--- a/src/HOL/Arith.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Arith.ML Wed Mar 06 12:52:11 1996 +0100
@@ -19,9 +19,9 @@
(** pred **)
val prems = goal Arith.thy "n ~= 0 ==> Suc(pred n) = n";
-by(res_inst_tac [("n","n")] natE 1);
-by(cut_facts_tac prems 1);
-by(ALLGOALS Asm_full_simp_tac);
+by (res_inst_tac [("n","n")] natE 1);
+by (cut_facts_tac prems 1);
+by (ALLGOALS Asm_full_simp_tac);
qed "Suc_pred";
Addsimps [Suc_pred];
@@ -205,12 +205,12 @@
goal Arith.thy "!!m. m<n ==> m mod n = m";
by (rtac (mod_def1 RS wf_less_trans) 1);
-by(Asm_simp_tac 1);
+by (Asm_simp_tac 1);
qed "mod_less";
goal Arith.thy "!!m. [| 0<n; ~m<n |] ==> m mod n = (m-n) mod n";
by (rtac (mod_def1 RS wf_less_trans) 1);
-by(asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
+by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
qed "mod_geq";
@@ -223,12 +223,12 @@
goal Arith.thy "!!m. m<n ==> m div n = 0";
by (rtac (div_def1 RS wf_less_trans) 1);
-by(Asm_simp_tac 1);
+by (Asm_simp_tac 1);
qed "div_less";
goal Arith.thy "!!M. [| 0<n; ~m<n |] ==> m div n = Suc((m-n) div n)";
by (rtac (div_def1 RS wf_less_trans) 1);
-by(asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
+by (asm_simp_tac (!simpset addsimps [diff_less, cut_apply, less_eq]) 1);
qed "div_geq";
(*Main Result about quotient and remainder.*)
@@ -268,7 +268,7 @@
qed "Suc_diff_n";
goal Arith.thy "Suc(m)-n = (if m<n then 0 else Suc(m-n))";
-by(simp_tac (!simpset addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
+by (simp_tac (!simpset addsimps [less_imp_diff_is_0, not_less_eq, Suc_diff_n]
setloop (split_tac [expand_if])) 1);
qed "if_Suc_diff_n";
@@ -326,20 +326,20 @@
bind_thm ("trans_less_add2", le_add2 RSN (2,less_le_trans));
goal Arith.thy "!!i. i+j < (k::nat) ==> i<k";
-be rev_mp 1;
-by(nat_ind_tac "j" 1);
+by (etac rev_mp 1);
+by (nat_ind_tac "j" 1);
by (ALLGOALS Asm_simp_tac);
-by(fast_tac (HOL_cs addDs [Suc_lessD]) 1);
+by (fast_tac (HOL_cs addDs [Suc_lessD]) 1);
qed "add_lessD1";
goal Arith.thy "!!k::nat. m <= n ==> m <= n+k";
-by (eresolve_tac [le_trans] 1);
-by (resolve_tac [le_add1] 1);
+by (etac le_trans 1);
+by (rtac le_add1 1);
qed "le_imp_add_le";
goal Arith.thy "!!k::nat. m < n ==> m < n+k";
-by (eresolve_tac [less_le_trans] 1);
-by (resolve_tac [le_add1] 1);
+by (etac less_le_trans 1);
+by (rtac le_add1 1);
qed "less_imp_add_less";
goal Arith.thy "m+k<=n --> m<=(n::nat)";
@@ -353,7 +353,7 @@
by (asm_full_simp_tac
(!simpset delsimps [add_Suc_right]
addsimps ([add_Suc_right RS sym, add_left_cancel] @add_ac)) 1);
-by (eresolve_tac [subst] 1);
+by (etac subst 1);
by (simp_tac (!simpset addsimps [less_add_Suc1]) 1);
qed "less_add_eq_less";
@@ -389,7 +389,7 @@
(*non-strict, in 1st argument*)
goal Arith.thy "!!i j k::nat. i<=j ==> i + k <= j + k";
by (res_inst_tac [("f", "%j.j+k")] less_mono_imp_le_mono 1);
-by (eresolve_tac [add_less_mono1] 1);
+by (etac add_less_mono1 1);
by (assume_tac 1);
qed "add_le_mono1";
@@ -398,5 +398,5 @@
by (etac (add_le_mono1 RS le_trans) 1);
by (simp_tac (!simpset addsimps [add_commute]) 1);
(*j moves to the end because it is free while k, l are bound*)
-by (eresolve_tac [add_le_mono1] 1);
+by (etac add_le_mono1 1);
qed "add_le_mono";
--- a/src/HOL/Lfp.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Lfp.ML Wed Mar 06 12:52:11 1996 +0100
@@ -54,18 +54,18 @@
val major::prems = goal Lfp.thy
"[| (a,b) : lfp f; mono f; \
\ !!a b. (a,b) : f(lfp f Int Collect(split P)) ==> P a b |] ==> P a b";
-by(res_inst_tac [("c1","P")] (split RS subst) 1);
+by (res_inst_tac [("c1","P")] (split RS subst) 1);
by (rtac (major RS induct) 1);
by (resolve_tac prems 1);
-by(res_inst_tac[("p","x")]PairE 1);
-by(hyp_subst_tac 1);
-by(asm_simp_tac (!simpset addsimps prems) 1);
+by (res_inst_tac[("p","x")]PairE 1);
+by (hyp_subst_tac 1);
+by (asm_simp_tac (!simpset addsimps prems) 1);
qed"induct2";
(*** Fixpoint induction a la David Park ***)
goal Lfp.thy "!!f. [| mono f; f A <= A |] ==> lfp(f) <= A";
by (rtac subsetI 1);
-by(EVERY[etac induct 1, atac 1, etac subsetD 1, rtac subsetD 1,
+by (EVERY[etac induct 1, atac 1, etac subsetD 1, rtac subsetD 1,
atac 2, fast_tac (set_cs addSEs [monoD]) 1]);
qed "Park_induct";
--- a/src/HOL/List.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/List.ML Wed Mar 06 12:52:11 1996 +0100
@@ -193,7 +193,7 @@
qed "drop_0";
goal thy "drop (Suc n) (x#xs) = drop n xs";
-by(Simp_tac 1);
+by (Simp_tac 1);
qed "drop_Suc_Cons";
Delsimps [drop_Cons];
@@ -207,7 +207,7 @@
qed "take_0";
goal thy "take (Suc n) (x#xs) = x # take n xs";
-by(Simp_tac 1);
+by (Simp_tac 1);
qed "take_Suc_Cons";
Delsimps [take_Cons];
--- a/src/HOL/Nat.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Nat.ML Wed Mar 06 12:52:11 1996 +0100
@@ -231,7 +231,7 @@
(** Elimination properties **)
val prems = goalw Nat.thy [less_def] "n<m ==> ~ m<(n::nat)";
-by(fast_tac (HOL_cs addIs ([wf_pred_nat, wf_trancl RS wf_asym]@prems))1);
+by (fast_tac (HOL_cs addIs ([wf_pred_nat, wf_trancl RS wf_asym]@prems))1);
qed "less_not_sym";
(* [| n(m; m(n |] ==> R *)
@@ -246,7 +246,7 @@
bind_thm ("less_anti_refl", (less_not_refl RS notE));
goal Nat.thy "!!m. n<m ==> m ~= (n::nat)";
-by(fast_tac (HOL_cs addEs [less_anti_refl]) 1);
+by (fast_tac (HOL_cs addEs [less_anti_refl]) 1);
qed "less_not_refl2";
@@ -285,9 +285,9 @@
qed "less_Suc_eq";
val prems = goal Nat.thy "m<n ==> n ~= 0";
-by(res_inst_tac [("n","n")] natE 1);
-by(cut_facts_tac prems 1);
-by(ALLGOALS Asm_full_simp_tac);
+by (res_inst_tac [("n","n")] natE 1);
+by (cut_facts_tac prems 1);
+by (ALLGOALS Asm_full_simp_tac);
qed "gr_implies_not0";
Addsimps [gr_implies_not0];
@@ -335,14 +335,14 @@
Addsimps [Suc_less_eq];
goal Nat.thy "~(Suc(n) < n)";
-by(fast_tac (HOL_cs addEs [Suc_lessD RS less_anti_refl]) 1);
+by (fast_tac (HOL_cs addEs [Suc_lessD RS less_anti_refl]) 1);
qed "not_Suc_n_less_n";
Addsimps [not_Suc_n_less_n];
goal Nat.thy "!!i. i<j ==> j<k --> Suc i < k";
-by(nat_ind_tac "k" 1);
-by(ALLGOALS (asm_simp_tac (!simpset addsimps [less_Suc_eq])));
-by(fast_tac (HOL_cs addDs [Suc_lessD]) 1);
+by (nat_ind_tac "k" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [less_Suc_eq])));
+by (fast_tac (HOL_cs addDs [Suc_lessD]) 1);
qed_spec_mp "less_trans_Suc";
(*"Less than" is a linear ordering*)
@@ -357,7 +357,7 @@
(*Can be used with less_Suc_eq to get n=m | n<m *)
goal Nat.thy "(~ m < n) = (n < Suc(m))";
by (res_inst_tac [("m","m"),("n","n")] diff_induct 1);
-by(ALLGOALS Asm_simp_tac);
+by (ALLGOALS Asm_simp_tac);
qed "not_less_eq";
(*Complete induction, aka course-of-values induction*)
@@ -375,12 +375,12 @@
qed "le0";
goalw Nat.thy [le_def] "~ Suc n <= n";
-by(Simp_tac 1);
+by (Simp_tac 1);
qed "Suc_n_not_le_n";
goalw Nat.thy [le_def] "(i <= 0) = (i = 0)";
-by(nat_ind_tac "i" 1);
-by(ALLGOALS Asm_simp_tac);
+by (nat_ind_tac "i" 1);
+by (ALLGOALS Asm_simp_tac);
qed "le_0";
Addsimps [less_not_refl,
@@ -413,13 +413,13 @@
qed "not_leE";
goalw Nat.thy [le_def] "!!m. m < n ==> Suc(m) <= n";
-by(Simp_tac 1);
+by (Simp_tac 1);
by (fast_tac (HOL_cs addEs [less_anti_refl,less_asym]) 1);
qed "lessD";
goalw Nat.thy [le_def] "!!m. Suc(m) <= n ==> m <= n";
-by(Asm_full_simp_tac 1);
-by(fast_tac HOL_cs 1);
+by (Asm_full_simp_tac 1);
+by (fast_tac HOL_cs 1);
qed "Suc_leD";
goalw Nat.thy [le_def] "!!m. m <= n ==> m <= Suc n";
@@ -447,7 +447,7 @@
qed "le_eq_less_or_eq";
goal Nat.thy "n <= (n::nat)";
-by(simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
+by (simp_tac (!simpset addsimps [le_eq_less_or_eq]) 1);
qed "le_refl";
val prems = goal Nat.thy "!!i. [| i <= j; j < k |] ==> i < (k::nat)";
--- a/src/HOL/Prod.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Prod.ML Wed Mar 06 12:52:11 1996 +0100
@@ -78,7 +78,7 @@
end;
goal Prod.thy "(!x. P x) = (!a b. P(a,b))";
-by(fast_tac (HOL_cs addbefore split_all_tac 1) 1);
+by (fast_tac (HOL_cs addbefore split_all_tac 1) 1);
qed "split_paired_All";
goalw Prod.thy [split_def] "split c (a,b) = c a b";
@@ -123,7 +123,7 @@
Could instead call simp_tac/asm_full_simp_tac using split as rewrite.*)
goal Prod.thy "!!p. [| !!a b. p=(a,b) ==> c a b |] ==> split c p";
-by(split_all_tac 1);
+by (split_all_tac 1);
by (Asm_simp_tac 1);
qed "splitI2";
@@ -145,7 +145,7 @@
qed "mem_splitI";
goal Prod.thy "!!p. [| !!a b. p=(a,b) ==> z: c a b |] ==> z: split c p";
-by(split_all_tac 1);
+by (split_all_tac 1);
by (Asm_simp_tac 1);
qed "mem_splitI2";
--- a/src/HOL/RelPow.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/RelPow.ML Wed Mar 06 12:52:11 1996 +0100
@@ -10,85 +10,85 @@
Addsimps [rel_pow_0];
goal RelPow.thy "(x,x) : R^0";
-by(Simp_tac 1);
+by (Simp_tac 1);
qed "rel_pow_0_I";
goal RelPow.thy "!!R. [| (x,y) : R^n; (y,z):R |] ==> (x,z):R^(Suc n)";
-by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
-by(fast_tac comp_cs 1);
+by (simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
+by (fast_tac comp_cs 1);
qed "rel_pow_Suc_I";
goal RelPow.thy "!z. (x,y) : R --> (y,z):R^n --> (x,z):R^(Suc n)";
-by(nat_ind_tac "n" 1);
-by(simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
-by(fast_tac comp_cs 1);
-by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
-by(fast_tac comp_cs 1);
+by (nat_ind_tac "n" 1);
+by (simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
+by (fast_tac comp_cs 1);
+by (asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
+by (fast_tac comp_cs 1);
qed_spec_mp "rel_pow_Suc_I2";
goal RelPow.thy "!!R. [| (x,y) : R^0; x=y ==> P |] ==> P";
-by(Asm_full_simp_tac 1);
+by (Asm_full_simp_tac 1);
qed "rel_pow_0_E";
val [major,minor] = goal RelPow.thy
"[| (x,z) : R^(Suc n); !!y. [| (x,y) : R^n; (y,z) : R |] ==> P |] ==> P";
-by(cut_facts_tac [major] 1);
-by(asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
-by(fast_tac (comp_cs addIs [minor]) 1);
+by (cut_facts_tac [major] 1);
+by (asm_full_simp_tac (!simpset addsimps [rel_pow_Suc]) 1);
+by (fast_tac (comp_cs addIs [minor]) 1);
qed "rel_pow_Suc_E";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R^m; (y,z) : R |] ==> P \
\ |] ==> P";
-by(res_inst_tac [("n","n")] natE 1);
-by(cut_facts_tac [p1] 1);
-by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
-by(cut_facts_tac [p1] 1);
-by(Asm_full_simp_tac 1);
-be rel_pow_Suc_E 1;
-by(REPEAT(ares_tac [p3] 1));
+by (res_inst_tac [("n","n")] natE 1);
+by (cut_facts_tac [p1] 1);
+by (asm_full_simp_tac (!simpset addsimps [p2]) 1);
+by (cut_facts_tac [p1] 1);
+by (Asm_full_simp_tac 1);
+by (etac rel_pow_Suc_E 1);
+by (REPEAT(ares_tac [p3] 1));
qed "rel_pow_E";
goal RelPow.thy "!x z. (x,z):R^(Suc n) --> (? y. (x,y):R & (y,z):R^n)";
-by(nat_ind_tac "n" 1);
-by(fast_tac (HOL_cs addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
-by(fast_tac (HOL_cs addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
+by (nat_ind_tac "n" 1);
+by (fast_tac (HOL_cs addIs [rel_pow_0_I] addEs [rel_pow_0_E,rel_pow_Suc_E]) 1);
+by (fast_tac (HOL_cs addIs [rel_pow_Suc_I] addEs[rel_pow_0_E,rel_pow_Suc_E]) 1);
qed_spec_mp "rel_pow_Suc_D2";
val [p1,p2,p3] = goal RelPow.thy
"[| (x,z) : R^n; [| n=0; x = z |] ==> P; \
\ !!y m. [| n = Suc m; (x,y) : R; (y,z) : R^m |] ==> P \
\ |] ==> P";
-by(res_inst_tac [("n","n")] natE 1);
-by(cut_facts_tac [p1] 1);
-by(asm_full_simp_tac (!simpset addsimps [p2]) 1);
-by(cut_facts_tac [p1] 1);
-by(Asm_full_simp_tac 1);
-bd rel_pow_Suc_D2 1;
-be exE 1;
-be p3 1;
-be conjunct1 1;
-be conjunct2 1;
+by (res_inst_tac [("n","n")] natE 1);
+by (cut_facts_tac [p1] 1);
+by (asm_full_simp_tac (!simpset addsimps [p2]) 1);
+by (cut_facts_tac [p1] 1);
+by (Asm_full_simp_tac 1);
+by (dtac rel_pow_Suc_D2 1);
+by (etac exE 1);
+by (etac p3 1);
+by (etac conjunct1 1);
+by (etac conjunct2 1);
qed "rel_pow_E2";
goal RelPow.thy "!!p. p:R^* ==> p : (UN n. R^n)";
-by(split_all_tac 1);
-be rtrancl_induct 1;
-by(ALLGOALS (fast_tac (rel_cs addIs [rel_pow_0_I,rel_pow_Suc_I])));
+by (split_all_tac 1);
+by (etac rtrancl_induct 1);
+by (ALLGOALS (fast_tac (rel_cs addIs [rel_pow_0_I,rel_pow_Suc_I])));
qed "rtrancl_imp_UN_rel_pow";
goal RelPow.thy "!y. (x,y):R^n --> (x,y):R^*";
-by(nat_ind_tac "n" 1);
-by(fast_tac (HOL_cs addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
-by(fast_tac (trancl_cs addEs [rel_pow_Suc_E,rtrancl_into_rtrancl]) 1);
+by (nat_ind_tac "n" 1);
+by (fast_tac (HOL_cs addIs [rtrancl_refl] addEs [rel_pow_0_E]) 1);
+by (fast_tac (trancl_cs addEs [rel_pow_Suc_E,rtrancl_into_rtrancl]) 1);
val lemma = result() RS spec RS mp;
goal RelPow.thy "!!p. p:R^n ==> p:R^*";
-by(split_all_tac 1);
-be lemma 1;
+by (split_all_tac 1);
+by (etac lemma 1);
qed "rel_pow_imp_rtrancl";
goal RelPow.thy "R^* = (UN n. R^n)";
-by(fast_tac (eq_cs addIs [rtrancl_imp_UN_rel_pow,rel_pow_imp_rtrancl]) 1);
+by (fast_tac (eq_cs addIs [rtrancl_imp_UN_rel_pow,rel_pow_imp_rtrancl]) 1);
qed "rtrancl_is_UN_rel_pow";
--- a/src/HOL/Relation.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Relation.ML Wed Mar 06 12:52:11 1996 +0100
@@ -27,7 +27,7 @@
qed "idE";
goalw Relation.thy [id_def] "(a,b):id = (a=b)";
-by(fast_tac prod_cs 1);
+by (fast_tac prod_cs 1);
qed "pair_in_id_conv";
--- a/src/HOL/Set.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Set.ML Wed Mar 06 12:52:11 1996 +0100
@@ -311,7 +311,7 @@
(REPEAT (eresolve_tac (prems @ [emptyE]) 1)) ]);
goalw Set.thy [insert_def] "!!a. b : {a} ==> b=a";
-by(fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1);
+by (fast_tac (HOL_cs addSEs [emptyE,CollectE,UnE]) 1);
qed "singletonD";
val singletonE = make_elim singletonD;
--- a/src/HOL/Trancl.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/Trancl.ML Wed Mar 06 12:52:11 1996 +0100
@@ -32,13 +32,13 @@
(*rtrancl of r contains r*)
goal Trancl.thy "!!p. p : r ==> p : r^*";
-by(split_all_tac 1);
+by (split_all_tac 1);
by (etac (rtrancl_refl RS rtrancl_into_rtrancl) 1);
qed "r_into_rtrancl";
(*monotonicity of rtrancl*)
goalw Trancl.thy [rtrancl_def] "!!r s. r <= s ==> r^* <= s^*";
-by(REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1));
+by (REPEAT(ares_tac [lfp_mono,Un_mono,comp_mono,subset_refl] 1));
qed "rtrancl_mono";
(** standard induction rule **)
@@ -71,7 +71,7 @@
(*transitivity of transitive closure!! -- by induction.*)
goal Trancl.thy "!!r. [| (a,b):r^*; (b,c):r^* |] ==> (a,c):r^*";
by (eres_inst_tac [("b","c")] rtrancl_induct 1);
-by(ALLGOALS(fast_tac (HOL_cs addIs [rtrancl_into_rtrancl])));
+by (ALLGOALS(fast_tac (HOL_cs addIs [rtrancl_into_rtrancl])));
qed "rtrancl_trans";
(*elimination of rtrancl -- by induction on a special formula*)
@@ -87,13 +87,13 @@
qed "rtranclE";
goal Trancl.thy "!!R. (y,z):R^* ==> !x. (x,y):R --> (x,z):R^*";
-be rtrancl_induct 1;
-by(fast_tac (HOL_cs addIs [r_into_rtrancl]) 1);
-by(fast_tac (HOL_cs addEs [rtrancl_into_rtrancl]) 1);
+by (etac rtrancl_induct 1);
+by (fast_tac (HOL_cs addIs [r_into_rtrancl]) 1);
+by (fast_tac (HOL_cs addEs [rtrancl_into_rtrancl]) 1);
val lemma = result();
goal Trancl.thy "!!R. [| (x,y) : R; (y,z) : R^* |] ==> (x,z) : R^*";
-by(fast_tac (HOL_cs addDs [lemma]) 1);
+by (fast_tac (HOL_cs addDs [lemma]) 1);
qed "rtrancl_into_rtrancl2";
@@ -163,12 +163,12 @@
goal Trancl.thy "(r^*)^* = r^*";
by (rtac set_ext 1);
-by(res_inst_tac [("p","x")] PairE 1);
-by(hyp_subst_tac 1);
+by (res_inst_tac [("p","x")] PairE 1);
+by (hyp_subst_tac 1);
by (rtac iffI 1);
by (etac rtrancl_induct 1);
by (rtac rtrancl_refl 1);
-by(fast_tac (HOL_cs addEs [rtrancl_trans]) 1);
+by (fast_tac (HOL_cs addEs [rtrancl_trans]) 1);
by (etac r_into_rtrancl 1);
qed "rtrancl_idemp";
Addsimps [rtrancl_idemp];
@@ -176,17 +176,17 @@
goal Trancl.thy "!!R. [| R <= S; S <= R^* |] ==> S^* = R^*";
by (dtac rtrancl_mono 1);
by (dtac rtrancl_mono 1);
-by(Asm_full_simp_tac 1);
-by(fast_tac eq_cs 1);
+by (Asm_full_simp_tac 1);
+by (fast_tac eq_cs 1);
qed "rtrancl_subset";
goal Trancl.thy "!!R. (R^* Un S^*)^* = (R Un S)^*";
-by(best_tac (set_cs addIs [rtrancl_subset,r_into_rtrancl,
+by (best_tac (set_cs addIs [rtrancl_subset,r_into_rtrancl,
rtrancl_mono RS subsetD]) 1);
qed "trancl_Un_trancl";
goal Trancl.thy "(R^=)^* = R^*";
-by(fast_tac (rel_cs addIs [rtrancl_refl,rtrancl_subset,r_into_rtrancl]) 1);
+by (fast_tac (rel_cs addIs [rtrancl_refl,rtrancl_subset,r_into_rtrancl]) 1);
qed "rtrancl_reflcl";
Addsimps [rtrancl_reflcl];
@@ -194,20 +194,20 @@
by (rtac converseI 1);
by (etac rtrancl_induct 1);
by (rtac rtrancl_refl 1);
-by(fast_tac (rel_cs addIs [r_into_rtrancl,rtrancl_trans]) 1);
+by (fast_tac (rel_cs addIs [r_into_rtrancl,rtrancl_trans]) 1);
qed "rtrancl_converseD";
goal Trancl.thy "!!r. (x,y) : converse(r^*) ==> (x,y) : (converse r)^*";
by (dtac converseD 1);
by (etac rtrancl_induct 1);
by (rtac rtrancl_refl 1);
-by(fast_tac (rel_cs addIs [r_into_rtrancl,rtrancl_trans]) 1);
+by (fast_tac (rel_cs addIs [r_into_rtrancl,rtrancl_trans]) 1);
qed "rtrancl_converseI";
goal Trancl.thy "(converse r)^* = converse(r^*)";
-by(safe_tac (rel_eq_cs addSIs [rtrancl_converseI]));
-by(res_inst_tac [("p","x")] PairE 1);
-by(hyp_subst_tac 1);
+by (safe_tac (rel_eq_cs addSIs [rtrancl_converseI]));
+by (res_inst_tac [("p","x")] PairE 1);
+by (hyp_subst_tac 1);
by (etac rtrancl_converseD 1);
qed "rtrancl_converse";
--- a/src/HOL/WF.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/WF.ML Wed Mar 06 12:52:11 1996 +0100
@@ -69,12 +69,12 @@
H_cong to expose the equality*)
goalw WF.thy [cut_def]
"(cut f r x = cut g r x) = (!y. (y,x):r --> f(y)=g(y))";
-by(simp_tac (HOL_ss addsimps [expand_fun_eq]
+by (simp_tac (HOL_ss addsimps [expand_fun_eq]
setloop (split_tac [expand_if])) 1);
qed "cuts_eq";
goalw WF.thy [cut_def] "!!x. (x,a):r ==> (cut f r a)(x) = f(x)";
-by(asm_simp_tac HOL_ss 1);
+by (asm_simp_tac HOL_ss 1);
qed "cut_apply";
(*** is_recfun ***)
@@ -82,7 +82,7 @@
goalw WF.thy [is_recfun_def,cut_def]
"!!f. [| is_recfun r H a f; ~(b,a):r |] ==> f(b) = (@z.True)";
by (etac ssubst 1);
-by(asm_simp_tac HOL_ss 1);
+by (asm_simp_tac HOL_ss 1);
qed "is_recfun_undef";
(*** NOTE! some simplifications need a different finish_tac!! ***)
@@ -129,7 +129,7 @@
by (wf_ind_tac "a" prems 1);
by (res_inst_tac [("f","cut (%y. H (the_recfun r H y) y) r a1")]
is_the_recfun 1);
- by (rewrite_goals_tac [is_recfun_def]);
+ by (rewtac is_recfun_def);
by (rtac (cuts_eq RS ssubst) 1);
by (rtac allI 1);
by (rtac impI 1);
--- a/src/HOL/subset.ML Wed Mar 06 12:19:16 1996 +0100
+++ b/src/HOL/subset.ML Wed Mar 06 12:52:11 1996 +0100
@@ -13,7 +13,7 @@
(fn _=> [ (rtac subsetI 1), (etac insertI2 1) ]);
goal Set.thy "!!x. x ~: A ==> (A <= insert x B) = (A <= B)";
-by(fast_tac set_cs 1);
+by (fast_tac set_cs 1);
qed "subset_insert";
(*** Big Union -- least upper bound of a set ***)