removed Kleene_Algebra because of superior AFP entry; authors agreed
authornipkow
Thu, 29 May 2014 16:13:47 +0200
changeset 57112 70395c65c0e3
parent 57111 de33f3965ca6
child 57114 f00a299fa522
removed Kleene_Algebra because of superior AFP entry; authors agreed
NEWS
src/HOL/Library/Kleene_Algebra.thy
src/HOL/Library/Library.thy
--- a/NEWS	Thu May 29 11:11:22 2014 +0200
+++ b/NEWS	Thu May 29 16:13:47 2014 +0200
@@ -755,6 +755,8 @@
 
     * Renamed abbreviation integral\<^sup>P to integral\<^sup>N.
 
+* Library/Kleene-Algebra was removed because AFP/Kleene_Algebra subsumes it.
+
 *** Scala ***
 
 * The signature and semantics of Document.Snapshot.cumulate_markup /
--- a/src/HOL/Library/Kleene_Algebra.thy	Thu May 29 11:11:22 2014 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,485 +0,0 @@
-(*  Title:      HOL/Library/Kleene_Algebra.thy
-    Author:     Alexander Krauss, TU Muenchen
-    Author:     Tjark Weber, University of Cambridge
-*)
-
-header {* Kleene Algebras *}
-
-theory Kleene_Algebra
-imports Main 
-begin
-
-text {* WARNING: This is work in progress. Expect changes in the future. *}
-
-text {* Various lemmas correspond to entries in a database of theorems
-  about Kleene algebras and related structures maintained by Peter
-  H\"ofner: see
-  @{url "http://www.informatik.uni-augsburg.de/~hoefnepe/kleene_db/lemmas/index.html"}. *}
-
-subsection {* Preliminaries *}
-
-text {* A class where addition is idempotent. *}
-
-class idem_add = plus +
-  assumes add_idem [simp]: "x + x = x"
-
-text {* A class of idempotent abelian semigroups (written additively). *}
-
-class idem_ab_semigroup_add = ab_semigroup_add + idem_add
-begin
-
-lemma add_idem2 [simp]: "x + (x + y) = x + y"
-unfolding add_assoc[symmetric] by simp
-
-lemma add_idem3 [simp]: "x + (y + x) = x + y"
-by (simp add: add_commute)
-
-end
-
-text {* A class where order is defined in terms of addition. *}
-
-class order_by_add = plus + ord +
-  assumes order_def: "x \<le> y \<longleftrightarrow> x + y = y"
-  assumes strict_order_def: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
-begin
-
-lemma ord_simp [simp]: "x \<le> y \<Longrightarrow> x + y = y"
-  unfolding order_def .
-
-lemma ord_intro: "x + y = y \<Longrightarrow> x \<le> y"
-  unfolding order_def .
-
-end
-
-text {* A class of idempotent abelian semigroups (written additively)
-  where order is defined in terms of addition. *}
-
-class ordered_idem_ab_semigroup_add = idem_ab_semigroup_add + order_by_add
-begin
-
-lemma ord_simp2 [simp]: "x \<le> y \<Longrightarrow> y + x = y"
-  unfolding order_def add_commute .
-
-subclass order proof
-  fix x y z :: 'a
-  show "x \<le> x"
-    unfolding order_def by simp
-  show "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z"
-    unfolding order_def by (metis add_assoc)
-  show "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y"
-    unfolding order_def by (simp add: add_commute)
-  show "x < y \<longleftrightarrow> x \<le> y \<and> \<not> y \<le> x"
-    by (fact strict_order_def)
-qed
-
-subclass ordered_ab_semigroup_add proof
-  fix a b c :: 'a
-  assume "a \<le> b" show "c + a \<le> c + b"
-  proof (rule ord_intro)
-    have "c + a + (c + b) = a + b + c" by (simp add: add_ac)
-    also have "\<dots> = c + b" by (simp add: `a \<le> b` add_ac)
-    finally show "c + a + (c + b) = c + b" .
-  qed
-qed
-
-lemma plus_leI [simp]: 
-  "x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x + y \<le> z"
-  unfolding order_def by (simp add: add_assoc)
-
-lemma less_add [simp]: "x \<le> x + y" "y \<le> x + y"
-unfolding order_def by (auto simp: add_ac)
-
-lemma add_est1 [elim]: "x + y \<le> z \<Longrightarrow> x \<le> z"
-using less_add(1) by (rule order_trans)
-
-lemma add_est2 [elim]: "x + y \<le> z \<Longrightarrow> y \<le> z"
-using less_add(2) by (rule order_trans)
-
-lemma add_supremum: "(x + y \<le> z) = (x \<le> z \<and> y \<le> z)"
-by auto
-
-end
-
-text {* A class of commutative monoids (written additively) where
-  order is defined in terms of addition. *}
-
-class ordered_comm_monoid_add = comm_monoid_add + order_by_add
-begin
-
-lemma zero_minimum [simp]: "0 \<le> x"
-unfolding order_def by simp
-
-end
-
-text {* A class of idempotent commutative monoids (written additively)
-  where order is defined in terms of addition. *}
-
-class ordered_idem_comm_monoid_add = ordered_comm_monoid_add + idem_add
-begin
-
-subclass ordered_idem_ab_semigroup_add ..
-
-lemma sum_is_zero: "(x + y = 0) = (x = 0 \<and> y = 0)"
-by (simp add: add_supremum eq_iff)
-
-end
-
-subsection {* A class of Kleene algebras *}
-
-text {* Class @{text pre_kleene} provides all operations of Kleene
-  algebras except for the Kleene star. *}
-
-class pre_kleene = semiring_1 + idem_add + order_by_add
-begin
-
-subclass ordered_idem_comm_monoid_add ..
-
-subclass ordered_semiring proof
-  fix a b c :: 'a
-  assume "a \<le> b"
-
-  show "c * a \<le> c * b"
-  proof (rule ord_intro)
-    from `a \<le> b` have "c * (a + b) = c * b" by simp
-    thus "c * a + c * b = c * b" by (simp add: distrib_left)
-  qed
-
-  show "a * c \<le> b * c"
-  proof (rule ord_intro)
-    from `a \<le> b` have "(a + b) * c = b * c" by simp
-    thus "a * c + b * c = b * c" by (simp add: distrib_right)
-  qed
-qed
-
-end
-
-text {* A class that provides a star operator. *}
-
-class star =
-  fixes star :: "'a \<Rightarrow> 'a"
-
-text {* Finally, a class of Kleene algebras. *}
-
-class kleene = pre_kleene + star +
-  assumes star1: "1 + a * star a \<le> star a"
-  and star2: "1 + star a * a \<le> star a"
-  and star3: "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
-  and star4: "x * a \<le> x \<Longrightarrow> x * star a \<le> x"
-begin
-
-lemma star3' [simp]:
-  assumes a: "b + a * x \<le> x"
-  shows "star a * b \<le> x"
-by (metis assms less_add mult_left_mono order_trans star3 zero_minimum)
-
-lemma star4' [simp]:
-  assumes a: "b + x * a \<le> x"
-  shows "b * star a \<le> x"
-by (metis assms less_add mult_right_mono order_trans star4 zero_minimum)
-
-lemma star_unfold_left: "1 + a * star a = star a"
-proof (rule antisym, rule star1)
-  have "1 + a * (1 + a * star a) \<le> 1 + a * star a"
-    by (metis add_left_mono mult_left_mono star1 zero_minimum)
-  with star3' have "star a * 1 \<le> 1 + a * star a" .
-  thus "star a \<le> 1 + a * star a" by simp
-qed
-
-lemma star_unfold_right: "1 + star a * a = star a"
-proof (rule antisym, rule star2)
-  have "1 + (1 + star a * a) * a \<le> 1 + star a * a"
-    by (metis add_left_mono mult_right_mono star2 zero_minimum)
-  with star4' have "1 * star a \<le> 1 + star a * a" .
-  thus "star a \<le> 1 + star a * a" by simp
-qed
-
-lemma star_zero [simp]: "star 0 = 1"
-by (fact star_unfold_left[of 0, simplified, symmetric])
-
-lemma star_one [simp]: "star 1 = 1"
-by (metis add_idem2 eq_iff mult_1_right ord_simp2 star3 star_unfold_left)
-
-lemma one_less_star [simp]: "1 \<le> star x"
-by (metis less_add(1) star_unfold_left)
-
-lemma ka1 [simp]: "x * star x \<le> star x"
-by (metis less_add(2) star_unfold_left)
-
-lemma star_mult_idem [simp]: "star x * star x = star x"
-by (metis add_commute add_est1 eq_iff mult_1_right distrib_left star3 star_unfold_left)
-
-lemma less_star [simp]: "x \<le> star x"
-by (metis less_add(2) mult_1_right mult_left_mono one_less_star order_trans star_unfold_left zero_minimum)
-
-lemma star_simulation_leq_1:
-  assumes a: "a * x \<le> x * b"
-  shows "star a * x \<le> x * star b"
-proof (rule star3', rule order_trans)
-  from a have "a * x * star b \<le> x * b * star b"
-    by (rule mult_right_mono) simp
-  thus "x + a * (x * star b) \<le> x + x * b * star b"
-    using add_left_mono by (auto simp: mult_assoc)
-  show "\<dots> \<le> x * star b"
-    by (metis add_supremum ka1 mult.right_neutral mult_assoc mult_left_mono one_less_star zero_minimum)
-qed
-
-lemma star_simulation_leq_2:
-  assumes a: "x * a \<le> b * x"
-  shows "x * star a \<le> star b * x"
-proof (rule star4', rule order_trans)
-  from a have "star b * x * a \<le> star b * b * x"
-    by (metis mult_assoc mult_left_mono zero_minimum)
-  thus "x + star b * x * a \<le> x + star b * b * x"
-    using add_mono by auto
-  show "\<dots> \<le> star b * x"
-    by (metis add_supremum distrib_right less_add mult.left_neutral mult_assoc mult_right_mono star_unfold_right zero_minimum)
-qed
-
-lemma star_simulation [simp]:
-  assumes a: "a * x = x * b"
-  shows "star a * x = x * star b"
-by (metis antisym assms order_refl star_simulation_leq_1 star_simulation_leq_2)
-
-lemma star_slide2 [simp]: "star x * x = x * star x"
-by (metis star_simulation)
-
-lemma star_idemp [simp]: "star (star x) = star x"
-by (metis add_idem2 eq_iff less_star mult_1_right star3' star_mult_idem star_unfold_left)
-
-lemma star_slide [simp]: "star (x * y) * x = x * star (y * x)"
-by (metis mult_assoc star_simulation)
-
-lemma star_one':
-  assumes "p * p' = 1" "p' * p = 1"
-  shows "p' * star a * p = star (p' * a * p)"
-proof -
-  from assms
-  have "p' * star a * p = p' * star (p * p' * a) * p"
-    by simp
-  also have "\<dots> = p' * p * star (p' * a * p)"
-    by (simp add: mult_assoc)
-  also have "\<dots> = star (p' * a * p)"
-    by (simp add: assms)
-  finally show ?thesis .
-qed
-
-lemma x_less_star [simp]: "x \<le> x * star a"
-by (metis mult.right_neutral mult_left_mono one_less_star zero_minimum)
-
-lemma star_mono [simp]: "x \<le> y \<Longrightarrow> star x \<le> star y"
-by (metis add_commute eq_iff less_star ord_simp2 order_trans star3 star4' star_idemp star_mult_idem x_less_star)
-
-lemma star_sub: "x \<le> 1 \<Longrightarrow> star x = 1"
-by (metis add_commute ord_simp star_idemp star_mono star_mult_idem star_one star_unfold_left)
-
-lemma star_unfold2: "star x * y = y + x * star x * y"
-by (subst star_unfold_right[symmetric]) (simp add: mult_assoc distrib_right)
-
-lemma star_absorb_one [simp]: "star (x + 1) = star x"
-by (metis add_commute eq_iff distrib_right less_add mult_1_left mult_assoc star3 star_mono star_mult_idem star_unfold2 x_less_star)
-
-lemma star_absorb_one' [simp]: "star (1 + x) = star x"
-by (subst add_commute) (fact star_absorb_one)
-
-lemma ka16: "(y * star x) * star (y * star x) \<le> star x * star (y * star x)"
-by (metis ka1 less_add(1) mult_assoc order_trans star_unfold2)
-
-lemma ka16': "(star x * y) * star (star x * y) \<le> star (star x * y) * star x"
-by (metis ka1 mult_assoc order_trans star_slide x_less_star)
-
-lemma ka17: "(x * star x) * star (y * star x) \<le> star x * star (y * star x)"
-by (metis ka1 mult_assoc mult_right_mono zero_minimum)
-
-lemma ka18: "(x * star x) * star (y * star x) + (y * star x) * star (y * star x)
-  \<le> star x * star (y * star x)"
-by (metis ka16 ka17 distrib_right mult_assoc plus_leI)
-
-lemma star_decomp: "star (x + y) = star x * star (y * star x)"
-proof (rule antisym)
-  have "1 + (x + y) * star x * star (y * star x) \<le>
-    1 + x * star x * star (y * star x) + y * star x * star (y * star x)"
-    by (metis add_commute add_left_commute eq_iff distrib_right mult_assoc)
-  also have "\<dots> \<le> star x * star (y * star x)"
-    by (metis add_commute add_est1 add_left_commute ka18 plus_leI star_unfold_left x_less_star)
-  finally show "star (x + y) \<le> star x * star (y * star x)"
-    by (metis mult_1_right mult_assoc star3')
-next
-  show "star x * star (y * star x) \<le> star (x + y)"
-    by (metis add_assoc add_est1 add_est2 add_left_commute less_star mult_mono'
-      star_absorb_one star_absorb_one' star_idemp star_mono star_mult_idem zero_minimum)
-qed
-
-lemma ka22: "y * star x \<le> star x * star y \<Longrightarrow>  star y * star x \<le> star x * star y"
-by (metis mult_assoc mult_right_mono plus_leI star3' star_mult_idem x_less_star zero_minimum)
-
-lemma ka23: "star y * star x \<le> star x * star y \<Longrightarrow> y * star x \<le> star x * star y"
-by (metis less_star mult_right_mono order_trans zero_minimum)
-
-lemma ka24: "star (x + y) \<le> star (star x * star y)"
-by (metis add_est1 add_est2 less_add(1) mult_assoc order_def plus_leI star_absorb_one star_mono star_slide2 star_unfold2 star_unfold_left x_less_star)
-
-lemma ka25: "star y * star x \<le> star x * star y \<Longrightarrow> star (star y * star x) \<le> star x * star y"
-proof -
-  assume "star y * star x \<le> star x * star y"
-  hence "\<forall>x\<^sub>1. star y * (star x * x\<^sub>1) \<le> star x * (star y * x\<^sub>1)" by (metis mult_assoc mult_right_mono zero_minimum)
-  hence "star y * (star x * star y) \<le> star x * star y" by (metis star_mult_idem)
-  hence "\<exists>x\<^sub>1. star (star y * star x) * star x\<^sub>1 \<le> star x * star y" by (metis star_decomp star_idemp star_simulation_leq_2 star_slide)
-  hence "\<exists>x\<^sub>1\<ge>star (star y * star x). x\<^sub>1 \<le> star x * star y" by (metis x_less_star)
-  thus "star (star y * star x) \<le> star x * star y" by (metis order_trans)
-qed
-
-lemma church_rosser: 
-  "star y * star x \<le> star x * star y \<Longrightarrow> star (x + y) \<le> star x * star y"
-by (metis add_commute ka24 ka25 order_trans)
-
-lemma kleene_bubblesort: "y * x \<le> x * y \<Longrightarrow> star (x + y) \<le> star x * star y"
-by (metis church_rosser star_simulation_leq_1 star_simulation_leq_2)
-
-lemma ka27: "star (x + star y) = star (x + y)"
-by (metis add_commute star_decomp star_idemp)
-
-lemma ka28: "star (star x + star y) = star (x + y)"
-by (metis add_commute ka27)
-
-lemma ka29: "(y * (1 + x) \<le> (1 + x) * star y) = (y * x \<le> (1 + x) * star y)"
-by (metis add_supremum distrib_right less_add(1) less_star mult.left_neutral mult.right_neutral order_trans distrib_left)
-
-lemma ka30: "star x * star y \<le> star (x + y)"
-by (metis mult_left_mono star_decomp star_mono x_less_star zero_minimum)
-
-lemma simple_simulation: "x * y = 0 \<Longrightarrow> star x * y = y"
-by (metis mult.right_neutral mult_zero_right star_simulation star_zero)
-
-lemma ka32: "star (x * y) = 1 + x * star (y * x) * y"
-by (metis mult_assoc star_slide star_unfold_left)
-
-lemma ka33: "x * y + 1 \<le> y \<Longrightarrow> star x \<le> y"
-by (metis add_commute mult.right_neutral star3')
-
-end
-
-subsection {* Complete lattices are Kleene algebras *}
-
-lemma (in complete_lattice) SUP_upper':
-  assumes "l \<le> M i"
-  shows "l \<le> (SUP i. M i)"
-  using assms by (rule order_trans) (rule SUP_upper [OF UNIV_I])
-
-class kleene_by_complete_lattice = pre_kleene
-  + complete_lattice + power + star +
-  assumes star_cont: "a * star b * c = SUPREMUM UNIV (\<lambda>n. a * b ^ n * c)"
-begin
-
-subclass kleene
-proof
-  fix a x :: 'a
-  
-  have [simp]: "1 \<le> star a"
-    unfolding star_cont[of 1 a 1, simplified] 
-    by (subst power_0[symmetric]) (rule SUP_upper [OF UNIV_I])
-
-  have "a * star a \<le> star a"
-    using star_cont[of a a 1] star_cont[of 1 a 1]
-    by (auto simp add: power_Suc[symmetric] simp del: power_Suc
-      intro: SUP_least SUP_upper)
-
-  then show "1 + a * star a \<le> star a"
-    by simp
-
-  then show "1 + star a * a \<le> star a"
-    using star_cont[of a a 1] star_cont[of 1 a a]
-    by (simp add: power_commutes)
-
-  show "a * x \<le> x \<Longrightarrow> star a * x \<le> x"
-  proof -
-    assume a: "a * x \<le> x"
-
-    {
-      fix n
-      have "a ^ (Suc n) * x \<le> a ^ n * x"
-      proof (induct n)
-        case 0 thus ?case by (simp add: a)
-      next
-        case (Suc n)
-        hence "a * (a ^ Suc n * x) \<le> a * (a ^ n * x)"
-          by (auto intro: mult_mono)
-        thus ?case
-          by (simp add: mult_assoc)
-      qed
-    }
-    note a = this
-    
-    {
-      fix n have "a ^ n * x \<le> x"
-      proof (induct n)
-        case 0 show ?case by simp
-      next
-        case (Suc n) with a[of n]
-        show ?case by simp
-      qed
-    }
-    note b = this
-    
-    show "star a * x \<le> x"
-      unfolding star_cont[of 1 a x, simplified]
-      by (rule SUP_least) (rule b)
-  qed
-
-  show "x * a \<le> x \<Longrightarrow> x * star a \<le> x" (* symmetric *)
-  proof -
-    assume a: "x * a \<le> x"
-
-    {
-      fix n
-      have "x * a ^ (Suc n) \<le> x * a ^ n"
-      proof (induct n)
-        case 0 thus ?case by (simp add: a)
-      next
-        case (Suc n)
-        hence "(x * a ^ Suc n) * a  \<le> (x * a ^ n) * a"
-          by (auto intro: mult_mono)
-        thus ?case
-          by (simp add: power_commutes mult_assoc)
-      qed
-    }
-    note a = this
-    
-    {
-      fix n have "x * a ^ n \<le> x"
-      proof (induct n)
-        case 0 show ?case by simp
-      next
-        case (Suc n) with a[of n]
-        show ?case by simp
-      qed
-    }
-    note b = this
-    
-    show "x * star a \<le> x"
-      unfolding star_cont[of x a 1, simplified]
-      by (rule SUP_least) (rule b)
-  qed
-qed
-
-end
-
-subsection {* Transitive closure *}
-
-context kleene
-begin
-
-definition
-  tcl_def: "tcl x = star x * x"
-
-lemma tcl_zero: "tcl 0 = 0"
-unfolding tcl_def by simp
-
-lemma tcl_unfold_right: "tcl a = a + tcl a * a"
-by (metis star_slide2 star_unfold2 tcl_def)
-
-lemma less_tcl: "a \<le> tcl a"
-by (metis star_slide2 tcl_def x_less_star)
-
-end
-
-end
--- a/src/HOL/Library/Library.thy	Thu May 29 11:11:22 2014 +0200
+++ b/src/HOL/Library/Library.thy	Thu May 29 16:13:47 2014 +0200
@@ -34,7 +34,6 @@
   Lattice_Syntax
   ListVector
   Lubs_Glbs
-  Kleene_Algebra
   Mapping
   Monad_Syntax
   Multiset