HOL-Probability: add measurable space for trees
authorhoelzl
Wed, 07 Jun 2017 17:11:45 -0400
changeset 66026 704e4970d703
parent 66025 96f86c613a9f
child 66034 ded1c636aece
HOL-Probability: add measurable space for trees
src/HOL/Probability/Probability.thy
src/HOL/Probability/Tree_Space.thy
--- a/src/HOL/Probability/Probability.thy	Tue Jun 06 23:13:53 2017 +0200
+++ b/src/HOL/Probability/Probability.thy	Wed Jun 07 17:11:45 2017 -0400
@@ -11,6 +11,7 @@
   Random_Permutations
   SPMF
   Stream_Space
+  Tree_Space
   Conditional_Expectation
   Essential_Supremum
   Stopping_Time
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Tree_Space.thy	Wed Jun 07 17:11:45 2017 -0400
@@ -0,0 +1,343 @@
+(*  Title:      HOL/Probability/Tree_Space.thy
+    Author:     Johannes Hölzl, CMU *)
+
+theory Tree_Space
+  imports Analysis
+begin
+
+lemma countable_lfp:
+  assumes step: "\<And>Y. countable Y \<Longrightarrow> countable (F Y)"
+  and cont: "Order_Continuity.sup_continuous F"
+  shows "countable (lfp F)"
+by(subst sup_continuous_lfp[OF cont])(simp add: countable_funpow[OF step])
+
+lemma countable_lfp_apply:
+  assumes step: "\<And>Y x. (\<And>x. countable (Y x)) \<Longrightarrow> countable (F Y x)"
+  and cont: "Order_Continuity.sup_continuous F"
+  shows "countable (lfp F x)"
+proof -
+  { fix n
+    have "\<And>x. countable ((F ^^ n) bot x)"
+      by(induct n)(auto intro: step) }
+  thus ?thesis using cont by(simp add: sup_continuous_lfp)
+qed
+
+datatype 'a tree = Leaf
+  | Node (left: "'a tree") (val: 'a) (right: "'a tree")
+  where
+    "left Leaf = Leaf"
+  | "right Leaf = Leaf"
+  | "val Leaf = undefined"
+
+inductive_set trees :: "'a set \<Rightarrow> 'a tree set" for S :: "'a set" where
+  [intro!]: "Leaf \<in> trees S"
+| "l \<in> trees S \<Longrightarrow> r \<in> trees S \<Longrightarrow> v \<in> S \<Longrightarrow> Node l v r \<in> trees S"
+
+lemma Node_in_trees_iff[simp]: "Node l v r \<in> trees S \<longleftrightarrow> (l \<in> trees S \<and> v \<in> S \<and> r \<in> trees S)"
+  by (subst trees.simps) auto
+
+lemma trees_sub_lfp: "trees S \<subseteq> lfp (\<lambda>T. T \<union> {Leaf} \<union> (\<Union>l\<in>T. (\<Union>v\<in>S. (\<Union>r\<in>T. {Node l v r}))))"
+proof
+  have mono: "mono (\<lambda>T. T \<union> {Leaf} \<union> (\<Union>l\<in>T. (\<Union>v\<in>S. (\<Union>r\<in>T. {Node l v r}))))"
+    by (auto simp: mono_def)
+  fix t assume "t \<in> trees S" then show "t \<in> lfp (\<lambda>T. T \<union> {Leaf} \<union> (\<Union>l\<in>T. (\<Union>v\<in>S. (\<Union>r\<in>T. {Node l v r}))))"
+  proof induction
+    case 1 then show ?case
+      by (subst lfp_unfold[OF mono]) auto
+  next
+    case 2 then show ?case
+      by (subst lfp_unfold[OF mono]) auto
+  qed
+qed
+
+lemma countable_trees: "countable A \<Longrightarrow> countable (trees A)"
+  apply (rule countable_subset[OF trees_sub_lfp])
+  apply (rule countable_lfp)
+  subgoal by auto
+  apply (intro sup_continuous_sup sup_continuous_const)
+    subgoal by (simp add: sup_continuous_def)
+    subgoal apply (auto simp add: sup_continuous_def)
+      subgoal premises prems for M x c a y d
+      using prems(3,5) prems(2)[THEN incseqD, of x "max x y"] prems(2)[THEN incseqD, of y "max x y"]
+      by (intro exI[of _ "max x y"]) auto
+    done
+  done
+
+lemma trees_UNIV[simp]: "trees UNIV = UNIV"
+proof -
+  have "t \<in> trees UNIV" for t :: "'a tree"
+    by (induction t) (auto intro: trees.intros(2))
+  then show ?thesis by auto
+qed
+
+instance tree :: (countable) countable
+proof
+  have "countable (UNIV :: 'a tree set)"
+    by (subst trees_UNIV[symmetric]) (intro countable_trees[OF countableI_type])
+  then show "\<exists>to_nat::'a tree \<Rightarrow> nat. inj to_nat"
+    by (auto simp: countable_def)
+qed
+
+lemma map_in_trees[intro]: "(\<And>x. x \<in> set_tree t \<Longrightarrow> f x \<in> S) \<Longrightarrow> map_tree f t \<in> trees S"
+  by (induction t) (auto intro: trees.intros(2))
+
+primrec trees_cyl :: "'a set tree \<Rightarrow> 'a tree set" where
+  "trees_cyl Leaf = {Leaf} "
+| "trees_cyl (Node l v r) = (\<Union>l'\<in>trees_cyl l. (\<Union>v'\<in>v. (\<Union>r'\<in>trees_cyl r. {Node l' v' r'})))"
+
+definition tree_sigma :: "'a measure \<Rightarrow> 'a tree measure"
+where
+  "tree_sigma M = sigma (trees (space M)) (trees_cyl ` trees (sets M))"
+
+lemma Node_in_trees_cyl: "Node l' v' r' \<in> trees_cyl t \<longleftrightarrow>
+  (\<exists>l v r. t = Node l v r \<and> l' \<in> trees_cyl l \<and> r' \<in> trees_cyl r \<and> v' \<in> v)"
+  by (cases t) auto
+
+lemma trees_cyl_sub_trees:
+  assumes "t \<in> trees A" "A \<subseteq> Pow B" shows "trees_cyl t \<subseteq> trees B"
+  using assms(1)
+proof induction
+  case (2 l v r) with \<open>A \<subseteq> Pow B\<close> show ?case
+    by (auto intro!: trees.intros(2))
+qed auto
+
+lemma trees_cyl_sets_in_space: "trees_cyl ` trees (sets M) \<subseteq> Pow (trees (space M))"
+  using trees_cyl_sub_trees[OF _ sets.space_closed, of _ M] by auto
+
+lemma space_tree_sigma: "space (tree_sigma M) = trees (space M)"
+  unfolding tree_sigma_def by (rule space_measure_of_conv)
+
+lemma sets_tree_sigma_eq: "sets (tree_sigma M) = sigma_sets (trees (space M)) (trees_cyl ` trees (sets M))"
+  unfolding tree_sigma_def by (rule sets_measure_of) (rule trees_cyl_sets_in_space)
+
+lemma Leaf_in_tree_sigma[measurable]: "{Leaf} \<in> sets (tree_sigma M)"
+  unfolding sets_tree_sigma_eq
+  by (rule sigma_sets.Basic) (auto intro: trees.intros(2) image_eqI[where x=Leaf])
+
+lemma trees_cyl_map_treeI: "t \<in> trees_cyl (map_tree (\<lambda>x. A) t)" if *: "t \<in> trees A"
+  using * by induction auto
+
+lemma trees_cyl_map_in_sets:
+  "(\<And>x. x \<in> set_tree t \<Longrightarrow> f x \<in> sets M) \<Longrightarrow> trees_cyl (map_tree f t) \<in> sets (tree_sigma M)"
+  by (subst sets_tree_sigma_eq) auto
+
+lemma Node_in_tree_sigma:
+  assumes L: "X \<in> sets (M \<Otimes>\<^sub>M (tree_sigma M \<Otimes>\<^sub>M tree_sigma M))"
+  shows "{Node l v r | l v r. (v, l, r) \<in> X} \<in> sets (tree_sigma M)"
+proof -
+  let ?E = "\<lambda>s::unit tree. trees_cyl (map_tree (\<lambda>_. space M) s)"
+  have 1: "countable (range ?E)"
+    by (intro countable_image countableI_type)
+  have 2: "trees_cyl ` trees (sets M) \<subseteq> Pow (space (tree_sigma M))"
+    using trees_cyl_sets_in_space[of M] by (simp add: space_tree_sigma)
+  have 3: "sets (tree_sigma M) = sigma_sets (space (tree_sigma M)) (trees_cyl ` trees (sets M))"
+    unfolding sets_tree_sigma_eq by (simp add: space_tree_sigma)
+  have 4: "(\<Union>s. ?E s) = space (tree_sigma M)"
+  proof (safe; clarsimp simp: space_tree_sigma)
+    fix t s assume "t \<in> trees_cyl (map_tree (\<lambda>_::unit. space M) s)"
+    then show "t \<in> trees (space M)"
+      by (induction s arbitrary: t) auto
+  next
+    fix t assume "t \<in> trees (space M)"
+    then show "\<exists>t'. t \<in> ?E t'"
+      by (intro exI[of _ "map_tree (\<lambda>_. ()) t"])
+         (auto simp: tree.map_comp comp_def intro: trees_cyl_map_treeI)
+  qed
+  have 5: "range ?E \<subseteq> trees_cyl ` trees (sets M)" by auto
+  let ?P = "{A \<times> B | A B. A \<in> trees_cyl ` trees (sets M) \<and> B \<in> trees_cyl ` trees (sets M)}"
+  have P: "sets (tree_sigma M \<Otimes>\<^sub>M tree_sigma M) = sets (sigma (space (tree_sigma M) \<times> space (tree_sigma M)) ?P)"
+    by (rule sets_pair_eq[OF 2 3 1 5 4 2 3 1 5 4])
+
+  have "sets (M \<Otimes>\<^sub>M (tree_sigma M \<Otimes>\<^sub>M tree_sigma M)) =
+    sets (sigma (space M \<times> space (tree_sigma M \<Otimes>\<^sub>M tree_sigma M)) {A \<times> BC | A BC. A \<in> sets M \<and> BC \<in> ?P})"
+  proof (rule sets_pair_eq)
+    show "sets M \<subseteq> Pow (space M)" "sets M = sigma_sets (space M) (sets M)"
+      by (auto simp: sets.sigma_sets_eq sets.space_closed)
+    show "countable {space M}" "{space M} \<subseteq> sets M" "\<Union>{space M} = space M"
+      by auto
+    show "?P \<subseteq> Pow (space (tree_sigma M \<Otimes>\<^sub>M tree_sigma M))"
+      using trees_cyl_sets_in_space[of M]
+      by (auto simp: space_pair_measure space_tree_sigma subset_eq)
+    then show "sets (tree_sigma M \<Otimes>\<^sub>M tree_sigma M) =
+      sigma_sets (space (tree_sigma M \<Otimes>\<^sub>M tree_sigma M)) ?P"
+      by (subst P, subst sets_measure_of) (auto simp: space_tree_sigma space_pair_measure)
+    show "countable ((\<lambda>(a, b). a \<times> b) ` (range ?E \<times> range ?E))"
+      by (intro countable_image countable_SIGMA countableI_type)
+    show "(\<lambda>(a, b). a \<times> b) ` (range ?E \<times> range ?E) \<subseteq> ?P"
+      by auto
+  qed (insert 4, auto simp: space_pair_measure space_tree_sigma set_eq_iff)
+  also have "\<dots> = sigma_sets (space M \<times> trees (space M) \<times> trees (space M))
+    {A \<times> trees_cyl B \<times> trees_cyl C | A B C. A \<in> sets M \<and> B \<in> trees (sets M) \<and> C \<in> trees (sets M) }"
+    apply (subst sets_measure_of)
+    subgoal
+      using sets.space_closed[of M] trees_cyl_sets_in_space[of M]
+      by (clarsimp simp: space_pair_measure space_tree_sigma) blast
+    apply (rule arg_cong2[where f=sigma_sets])
+    apply (auto simp: space_pair_measure space_tree_sigma)
+      subgoal premises prems for A B C
+      apply (rule exI conjI refl prems)+
+      using trees_cyl_sets_in_space[of M] prems
+      by auto
+    done
+  finally have "X \<in> sigma_sets (space M \<times> trees (space M) \<times> trees (space M))
+    {A \<times> trees_cyl B \<times> trees_cyl C | A B C. A \<in> sets M \<and> B \<in> trees (sets M) \<and> C \<in> trees (sets M) }"
+    using assms by auto
+  then show ?thesis
+  proof induction
+    case (Basic A')
+    then obtain A B C where "A' = A \<times> trees_cyl B \<times> trees_cyl C"
+      and *: "A \<in> sets M" "B \<in> trees (sets M)" "C \<in> trees (sets M)"
+      by auto
+    then have "{Node l v r |l v r. (v, l, r) \<in> A'} = trees_cyl (Node B A C)"
+      by auto
+    then show ?case
+      by (auto simp del: trees_cyl.simps simp: sets_tree_sigma_eq intro!: sigma_sets.Basic *)
+  next
+    case Empty show ?case by auto
+  next
+    case (Compl A)
+    have "{Node l v r |l v r. (v, l, r) \<in> space M \<times> trees (space M) \<times> trees (space M) - A} =
+      (space (tree_sigma M) - {Node l v r |l v r. (v, l, r) \<in> A}) - {Leaf}"
+      apply (auto simp: space_tree_sigma)
+      subgoal for t
+        by (cases t) auto
+      done
+    also have "\<dots> \<in> sets (tree_sigma M)"
+      by (intro sets.Diff Compl) auto
+    finally show ?case .
+  next
+    case (Union I)
+    have *: "{Node l v r |l v r. (v, l, r) \<in> UNION UNIV I} =
+      (\<Union>i. {Node l v r |l v r. (v, l, r) \<in> I i})" by auto
+    show ?case unfolding * using Union(2) by (intro sets.countable_UN) auto
+  qed
+qed
+
+lemma measurable_left[measurable]: "left \<in> tree_sigma M \<rightarrow>\<^sub>M tree_sigma M"
+proof (rule measurableI)
+  show "t \<in> space (tree_sigma M) \<Longrightarrow> left t \<in> space (tree_sigma M)" for t
+    by (cases t) (auto simp: space_tree_sigma)
+  fix A assume A: "A \<in> sets (tree_sigma M)"
+  from sets.sets_into_space[OF this]
+  have *: "left -` A \<inter> space (tree_sigma M) =
+    (if Leaf \<in> A then {Leaf} else {}) \<union>
+    {Node a v r | a v r. (v, a, r) \<in> space M \<times> A \<times> space (tree_sigma M)}"
+    by (auto simp: space_tree_sigma elim: trees.cases)
+  show "left -` A \<inter> space (tree_sigma M) \<in> sets (tree_sigma M)"
+    unfolding * using A by (intro sets.Un Node_in_tree_sigma pair_measureI) auto
+qed
+
+lemma measurable_right[measurable]: "right \<in> tree_sigma M \<rightarrow>\<^sub>M tree_sigma M"
+proof (rule measurableI)
+  show "t \<in> space (tree_sigma M) \<Longrightarrow> right t \<in> space (tree_sigma M)" for t
+    by (cases t) (auto simp: space_tree_sigma)
+  fix A assume A: "A \<in> sets (tree_sigma M)"
+  from sets.sets_into_space[OF this]
+  have *: "right -` A \<inter> space (tree_sigma M) =
+    (if Leaf \<in> A then {Leaf} else {}) \<union>
+    {Node l v a | l v a. (v, l, a) \<in> space M \<times> space (tree_sigma M) \<times> A}"
+    by (auto simp: space_tree_sigma elim: trees.cases)
+  show "right -` A \<inter> space (tree_sigma M) \<in> sets (tree_sigma M)"
+    unfolding * using A by (intro sets.Un Node_in_tree_sigma pair_measureI) auto
+qed
+
+lemma measurable_val': "val \<in> restrict_space (tree_sigma M) (-{Leaf}) \<rightarrow>\<^sub>M M"
+proof (rule measurableI)
+  show "t \<in> space (restrict_space (tree_sigma M) (- {Leaf})) \<Longrightarrow> val t \<in> space M" for t
+    by (cases t) (auto simp: space_restrict_space space_tree_sigma)
+  fix A assume A: "A \<in> sets M"
+  from sets.sets_into_space[OF this]
+  have "val -` A \<inter> space (restrict_space (tree_sigma M) (- {Leaf})) =
+    {Node l a r | l a r. (a, l, r) \<in> A \<times> space (tree_sigma M) \<times> space (tree_sigma M)}"
+    by (auto simp: space_tree_sigma space_restrict_space elim: trees.cases)
+  also have "\<dots> \<in> sets (tree_sigma M)"
+    using A by (intro sets.Un Node_in_tree_sigma pair_measureI) auto
+  finally show "val -` A \<inter> space (restrict_space (tree_sigma M) (- {Leaf})) \<in>
+      sets (restrict_space (tree_sigma M) (- {Leaf}))"
+    by (auto simp: sets_restrict_space_iff space_restrict_space)
+qed
+
+lemma measurable_restrict_mono:
+  assumes f: "f \<in> restrict_space M A \<rightarrow>\<^sub>M N" and "B \<subseteq> A"
+  shows "f \<in> restrict_space M B \<rightarrow>\<^sub>M N"
+by (rule measurable_compose[OF measurable_restrict_space3 f])
+   (insert \<open>B \<subseteq> A\<close>, auto)
+
+(*
+lemma measurable_val[measurable (raw)]:
+  assumes "f \<in> X \<rightarrow>\<^sub>M tree_sigma M"
+    and "\<And>x. x \<in> space X \<Longrightarrow> f x \<noteq> Leaf"
+  shows "(\<lambda>\<omega>. val (f \<omega>)) \<in> X \<rightarrow>\<^sub>M M"
+  sorry
+*)
+
+lemma measurable_rec_tree[measurable (raw)]:
+  assumes t: "t \<in> B \<rightarrow>\<^sub>M tree_sigma M"
+  assumes l: "l \<in> B \<rightarrow>\<^sub>M A"
+  assumes n: "(\<lambda>(x, l, v, r, al, ar). n x l v r al ar) \<in>
+    (B \<Otimes>\<^sub>M tree_sigma M \<Otimes>\<^sub>M M \<Otimes>\<^sub>M tree_sigma M \<Otimes>\<^sub>M A \<Otimes>\<^sub>M A) \<rightarrow>\<^sub>M A" (is "?N \<in> ?M \<rightarrow>\<^sub>M A")
+  shows "(\<lambda>x. rec_tree (l x) (n x) (t x)) \<in> B \<rightarrow>\<^sub>M A"
+proof (rule measurable_piecewise_restrict)
+  let ?C = "\<lambda>t. \<lambda>s::unit tree. t -` trees_cyl (map_tree (\<lambda>_. space M) s)"
+  show "countable (range (?C t))" by (intro countable_image countableI_type)
+  show "space B \<subseteq> (\<Union>s. ?C t s)"
+  proof (safe; clarsimp)
+    fix x assume x: "x \<in> space B" have "t x \<in> trees (space M)"
+      using t[THEN measurable_space, OF x] by (simp add: space_tree_sigma)
+    then show "\<exists>xa::unit tree. t x \<in> trees_cyl (map_tree (\<lambda>_. space M) xa)"
+      by (intro exI[of _ "map_tree (\<lambda>_. ()) (t x)"])
+         (simp add: tree.map_comp comp_def trees_cyl_map_treeI)
+  qed
+  fix \<Omega> assume "\<Omega> \<in> range (?C t)"
+  then obtain s :: "unit tree" where \<Omega>: "\<Omega> = ?C t s" by auto
+  then show "\<Omega> \<inter> space B \<in> sets B"
+    by (safe intro!: measurable_sets[OF t] trees_cyl_map_in_sets)
+  show "(\<lambda>x. rec_tree (l x) (n x) (t x)) \<in> restrict_space B \<Omega> \<rightarrow>\<^sub>M A"
+    unfolding \<Omega> using t
+  proof (induction s arbitrary: t)
+    case Leaf
+    show ?case
+    proof (rule measurable_cong[THEN iffD2])
+      fix \<omega> assume "\<omega> \<in> space (restrict_space B (?C t Leaf))"
+      then show "rec_tree (l \<omega>) (n \<omega>) (t \<omega>) = l \<omega>"
+        by (auto simp: space_restrict_space)
+    next
+      show "l \<in> restrict_space B (?C t Leaf) \<rightarrow>\<^sub>M A"
+        using l by (rule measurable_restrict_space1)
+    qed
+  next
+    case (Node ls u rs)
+    let ?F = "\<lambda>\<omega>. ?N (\<omega>, left (t \<omega>), val (t \<omega>), right (t \<omega>),
+        rec_tree (l \<omega>) (n \<omega>) (left (t \<omega>)), rec_tree (l \<omega>) (n \<omega>) (right (t \<omega>)))"
+    show ?case
+    proof (rule measurable_cong[THEN iffD2])
+      fix \<omega> assume "\<omega> \<in> space (restrict_space B (?C t (Node ls u rs)))"
+      then show "rec_tree (l \<omega>) (n \<omega>) (t \<omega>) = ?F \<omega>"
+        by (auto simp: space_restrict_space)
+    next
+      show "?F \<in> (restrict_space B (?C t (Node ls u rs))) \<rightarrow>\<^sub>M A"
+        apply (intro measurable_compose[OF _ n] measurable_Pair[rotated])
+        subgoal
+          apply (rule measurable_restrict_mono[OF Node(2)])
+          apply (rule measurable_compose[OF Node(3) measurable_right])
+          by auto
+        subgoal
+          apply (rule measurable_restrict_mono[OF Node(1)])
+          apply (rule measurable_compose[OF Node(3) measurable_left])
+          by auto
+        subgoal
+          by (rule measurable_restrict_space1)
+             (rule measurable_compose[OF Node(3) measurable_right])
+        subgoal
+          apply (rule measurable_compose[OF _ measurable_val'])
+          apply (rule measurable_restrict_space3[OF Node(3)])
+          by auto
+        subgoal
+          by (rule measurable_restrict_space1)
+             (rule measurable_compose[OF Node(3) measurable_left])
+        by (rule measurable_restrict_space1) auto
+    qed
+  qed
+qed
+
+end