--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/ex/loeckx.ML Tue Feb 07 17:26:32 1995 +0100
@@ -0,0 +1,120 @@
+(* Elegant proof for continuity of fixed-point operator *)
+(* Loeckx & Sieber S.88 *)
+
+val prems = goalw Fix.thy [Ifix_def]
+"Ifix(F)=lub(range(%i.%G.iterate(i,G,UU)))(F)";
+by (rtac (thelub_fun RS ssubst) 1);
+by (rtac ch2ch_fun 1);
+back();
+by (rtac refl 2);
+by (rtac is_chainI 1);
+by (strip_tac 1);
+by (rtac (less_fun RS iffD2) 1);
+by (strip_tac 1);
+by (rtac (less_fun RS iffD2) 1);
+by (strip_tac 1);
+by (rtac (is_chain_iterate RS is_chainE RS spec) 1);
+val loeckx_sieber = result();
+
+(*
+
+Idea: %i.%G.iterate(i,G,UU)) is a chain of continuous functions and
+ Ifix is the lub of this chain. Hence Ifix is continuous.
+
+----- The proof in HOLCF -----------------------
+
+Since we already proved the theorem
+
+val contX_lubcfun = prove_goal Cfun2.thy
+ "is_chain(F) ==> contX(% x.lub(range(% j.F(j)[x])))"
+
+
+we suffices to prove:
+
+Ifix = (%f.lub(range(%j.(LAM f. iterate(j, f, UU))[f])))
+
+and
+
+contX(%f.lub(range(%j.(LAM f. iterate(j, f, UU))[f])))
+
+Note that if we use the term
+
+%i.%G.iterate(i,G,UU)) instead of (%j.(LAM f. iterate(j, f, UU)))
+
+we cannot use the theorem contX_lubcfun
+
+*)
+
+val prems = goal Fix.thy "contX(Ifix)";
+by (res_inst_tac [("t","Ifix"),("s","(%f.lub(range(%j.(LAM f. iterate(j, f, UU))[f])))")] ssubst 1);
+by (rtac ext 1);
+by (rewrite_goals_tac [Ifix_def] );
+by (subgoal_tac " range(% i.iterate(i, f, UU)) = range(%j.(LAM f. iterate(j, f, UU))[f])" 1);
+by (etac arg_cong 1);
+by (subgoal_tac " (% i.iterate(i, f, UU)) = (%j.(LAM f. iterate(j, f, UU))[f])" 1);
+by (etac arg_cong 1);
+by (rtac ext 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac refl 1);
+by (rtac contX_lubcfun 1);
+by (rtac is_chainI 1);
+by (strip_tac 1);
+by (rtac less_cfun2 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac (is_chain_iterate RS is_chainE RS spec) 1);
+val contX_Ifix2 = result();
+
+(* the proof in little steps *)
+
+val prems = goal Fix.thy
+"(% i.iterate(i, f, UU)) = (%j.(LAM f. iterate(j, f, UU))[f])";
+by (rtac ext 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac refl 1);
+val fix_lemma1 = result();
+
+val prems = goal Fix.thy
+" Ifix = (%f.lub(range(%j.(LAM f.iterate(j,f,UU))[f])))";
+by (rtac ext 1);
+by (rewrite_goals_tac [Ifix_def] );
+by (rtac (fix_lemma1 RS ssubst) 1);
+by (rtac refl 1);
+val fix_lemma2 = result();
+
+(*
+- contX_lubcfun;
+val it = "is_chain(?F) ==> contX(%x. lub(range(%j. ?F(j)[x])))" : thm
+
+*)
+
+val prems = goal Fix.thy "contX(Ifix)";
+by (rtac ( fix_lemma2 RS ssubst) 1);
+by (rtac contX_lubcfun 1);
+by (rtac is_chainI 1);
+by (strip_tac 1);
+by (rtac less_cfun2 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac (beta_cfun RS ssubst) 1);
+by (rtac contX2contX_CF1L 1);
+by (rtac contX_iterate 1);
+by (rtac (is_chain_iterate RS is_chainE RS spec) 1);
+val contX_Ifix2 = result();
+
+
+
+
+
+
+
+