--- a/src/HOL/ROOT Wed Apr 25 09:04:26 2018 +0000
+++ b/src/HOL/ROOT Wed Apr 25 13:29:21 2018 +0000
@@ -581,6 +581,7 @@
Records
Reflection_Examples
Refute_Examples
+ Residue_Ring
Rewrite_Examples
SOS
SOS_Cert
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Residue_Ring.thy Wed Apr 25 13:29:21 2018 +0000
@@ -0,0 +1,89 @@
+(* Author: Florian Haftmann, TUM
+*)
+
+section \<open>Proof of concept for residue rings over int using type numerals\<close>
+
+theory Residue_Ring
+ imports Main "HOL-Library.Type_Length"
+begin
+
+class len2 = len0 +
+ assumes len_ge_2 [iff]: "2 \<le> LENGTH('a)"
+begin
+
+subclass len
+proof
+ show "0 < LENGTH('a)" using len_ge_2
+ by arith
+qed
+
+lemma len_not_eq_Suc_0 [simp]:
+ "LENGTH('a) \<noteq> Suc 0"
+ using len_ge_2 by arith
+
+end
+
+instance bit0 and bit1 :: (len) len2
+ by standard (simp_all add: Suc_le_eq)
+
+quotient_type (overloaded) 'a residue_ring = int / "\<lambda>k l. k mod int (LENGTH('a)) = l mod int (LENGTH('a::len2))"
+ by (auto intro!: equivpI reflpI sympI transpI)
+
+context semiring_1
+begin
+
+lift_definition repr :: "'b::len2 residue_ring \<Rightarrow> 'a"
+ is "\<lambda>k. of_nat (nat (k mod int (LENGTH('b))))"
+ by simp
+
+end
+
+instantiation residue_ring :: (len2) comm_ring_1
+begin
+
+lift_definition zero_residue_ring :: "'a residue_ring"
+ is 0 .
+
+lift_definition one_residue_ring :: "'a residue_ring"
+ is 1 .
+
+lift_definition plus_residue_ring :: "'a residue_ring \<Rightarrow> 'a residue_ring \<Rightarrow> 'a residue_ring"
+ is plus
+ by (fact mod_add_cong)
+
+lift_definition uminus_residue_ring :: "'a residue_ring \<Rightarrow> 'a residue_ring"
+ is uminus
+ by (fact mod_minus_cong)
+
+lift_definition minus_residue_ring :: "'a residue_ring \<Rightarrow> 'a residue_ring \<Rightarrow> 'a residue_ring"
+ is minus
+ by (fact mod_diff_cong)
+
+lift_definition times_residue_ring :: "'a residue_ring \<Rightarrow> 'a residue_ring \<Rightarrow> 'a residue_ring"
+ is times
+ by (fact mod_mult_cong)
+
+instance
+ by (standard; transfer) (simp_all add: algebra_simps mod_eq_0_iff_dvd)
+
+end
+
+context
+ includes lifting_syntax
+begin
+
+lemma [transfer_rule]:
+ "((\<longleftrightarrow>) ===> pcr_residue_ring) of_bool of_bool"
+ by (unfold of_bool_def [abs_def]; transfer_prover)
+
+lemma [transfer_rule]:
+ "((=) ===> pcr_residue_ring) numeral numeral"
+ by (rule transfer_rule_numeral; transfer_prover)
+
+lemma [transfer_rule]:
+ "((=) ===> pcr_residue_ring) int of_nat"
+ by (rule transfer_rule_of_nat; transfer_prover)
+
+end
+
+end