--- a/src/Doc/Codegen/Inductive_Predicate.thy Wed Aug 19 14:58:02 2020 +0100
+++ b/src/Doc/Codegen/Inductive_Predicate.thy Thu Aug 20 10:39:26 2020 +0100
@@ -167,7 +167,7 @@
(*<*)unfolding lexordp_def by (auto simp add: append)(*>*)
lemma %quote [code_pred_intro]:
- "append u (a # v) xs \<Longrightarrow> append u (b # w) ys \<Longrightarrow> r a b
+ "append u (a # v) xs \<Longrightarrow> append u (b # w) ys \<Longrightarrow> r a b \<Longrightarrow> a\<noteq>b
\<Longrightarrow> lexordp r xs ys"
(*<*)unfolding lexordp_def append apply simp
apply (rule disjI2) by auto(*>*)
@@ -179,14 +179,14 @@
assume 1: "\<And>r' xs' ys' a v. r = r' \<Longrightarrow> xs = xs' \<Longrightarrow> ys = ys'
\<Longrightarrow> append xs' (a # v) ys' \<Longrightarrow> thesis"
assume 2: "\<And>r' xs' ys' u a v b w. r = r' \<Longrightarrow> xs = xs' \<Longrightarrow> ys = ys'
- \<Longrightarrow> append u (a # v) xs' \<Longrightarrow> append u (b # w) ys' \<Longrightarrow> r' a b \<Longrightarrow> thesis"
+ \<Longrightarrow> append u (a # v) xs' \<Longrightarrow> append u (b # w) ys' \<Longrightarrow> r' a b \<Longrightarrow> a\<noteq>b \<Longrightarrow> thesis"
{
assume "\<exists>a v. ys = xs @ a # v"
from this 1 have thesis
by (fastforce simp add: append)
} moreover
{
- assume "\<exists>u a b v w. r a b \<and> xs = u @ a # v \<and> ys = u @ b # w"
+ assume "\<exists>u a b v w. r a b \<and> a\<noteq>b \<and> xs = u @ a # v \<and> ys = u @ b # w"
from this 2 have thesis by (fastforce simp add: append)
} moreover
note lexord
--- a/src/HOL/MicroJava/DFA/Kildall.thy Wed Aug 19 14:58:02 2020 +0100
+++ b/src/HOL/MicroJava/DFA/Kildall.thy Thu Aug 20 10:39:26 2020 +0100
@@ -327,6 +327,10 @@
done
qed
+(*for lex*)
+lemma ne_lesssub_iff [simp]: "y\<noteq>x \<and> x <[r] y \<longleftrightarrow> x <[r] y"
+ by (meson lesssub_def)
+
lemma iter_properties[rule_format]:
assumes semilat: "semilat (A, r, f)"
shows "\<lbrakk> acc r ; pres_type step n A; mono r step n A;
@@ -446,13 +450,13 @@
proof -
interpret Semilat A r f using assms by (rule Semilat.intro)
show "PROP ?P"
-apply (unfold kildall_def)
-apply(case_tac "iter f step ss0 (unstables r step ss0)")
-apply(simp)
-apply (rule iter_properties)
-apply (simp_all add: unstables_def stable_def)
-apply (rule semilat)
-done
+ apply (unfold kildall_def)
+ apply(case_tac "iter f step ss0 (unstables r step ss0)")
+ apply(simp)
+ apply (rule iter_properties)
+ apply (simp_all add: unstables_def stable_def)
+ apply (rule semilat)
+ done
qed
lemma is_bcv_kildall: