adding specialisation examples of the predicate compiler
authorbulwahn
Mon, 29 Mar 2010 17:30:52 +0200
changeset 36033 7106f079bd05
parent 36032 dfd30b5b4e73
child 36034 ee84eac07290
adding specialisation examples of the predicate compiler
src/HOL/Predicate_Compile_Examples/ROOT.ML
src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy
--- a/src/HOL/Predicate_Compile_Examples/ROOT.ML	Mon Mar 29 17:30:52 2010 +0200
+++ b/src/HOL/Predicate_Compile_Examples/ROOT.ML	Mon Mar 29 17:30:52 2010 +0200
@@ -1,1 +1,1 @@
-use_thys ["Predicate_Compile_Examples", "Predicate_Compile_Quickcheck_Examples"];
+use_thys ["Predicate_Compile_Examples", "Predicate_Compile_Quickcheck_Examples", "Specialisation_Examples"];
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Predicate_Compile_Examples/Specialisation_Examples.thy	Mon Mar 29 17:30:52 2010 +0200
@@ -0,0 +1,241 @@
+theory Specialisation_Examples
+imports Main "../ex/Predicate_Compile_Alternative_Defs"
+begin
+
+section {* Specialisation Examples *}
+
+fun nth_el'
+where
+  "nth_el' [] i = None"
+| "nth_el' (x # xs) i = (case i of 0 => Some x | Suc j => nth_el' xs j)"
+
+definition
+  "greater_than_index xs = (\<forall>i x. nth_el' xs i = Some x --> x > i)"
+
+code_pred (expected_modes: i => bool) [inductify] greater_than_index .
+ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_nth_el'P} *}
+
+thm greater_than_index.equation
+
+values [expected "{()}"] "{x. greater_than_index [1,2,4,6]}"
+values [expected "{}"] "{x. greater_than_index [0,2,3,2]}"
+
+subsection {* Common subterms *}
+
+text {* If a predicate is called with common subterms as arguments,
+  this predicate should be specialised. 
+*}
+
+definition max_nat :: "nat => nat => nat"
+  where "max_nat a b = (if a <= b then b else a)"
+
+lemma [code_pred_inline]:
+  "max = max_nat"
+by (simp add: expand_fun_eq max_def max_nat_def)
+
+definition
+  "max_of_my_Suc x = max x (Suc x)"
+
+text {* In this example, max is specialised, hence the mode o => i => bool is possible *}
+
+code_pred (modes: o => i => bool) [inductify] max_of_my_Suc .
+
+thm max_of_my_SucP.equation
+
+ML {* Predicate_Compile_Core.intros_of @{theory} @{const_name specialised_max_natP} *}
+
+values "{x. max_of_my_SucP x 6}"
+
+subsection {* Sorts *}
+
+code_pred [inductify] sorted .
+thm sorted.equation
+
+section {* Specialisation in POPLmark theory *}
+
+notation
+  Some ("\<lfloor>_\<rfloor>")
+
+notation
+  None ("\<bottom>")
+
+notation
+  length ("\<parallel>_\<parallel>")
+
+notation
+  Cons ("_ \<Colon>/ _" [66, 65] 65)
+
+primrec
+  nth_el :: "'a list \<Rightarrow> nat \<Rightarrow> 'a option" ("_\<langle>_\<rangle>" [90, 0] 91)
+where
+  "[]\<langle>i\<rangle> = \<bottom>"
+| "(x # xs)\<langle>i\<rangle> = (case i of 0 \<Rightarrow> \<lfloor>x\<rfloor> | Suc j \<Rightarrow> xs \<langle>j\<rangle>)"
+
+primrec assoc :: "('a \<times> 'b) list \<Rightarrow> 'a \<Rightarrow> 'b option" ("_\<langle>_\<rangle>\<^isub>?" [90, 0] 91)
+where
+  "[]\<langle>a\<rangle>\<^isub>? = \<bottom>"
+| "(x # xs)\<langle>a\<rangle>\<^isub>? = (if fst x = a then \<lfloor>snd x\<rfloor> else xs\<langle>a\<rangle>\<^isub>?)"
+
+primrec unique :: "('a \<times> 'b) list \<Rightarrow> bool"
+where
+  "unique [] = True"
+| "unique (x # xs) = (xs\<langle>fst x\<rangle>\<^isub>? = \<bottom> \<and> unique xs)"
+
+datatype type =
+    TVar nat
+  | Top
+  | Fun type type    (infixr "\<rightarrow>" 200)
+  | TyAll type type  ("(3\<forall><:_./ _)" [0, 10] 10)
+
+datatype binding = VarB type | TVarB type
+types env = "binding list"
+
+primrec is_TVarB :: "binding \<Rightarrow> bool"
+where
+  "is_TVarB (VarB T) = False"
+| "is_TVarB (TVarB T) = True"
+
+primrec type_ofB :: "binding \<Rightarrow> type"
+where
+  "type_ofB (VarB T) = T"
+| "type_ofB (TVarB T) = T"
+
+primrec mapB :: "(type \<Rightarrow> type) \<Rightarrow> binding \<Rightarrow> binding"
+where
+  "mapB f (VarB T) = VarB (f T)"
+| "mapB f (TVarB T) = TVarB (f T)"
+
+datatype trm =
+    Var nat
+  | Abs type trm   ("(3\<lambda>:_./ _)" [0, 10] 10)
+  | TAbs type trm  ("(3\<lambda><:_./ _)" [0, 10] 10)
+  | App trm trm    (infixl "\<bullet>" 200)
+  | TApp trm type  (infixl "\<bullet>\<^isub>\<tau>" 200)
+
+primrec liftT :: "nat \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type" ("\<up>\<^isub>\<tau>")
+where
+  "\<up>\<^isub>\<tau> n k (TVar i) = (if i < k then TVar i else TVar (i + n))"
+| "\<up>\<^isub>\<tau> n k Top = Top"
+| "\<up>\<^isub>\<tau> n k (T \<rightarrow> U) = \<up>\<^isub>\<tau> n k T \<rightarrow> \<up>\<^isub>\<tau> n k U"
+| "\<up>\<^isub>\<tau> n k (\<forall><:T. U) = (\<forall><:\<up>\<^isub>\<tau> n k T. \<up>\<^isub>\<tau> n (k + 1) U)"
+
+primrec lift :: "nat \<Rightarrow> nat \<Rightarrow> trm \<Rightarrow> trm" ("\<up>")
+where
+  "\<up> n k (Var i) = (if i < k then Var i else Var (i + n))"
+| "\<up> n k (\<lambda>:T. t) = (\<lambda>:\<up>\<^isub>\<tau> n k T. \<up> n (k + 1) t)"
+| "\<up> n k (\<lambda><:T. t) = (\<lambda><:\<up>\<^isub>\<tau> n k T. \<up> n (k + 1) t)"
+| "\<up> n k (s \<bullet> t) = \<up> n k s \<bullet> \<up> n k t"
+| "\<up> n k (t \<bullet>\<^isub>\<tau> T) = \<up> n k t \<bullet>\<^isub>\<tau> \<up>\<^isub>\<tau> n k T"
+
+primrec substTT :: "type \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type"  ("_[_ \<mapsto>\<^isub>\<tau> _]\<^isub>\<tau>" [300, 0, 0] 300)
+where
+  "(TVar i)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> =
+     (if k < i then TVar (i - 1) else if i = k then \<up>\<^isub>\<tau> k 0 S else TVar i)"
+| "Top[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = Top"
+| "(T \<rightarrow> U)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> \<rightarrow> U[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>"
+| "(\<forall><:T. U)[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau> = (\<forall><:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. U[k+1 \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>)"
+
+primrec decT :: "nat \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> type"  ("\<down>\<^isub>\<tau>")
+where
+  "\<down>\<^isub>\<tau> 0 k T = T"
+| "\<down>\<^isub>\<tau> (Suc n) k T = \<down>\<^isub>\<tau> n k (T[k \<mapsto>\<^isub>\<tau> Top]\<^isub>\<tau>)"
+
+primrec subst :: "trm \<Rightarrow> nat \<Rightarrow> trm \<Rightarrow> trm"  ("_[_ \<mapsto> _]" [300, 0, 0] 300)
+where
+  "(Var i)[k \<mapsto> s] = (if k < i then Var (i - 1) else if i = k then \<up> k 0 s else Var i)"
+| "(t \<bullet> u)[k \<mapsto> s] = t[k \<mapsto> s] \<bullet> u[k \<mapsto> s]"
+| "(t \<bullet>\<^isub>\<tau> T)[k \<mapsto> s] = t[k \<mapsto> s] \<bullet>\<^isub>\<tau> \<down>\<^isub>\<tau> 1 k T"
+| "(\<lambda>:T. t)[k \<mapsto> s] = (\<lambda>:\<down>\<^isub>\<tau> 1 k T. t[k+1 \<mapsto> s])"
+| "(\<lambda><:T. t)[k \<mapsto> s] = (\<lambda><:\<down>\<^isub>\<tau> 1 k T. t[k+1 \<mapsto> s])"
+
+primrec substT :: "trm \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> trm"    ("_[_ \<mapsto>\<^isub>\<tau> _]" [300, 0, 0] 300)
+where
+  "(Var i)[k \<mapsto>\<^isub>\<tau> S] = (if k < i then Var (i - 1) else Var i)"
+| "(t \<bullet> u)[k \<mapsto>\<^isub>\<tau> S] = t[k \<mapsto>\<^isub>\<tau> S] \<bullet> u[k \<mapsto>\<^isub>\<tau> S]"
+| "(t \<bullet>\<^isub>\<tau> T)[k \<mapsto>\<^isub>\<tau> S] = t[k \<mapsto>\<^isub>\<tau> S] \<bullet>\<^isub>\<tau> T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>"
+| "(\<lambda>:T. t)[k \<mapsto>\<^isub>\<tau> S] = (\<lambda>:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. t[k+1 \<mapsto>\<^isub>\<tau> S])"
+| "(\<lambda><:T. t)[k \<mapsto>\<^isub>\<tau> S] = (\<lambda><:T[k \<mapsto>\<^isub>\<tau> S]\<^isub>\<tau>. t[k+1 \<mapsto>\<^isub>\<tau> S])"
+
+primrec liftE :: "nat \<Rightarrow> nat \<Rightarrow> env \<Rightarrow> env" ("\<up>\<^isub>e")
+where
+  "\<up>\<^isub>e n k [] = []"
+| "\<up>\<^isub>e n k (B \<Colon> \<Gamma>) = mapB (\<up>\<^isub>\<tau> n (k + \<parallel>\<Gamma>\<parallel>)) B \<Colon> \<up>\<^isub>e n k \<Gamma>"
+
+primrec substE :: "env \<Rightarrow> nat \<Rightarrow> type \<Rightarrow> env"  ("_[_ \<mapsto>\<^isub>\<tau> _]\<^isub>e" [300, 0, 0] 300)
+where
+  "[][k \<mapsto>\<^isub>\<tau> T]\<^isub>e = []"
+| "(B \<Colon> \<Gamma>)[k \<mapsto>\<^isub>\<tau> T]\<^isub>e = mapB (\<lambda>U. U[k + \<parallel>\<Gamma>\<parallel> \<mapsto>\<^isub>\<tau> T]\<^isub>\<tau>) B \<Colon> \<Gamma>[k \<mapsto>\<^isub>\<tau> T]\<^isub>e"
+
+primrec decE :: "nat \<Rightarrow> nat \<Rightarrow> env \<Rightarrow> env"  ("\<down>\<^isub>e")
+where
+  "\<down>\<^isub>e 0 k \<Gamma> = \<Gamma>"
+| "\<down>\<^isub>e (Suc n) k \<Gamma> = \<down>\<^isub>e n k (\<Gamma>[k \<mapsto>\<^isub>\<tau> Top]\<^isub>e)"
+
+inductive
+  well_formed :: "env \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wf\<^esub> _" [50, 50] 50)
+where
+  wf_TVar: "\<Gamma>\<langle>i\<rangle> = \<lfloor>TVarB T\<rfloor> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i"
+| wf_Top: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> Top"
+| wf_arrow: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> U \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<rightarrow> U"
+| wf_all: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<Longrightarrow> TVarB T \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> U \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> (\<forall><:T. U)"
+
+inductive
+  well_formedE :: "env \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wf\<^esub>" [50] 50)
+  and well_formedB :: "env \<Rightarrow> binding \<Rightarrow> bool"  ("_ \<turnstile>\<^bsub>wfB\<^esub> _" [50, 50] 50)
+where
+  "\<Gamma> \<turnstile>\<^bsub>wfB\<^esub> B \<equiv> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> type_ofB B"
+| wf_Nil: "[] \<turnstile>\<^bsub>wf\<^esub>"
+| wf_Cons: "\<Gamma> \<turnstile>\<^bsub>wfB\<^esub> B \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> B \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub>"
+
+inductive_cases well_formed_cases:
+  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i"
+  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> Top"
+  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> T \<rightarrow> U"
+  "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> (\<forall><:T. U)"
+
+inductive_cases well_formedE_cases:
+  "B \<Colon> \<Gamma> \<turnstile>\<^bsub>wf\<^esub>"
+
+inductive
+  subtyping :: "env \<Rightarrow> type \<Rightarrow> type \<Rightarrow> bool"  ("_ \<turnstile> _ <: _" [50, 50, 50] 50)
+where
+  SA_Top: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> S \<Longrightarrow> \<Gamma> \<turnstile> S <: Top"
+| SA_refl_TVar: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma> \<turnstile>\<^bsub>wf\<^esub> TVar i \<Longrightarrow> \<Gamma> \<turnstile> TVar i <: TVar i"
+| SA_trans_TVar: "\<Gamma>\<langle>i\<rangle> = \<lfloor>TVarB U\<rfloor> \<Longrightarrow>
+    \<Gamma> \<turnstile> \<up>\<^isub>\<tau> (Suc i) 0 U <: T \<Longrightarrow> \<Gamma> \<turnstile> TVar i <: T"
+| SA_arrow: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<Longrightarrow> \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> S\<^isub>1 \<rightarrow> S\<^isub>2 <: T\<^isub>1 \<rightarrow> T\<^isub>2"
+| SA_all: "\<Gamma> \<turnstile> T\<^isub>1 <: S\<^isub>1 \<Longrightarrow> TVarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> S\<^isub>2 <: T\<^isub>2 \<Longrightarrow>
+    \<Gamma> \<turnstile> (\<forall><:S\<^isub>1. S\<^isub>2) <: (\<forall><:T\<^isub>1. T\<^isub>2)"
+
+inductive
+  typing :: "env \<Rightarrow> trm \<Rightarrow> type \<Rightarrow> bool"    ("_ \<turnstile> _ : _" [50, 50, 50] 50)
+where
+  T_Var: "\<Gamma> \<turnstile>\<^bsub>wf\<^esub> \<Longrightarrow> \<Gamma>\<langle>i\<rangle> = \<lfloor>VarB U\<rfloor> \<Longrightarrow> T = \<up>\<^isub>\<tau> (Suc i) 0 U \<Longrightarrow> \<Gamma> \<turnstile> Var i : T"
+| T_Abs: "VarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda>:T\<^isub>1. t\<^isub>2) : T\<^isub>1 \<rightarrow> \<down>\<^isub>\<tau> 1 0 T\<^isub>2"
+| T_App: "\<Gamma> \<turnstile> t\<^isub>1 : T\<^isub>1\<^isub>1 \<rightarrow> T\<^isub>1\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>1\<^isub>1 \<Longrightarrow> \<Gamma> \<turnstile> t\<^isub>1 \<bullet> t\<^isub>2 : T\<^isub>1\<^isub>2"
+| T_TAbs: "TVarB T\<^isub>1 \<Colon> \<Gamma> \<turnstile> t\<^isub>2 : T\<^isub>2 \<Longrightarrow> \<Gamma> \<turnstile> (\<lambda><:T\<^isub>1. t\<^isub>2) : (\<forall><:T\<^isub>1. T\<^isub>2)"
+| T_TApp: "\<Gamma> \<turnstile> t\<^isub>1 : (\<forall><:T\<^isub>1\<^isub>1. T\<^isub>1\<^isub>2) \<Longrightarrow> \<Gamma> \<turnstile> T\<^isub>2 <: T\<^isub>1\<^isub>1 \<Longrightarrow>
+    \<Gamma> \<turnstile> t\<^isub>1 \<bullet>\<^isub>\<tau> T\<^isub>2 : T\<^isub>1\<^isub>2[0 \<mapsto>\<^isub>\<tau> T\<^isub>2]\<^isub>\<tau>"
+| T_Sub: "\<Gamma> \<turnstile> t : S \<Longrightarrow> \<Gamma> \<turnstile> S <: T \<Longrightarrow> \<Gamma> \<turnstile> t : T"
+
+code_pred [inductify] typing .
+
+thm typing.equation
+
+values 6 "{(E, t, T). typing E t T}"
+
+subsection {* Higher-order predicate *}
+
+code_pred [inductify] mapB .
+
+subsection {* Multiple instances *}
+
+inductive subtype_refl' where
+  "\<Gamma> \<turnstile> t : T ==> \<not> (\<Gamma> \<turnstile> T <: T) ==> subtype_refl' t T"
+
+code_pred (modes: i => i => bool, o => i => bool, i => o => bool, o => o => bool) [inductify] subtype_refl' .
+
+thm subtype_refl'.equation
+
+
+end
\ No newline at end of file