folded 'rel_option' into 'option_rel'
authorblanchet
Sun, 16 Feb 2014 21:33:28 +0100
changeset 55525 70b7e91fa1f9
parent 55524 f41ef840f09d
child 55526 39708e59f4b0
folded 'rel_option' into 'option_rel'
NEWS
src/HOL/Library/Mapping.thy
src/HOL/Library/Quotient_Option.thy
src/HOL/Lifting_Option.thy
src/HOL/List.thy
--- a/NEWS	Sun Feb 16 21:33:28 2014 +0100
+++ b/NEWS	Sun Feb 16 21:33:28 2014 +0100
@@ -135,6 +135,7 @@
   Renamed constants:
     Option.set ~> set_option
     Option.map ~> map_option
+    option_rel ~> rel_option
   Renamed theorems:
     map_def ~> map_rec[abs_def]
     Option.map_def ~> map_option_case[abs_def] (with "case_option" instead of "rec_option")
--- a/src/HOL/Library/Mapping.thy	Sun Feb 16 21:33:28 2014 +0100
+++ b/src/HOL/Library/Mapping.thy	Sun Feb 16 21:33:28 2014 +0100
@@ -14,46 +14,46 @@
 begin
 interpretation lifting_syntax .
 
-lemma empty_transfer: "(A ===> option_rel B) Map.empty Map.empty" by transfer_prover
+lemma empty_transfer: "(A ===> rel_option B) Map.empty Map.empty" by transfer_prover
 
 lemma lookup_transfer: "((A ===> B) ===> A ===> B) (\<lambda>m k. m k) (\<lambda>m k. m k)" by transfer_prover
 
 lemma update_transfer:
   assumes [transfer_rule]: "bi_unique A"
-  shows "(A ===> B ===> (A ===> option_rel B) ===> A ===> option_rel B) 
+  shows "(A ===> B ===> (A ===> rel_option B) ===> A ===> rel_option B) 
           (\<lambda>k v m. m(k \<mapsto> v)) (\<lambda>k v m. m(k \<mapsto> v))"
 by transfer_prover
 
 lemma delete_transfer:
   assumes [transfer_rule]: "bi_unique A"
-  shows "(A ===> (A ===> option_rel B) ===> A ===> option_rel B) 
+  shows "(A ===> (A ===> rel_option B) ===> A ===> rel_option B) 
           (\<lambda>k m. m(k := None)) (\<lambda>k m. m(k := None))"
 by transfer_prover
 
 definition equal_None :: "'a option \<Rightarrow> bool" where "equal_None x \<equiv> x = None"
 
-lemma [transfer_rule]: "(option_rel A ===> op=) equal_None equal_None" 
-unfolding fun_rel_def option_rel_def equal_None_def by (auto split: option.split)
+lemma [transfer_rule]: "(rel_option A ===> op=) equal_None equal_None" 
+unfolding fun_rel_def rel_option_iff equal_None_def by (auto split: option.split)
 
 lemma dom_transfer:
   assumes [transfer_rule]: "bi_total A"
-  shows "((A ===> option_rel B) ===> set_rel A) dom dom" 
+  shows "((A ===> rel_option B) ===> set_rel A) dom dom" 
 unfolding dom_def[abs_def] equal_None_def[symmetric] 
 by transfer_prover
 
 lemma map_of_transfer [transfer_rule]:
   assumes [transfer_rule]: "bi_unique R1"
-  shows "(list_all2 (prod_rel R1 R2) ===> R1 ===> option_rel R2) map_of map_of"
+  shows "(list_all2 (prod_rel R1 R2) ===> R1 ===> rel_option R2) map_of map_of"
 unfolding map_of_def by transfer_prover
 
 lemma tabulate_transfer: 
   assumes [transfer_rule]: "bi_unique A"
-  shows "(list_all2 A ===> (A ===> B) ===> A ===> option_rel B) 
+  shows "(list_all2 A ===> (A ===> B) ===> A ===> rel_option B) 
     (\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks))) (\<lambda>ks f. (map_of (List.map (\<lambda>k. (k, f k)) ks)))"
 by transfer_prover
 
 lemma bulkload_transfer: 
-  "(list_all2 A ===> op= ===> option_rel A) 
+  "(list_all2 A ===> op= ===> rel_option A) 
     (\<lambda>xs k. if k < length xs then Some (xs ! k) else None) (\<lambda>xs k. if k < length xs then Some (xs ! k) else None)"
 unfolding fun_rel_def 
 apply clarsimp 
@@ -64,13 +64,13 @@
 by (auto dest: list_all2_lengthD list_all2_nthD)
 
 lemma map_transfer: 
-  "((A ===> B) ===> (C ===> D) ===> (B ===> option_rel C) ===> A ===> option_rel D) 
+  "((A ===> B) ===> (C ===> D) ===> (B ===> rel_option C) ===> A ===> rel_option D) 
     (\<lambda>f g m. (map_option g \<circ> m \<circ> f)) (\<lambda>f g m. (map_option g \<circ> m \<circ> f))"
 by transfer_prover
 
 lemma map_entry_transfer:
   assumes [transfer_rule]: "bi_unique A"
-  shows "(A ===> (B ===> B) ===> (A ===> option_rel B) ===> A ===> option_rel B) 
+  shows "(A ===> (B ===> B) ===> (A ===> rel_option B) ===> A ===> rel_option B) 
     (\<lambda>k f m. (case m k of None \<Rightarrow> m
       | Some v \<Rightarrow> m (k \<mapsto> (f v)))) (\<lambda>k f m. (case m k of None \<Rightarrow> m
       | Some v \<Rightarrow> m (k \<mapsto> (f v))))"
--- a/src/HOL/Library/Quotient_Option.thy	Sun Feb 16 21:33:28 2014 +0100
+++ b/src/HOL/Library/Quotient_Option.thy	Sun Feb 16 21:33:28 2014 +0100
@@ -10,55 +10,57 @@
 
 subsection {* Rules for the Quotient package *}
 
-lemma option_rel_map1:
-  "option_rel R (map_option f x) y \<longleftrightarrow> option_rel (\<lambda>x. R (f x)) x y"
-  by (simp add: option_rel_def split: option.split)
+lemma rel_option_map1:
+  "rel_option R (map_option f x) y \<longleftrightarrow> rel_option (\<lambda>x. R (f x)) x y"
+  by (simp add: rel_option_iff split: option.split)
 
-lemma option_rel_map2:
-  "option_rel R x (map_option f y) \<longleftrightarrow> option_rel (\<lambda>x y. R x (f y)) x y"
-  by (simp add: option_rel_def split: option.split)
+lemma rel_option_map2:
+  "rel_option R x (map_option f y) \<longleftrightarrow> rel_option (\<lambda>x y. R x (f y)) x y"
+  by (simp add: rel_option_iff split: option.split)
 
 declare
   map_option.id [id_simps]
-  option_rel_eq [id_simps]
+  rel_option_eq [id_simps]
 
 lemma option_symp:
-  "symp R \<Longrightarrow> symp (option_rel R)"
-  unfolding symp_def split_option_all option_rel_simps by fast
+  "symp R \<Longrightarrow> symp (rel_option R)"
+  unfolding symp_def split_option_all
+  by (simp only: option.rel_inject option.rel_distinct) fast
 
 lemma option_transp:
-  "transp R \<Longrightarrow> transp (option_rel R)"
-  unfolding transp_def split_option_all option_rel_simps by fast
+  "transp R \<Longrightarrow> transp (rel_option R)"
+  unfolding transp_def split_option_all
+  by (simp only: option.rel_inject option.rel_distinct) fast
 
 lemma option_equivp [quot_equiv]:
-  "equivp R \<Longrightarrow> equivp (option_rel R)"
-  by (blast intro: equivpI reflp_option_rel option_symp option_transp elim: equivpE)
+  "equivp R \<Longrightarrow> equivp (rel_option R)"
+  by (blast intro: equivpI reflp_rel_option option_symp option_transp elim: equivpE)
 
 lemma option_quotient [quot_thm]:
   assumes "Quotient3 R Abs Rep"
-  shows "Quotient3 (option_rel R) (map_option Abs) (map_option Rep)"
+  shows "Quotient3 (rel_option R) (map_option Abs) (map_option Rep)"
   apply (rule Quotient3I)
-  apply (simp_all add: option.map_comp comp_def option.map_id[unfolded id_def] option_rel_eq option_rel_map1 option_rel_map2 Quotient3_abs_rep [OF assms] Quotient3_rel_rep [OF assms])
+  apply (simp_all add: option.map_comp comp_def option.map_id[unfolded id_def] rel_option_eq rel_option_map1 rel_option_map2 Quotient3_abs_rep [OF assms] Quotient3_rel_rep [OF assms])
   using Quotient3_rel [OF assms]
-  apply (simp add: option_rel_def split: option.split)
+  apply (simp add: rel_option_iff split: option.split)
   done
 
-declare [[mapQ3 option = (option_rel, option_quotient)]]
+declare [[mapQ3 option = (rel_option, option_quotient)]]
 
 lemma option_None_rsp [quot_respect]:
   assumes q: "Quotient3 R Abs Rep"
-  shows "option_rel R None None"
+  shows "rel_option R None None"
   by (rule None_transfer)
 
 lemma option_Some_rsp [quot_respect]:
   assumes q: "Quotient3 R Abs Rep"
-  shows "(R ===> option_rel R) Some Some"
+  shows "(R ===> rel_option R) Some Some"
   by (rule Some_transfer)
 
 lemma option_None_prs [quot_preserve]:
   assumes q: "Quotient3 R Abs Rep"
   shows "map_option Abs None = None"
-  by simp
+  by (rule Option.option.map(1))
 
 lemma option_Some_prs [quot_preserve]:
   assumes q: "Quotient3 R Abs Rep"
--- a/src/HOL/Lifting_Option.thy	Sun Feb 16 21:33:28 2014 +0100
+++ b/src/HOL/Lifting_Option.thy	Sun Feb 16 21:33:28 2014 +0100
@@ -11,81 +11,73 @@
 
 subsection {* Relator and predicator properties *}
 
-definition
-  option_rel :: "('a \<Rightarrow> 'b \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> 'b option \<Rightarrow> bool"
-where
-  "option_rel R x y = (case (x, y) of (None, None) \<Rightarrow> True
+lemma rel_option_iff:
+  "rel_option R x y = (case (x, y) of (None, None) \<Rightarrow> True
     | (Some x, Some y) \<Rightarrow> R x y
     | _ \<Rightarrow> False)"
-
-lemma option_rel_simps[simp]:
-  "option_rel R None None = True"
-  "option_rel R (Some x) None = False"
-  "option_rel R None (Some y) = False"
-  "option_rel R (Some x) (Some y) = R x y"
-  unfolding option_rel_def by simp_all
+by (auto split: prod.split option.split)
 
 abbreviation (input) option_pred :: "('a \<Rightarrow> bool) \<Rightarrow> 'a option \<Rightarrow> bool" where
   "option_pred \<equiv> case_option True"
 
-lemma option_rel_eq [relator_eq]:
-  "option_rel (op =) = (op =)"
-  by (simp add: option_rel_def fun_eq_iff split: option.split)
+lemma rel_option_eq [relator_eq]:
+  "rel_option (op =) = (op =)"
+  by (simp add: rel_option_iff fun_eq_iff split: option.split)
 
-lemma option_rel_mono[relator_mono]:
+lemma rel_option_mono[relator_mono]:
   assumes "A \<le> B"
-  shows "(option_rel A) \<le> (option_rel B)"
-using assms by (auto simp: option_rel_def split: option.splits)
+  shows "(rel_option A) \<le> (rel_option B)"
+using assms by (auto simp: rel_option_iff split: option.splits)
 
-lemma option_rel_OO[relator_distr]:
-  "(option_rel A) OO (option_rel B) = option_rel (A OO B)"
-by (rule ext)+ (auto simp: option_rel_def OO_def split: option.split)
+lemma rel_option_OO[relator_distr]:
+  "(rel_option A) OO (rel_option B) = rel_option (A OO B)"
+by (rule ext)+ (auto simp: rel_option_iff OO_def split: option.split)
 
 lemma Domainp_option[relator_domain]:
   assumes "Domainp A = P"
-  shows "Domainp (option_rel A) = (option_pred P)"
-using assms unfolding Domainp_iff[abs_def] option_rel_def[abs_def]
+  shows "Domainp (rel_option A) = (option_pred P)"
+using assms unfolding Domainp_iff[abs_def] rel_option_iff[abs_def]
 by (auto iff: fun_eq_iff split: option.split)
 
-lemma reflp_option_rel[reflexivity_rule]:
-  "reflp R \<Longrightarrow> reflp (option_rel R)"
+lemma reflp_rel_option[reflexivity_rule]:
+  "reflp R \<Longrightarrow> reflp (rel_option R)"
   unfolding reflp_def split_option_all by simp
 
-lemma left_total_option_rel[reflexivity_rule]:
-  "left_total R \<Longrightarrow> left_total (option_rel R)"
+lemma left_total_rel_option[reflexivity_rule]:
+  "left_total R \<Longrightarrow> left_total (rel_option R)"
   unfolding left_total_def split_option_all split_option_ex by simp
 
-lemma left_unique_option_rel [reflexivity_rule]:
-  "left_unique R \<Longrightarrow> left_unique (option_rel R)"
+lemma left_unique_rel_option [reflexivity_rule]:
+  "left_unique R \<Longrightarrow> left_unique (rel_option R)"
   unfolding left_unique_def split_option_all by simp
 
-lemma right_total_option_rel [transfer_rule]:
-  "right_total R \<Longrightarrow> right_total (option_rel R)"
+lemma right_total_rel_option [transfer_rule]:
+  "right_total R \<Longrightarrow> right_total (rel_option R)"
   unfolding right_total_def split_option_all split_option_ex by simp
 
-lemma right_unique_option_rel [transfer_rule]:
-  "right_unique R \<Longrightarrow> right_unique (option_rel R)"
+lemma right_unique_rel_option [transfer_rule]:
+  "right_unique R \<Longrightarrow> right_unique (rel_option R)"
   unfolding right_unique_def split_option_all by simp
 
-lemma bi_total_option_rel [transfer_rule]:
-  "bi_total R \<Longrightarrow> bi_total (option_rel R)"
+lemma bi_total_rel_option [transfer_rule]:
+  "bi_total R \<Longrightarrow> bi_total (rel_option R)"
   unfolding bi_total_def split_option_all split_option_ex by simp
 
-lemma bi_unique_option_rel [transfer_rule]:
-  "bi_unique R \<Longrightarrow> bi_unique (option_rel R)"
+lemma bi_unique_rel_option [transfer_rule]:
+  "bi_unique R \<Longrightarrow> bi_unique (rel_option R)"
   unfolding bi_unique_def split_option_all by simp
 
 lemma option_invariant_commute [invariant_commute]:
-  "option_rel (Lifting.invariant P) = Lifting.invariant (option_pred P)"
+  "rel_option (Lifting.invariant P) = Lifting.invariant (option_pred P)"
   by (auto simp add: fun_eq_iff Lifting.invariant_def split_option_all)
 
 subsection {* Quotient theorem for the Lifting package *}
 
 lemma Quotient_option[quot_map]:
   assumes "Quotient R Abs Rep T"
-  shows "Quotient (option_rel R) (map_option Abs)
-    (map_option Rep) (option_rel T)"
-  using assms unfolding Quotient_alt_def option_rel_def
+  shows "Quotient (rel_option R) (map_option Abs)
+    (map_option Rep) (rel_option T)"
+  using assms unfolding Quotient_alt_def rel_option_iff
   by (simp split: option.split)
 
 subsection {* Transfer rules for the Transfer package *}
@@ -94,22 +86,22 @@
 begin
 interpretation lifting_syntax .
 
-lemma None_transfer [transfer_rule]: "(option_rel A) None None"
-  by simp
+lemma None_transfer [transfer_rule]: "(rel_option A) None None"
+  by (rule option.rel_inject)
 
-lemma Some_transfer [transfer_rule]: "(A ===> option_rel A) Some Some"
+lemma Some_transfer [transfer_rule]: "(A ===> rel_option A) Some Some"
   unfolding fun_rel_def by simp
 
 lemma case_option_transfer [transfer_rule]:
-  "(B ===> (A ===> B) ===> option_rel A ===> B) case_option case_option"
+  "(B ===> (A ===> B) ===> rel_option A ===> B) case_option case_option"
   unfolding fun_rel_def split_option_all by simp
 
 lemma map_option_transfer [transfer_rule]:
-  "((A ===> B) ===> option_rel A ===> option_rel B) map_option map_option"
+  "((A ===> B) ===> rel_option A ===> rel_option B) map_option map_option"
   unfolding map_option_case[abs_def] by transfer_prover
 
 lemma option_bind_transfer [transfer_rule]:
-  "(option_rel A ===> (A ===> option_rel B) ===> option_rel B)
+  "(rel_option A ===> (A ===> rel_option B) ===> rel_option B)
     Option.bind Option.bind"
   unfolding fun_rel_def split_option_all by simp
 
--- a/src/HOL/List.thy	Sun Feb 16 21:33:28 2014 +0100
+++ b/src/HOL/List.thy	Sun Feb 16 21:33:28 2014 +0100
@@ -6779,7 +6779,7 @@
   unfolding List.insert_def [abs_def] by transfer_prover
 
 lemma find_transfer [transfer_rule]:
-  "((A ===> op =) ===> list_all2 A ===> option_rel A) List.find List.find"
+  "((A ===> op =) ===> list_all2 A ===> rel_option A) List.find List.find"
   unfolding List.find_def by transfer_prover
 
 lemma remove1_transfer [transfer_rule]: