added quickcheck[approximation]
authorimmler
Wed, 12 Nov 2014 17:37:43 +0100
changeset 58988 6ebf918128b9
parent 58987 119680ebf37c
child 58989 99831590def5
added quickcheck[approximation]
src/HOL/Decision_Procs/Approximation.thy
src/HOL/Decision_Procs/Decision_Procs.thy
src/HOL/Decision_Procs/approximation_generator.ML
src/HOL/Decision_Procs/ex/Approximation_Quickcheck_Ex.thy
--- a/src/HOL/Decision_Procs/Approximation.thy	Wed Nov 12 17:37:43 2014 +0100
+++ b/src/HOL/Decision_Procs/Approximation.thy	Wed Nov 12 17:37:43 2014 +0100
@@ -3494,7 +3494,8 @@
     | term_of_bool false = @{term False};
 
   val mk_int = HOLogic.mk_number @{typ int} o @{code integer_of_int};
-  val dest_int = @{code int_of_integer} o snd o HOLogic.dest_number;
+  fun dest_int (@{term int_of_integer} $ j) = @{code int_of_integer} (snd (HOLogic.dest_number j))
+    | dest_int i = @{code int_of_integer} (snd (HOLogic.dest_number i));
 
   fun term_of_float (@{code Float} (k, l)) =
     @{term Float} $ mk_int k $ mk_int l;
@@ -3706,4 +3707,11 @@
 
 ML_file "approximation.ML"
 
+
+section "Quickcheck Generator"
+
+ML_file "approximation_generator.ML"
+
+setup "Approximation_Generator.setup"
+
 end
--- a/src/HOL/Decision_Procs/Decision_Procs.thy	Wed Nov 12 17:37:43 2014 +0100
+++ b/src/HOL/Decision_Procs/Decision_Procs.thy	Wed Nov 12 17:37:43 2014 +0100
@@ -10,6 +10,7 @@
   Commutative_Ring_Complete
   "ex/Commutative_Ring_Ex"
   "ex/Approximation_Ex"
+  "ex/Approximation_Quickcheck_Ex"
   "ex/Dense_Linear_Order_Ex"
 begin
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/approximation_generator.ML	Wed Nov 12 17:37:43 2014 +0100
@@ -0,0 +1,211 @@
+(*  Title:      HOL/Decision_Procs/approximation_generator.ML
+    Author:     Fabian Immler, TU Muenchen
+*)
+
+signature APPROXIMATION_GENERATOR =
+sig
+  val custom_seed: int Config.T
+  val precision: int Config.T
+  val epsilon: real Config.T
+  val approximation_generator:
+    Proof.context ->
+    (term * term list) list ->
+    bool -> int list -> (bool * term list) option * Quickcheck.report option
+  val setup: theory -> theory
+end;
+
+structure Approximation_Generator : APPROXIMATION_GENERATOR =
+struct
+
+val custom_seed = Attrib.setup_config_int @{binding quickcheck_approximation_custom_seed} (K ~1)
+
+val precision = Attrib.setup_config_int @{binding quickcheck_approximation_precision} (K 30)
+
+val epsilon = Attrib.setup_config_real @{binding quickcheck_approximation_epsilon} (K 0.0)
+
+val random_float = @{code "random_class.random::_ \<Rightarrow> _ \<Rightarrow> (float \<times> (unit \<Rightarrow> term)) \<times> _"}
+
+fun nat_of_term t =
+  (HOLogic.dest_nat t handle TERM _ => snd (HOLogic.dest_number t)
+    handle TERM _ => raise TERM ("nat_of_term", [t]));
+
+fun int_of_term t = snd (HOLogic.dest_number t) handle TERM _ => raise TERM ("int_of_term", [t]);
+
+fun real_of_man_exp m e = Real.fromManExp {man = Real.fromInt m, exp = e}
+
+fun mapprox_float (@{term Float} $ m $ e) = real_of_man_exp (int_of_term m) (int_of_term e)
+  | mapprox_float t = Real.fromInt (snd (HOLogic.dest_number t))
+      handle TERM _ => raise TERM ("mapprox_float", [t]);
+
+(* TODO: define using compiled terms? *)
+fun mapprox_floatarith (@{term Add} $ a $ b) xs = mapprox_floatarith a xs + mapprox_floatarith b xs
+  | mapprox_floatarith (@{term Minus} $ a) xs = ~ (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Mult} $ a $ b) xs = mapprox_floatarith a xs * mapprox_floatarith b xs
+  | mapprox_floatarith (@{term Inverse} $ a) xs = 1.0 / mapprox_floatarith a xs
+  | mapprox_floatarith (@{term Cos} $ a) xs = Math.cos (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Arctan} $ a) xs = Math.atan (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Abs} $ a) xs = abs (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Max} $ a $ b) xs =
+      Real.max (mapprox_floatarith a xs, mapprox_floatarith b xs)
+  | mapprox_floatarith (@{term Min} $ a $ b) xs =
+      Real.min (mapprox_floatarith a xs, mapprox_floatarith b xs)
+  | mapprox_floatarith @{term Pi} _ = Math.pi
+  | mapprox_floatarith (@{term Sqrt} $ a) xs = Math.sqrt (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Exp} $ a) xs = Math.exp (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Ln} $ a) xs = Math.ln (mapprox_floatarith a xs)
+  | mapprox_floatarith (@{term Power} $ a $ n) xs =
+      Math.pow (mapprox_floatarith a xs, Real.fromInt (nat_of_term n))
+  | mapprox_floatarith (@{term Var} $ n) xs = nth xs (nat_of_term n)
+  | mapprox_floatarith (@{term Num} $ m) _ = mapprox_float m
+  | mapprox_floatarith t _ = raise TERM ("mapprox_floatarith", [t])
+
+fun mapprox_atLeastAtMost eps x a b xs =
+    let
+      val x' = mapprox_floatarith x xs
+    in
+      mapprox_floatarith a xs + eps <= x' andalso x' + eps <= mapprox_floatarith b xs
+    end
+
+fun mapprox_form eps (@{term Bound} $ x $ a $ b $ f) xs =
+    (not (mapprox_atLeastAtMost eps x a b xs)) orelse mapprox_form eps f xs
+| mapprox_form eps (@{term Assign} $ x $ a $ f) xs =
+    (Real.!= (mapprox_floatarith x xs, mapprox_floatarith a xs)) orelse mapprox_form eps f xs
+| mapprox_form eps (@{term Less} $ a $ b) xs = mapprox_floatarith a xs + eps < mapprox_floatarith b xs
+| mapprox_form eps (@{term LessEqual} $ a $ b) xs = mapprox_floatarith a xs + eps <= mapprox_floatarith b xs
+| mapprox_form eps (@{term AtLeastAtMost} $ x $ a $ b) xs = mapprox_atLeastAtMost eps x a b xs
+| mapprox_form eps (@{term Conj} $ f $ g) xs = mapprox_form eps f xs andalso mapprox_form eps g xs
+| mapprox_form eps (@{term Disj} $ f $ g) xs = mapprox_form eps f xs orelse mapprox_form eps g xs
+| mapprox_form _ t _ = raise TERM ("mapprox_form", [t])
+
+fun dest_interpret_form (@{const "interpret_form"} $ b $ xs) = (b, xs)
+  | dest_interpret_form t = raise TERM ("dest_interpret_form", [t])
+
+fun optionT t = Type (@{type_name "option"}, [t])
+fun mk_Some t = Const (@{const_name "Some"}, t --> optionT t)
+
+fun random_float_list size xs seed =
+  fold (K (apsnd (random_float size) #-> (fn c => apfst (fn b => b::c)))) xs ([],seed)
+
+fun real_of_Float (@{code Float} (m, e)) =
+    real_of_man_exp (@{code integer_of_int} m) (@{code integer_of_int} e)
+
+fun is_True @{term True} = true
+  | is_True _ = false
+
+val postproc_form_eqs =
+  @{lemma
+    "real (Float 0 a) = 0"
+    "real (Float (numeral m) 0) = numeral m"
+    "real (Float 1 0) = 1"
+    "real (Float (- 1) 0) = - 1"
+    "real (Float 1 (numeral e)) = 2 ^ numeral e"
+    "real (Float 1 (- numeral e)) = 1 / 2 ^ numeral e"
+    "real (Float a 1) = a * 2"
+    "real (Float a (-1)) = a / 2"
+    "real (Float (- a) b) = - real (Float a b)"
+    "real (Float (numeral m) (numeral e)) = numeral m * 2 ^ (numeral e)"
+    "real (Float (numeral m) (- numeral e)) = numeral m / 2 ^ (numeral e)"
+    "- (c * d::real) = -c * d"
+    "- (c / d::real) = -c / d"
+    "- (0::real) = 0"
+    "int_of_integer (numeral k) = numeral k"
+    "int_of_integer (- numeral k) = - numeral k"
+    "int_of_integer 0 = 0"
+    "int_of_integer 1 = 1"
+    "int_of_integer (- 1) = - 1"
+    by auto
+  }
+
+fun rewrite_with ctxt thms = Simplifier.rewrite (put_simpset HOL_basic_ss ctxt addsimps thms)
+fun conv_term thy conv r = cterm_of thy r |> conv |> Thm.prop_of |> Logic.dest_equals |> snd
+
+fun approx_random ctxt prec eps frees e xs genuine_only size seed =
+  let
+    val (rs, seed') = random_float_list size xs seed
+    fun mk_approx_form e ts =
+      @{const "approx_form"} $
+        HOLogic.mk_number @{typ nat} prec $
+        e $
+        (HOLogic.mk_list @{typ "(float * float) option"}
+          (map (fn t => mk_Some @{typ "float * float"} $ HOLogic.mk_prod (t, t)) ts)) $
+        @{term "[] :: nat list"}
+  in
+    (if mapprox_form eps e (map (real_of_Float o fst) rs)
+    then
+      let
+        val ts = map (fn x => snd x ()) rs
+        val ts' = map
+          (AList.lookup op = (map dest_Free xs ~~ ts)
+            #> the_default Term.dummy
+            #> curry op $ @{term "real::float\<Rightarrow>_"}
+            #> conv_term (Proof_Context.theory_of ctxt) (rewrite_with ctxt postproc_form_eqs))
+          frees
+      in
+        if approximate ctxt (mk_approx_form e ts) |> is_True
+        then SOME (true, ts')
+        else (if genuine_only then NONE else SOME (false, ts'))
+      end
+    else NONE, seed')
+  end
+
+val preproc_form_eqs =
+  @{lemma
+    "(a::real) \<in> {b .. c} \<longleftrightarrow> b \<le> a \<and> a \<le> c"
+    "a = b \<longleftrightarrow> a \<le> b \<and> b \<le> a"
+    "(p \<longrightarrow> q) \<longleftrightarrow> \<not>p \<or> q"
+    "(p \<longleftrightarrow> q) \<longleftrightarrow> (p \<longrightarrow> q) \<and> (q \<longrightarrow> p)"
+    "\<not> (a < b) \<longleftrightarrow> b \<le> a"
+    "\<not> (a \<le> b) \<longleftrightarrow> b < a"
+    "\<not> (p \<and> q) \<longleftrightarrow> \<not> p \<or> \<not> q"
+    "\<not> (p \<or> q) \<longleftrightarrow> \<not> p \<and> \<not> q"
+    "\<not> \<not> q \<longleftrightarrow> q"
+    by auto
+  }
+
+fun reify_goal ctxt t =
+  HOLogic.mk_not t
+    |> conv_term (Proof_Context.theory_of ctxt) (rewrite_with ctxt preproc_form_eqs)
+    |> conv_term (Proof_Context.theory_of ctxt) (Reification.conv ctxt form_equations)
+    |> dest_interpret_form
+    ||> HOLogic.dest_list
+
+fun approximation_generator_raw ctxt t =
+  let
+    val iterations = Config.get ctxt Quickcheck.iterations
+    val prec = Config.get ctxt precision
+    val eps = Config.get ctxt epsilon
+    val cs = Config.get ctxt custom_seed
+    val seed = (Code_Numeral.natural_of_integer (cs + 1), Code_Numeral.natural_of_integer 1)
+    val run = if cs < 0
+      then (fn f => fn seed => (Random_Engine.run f, seed))
+      else (fn f => fn seed => f seed)
+    val frees = Term.add_frees t []
+    val (e, xs) = reify_goal ctxt t
+    fun single_tester b s =
+      approx_random ctxt prec eps frees e xs b s |> run
+    fun iterate _ _ 0 _ = NONE
+      | iterate genuine_only size j seed =
+        case single_tester genuine_only size seed of
+          (NONE, seed') => iterate genuine_only size (j - 1) seed'
+        | (SOME q, _) => SOME q
+  in
+    fn genuine_only => fn size => (iterate genuine_only size iterations seed, NONE)
+  end
+
+fun approximation_generator ctxt [(t, _)] =
+  (fn genuine_only =>
+    fn [_, size] =>
+      approximation_generator_raw ctxt t genuine_only
+        (Code_Numeral.natural_of_integer size))
+  | approximation_generator _ _ =
+      error "Quickcheck-approximation does not support type variables (or finite instantiations)"
+
+val test_goals =
+  Quickcheck_Common.generator_test_goal_terms
+    ("approximation", (fn _ => fn _ => false, approximation_generator))
+
+val active = Attrib.setup_config_bool @{binding quickcheck_approximation_active} (K false)
+
+val setup = Context.theory_map (Quickcheck.add_tester ("approximation", (active, test_goals)))
+
+end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Decision_Procs/ex/Approximation_Quickcheck_Ex.thy	Wed Nov 12 17:37:43 2014 +0100
@@ -0,0 +1,39 @@
+theory Approximation_Quickcheck_Ex
+imports "../Approximation"
+begin
+
+lemma
+  fixes x::real and y::real
+  shows "sin x \<le> tan x"
+  using [[quickcheck_approximation_custom_seed = 1]]
+  quickcheck[approximation, expect=counterexample]
+  oops
+
+lemma "x \<le> y \<Longrightarrow> arctan y / y \<le> arctan x / x"
+  using [[quickcheck_approximation_custom_seed = 1]]
+  quickcheck[approximation, expect=counterexample]
+  oops
+
+lemma "0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> arctan y / y \<le> arctan x / x"
+  using [[quickcheck_approximation_custom_seed = 1]]
+  quickcheck[approximation, expect=no_counterexample]
+  by (rule arctan_divide_mono)
+
+lemma
+  fixes x::real
+  shows "exp (exp x + exp y + sin x * sin y) - 0.4 > 0 \<or> 0.98 - sin x / (sin x * sin y + 2)^2 > 0"
+  using [[quickcheck_approximation_custom_seed = 1]]
+  quickcheck[approximation, expect=counterexample, size=10, iterations=1000, verbose]
+  oops
+
+lemma
+  fixes x::real
+  shows "x > 1 \<Longrightarrow> x \<le> 2 powr 20 * log 2 x + 1 \<and> (sin x)\<^sup>2 + (cos x)\<^sup>2 = 1"
+  using [[quickcheck_approximation_custom_seed = 1]]
+  using [[quickcheck_approximation_epsilon = 0.00000001]]
+    --\<open>avoids spurious counterexamples in approximate computation of @{term "(sin x)\<^sup>2 + (cos x)\<^sup>2"}
+      and therefore avoids expensive failing attempts for certification\<close>
+  quickcheck[approximation, expect=counterexample, size=20]
+  oops
+
+end