv> |Field r1 <+> Field r2|"
-
-lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s"
-  unfolding csum_def Field_card_of by auto
-
-lemma Card_order_csum:
-  "Card_order (r1 +c r2)"
-unfolding csum_def by (simp add: card_of_Card_order)
-
-lemma csum_Cnotzero1:
-  "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
-unfolding csum_def
-by (metis Cnotzero_imp_not_empty Field_card_of Plus_eq_empty_conv card_of_card_order_on czeroE)
-
 lemma csum_Cnotzero2:
   "Cnotzero r2 \<Longrightarrow> Cnotzero (r1 +c r2)"
 unfolding csum_def
 by (metis Cnotzero_imp_not_empty Field_card_of Plus_eq_empty_conv card_of_card_order_on czeroE)
 
-lemma card_order_csum:
-  assumes "card_order r1" "card_order r2"
-  shows "card_order (r1 +c r2)"
-proof -
-  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
-  thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on)
-qed
-
-lemma cinfinite_csum:
-  "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
-unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
-
-lemma Cinfinite_csum:
-  "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
-unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
-
-lemma Cinfinite_csum_strong:
-  "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
-by (metis Cinfinite_csum)
-
-lemma Cinfinite_csum1:
-  "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
-unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
-
-lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
-by (simp only: csum_def ordIso_Plus_cong)
-
-lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
-by (simp only: csum_def ordIso_Plus_cong1)
-
-lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2"
-by (simp only: csum_def ordIso_Plus_cong2)
-
-lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2"
-by (simp only: csum_def ordLeq_Plus_mono)
-
-lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q"
-by (simp only: csum_def ordLeq_Plus_mono1)
-
-lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2"
-by (simp only: csum_def ordLeq_Plus_mono2)
-
-lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2"
-by (simp only: csum_def Card_order_Plus1)
-
-lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2"
-by (simp only: csum_def Card_order_Plus2)
-
-lemma csum_com: "p1 +c p2 =o p2 +c p1"
-by (simp only: csum_def card_of_Plus_commute)
-
-lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3"
-by (simp only: csum_def Field_card_of card_of_Plus_assoc)
-
-lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)"
-  unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
-
-lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
-proof -
-  have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
-    by (metis csum_assoc)
-  also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
-    by (metis csum_assoc csum_cong2 ordIso_symmetric)
-  also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
-    by (metis csum_com csum_cong1 csum_cong2)
-  also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
-    by (metis csum_assoc csum_cong2 ordIso_symmetric)
-  also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
-    by (metis csum_assoc ordIso_symmetric)
-  finally show ?thesis .
-qed
-
-lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
-by (simp only: csum_def Field_card_of card_of_refl)
-
-lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|"
-using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast
-
-
-subsection {* One *}
-
-definition cone where
-  "cone = card_of {()}"
-
-lemma Card_order_cone: "Card_order cone"
-unfolding cone_def by (rule card_of_Card_order)
-
-lemma Cfinite_cone: "Cfinite cone"
-  unfolding cfinite_def by (simp add: Card_order_cone)
-
 lemma single_cone:
   "|{x}| =o cone"
 proof -
@@ -280,349 +27,37 @@
   thus ?thesis unfolding cone_def using card_of_ordIso by blast
 qed
 
-lemma cone_not_czero: "\<not> (cone =o czero)"
-unfolding czero_def cone_def by (metis empty_not_insert card_of_empty3[of "{()}"] ordIso_iff_ordLeq)
-
 lemma cone_Cnotzero: "Cnotzero cone"
 by (simp add: cone_not_czero Card_order_cone)
 
-lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
-unfolding cone_def by (metis Card_order_singl_ordLeq czeroI)
-
-
-subsection{* Two *}
-
-definition ctwo where
-  "ctwo = |UNIV :: bool set|"
-
-lemma Card_order_ctwo: "Card_order ctwo"
-unfolding ctwo_def by (rule card_of_Card_order)
-
 lemma cone_ordLeq_ctwo: "cone \<le>o ctwo"
 unfolding cone_def ctwo_def card_of_ordLeq[symmetric] by auto
 
-lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
-using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
-unfolding czero_def ctwo_def by (metis UNIV_not_empty)
-
-lemma ctwo_Cnotzero: "Cnotzero ctwo"
-by (simp add: ctwo_not_czero Card_order_ctwo)
-
-
-subsection {* Family sum *}
-
-definition Csum where
-  "Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|"
-
-(* Similar setup to the one for SIGMA from theory Big_Operators: *)
-syntax "_Csum" ::
-  "pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
-  ("(3CSUM _:_. _)" [0, 51, 10] 10)
-
-translations
-  "CSUM i:r. rs" == "CONST Csum r (%i. rs)"
-
-lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )"
-by (auto simp: Csum_def Field_card_of)
-
-(* NB: Always, under the cardinal operator,
-operations on sets are reduced automatically to operations on cardinals.
-This should make cardinal reasoning more direct and natural.  *)
-
 
 subsection {* Product *}
 
-definition cprod (infixr "*c" 80) where
-  "r1 *c r2 = |Field r1 <*> Field r2|"
-
 lemma Times_cprod: "|A \<times> B| =o |A| *c |B|"
 by (simp only: cprod_def Field_card_of card_of_refl)
 
-lemma card_order_cprod:
-  assumes "card_order r1" "card_order r2"
-  shows "card_order (r1 *c r2)"
-proof -
-  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
-  thus ?thesis by (auto simp: cprod_def card_of_card_order_on)
-qed
-
-lemma Card_order_cprod: "Card_order (r1 *c r2)"
-by (simp only: cprod_def Field_card_of card_of_card_order_on)
-
 lemma cprod_cong2: "p2 =o r2 \<Longrightarrow> q *c p2 =o q *c r2"
 by (simp only: cprod_def ordIso_Times_cong2)
 
-lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q"
-by (simp only: cprod_def ordLeq_Times_mono1)
-
-lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
-by (simp only: cprod_def ordLeq_Times_mono2)
-
 lemma ordLeq_cprod1: "\<lbrakk>Card_order p1; Cnotzero p2\<rbrakk> \<Longrightarrow> p1 \<le>o p1 *c p2"
 unfolding cprod_def by (metis Card_order_Times1 czeroI)
 
-lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
-unfolding cprod_def by (metis Card_order_Times2 czeroI)
-
-lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
-by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
-
-lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
-by (metis cinfinite_mono ordLeq_cprod2)
-
-lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
-by (blast intro: cinfinite_cprod2 Card_order_cprod)
-
-lemma cprod_com: "p1 *c p2 =o p2 *c p1"
-by (simp only: cprod_def card_of_Times_commute)
-
-lemma card_of_Csum_Times:
-  "\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|"
-by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_Times)
-
-lemma card_of_Csum_Times':
-  assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r"
-  shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r"
-proof -
-  from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique)
-  with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans)
-  hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times)
-  also from * have "|I| *c |Field r| \<le>o |I| *c r"
-    by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq)
-  finally show ?thesis .
-qed
-
-lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
-unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
-
-lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
-unfolding csum_def by (metis Card_order_Plus_infinite cinfinite_def cinfinite_mono)
-
-lemma csum_absorb1':
-  assumes card: "Card_order r2"
-  and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
-  shows "r2 +c r1 =o r2"
-by (rule ordIso_transitive, rule csum_com, rule csum_absorb2', (simp only: assms)+)
-
-lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2"
-by (rule csum_absorb1') auto
-
-lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r"
-unfolding cinfinite_def cprod_def
-by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+
-
 lemma cprod_infinite: "Cinfinite r \<Longrightarrow> r *c r =o r"
 using cprod_infinite1' Cinfinite_Cnotzero ordLeq_refl by blast
 
 
 subsection {* Exponentiation *}
 
-definition cexp (infixr "^c" 90) where
-  "r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|"
-
-lemma card_order_cexp:
-  assumes "card_order r1" "card_order r2"
-  shows "card_order (r1 ^c r2)"
-proof -
-  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
-  thus ?thesis unfolding cexp_def Func_def by (simp add: card_of_card_order_on)
-qed
-
-lemma Card_order_cexp: "Card_order (r1 ^c r2)"
-unfolding cexp_def by (rule card_of_Card_order)
-
-lemma cexp_mono':
-  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
-  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
-  shows "p1 ^c p2 \<le>o r1 ^c r2"
-proof(cases "Field p1 = {}")
-  case True
-  hence "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
-    unfolding cone_def Field_card_of
-    by (cases "Field p2 = {}", auto intro: card_of_ordLeqI2 simp: Func_empty)
-       (metis Func_is_emp card_of_empty ex_in_conv)
-  hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
-  hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
-  thus ?thesis
-  proof (cases "Field p2 = {}")
-    case True
-    with n have "Field r2 = {}" .
-    hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def by (auto intro: card_of_ordLeqI)
-    thus ?thesis using `p1 ^c p2 \<le>o cone` ordLeq_transitive by auto
-  next
-    case False with True have "|Field (p1 ^c p2)| =o czero"
-      unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto
-    thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of
-      by (simp add: card_of_empty)
-  qed
-next
-  case False
-  have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|"
-    using 1 2 by (auto simp: card_of_mono2)
-  obtain f1 where f1: "f1 ` Field r1 = Field p1"
-    using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto
-  obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2"
-    using 2 unfolding card_of_ordLeq[symmetric] by blast
-  have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)"
-    unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] .
-  have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp
-    using False by simp
-  show ?thesis
-    using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast
-qed
-
-lemma cexp_mono:
-  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
-  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
-  shows "p1 ^c p2 \<le>o r1 ^c r2"
-  by (metis (full_types) "1" "2" card cexp_mono' czeroE czeroI n)
-
-lemma cexp_mono1:
-  assumes 1: "p1 \<le>o r1" and q: "Card_order q"
-  shows "p1 ^c q \<le>o r1 ^c q"
-using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
-
-lemma cexp_mono2':
-  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
-  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
-  shows "q ^c p2 \<le>o q ^c r2"
-using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto
-
-lemma cexp_mono2:
-  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
-  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
-  shows "q ^c p2 \<le>o q ^c r2"
-using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
-
-lemma cexp_mono2_Cnotzero:
-  assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
-  shows "q ^c p2 \<le>o q ^c r2"
-by (metis assms cexp_mono2' czeroI)
-
-lemma cexp_cong:
-  assumes 1: "p1 =o r1" and 2: "p2 =o r2"
-  and Cr: "Card_order r2"
-  and Cp: "Card_order p2"
-  shows "p1 ^c p2 =o r1 ^c r2"
-proof -
-  obtain f where "bij_betw f (Field p2) (Field r2)"
-    using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto
-  hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
-  have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
-    and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
-     using 0 Cr Cp czeroE czeroI by auto
-  show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
-    using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
-qed
-
-lemma cexp_cong1:
-  assumes 1: "p1 =o r1" and q: "Card_order q"
-  shows "p1 ^c q =o r1 ^c q"
-by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q])
-
-lemma cexp_cong2:
-  assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2"
-  shows "q ^c p2 =o q ^c r2"
-by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p)
-
 lemma cexp_czero: "r ^c czero =o cone"
 unfolding cexp_def czero_def Field_card_of Func_empty by (rule single_cone)
 
-lemma cexp_cone:
-  assumes "Card_order r"
-  shows "r ^c cone =o r"
-proof -
-  have "r ^c cone =o |Field r|"
-    unfolding cexp_def cone_def Field_card_of Func_empty
-      card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def
-    by (rule exI[of _ "\<lambda>f. f ()"]) auto
-  also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms])
-  finally show ?thesis .
-qed
-
-lemma cexp_cprod:
-  assumes r1: "Card_order r1"
-  shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R")
-proof -
-  have "?L =o r1 ^c (r3 *c r2)"
-    unfolding cprod_def cexp_def Field_card_of
-    using card_of_Func_Times by(rule ordIso_symmetric)
-  also have "r1 ^c (r3 *c r2) =o ?R"
-    apply(rule cexp_cong2) using cprod_com r1 by (auto simp: Card_order_cprod)
-  finally show ?thesis .
-qed
-
-lemma cexp_cprod_ordLeq:
-  assumes r1: "Card_order r1" and r2: "Cinfinite r2"
-  and r3: "Cnotzero r3" "r3 \<le>o r2"
-  shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R")
-proof-
-  have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] .
-  also have "r1 ^c (r2 *c r3) =o ?R"
-  apply(rule cexp_cong2)
-  apply(rule cprod_infinite1'[OF r2 r3]) using r1 r2 by (fastforce simp: Card_order_cprod)+
-  finally show ?thesis .
-qed
-
-lemma Cnotzero_UNIV: "Cnotzero |UNIV|"
-by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty)
-
 lemma Pow_cexp_ctwo:
   "|Pow A| =o ctwo ^c |A|"
 unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
 
-lemma ordLess_ctwo_cexp:
-  assumes "Card_order r"
-  shows "r <o ctwo ^c r"
-proof -
-  have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow)
-  also have "|Pow (Field r)| =o ctwo ^c r"
-    unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
-  finally show ?thesis .
-qed
-
-lemma ordLeq_cexp1:
-  assumes "Cnotzero r" "Card_order q"
-  shows "q \<le>o q ^c r"
-proof (cases "q =o (czero :: 'a rel)")
-  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
-next
-  case False
-  thus ?thesis
-    apply -
-    apply (rule ordIso_ordLeq_trans)
-    apply (rule ordIso_symmetric)
-    apply (rule cexp_cone)
-    apply (rule assms(2))
-    apply (rule cexp_mono2)
-    apply (rule cone_ordLeq_Cnotzero)
-    apply (rule assms(1))
-    apply (rule assms(2))
-    apply (rule notE)
-    apply (rule cone_not_czero)
-    apply assumption
-    apply (rule Card_order_cone)
-  done
-qed
-
-lemma ordLeq_cexp2:
-  assumes "ctwo \<le>o q" "Card_order r"
-  shows "r \<le>o q ^c r"
-proof (cases "r =o (czero :: 'a rel)")
-  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
-next
-  case False thus ?thesis
-    apply -
-    apply (rule ordLess_imp_ordLeq)
-    apply (rule ordLess_ordLeq_trans)
-    apply (rule ordLess_ctwo_cexp)
-    apply (rule assms(2))
-    apply (rule cexp_mono1)
-    apply (rule assms(1))
-    apply (rule assms(2))
-  done
-qed
-
 lemma Cnotzero_cexp:
   assumes "Cnotzero q" "Card_order r"
   shows "Cnotzero (q ^c r)"
@@ -666,40 +101,6 @@
 unfolding ctwo_def cexp_def cinfinite_def Field_card_of
 by (rule conjI, rule infinite_Func, auto, rule card_of_card_order_on)
 
-lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
-by (metis assms cinfinite_mono ordLeq_cexp2)
-
-lemma Cinfinite_cexp:
-  "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
-by (simp add: cinfinite_cexp Card_order_cexp)
-
-lemma ctwo_ordLess_natLeq:
-  "ctwo <o natLeq"
-unfolding ctwo_def using finite_iff_ordLess_natLeq finite_UNIV by fast
-
-lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
-by (metis ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite ordLess_ordLeq_trans)
-
-lemma ctwo_ordLeq_Cinfinite:
-  assumes "Cinfinite r"
-  shows "ctwo \<le>o r"
-by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
-
-lemma Cinfinite_ordLess_cexp:
-  assumes r: "Cinfinite r"
-  shows "r <o r ^c r"
-proof -
-  have "r <o ctwo ^c r" using r by (simp only: ordLess_ctwo_cexp)
-  also have "ctwo ^c r \<le>o r ^c r"
-    by (rule cexp_mono1[OF ctwo_ordLeq_Cinfinite]) (auto simp: r ctwo_not_czero Card_order_ctwo)
-  finally show ?thesis .
-qed
-
-lemma infinite_ordLeq_cexp:
-  assumes "Cinfinite r"
-  shows "r \<le>o r ^c r"
-by (rule ordLess_imp_ordLeq[OF Cinfinite_ordLess_cexp[OF assms]])
-
 lemma cone_ordLeq_iff_Field:
   assumes "cone \<le>o r"
   shows "Field r \<noteq> {}"
@@ -731,22 +132,6 @@
   case False thus ?thesis using assms cexp_mono2' czeroI by metis
 qed
 
-lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r"
-by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field)
-
-lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r"
-by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def)
-
-lemma csum_cinfinite_bound:
-  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
-  shows "p +c q \<le>o r"
-proof -
-  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
-    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
-  with assms show ?thesis unfolding cinfinite_def csum_def
-    by (blast intro: card_of_Plus_ordLeq_infinite_Field)
-qed
-
 lemma csum_cexp: "\<lbrakk>Cinfinite r1; Cinfinite r2; Card_order q; ctwo \<le>o q\<rbrakk> \<Longrightarrow>
   q ^c r1 +c q ^c r2 \<le>o q ^c (r1 +c r2)"
 apply (rule csum_cinfinite_bound)
@@ -782,116 +167,13 @@
   apply blast+
 by (metis Cinfinite_cexp)
 
-lemma cprod_cinfinite_bound:
-  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
-  shows "p *c q \<le>o r"
-proof -
-  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
-    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
-  with assms show ?thesis unfolding cinfinite_def cprod_def
-    by (blast intro: card_of_Times_ordLeq_infinite_Field)
-qed
-
-lemma cprod_csum_cexp:
-  "r1 *c r2 \<le>o (r1 +c r2) ^c ctwo"
-unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of
-proof -
-  let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b"
-  have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS")
-    by (auto simp: inj_on_def fun_eq_iff split: bool.split)
-  moreover
-  have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS")
-    by (auto simp: Func_def)
-  ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast
-qed
-
-lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s"
-by (intro cprod_cinfinite_bound)
-  (auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite])
-
-lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t"
-  unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range)
-
-lemma cprod_cexp_csum_cexp_Cinfinite:
-  assumes t: "Cinfinite t"
-  shows "(r *c s) ^c t \<le>o (r +c s) ^c t"
-proof -
-  have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t"
-    by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]])
-  also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)"
-    by (rule cexp_cprod[OF Card_order_csum])
-  also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)"
-    by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod])
-  also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo"
-    by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]])
-  also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t"
-    by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]])
-  finally show ?thesis .
-qed
-
-lemma Cfinite_cexp_Cinfinite:
-  assumes s: "Cfinite s" and t: "Cinfinite t"
-  shows "s ^c t \<le>o ctwo ^c t"
-proof (cases "s \<le>o ctwo")
-  case True thus ?thesis using t by (blast intro: cexp_mono1)
-next
-  case False
-  hence "ctwo \<le>o s" by (metis card_order_on_well_order_on ctwo_Cnotzero ordLeq_total s)
-  hence "Cnotzero s" by (metis Cnotzero_mono ctwo_Cnotzero s)
-  hence st: "Cnotzero (s *c t)" by (metis Cinfinite_cprod2 cinfinite_not_czero t)
-  have "s ^c t \<le>o (ctwo ^c s) ^c t"
-    using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
-  also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
-    by (blast intro: Card_order_ctwo cexp_cprod)
-  also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"
-    using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo)
-  finally show ?thesis .
-qed
-
-lemma csum_Cfinite_cexp_Cinfinite:
-  assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t"
-  shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t"
-proof (cases "Cinfinite r")
-  case True
-  hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s)
-  hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1)
-  also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r)
-  finally show ?thesis .
-next
-  case False
-  with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto
-  hence "Cfinite (r +c s)" by (intro Cfinite_csum s)
-  hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t)
-  also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t
-    by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo)
-  finally show ?thesis .
-qed
-
 lemma card_of_Sigma_ordLeq_Cinfinite:
   "\<lbrakk>Cinfinite r; |I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r\<rbrakk> \<Longrightarrow> |SIGMA i : I. A i| \<le>o r"
 unfolding cinfinite_def by (blast intro: card_of_Sigma_ordLeq_infinite_Field)
 
 
-(* cardSuc *)
-
-lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)"
-by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite)
-
-lemma cardSuc_UNION_Cinfinite:
-  assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (UN i : Field (cardSuc r). As i)" "|B| <=o r"
-  shows "EX i : Field (cardSuc r). B \<le> As i"
-using cardSuc_UNION assms unfolding cinfinite_def by blast
-
 subsection {* Powerset *}
 
-definition cpow where "cpow r = |Pow (Field r)|"
-
-lemma card_order_cpow: "card_order r \<Longrightarrow> card_order (cpow r)"
-by (simp only: cpow_def Field_card_order Pow_UNIV card_of_card_order_on)
-
-lemma cpow_greater_eq: "Card_order r \<Longrightarrow> r \<le>o cpow r"
-by (rule ordLess_imp_ordLeq) (simp only: cpow_def Card_order_Pow)
-
 lemma Card_order_cpow: "Card_order (cpow r)"
 unfolding cpow_def by (rule card_of_Card_order)
 
@@ -904,9 +186,14 @@
 lemma cpow_cexp_ctwo: "cpow r =o ctwo ^c r"
 unfolding cpow_def ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
 
+
 subsection {* Lists *}
 
-definition clists where "clists r = |lists (Field r)|"
+text {*
+  The following collection of lemmas should be seen as an user interface to the HOL theory
+  of cardinals. It is not expected to be complete in any sense, since its
+  development was driven by demand arising from the development of the (co)datatype package.
+*}
 
 lemma clists_Cinfinite: "Cinfinite r \<Longrightarrow> clists r =o r"
 unfolding cinfinite_def clists_def by (blast intro: Card_order_lists_infinite)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Cardinals/Cardinal_Arithmetic_GFP.thy	Mon Nov 18 18:04:44 2013 +0100
@@ -0,0 +1,51 @@
+(*  Title:      HOL/Cardinals/Cardinal_Arithmetic_GFP.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+    Copyright   2012
+
+Cardinal arithmetic (GFP).
+*)
+
+header {* Cardinal Arithmetic (GFP) *}
+
+theory Cardinal_Arithmetic_GFP
+imports Cardinal_Arithmetic_LFP
+begin
+
+
+subsection {* Binary sum *}
+
+lemma Cinfinite_csum:
+  "Cinfinite r1 \<or> Cinfinite r2 \<Longrightarrow> Cinfinite (r1 +c r2)"
+unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
+
+lemma Cinfinite_csum_strong:
+  "\<lbrakk>Cinfinite r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 +c r2)"
+by (metis Cinfinite_csum)
+
+
+subsection {* Exponentiation *}
+
+lemma card_order_cexp:
+  assumes "card_order r1" "card_order r2"
+  shows "card_order (r1 ^c r2)"
+proof -
+  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
+  thus ?thesis unfolding cexp_def Func_def by (simp add: card_of_card_order_on)
+qed
+
+lemma Cinfinite_ordLess_cexp:
+  assumes r: "Cinfinite r"
+  shows "r <o r ^c r"
+proof -
+  have "r <o ctwo ^c r" using r by (simp only: ordLess_ctwo_cexp)
+  also have "ctwo ^c r \<le>o r ^c r"
+    by (rule cexp_mono1[OF ctwo_ordLeq_Cinfinite]) (auto simp: r ctwo_not_czero Card_order_ctwo)
+  finally show ?thesis .
+qed
+
+lemma infinite_ordLeq_cexp:
+  assumes "Cinfinite r"
+  shows "r \<le>o r ^c r"
+by (rule ordLess_imp_ordLeq[OF Cinfinite_ordLess_cexp[OF assms]])
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Cardinals/Cardinal_Arithmetic_LFP.thy	Mon Nov 18 18:04:44 2013 +0100
@@ -0,0 +1,710 @@
+(*  Title:      HOL/Cardinals/Cardinal_Arithmetic_LFP.thy
+    Author:     Dmitriy Traytel, TU Muenchen
+    Copyright   2012
+
+Cardinal arithmetic.
+*)
+
+header {* Cardinal Arithmetic  *}
+
+theory Cardinal_Arithmetic_LFP
+imports Cardinal_Order_Relation_LFP
+begin
+
+(*library candidate*)
+lemma dir_image: "\<lbrakk>\<And>x y. (f x = f y) = (x = y); Card_order r\<rbrakk> \<Longrightarrow> r =o dir_image r f"
+by (rule dir_image_ordIso) (auto simp add: inj_on_def card_order_on_def)
+
+(*should supersede a weaker lemma from the library*)
+lemma dir_image_Field: "Field (dir_image r f) = f ` Field r"
+unfolding dir_image_def Field_def Range_def Domain_def by fastforce
+
+lemma card_order_dir_image:
+  assumes bij: "bij f" and co: "card_order r"
+  shows "card_order (dir_image r f)"
+proof -
+  from assms have "Field (dir_image r f) = UNIV"
+    using card_order_on_Card_order[of UNIV r] unfolding bij_def dir_image_Field by auto
+  moreover from bij have "\<And>x y. (f x = f y) = (x = y)" unfolding bij_def inj_on_def by auto
+  with co have "Card_order (dir_image r f)"
+    using card_order_on_Card_order[of UNIV r] Card_order_ordIso2[OF _ dir_image] by blast
+  ultimately show ?thesis by auto
+qed
+
+(*library candidate*)
+lemma ordIso_refl: "Card_order r \<Longrightarrow> r =o r"
+by (rule card_order_on_ordIso)
+
+(*library candidate*)
+lemma ordLeq_refl: "Card_order r \<Longrightarrow> r \<le>o r"
+by (rule ordIso_imp_ordLeq, rule card_order_on_ordIso)
+
+(*library candidate*)
+lemma card_of_ordIso_subst: "A = B \<Longrightarrow> |A| =o |B|"
+by (simp only: ordIso_refl card_of_Card_order)
+
+(*library candidate*)
+lemma Field_card_order: "card_order r \<Longrightarrow> Field r = UNIV"
+using card_order_on_Card_order[of UNIV r] by simp
+
+(*library candidate*)
+lemma card_of_Times_Plus_distrib:
+  "|A <*> (B <+> C)| =o |A <*> B <+> A <*> C|" (is "|?RHS| =o |?LHS|")
+proof -
+  let ?f = "\<lambda>(a, bc). case bc of Inl b \<Rightarrow> Inl (a, b) | Inr c \<Rightarrow> Inr (a, c)"
+  have "bij_betw ?f ?RHS ?LHS" unfolding bij_betw_def inj_on_def by force
+  thus ?thesis using card_of_ordIso by blast
+qed
+
+(*library candidate*)
+lemma Func_Times_Range:
+  "|Func A (B <*> C)| =o |Func A B <*> Func A C|" (is "|?LHS| =o |?RHS|")
+proof -
+  let ?F = "\<lambda>fg. (\<lambda>x. if x \<in> A then fst (fg x) else undefined,
+                  \<lambda>x. if x \<in> A then snd (fg x) else undefined)"
+  let ?G = "\<lambda>(f, g) x. if x \<in> A then (f x, g x) else undefined"
+  have "bij_betw ?F ?LHS ?RHS" unfolding bij_betw_def inj_on_def
+  proof safe
+    fix f g assume "f \<in> Func A B" "g \<in> Func A C"
+    thus "(f, g) \<in> ?F ` Func A (B \<times> C)"
+      by (intro image_eqI[of _ _ "?G (f, g)"]) (auto simp: Func_def)
+  qed (auto simp: Func_def fun_eq_iff, metis pair_collapse)
+  thus ?thesis using card_of_ordIso by blast
+qed
+
+
+subsection {* Zero *}
+
+definition czero where
+  "czero = card_of {}"
+
+lemma czero_ordIso:
+  "czero =o czero"
+using card_of_empty_ordIso by (simp add: czero_def)
+
+lemma card_of_ordIso_czero_iff_empty:
+  "|A| =o (czero :: 'b rel) \<longleftrightarrow> A = ({} :: 'a set)"
+unfolding czero_def by (rule iffI[OF card_of_empty2]) (auto simp: card_of_refl card_of_empty_ordIso)
+
+(* A "not czero" Cardinal predicate *)
+abbreviation Cnotzero where
+  "Cnotzero (r :: 'a rel) \<equiv> \<not>(r =o (czero :: 'a rel)) \<and> Card_order r"
+
+(*helper*)
+lemma Cnotzero_imp_not_empty: "Cnotzero r \<Longrightarrow> Field r \<noteq> {}"
+by (metis Card_order_iff_ordIso_card_of czero_def)
+
+lemma czeroI:
+  "\<lbrakk>Card_order r; Field r = {}\<rbrakk> \<Longrightarrow> r =o czero"
+using Cnotzero_imp_not_empty ordIso_transitive[OF _ czero_ordIso] by blast
+
+lemma czeroE:
+  "r =o czero \<Longrightarrow> Field r = {}"
+unfolding czero_def
+by (drule card_of_cong) (simp only: Field_card_of card_of_empty2)
+
+lemma Cnotzero_mono:
+  "\<lbrakk>Cnotzero r; Card_order q; r \<le>o q\<rbrakk> \<Longrightarrow> Cnotzero q"
+apply (rule ccontr)
+apply auto
+apply (drule czeroE)
+apply (erule notE)
+apply (erule czeroI)
+apply (drule card_of_mono2)
+apply (simp only: card_of_empty3)
+done
+
+subsection {* (In)finite cardinals *}
+
+definition cinfinite where
+  "cinfinite r = infinite (Field r)"
+
+abbreviation Cinfinite where
+  "Cinfinite r \<equiv> cinfinite r \<and> Card_order r"
+
+definition cfinite where
+  "cfinite r = finite (Field r)"
+
+abbreviation Cfinite where
+  "Cfinite r \<equiv> cfinite r \<and> Card_order r"
+
+lemma Cfinite_ordLess_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r <o s"
+  unfolding cfinite_def cinfinite_def
+  by (metis card_order_on_well_order_on finite_ordLess_infinite)
+
+lemma natLeq_ordLeq_cinfinite:
+  assumes inf: "Cinfinite r"
+  shows "natLeq \<le>o r"
+proof -
+  from inf have "natLeq \<le>o |Field r|" by (simp add: cinfinite_def infinite_iff_natLeq_ordLeq)
+  also from inf have "|Field r| =o r" by (simp add: card_of_unique ordIso_symmetric)
+  finally show ?thesis .
+qed
+
+lemma cinfinite_not_czero: "cinfinite r \<Longrightarrow> \<not> (r =o (czero :: 'a rel))"
+unfolding cinfinite_def by (metis czeroE finite.emptyI)
+
+lemma Cinfinite_Cnotzero: "Cinfinite r \<Longrightarrow> Cnotzero r"
+by (metis cinfinite_not_czero)
+
+lemma Cinfinite_cong: "\<lbrakk>r1 =o r2; Cinfinite r1\<rbrakk> \<Longrightarrow> Cinfinite r2"
+by (metis Card_order_ordIso2 card_of_mono2 card_of_ordLeq_infinite cinfinite_def ordIso_iff_ordLeq)
+
+lemma cinfinite_mono: "\<lbrakk>r1 \<le>o r2; cinfinite r1\<rbrakk> \<Longrightarrow> cinfinite r2"
+by (metis card_of_mono2 card_of_ordLeq_infinite cinfinite_def)
+
+
+subsection {* Binary sum *}
+
+definition csum (infixr "+c" 65) where
+  "r1 +c r2 \<equiv> |Field r1 <+> Field r2|"
+
+lemma Field_csum: "Field (r +c s) = Inl ` Field r \<union> Inr ` Field s"
+  unfolding csum_def Field_card_of by auto
+
+lemma Card_order_csum:
+  "Card_order (r1 +c r2)"
+unfolding csum_def by (simp add: card_of_Card_order)
+
+lemma csum_Cnotzero1:
+  "Cnotzero r1 \<Longrightarrow> Cnotzero (r1 +c r2)"
+unfolding csum_def
+by (metis Cnotzero_imp_not_empty Field_card_of Plus_eq_empty_conv card_of_card_order_on czeroE)
+
+lemma card_order_csum:
+  assumes "card_order r1" "card_order r2"
+  shows "card_order (r1 +c r2)"
+proof -
+  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
+  thus ?thesis unfolding csum_def by (auto simp: card_of_card_order_on)
+qed
+
+lemma cinfinite_csum:
+  "cinfinite r1 \<or> cinfinite r2 \<Longrightarrow> cinfinite (r1 +c r2)"
+unfolding cinfinite_def csum_def by (auto simp: Field_card_of)
+
+lemma Cinfinite_csum1:
+  "Cinfinite r1 \<Longrightarrow> Cinfinite (r1 +c r2)"
+unfolding cinfinite_def csum_def by (metis Field_card_of card_of_Card_order finite_Plus_iff)
+
+lemma csum_cong: "\<lbrakk>p1 =o r1; p2 =o r2\<rbrakk> \<Longrightarrow> p1 +c p2 =o r1 +c r2"
+by (simp only: csum_def ordIso_Plus_cong)
+
+lemma csum_cong1: "p1 =o r1 \<Longrightarrow> p1 +c q =o r1 +c q"
+by (simp only: csum_def ordIso_Plus_cong1)
+
+lemma csum_cong2: "p2 =o r2 \<Longrightarrow> q +c p2 =o q +c r2"
+by (simp only: csum_def ordIso_Plus_cong2)
+
+lemma csum_mono: "\<lbrakk>p1 \<le>o r1; p2 \<le>o r2\<rbrakk> \<Longrightarrow> p1 +c p2 \<le>o r1 +c r2"
+by (simp only: csum_def ordLeq_Plus_mono)
+
+lemma csum_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 +c q \<le>o r1 +c q"
+by (simp only: csum_def ordLeq_Plus_mono1)
+
+lemma csum_mono2: "p2 \<le>o r2 \<Longrightarrow> q +c p2 \<le>o q +c r2"
+by (simp only: csum_def ordLeq_Plus_mono2)
+
+lemma ordLeq_csum1: "Card_order p1 \<Longrightarrow> p1 \<le>o p1 +c p2"
+by (simp only: csum_def Card_order_Plus1)
+
+lemma ordLeq_csum2: "Card_order p2 \<Longrightarrow> p2 \<le>o p1 +c p2"
+by (simp only: csum_def Card_order_Plus2)
+
+lemma csum_com: "p1 +c p2 =o p2 +c p1"
+by (simp only: csum_def card_of_Plus_commute)
+
+lemma csum_assoc: "(p1 +c p2) +c p3 =o p1 +c p2 +c p3"
+by (simp only: csum_def Field_card_of card_of_Plus_assoc)
+
+lemma Cfinite_csum: "\<lbrakk>Cfinite r; Cfinite s\<rbrakk> \<Longrightarrow> Cfinite (r +c s)"
+  unfolding cfinite_def csum_def Field_card_of using card_of_card_order_on by simp
+
+lemma csum_csum: "(r1 +c r2) +c (r3 +c r4) =o (r1 +c r3) +c (r2 +c r4)"
+proof -
+  have "(r1 +c r2) +c (r3 +c r4) =o r1 +c r2 +c (r3 +c r4)"
+    by (metis csum_assoc)
+  also have "r1 +c r2 +c (r3 +c r4) =o r1 +c (r2 +c r3) +c r4"
+    by (metis csum_assoc csum_cong2 ordIso_symmetric)
+  also have "r1 +c (r2 +c r3) +c r4 =o r1 +c (r3 +c r2) +c r4"
+    by (metis csum_com csum_cong1 csum_cong2)
+  also have "r1 +c (r3 +c r2) +c r4 =o r1 +c r3 +c r2 +c r4"
+    by (metis csum_assoc csum_cong2 ordIso_symmetric)
+  also have "r1 +c r3 +c r2 +c r4 =o (r1 +c r3) +c (r2 +c r4)"
+    by (metis csum_assoc ordIso_symmetric)
+  finally show ?thesis .
+qed
+
+lemma Plus_csum: "|A <+> B| =o |A| +c |B|"
+by (simp only: csum_def Field_card_of card_of_refl)
+
+lemma Un_csum: "|A \<union> B| \<le>o |A| +c |B|"
+using ordLeq_ordIso_trans[OF card_of_Un_Plus_ordLeq Plus_csum] by blast
+
+
+subsection {* One *}
+
+definition cone where
+  "cone = card_of {()}"
+
+lemma Card_order_cone: "Card_order cone"
+unfolding cone_def by (rule card_of_Card_order)
+
+lemma Cfinite_cone: "Cfinite cone"
+  unfolding cfinite_def by (simp add: Card_order_cone)
+
+lemma cone_not_czero: "\<not> (cone =o czero)"
+unfolding czero_def cone_def by (metis empty_not_insert card_of_empty3[of "{()}"] ordIso_iff_ordLeq)
+
+lemma cone_ordLeq_Cnotzero: "Cnotzero r \<Longrightarrow> cone \<le>o r"
+unfolding cone_def by (metis Card_order_singl_ordLeq czeroI)
+
+
+subsection{* Two *}
+
+definition ctwo where
+  "ctwo = |UNIV :: bool set|"
+
+lemma Card_order_ctwo: "Card_order ctwo"
+unfolding ctwo_def by (rule card_of_Card_order)
+
+lemma ctwo_not_czero: "\<not> (ctwo =o czero)"
+using card_of_empty3[of "UNIV :: bool set"] ordIso_iff_ordLeq
+unfolding czero_def ctwo_def by (metis UNIV_not_empty)
+
+lemma ctwo_Cnotzero: "Cnotzero ctwo"
+by (simp add: ctwo_not_czero Card_order_ctwo)
+
+
+subsection {* Family sum *}
+
+definition Csum where
+  "Csum r rs \<equiv> |SIGMA i : Field r. Field (rs i)|"
+
+(* Similar setup to the one for SIGMA from theory Big_Operators: *)
+syntax "_Csum" ::
+  "pttrn => ('a * 'a) set => 'b * 'b set => (('a * 'b) * ('a * 'b)) set"
+  ("(3CSUM _:_. _)" [0, 51, 10] 10)
+
+translations
+  "CSUM i:r. rs" == "CONST Csum r (%i. rs)"
+
+lemma SIGMA_CSUM: "|SIGMA i : I. As i| = (CSUM i : |I|. |As i| )"
+by (auto simp: Csum_def Field_card_of)
+
+(* NB: Always, under the cardinal operator,
+operations on sets are reduced automatically to operations on cardinals.
+This should make cardinal reasoning more direct and natural.  *)
+
+
+subsection {* Product *}
+
+definition cprod (infixr "*c" 80) where
+  "r1 *c r2 = |Field r1 <*> Field r2|"
+
+lemma card_order_cprod:
+  assumes "card_order r1" "card_order r2"
+  shows "card_order (r1 *c r2)"
+proof -
+  have "Field r1 = UNIV" "Field r2 = UNIV" using assms card_order_on_Card_order by auto
+  thus ?thesis by (auto simp: cprod_def card_of_card_order_on)
+qed
+
+lemma Card_order_cprod: "Card_order (r1 *c r2)"
+by (simp only: cprod_def Field_card_of card_of_card_order_on)
+
+lemma cprod_mono1: "p1 \<le>o r1 \<Longrightarrow> p1 *c q \<le>o r1 *c q"
+by (simp only: cprod_def ordLeq_Times_mono1)
+
+lemma cprod_mono2: "p2 \<le>o r2 \<Longrightarrow> q *c p2 \<le>o q *c r2"
+by (simp only: cprod_def ordLeq_Times_mono2)
+
+lemma ordLeq_cprod2: "\<lbrakk>Cnotzero p1; Card_order p2\<rbrakk> \<Longrightarrow> p2 \<le>o p1 *c p2"
+unfolding cprod_def by (metis Card_order_Times2 czeroI)
+
+lemma cinfinite_cprod: "\<lbrakk>cinfinite r1; cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
+by (simp add: cinfinite_def cprod_def Field_card_of infinite_cartesian_product)
+
+lemma cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> cinfinite (r1 *c r2)"
+by (metis cinfinite_mono ordLeq_cprod2)
+
+lemma Cinfinite_cprod2: "\<lbrakk>Cnotzero r1; Cinfinite r2\<rbrakk> \<Longrightarrow> Cinfinite (r1 *c r2)"
+by (blast intro: cinfinite_cprod2 Card_order_cprod)
+
+lemma cprod_com: "p1 *c p2 =o p2 *c p1"
+by (simp only: cprod_def card_of_Times_commute)
+
+lemma card_of_Csum_Times:
+  "\<forall>i \<in> I. |A i| \<le>o |B| \<Longrightarrow> (CSUM i : |I|. |A i| ) \<le>o |I| *c |B|"
+by (simp only: Csum_def cprod_def Field_card_of card_of_Sigma_Times)
+
+lemma card_of_Csum_Times':
+  assumes "Card_order r" "\<forall>i \<in> I. |A i| \<le>o r"
+  shows "(CSUM i : |I|. |A i| ) \<le>o |I| *c r"
+proof -
+  from assms(1) have *: "r =o |Field r|" by (simp add: card_of_unique)
+  with assms(2) have "\<forall>i \<in> I. |A i| \<le>o |Field r|" by (blast intro: ordLeq_ordIso_trans)
+  hence "(CSUM i : |I|. |A i| ) \<le>o |I| *c |Field r|" by (simp only: card_of_Csum_Times)
+  also from * have "|I| *c |Field r| \<le>o |I| *c r"
+    by (simp only: Field_card_of card_of_refl cprod_def ordIso_imp_ordLeq)
+  finally show ?thesis .
+qed
+
+lemma cprod_csum_distrib1: "r1 *c r2 +c r1 *c r3 =o r1 *c (r2 +c r3)"
+unfolding csum_def cprod_def by (simp add: Field_card_of card_of_Times_Plus_distrib ordIso_symmetric)
+
+lemma csum_absorb2': "\<lbrakk>Card_order r2; r1 \<le>o r2; cinfinite r1 \<or> cinfinite r2\<rbrakk> \<Longrightarrow> r1 +c r2 =o r2"
+unfolding csum_def by (metis Card_order_Plus_infinite cinfinite_def cinfinite_mono)
+
+lemma csum_absorb1':
+  assumes card: "Card_order r2"
+  and r12: "r1 \<le>o r2" and cr12: "cinfinite r1 \<or> cinfinite r2"
+  shows "r2 +c r1 =o r2"
+by (rule ordIso_transitive, rule csum_com, rule csum_absorb2', (simp only: assms)+)
+
+lemma csum_absorb1: "\<lbrakk>Cinfinite r2; r1 \<le>o r2\<rbrakk> \<Longrightarrow> r2 +c r1 =o r2"
+by (rule csum_absorb1') auto
+
+
+subsection {* Exponentiation *}
+
+definition cexp (infixr "^c" 90) where
+  "r1 ^c r2 \<equiv> |Func (Field r2) (Field r1)|"
+
+lemma Card_order_cexp: "Card_order (r1 ^c r2)"
+unfolding cexp_def by (rule card_of_Card_order)
+
+lemma cexp_mono':
+  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
+  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
+  shows "p1 ^c p2 \<le>o r1 ^c r2"
+proof(cases "Field p1 = {}")
+  case True
+  hence "|Field |Func (Field p2) (Field p1)|| \<le>o cone"
+    unfolding cone_def Field_card_of
+    by (cases "Field p2 = {}", auto intro: card_of_ordLeqI2 simp: Func_empty)
+       (metis Func_is_emp card_of_empty ex_in_conv)
+  hence "|Func (Field p2) (Field p1)| \<le>o cone" by (simp add: Field_card_of cexp_def)
+  hence "p1 ^c p2 \<le>o cone" unfolding cexp_def .
+  thus ?thesis
+  proof (cases "Field p2 = {}")
+    case True
+    with n have "Field r2 = {}" .
+    hence "cone \<le>o r1 ^c r2" unfolding cone_def cexp_def Func_def by (auto intro: card_of_ordLeqI)
+    thus ?thesis using `p1 ^c p2 \<le>o cone` ordLeq_transitive by auto
+  next
+    case False with True have "|Field (p1 ^c p2)| =o czero"
+      unfolding card_of_ordIso_czero_iff_empty cexp_def Field_card_of Func_def by auto
+    thus ?thesis unfolding cexp_def card_of_ordIso_czero_iff_empty Field_card_of
+      by (simp add: card_of_empty)
+  qed
+next
+  case False
+  have 1: "|Field p1| \<le>o |Field r1|" and 2: "|Field p2| \<le>o |Field r2|"
+    using 1 2 by (auto simp: card_of_mono2)
+  obtain f1 where f1: "f1 ` Field r1 = Field p1"
+    using 1 unfolding card_of_ordLeq2[OF False, symmetric] by auto
+  obtain f2 where f2: "inj_on f2 (Field p2)" "f2 ` Field p2 \<subseteq> Field r2"
+    using 2 unfolding card_of_ordLeq[symmetric] by blast
+  have 0: "Func_map (Field p2) f1 f2 ` (Field (r1 ^c r2)) = Field (p1 ^c p2)"
+    unfolding cexp_def Field_card_of using Func_map_surj[OF f1 f2 n, symmetric] .
+  have 00: "Field (p1 ^c p2) \<noteq> {}" unfolding cexp_def Field_card_of Func_is_emp
+    using False by simp
+  show ?thesis
+    using 0 card_of_ordLeq2[OF 00] unfolding cexp_def Field_card_of by blast
+qed
+
+lemma cexp_mono:
+  assumes 1: "p1 \<le>o r1" and 2: "p2 \<le>o r2"
+  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
+  shows "p1 ^c p2 \<le>o r1 ^c r2"
+  by (metis (full_types) "1" "2" card cexp_mono' czeroE czeroI n)
+
+lemma cexp_mono1:
+  assumes 1: "p1 \<le>o r1" and q: "Card_order q"
+  shows "p1 ^c q \<le>o r1 ^c q"
+using ordLeq_refl[OF q] by (rule cexp_mono[OF 1]) (auto simp: q)
+
+lemma cexp_mono2':
+  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
+  and n: "Field p2 = {} \<Longrightarrow> Field r2 = {}"
+  shows "q ^c p2 \<le>o q ^c r2"
+using ordLeq_refl[OF q] by (rule cexp_mono'[OF _ 2 n]) auto
+
+lemma cexp_mono2:
+  assumes 2: "p2 \<le>o r2" and q: "Card_order q"
+  and n: "p2 =o czero \<Longrightarrow> r2 =o czero" and card: "Card_order p2"
+  shows "q ^c p2 \<le>o q ^c r2"
+using ordLeq_refl[OF q] by (rule cexp_mono[OF _ 2 n card]) auto
+
+lemma cexp_mono2_Cnotzero:
+  assumes "p2 \<le>o r2" "Card_order q" "Cnotzero p2"
+  shows "q ^c p2 \<le>o q ^c r2"
+by (metis assms cexp_mono2' czeroI)
+
+lemma cexp_cong:
+  assumes 1: "p1 =o r1" and 2: "p2 =o r2"
+  and Cr: "Card_order r2"
+  and Cp: "Card_order p2"
+  shows "p1 ^c p2 =o r1 ^c r2"
+proof -
+  obtain f where "bij_betw f (Field p2) (Field r2)"
+    using 2 card_of_ordIso[of "Field p2" "Field r2"] card_of_cong by auto
+  hence 0: "Field p2 = {} \<longleftrightarrow> Field r2 = {}" unfolding bij_betw_def by auto
+  have r: "p2 =o czero \<Longrightarrow> r2 =o czero"
+    and p: "r2 =o czero \<Longrightarrow> p2 =o czero"
+     using 0 Cr Cp czeroE czeroI by auto
+  show ?thesis using 0 1 2 unfolding ordIso_iff_ordLeq
+    using r p cexp_mono[OF _ _ _ Cp] cexp_mono[OF _ _ _ Cr] by blast
+qed
+
+lemma cexp_cong1:
+  assumes 1: "p1 =o r1" and q: "Card_order q"
+  shows "p1 ^c q =o r1 ^c q"
+by (rule cexp_cong[OF 1 _ q q]) (rule ordIso_refl[OF q])
+
+lemma cexp_cong2:
+  assumes 2: "p2 =o r2" and q: "Card_order q" and p: "Card_order p2"
+  shows "q ^c p2 =o q ^c r2"
+by (rule cexp_cong[OF _ 2]) (auto simp only: ordIso_refl Card_order_ordIso2[OF p 2] q p)
+
+lemma cexp_cone:
+  assumes "Card_order r"
+  shows "r ^c cone =o r"
+proof -
+  have "r ^c cone =o |Field r|"
+    unfolding cexp_def cone_def Field_card_of Func_empty
+      card_of_ordIso[symmetric] bij_betw_def Func_def inj_on_def image_def
+    by (rule exI[of _ "\<lambda>f. f ()"]) auto
+  also have "|Field r| =o r" by (rule card_of_Field_ordIso[OF assms])
+  finally show ?thesis .
+qed
+
+lemma cexp_cprod:
+  assumes r1: "Card_order r1"
+  shows "(r1 ^c r2) ^c r3 =o r1 ^c (r2 *c r3)" (is "?L =o ?R")
+proof -
+  have "?L =o r1 ^c (r3 *c r2)"
+    unfolding cprod_def cexp_def Field_card_of
+    using card_of_Func_Times by(rule ordIso_symmetric)
+  also have "r1 ^c (r3 *c r2) =o ?R"
+    apply(rule cexp_cong2) using cprod_com r1 by (auto simp: Card_order_cprod)
+  finally show ?thesis .
+qed
+
+lemma cprod_infinite1': "\<lbrakk>Cinfinite r; Cnotzero p; p \<le>o r\<rbrakk> \<Longrightarrow> r *c p =o r"
+unfolding cinfinite_def cprod_def
+by (rule Card_order_Times_infinite[THEN conjunct1]) (blast intro: czeroI)+
+
+lemma cexp_cprod_ordLeq:
+  assumes r1: "Card_order r1" and r2: "Cinfinite r2"
+  and r3: "Cnotzero r3" "r3 \<le>o r2"
+  shows "(r1 ^c r2) ^c r3 =o r1 ^c r2" (is "?L =o ?R")
+proof-
+  have "?L =o r1 ^c (r2 *c r3)" using cexp_cprod[OF r1] .
+  also have "r1 ^c (r2 *c r3) =o ?R"
+  apply(rule cexp_cong2)
+  apply(rule cprod_infinite1'[OF r2 r3]) using r1 r2 by (fastforce simp: Card_order_cprod)+
+  finally show ?thesis .
+qed
+
+lemma Cnotzero_UNIV: "Cnotzero |UNIV|"
+by (auto simp: card_of_Card_order card_of_ordIso_czero_iff_empty)
+
+lemma ordLess_ctwo_cexp:
+  assumes "Card_order r"
+  shows "r <o ctwo ^c r"
+proof -
+  have "r <o |Pow (Field r)|" using assms by (rule Card_order_Pow)
+  also have "|Pow (Field r)| =o ctwo ^c r"
+    unfolding ctwo_def cexp_def Field_card_of by (rule card_of_Pow_Func)
+  finally show ?thesis .
+qed
+
+lemma ordLeq_cexp1:
+  assumes "Cnotzero r" "Card_order q"
+  shows "q \<le>o q ^c r"
+proof (cases "q =o (czero :: 'a rel)")
+  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
+next
+  case False
+  thus ?thesis
+    apply -
+    apply (rule ordIso_ordLeq_trans)
+    apply (rule ordIso_symmetric)
+    apply (rule cexp_cone)
+    apply (rule assms(2))
+    apply (rule cexp_mono2)
+    apply (rule cone_ordLeq_Cnotzero)
+    apply (rule assms(1))
+    apply (rule assms(2))
+    apply (rule notE)
+    apply (rule cone_not_czero)
+    apply assumption
+    apply (rule Card_order_cone)
+  done
+qed
+
+lemma ordLeq_cexp2:
+  assumes "ctwo \<le>o q" "Card_order r"
+  shows "r \<le>o q ^c r"
+proof (cases "r =o (czero :: 'a rel)")
+  case True thus ?thesis by (simp only: card_of_empty cexp_def czero_def ordIso_ordLeq_trans)
+next
+  case False thus ?thesis
+    apply -
+    apply (rule ordLess_imp_ordLeq)
+    apply (rule ordLess_ordLeq_trans)
+    apply (rule ordLess_ctwo_cexp)
+    apply (rule assms(2))
+    apply (rule cexp_mono1)
+    apply (rule assms(1))
+    apply (rule assms(2))
+  done
+qed
+
+lemma cinfinite_cexp: "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> cinfinite (q ^c r)"
+by (metis assms cinfinite_mono ordLeq_cexp2)
+
+lemma Cinfinite_cexp:
+  "\<lbrakk>ctwo \<le>o q; Cinfinite r\<rbrakk> \<Longrightarrow> Cinfinite (q ^c r)"
+by (simp add: cinfinite_cexp Card_order_cexp)
+
+lemma ctwo_ordLess_natLeq: "ctwo <o natLeq"
+unfolding ctwo_def using finite_iff_ordLess_natLeq finite_UNIV by fast
+
+lemma ctwo_ordLess_Cinfinite: "Cinfinite r \<Longrightarrow> ctwo <o r"
+by (metis ctwo_ordLess_natLeq natLeq_ordLeq_cinfinite ordLess_ordLeq_trans)
+
+lemma ctwo_ordLeq_Cinfinite:
+  assumes "Cinfinite r"
+  shows "ctwo \<le>o r"
+by (rule ordLess_imp_ordLeq[OF ctwo_ordLess_Cinfinite[OF assms]])
+
+lemma Un_Cinfinite_bound: "\<lbrakk>|A| \<le>o r; |B| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |A \<union> B| \<le>o r"
+by (auto simp add: cinfinite_def card_of_Un_ordLeq_infinite_Field)
+
+lemma UNION_Cinfinite_bound: "\<lbrakk>|I| \<le>o r; \<forall>i \<in> I. |A i| \<le>o r; Cinfinite r\<rbrakk> \<Longrightarrow> |\<Union>i \<in> I. A i| \<le>o r"
+by (auto simp add: card_of_UNION_ordLeq_infinite_Field cinfinite_def)
+
+lemma csum_cinfinite_bound:
+  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
+  shows "p +c q \<le>o r"
+proof -
+  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
+    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
+  with assms show ?thesis unfolding cinfinite_def csum_def
+    by (blast intro: card_of_Plus_ordLeq_infinite_Field)
+qed
+
+lemma cprod_cinfinite_bound:
+  assumes "p \<le>o r" "q \<le>o r" "Card_order p" "Card_order q" "Cinfinite r"
+  shows "p *c q \<le>o r"
+proof -
+  from assms(1-4) have "|Field p| \<le>o r" "|Field q| \<le>o r"
+    unfolding card_order_on_def using card_of_least ordLeq_transitive by blast+
+  with assms show ?thesis unfolding cinfinite_def cprod_def
+    by (blast intro: card_of_Times_ordLeq_infinite_Field)
+qed
+
+lemma cprod_csum_cexp:
+  "r1 *c r2 \<le>o (r1 +c r2) ^c ctwo"
+unfolding cprod_def csum_def cexp_def ctwo_def Field_card_of
+proof -
+  let ?f = "\<lambda>(a, b). %x. if x then Inl a else Inr b"
+  have "inj_on ?f (Field r1 \<times> Field r2)" (is "inj_on _ ?LHS")
+    by (auto simp: inj_on_def fun_eq_iff split: bool.split)
+  moreover
+  have "?f ` ?LHS \<subseteq> Func (UNIV :: bool set) (Field r1 <+> Field r2)" (is "_ \<subseteq> ?RHS")
+    by (auto simp: Func_def)
+  ultimately show "|?LHS| \<le>o |?RHS|" using card_of_ordLeq by blast
+qed
+
+lemma Cfinite_cprod_Cinfinite: "\<lbrakk>Cfinite r; Cinfinite s\<rbrakk> \<Longrightarrow> r *c s \<le>o s"
+by (intro cprod_cinfinite_bound)
+  (auto intro: ordLeq_refl ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite])
+
+lemma cprod_cexp: "(r *c s) ^c t =o r ^c t *c s ^c t"
+  unfolding cprod_def cexp_def Field_card_of by (rule Func_Times_Range)
+
+lemma cprod_cexp_csum_cexp_Cinfinite:
+  assumes t: "Cinfinite t"
+  shows "(r *c s) ^c t \<le>o (r +c s) ^c t"
+proof -
+  have "(r *c s) ^c t \<le>o ((r +c s) ^c ctwo) ^c t"
+    by (rule cexp_mono1[OF cprod_csum_cexp conjunct2[OF t]])
+  also have "((r +c s) ^c ctwo) ^c t =o (r +c s) ^c (ctwo *c t)"
+    by (rule cexp_cprod[OF Card_order_csum])
+  also have "(r +c s) ^c (ctwo *c t) =o (r +c s) ^c (t *c ctwo)"
+    by (rule cexp_cong2[OF cprod_com Card_order_csum Card_order_cprod])
+  also have "(r +c s) ^c (t *c ctwo) =o ((r +c s) ^c t) ^c ctwo"
+    by (rule ordIso_symmetric[OF cexp_cprod[OF Card_order_csum]])
+  also have "((r +c s) ^c t) ^c ctwo =o (r +c s) ^c t"
+    by (rule cexp_cprod_ordLeq[OF Card_order_csum t ctwo_Cnotzero ctwo_ordLeq_Cinfinite[OF t]])
+  finally show ?thesis .
+qed
+
+lemma Cfinite_cexp_Cinfinite:
+  assumes s: "Cfinite s" and t: "Cinfinite t"
+  shows "s ^c t \<le>o ctwo ^c t"
+proof (cases "s \<le>o ctwo")
+  case True thus ?thesis using t by (blast intro: cexp_mono1)
+next
+  case False
+  hence "ctwo \<le>o s" by (metis card_order_on_well_order_on ctwo_Cnotzero ordLeq_total s)
+  hence "Cnotzero s" by (metis Cnotzero_mono ctwo_Cnotzero s)
+  hence st: "Cnotzero (s *c t)" by (metis Cinfinite_cprod2 cinfinite_not_czero t)
+  have "s ^c t \<le>o (ctwo ^c s) ^c t"
+    using assms by (blast intro: cexp_mono1 ordLess_imp_ordLeq[OF ordLess_ctwo_cexp])
+  also have "(ctwo ^c s) ^c t =o ctwo ^c (s *c t)"
+    by (blast intro: Card_order_ctwo cexp_cprod)
+  also have "ctwo ^c (s *c t) \<le>o ctwo ^c t"
+    using assms st by (intro cexp_mono2_Cnotzero Cfinite_cprod_Cinfinite Card_order_ctwo)
+  finally show ?thesis .
+qed
+
+lemma csum_Cfinite_cexp_Cinfinite:
+  assumes r: "Card_order r" and s: "Cfinite s" and t: "Cinfinite t"
+  shows "(r +c s) ^c t \<le>o (r +c ctwo) ^c t"
+proof (cases "Cinfinite r")
+  case True
+  hence "r +c s =o r" by (intro csum_absorb1 ordLess_imp_ordLeq[OF Cfinite_ordLess_Cinfinite] s)
+  hence "(r +c s) ^c t =o r ^c t" using t by (blast intro: cexp_cong1)
+  also have "r ^c t \<le>o (r +c ctwo) ^c t" using t by (blast intro: cexp_mono1 ordLeq_csum1 r)
+  finally show ?thesis .
+next
+  case False
+  with r have "Cfinite r" unfolding cinfinite_def cfinite_def by auto
+  hence "Cfinite (r +c s)" by (intro Cfinite_csum s)
+  hence "(r +c s) ^c t \<le>o ctwo ^c t" by (intro Cfinite_cexp_Cinfinite t)
+  also have "ctwo ^c t \<le>o (r +c ctwo) ^c t" using t
+    by (blast intro: cexp_mono1 ordLeq_csum2 Card_order_ctwo)
+  finally show ?thesis .
+qed
+
+
+(* cardSuc *)
+
+lemma Cinfinite_cardSuc: "Cinfinite r \<Longrightarrow> Cinfinite (cardSuc r)"
+by (simp add: cinfinite_def cardSuc_Card_order cardSuc_finite)
+
+lemma cardSuc_UNION_Cinfinite:
+  assumes "Cinfinite r" "relChain (cardSuc r) As" "B \<le> (UN i : Field (cardSuc r). As i)" "|B| <=o r"
+  shows "EX i : Field (cardSuc r). B \<le> As i"
+using cardSuc_UNION assms unfolding cinfinite_def by blast
+
+subsection {* Powerset *}
+
+definition cpow where "cpow r = |Pow (Field r)|"
+
+lemma card_order_cpow: "card_order r \<Longrightarrow> card_order (cpow r)"
+by (simp only: cpow_def Field_card_order Pow_UNIV card_of_card_order_on)
+
+lemma cpow_greater_eq: "Card_order r \<Longrightarrow> r \<le>o cpow r"
+by (rule ordLess_imp_ordLeq) (simp only: cpow_def Card_order_Pow)
+
+subsection {* Lists *}
+
+definition clists where "clists r = |lists (Field r)|"
+
+end
--- a/src/HOL/ROOT	Mon Nov 18 18:04:44 2013 +0100
+++ b/src/HOL/ROOT	Mon Nov 18 18:04:44 2013 +0100
@@ -692,9 +692,16 @@
     Ordinals and Cardinals, Theories Needed for BNF LFP Construction.
   *}
   options [document = false]
-  theories Cardinal_Arithmetic
+  theories Cardinal_Arithmetic_LFP
 
-session "HOL-Cardinals" in Cardinals = "HOL-Cardinals-LFP" +
+session "HOL-Cardinals-GFP" in Cardinals = "HOL-Cardinals-LFP" +
+  description {*
+    Ordinals and Cardinals, Theories Needed for BNF GFP Construction.
+  *}
+  options [document = false]
+  theories Cardinal_Arithmetic_GFP
+
+session "HOL-Cardinals" in Cardinals = "HOL-Cardinals-GFP" +
   description {*
     Ordinals and Cardinals, Full Theories.
   *}
@@ -712,7 +719,14 @@
   options [document = false]
   theories BNF_LFP
 
-session "HOL-BNF" in BNF = "HOL-Cardinals" +
+session "HOL-BNF-GFP" in BNF = "HOL-Cardinals-GFP" +
+  description {*
+    Bounded Natural Functors for Codatatypes.
+  *}
+  options [document = false]
+  theories BNF_GFP
+
+session "HOL-BNF" in BNF = "HOL-Cardinals-GFP" +
   description {*
     Bounded Natural Functors for (Co)datatypes.
   *}