--- a/src/HOL/Nat.thy Mon Feb 09 22:15:37 2009 +0100
+++ b/src/HOL/Nat.thy Tue Feb 10 09:58:58 2009 +0000
@@ -846,13 +846,6 @@
thus "P i j" by (simp add: j)
qed
-lemma nat_induct2: "[|P 0; P (Suc 0); !!k. P k ==> P (Suc (Suc k))|] ==> P n"
- apply (rule nat_less_induct)
- apply (case_tac n)
- apply (case_tac [2] nat)
- apply (blast intro: less_trans)+
- done
-
text {* The method of infinite descent, frequently used in number theory.
Provided by Roelof Oosterhuis.
$P(n)$ is true for all $n\in\mathbb{N}$ if
--- a/src/HOL/ex/Induction_Scheme.thy Mon Feb 09 22:15:37 2009 +0100
+++ b/src/HOL/ex/Induction_Scheme.thy Tue Feb 10 09:58:58 2009 +0000
@@ -15,8 +15,8 @@
"\<lbrakk>P 0; \<And>n. P n \<Longrightarrow> P (Suc n)\<rbrakk> \<Longrightarrow> P x"
by induct_scheme (pat_completeness, lexicographic_order)
-lemma nat_induct2: (* cf. Nat.thy *)
- "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc (Suc k)) \<rbrakk>
+lemma nat_induct2:
+ "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc k) ==> P (Suc (Suc k)) \<rbrakk>
\<Longrightarrow> P n"
by induct_scheme (pat_completeness, lexicographic_order)