use \<zero>, \<one>;
authorwenzelm
Mon, 03 Dec 2001 20:59:57 +0100
changeset 12344 7237c6497cb1
parent 12343 b05331869f79
child 12345 5d1436d1c268
use \<zero>, \<one>;
doc-src/AxClass/Group/Group.thy
doc-src/AxClass/generated/Group.tex
doc-src/AxClass/generated/isabellesym.sty
--- a/doc-src/AxClass/Group/Group.thy	Mon Dec 03 20:59:29 2001 +0100
+++ b/doc-src/AxClass/Group/Group.thy	Mon Dec 03 20:59:57 2001 +0100
@@ -23,25 +23,25 @@
 consts
   times :: "'a \<Rightarrow> 'a \<Rightarrow> 'a"    (infixl "\<odot>" 70)
   invers :: "'a \<Rightarrow> 'a"    ("(_\<inv>)" [1000] 999)
-  one :: 'a    ("\<unit>")
+  one :: 'a    ("\<one>")
 
 text {*
   \noindent Next we define class @{text monoid} of monoids with
-  operations @{text \<odot>} and @{text \<unit>}.  Note that multiple class
+  operations @{text \<odot>} and @{text \<one>}.  Note that multiple class
   axioms are allowed for user convenience --- they simply represent
   the conjunction of their respective universal closures.
 *}
 
 axclass monoid \<subseteq> type
   assoc: "(x \<odot> y) \<odot> z = x \<odot> (y \<odot> z)"
-  left_unit: "\<unit> \<odot> x = x"
-  right_unit: "x \<odot> \<unit> = x"
+  left_unit: "\<one> \<odot> x = x"
+  right_unit: "x \<odot> \<one> = x"
 
 text {*
   \noindent So class @{text monoid} contains exactly those types
-  @{text \<tau>} where @{text "\<odot> \<Colon> \<tau> \<Rightarrow> \<tau> \<Rightarrow> \<tau>"} and @{text "\<unit> \<Colon> \<tau>"}
+  @{text \<tau>} where @{text "\<odot> \<Colon> \<tau> \<Rightarrow> \<tau> \<Rightarrow> \<tau>"} and @{text "\<one> \<Colon> \<tau>"}
   are specified appropriately, such that @{text \<odot>} is associative and
-  @{text \<unit>} is a left and right unit element for the @{text \<odot>}
+  @{text \<one>} is a left and right unit element for the @{text \<odot>}
   operation.
 *}
 
@@ -56,8 +56,8 @@
   assoc: "(x \<odot> y) \<odot> z = x \<odot> (y \<odot> z)"
 
 axclass group \<subseteq> semigroup
-  left_unit: "\<unit> \<odot> x = x"
-  left_inverse: "x\<inv> \<odot> x = \<unit>"
+  left_unit: "\<one> \<odot> x = x"
+  left_inverse: "x\<inv> \<odot> x = \<one>"
 
 axclass agroup \<subseteq> group
   commute: "x \<odot> y = y \<odot> x"
@@ -91,23 +91,23 @@
   well-known laws of general groups.
 *}
 
-theorem group_right_inverse: "x \<odot> x\<inv> = (\<unit>\<Colon>'a\<Colon>group)"
+theorem group_right_inverse: "x \<odot> x\<inv> = (\<one>\<Colon>'a\<Colon>group)"
 proof -
-  have "x \<odot> x\<inv> = \<unit> \<odot> (x \<odot> x\<inv>)"
+  have "x \<odot> x\<inv> = \<one> \<odot> (x \<odot> x\<inv>)"
     by (simp only: group.left_unit)
-  also have "... = \<unit> \<odot> x \<odot> x\<inv>"
+  also have "... = \<one> \<odot> x \<odot> x\<inv>"
     by (simp only: semigroup.assoc)
   also have "... = (x\<inv>)\<inv> \<odot> x\<inv> \<odot> x \<odot> x\<inv>"
     by (simp only: group.left_inverse)
   also have "... = (x\<inv>)\<inv> \<odot> (x\<inv> \<odot> x) \<odot> x\<inv>"
     by (simp only: semigroup.assoc)
-  also have "... = (x\<inv>)\<inv> \<odot> \<unit> \<odot> x\<inv>"
+  also have "... = (x\<inv>)\<inv> \<odot> \<one> \<odot> x\<inv>"
     by (simp only: group.left_inverse)
-  also have "... = (x\<inv>)\<inv> \<odot> (\<unit> \<odot> x\<inv>)"
+  also have "... = (x\<inv>)\<inv> \<odot> (\<one> \<odot> x\<inv>)"
     by (simp only: semigroup.assoc)
   also have "... = (x\<inv>)\<inv> \<odot> x\<inv>"
     by (simp only: group.left_unit)
-  also have "... = \<unit>"
+  also have "... = \<one>"
     by (simp only: group.left_inverse)
   finally show ?thesis .
 qed
@@ -118,13 +118,13 @@
   much easier.
 *}
 
-theorem group_right_unit: "x \<odot> \<unit> = (x\<Colon>'a\<Colon>group)"
+theorem group_right_unit: "x \<odot> \<one> = (x\<Colon>'a\<Colon>group)"
 proof -
-  have "x \<odot> \<unit> = x \<odot> (x\<inv> \<odot> x)"
+  have "x \<odot> \<one> = x \<odot> (x\<inv> \<odot> x)"
     by (simp only: group.left_inverse)
   also have "... = x \<odot> x\<inv> \<odot> x"
     by (simp only: semigroup.assoc)
-  also have "... = \<unit> \<odot> x"
+  also have "... = \<one> \<odot> x"
     by (simp only: group_right_inverse)
   also have "... = x"
     by (simp only: group.left_unit)
@@ -193,9 +193,9 @@
   fix x y z :: "'a\<Colon>group"
   show "x \<odot> y \<odot> z = x \<odot> (y \<odot> z)"
     by (rule semigroup.assoc)
-  show "\<unit> \<odot> x = x"
+  show "\<one> \<odot> x = x"
     by (rule group.left_unit)
-  show "x \<odot> \<unit> = x"
+  show "x \<odot> \<one> = x"
     by (rule group_right_unit)
 qed
 
@@ -227,13 +227,13 @@
 
   \medskip As a typical example, we show that type @{typ bool} with
   exclusive-or as @{text \<odot>} operation, identity as @{text \<inv>}, and
-  @{term False} as @{text \<unit>} forms an Abelian group.
+  @{term False} as @{text \<one>} forms an Abelian group.
 *}
 
 defs (overloaded)
   times_bool_def: "x \<odot> y \<equiv> x \<noteq> (y\<Colon>bool)"
   inverse_bool_def: "x\<inv> \<equiv> x\<Colon>bool"
-  unit_bool_def: "\<unit> \<equiv> False"
+  unit_bool_def: "\<one> \<equiv> False"
 
 text {*
   \medskip It is important to note that above $\DEFS$ are just
@@ -269,9 +269,9 @@
   \medskip We could now also instantiate our group theory classes to
   many other concrete types.  For example, @{text "int \<Colon> agroup"}
   (e.g.\ by defining @{text \<odot>} as addition, @{text \<inv>} as negation
-  and @{text \<unit>} as zero) or @{text "list \<Colon> (type) semigroup"}
+  and @{text \<one>} as zero) or @{text "list \<Colon> (type) semigroup"}
   (e.g.\ if @{text \<odot>} is defined as list append).  Thus, the
-  characteristic constants @{text \<odot>}, @{text \<inv>}, @{text \<unit>}
+  characteristic constants @{text \<odot>}, @{text \<inv>}, @{text \<one>}
   really become overloaded, i.e.\ have different meanings on different
   types.
 *}
--- a/doc-src/AxClass/generated/Group.tex	Mon Dec 03 20:59:29 2001 +0100
+++ b/doc-src/AxClass/generated/Group.tex	Mon Dec 03 20:59:57 2001 +0100
@@ -30,25 +30,25 @@
 \isacommand{consts}\isanewline
 \ \ times\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
 \ \ invers\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isacharparenleft}{\isacharunderscore}{\isasyminv}{\isacharparenright}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isadigit{0}}{\isacharbrackright}\ {\isadigit{9}}{\isadigit{9}}{\isadigit{9}}{\isacharparenright}\isanewline
-\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymunit}{\isachardoublequote}{\isacharparenright}\isamarkupfalse%
+\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ \ \ \ {\isacharparenleft}{\isachardoublequote}{\isasymone}{\isachardoublequote}{\isacharparenright}\isamarkupfalse%
 %
 \begin{isamarkuptext}%
 \noindent Next we define class \isa{monoid} of monoids with
-  operations \isa{{\isasymodot}} and \isa{{\isasymunit}}.  Note that multiple class
+  operations \isa{{\isasymodot}} and \isa{{\isasymone}}.  Note that multiple class
   axioms are allowed for user convenience --- they simply represent
   the conjunction of their respective universal closures.%
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{axclass}\ monoid\ {\isasymsubseteq}\ type\isanewline
 \ \ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
-\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
+\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\ \ right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
 %
 \begin{isamarkuptext}%
 \noindent So class \isa{monoid} contains exactly those types
-  \isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymunit}\ {\isasymColon}\ {\isasymtau}}
+  \isa{{\isasymtau}} where \isa{{\isasymodot}\ {\isasymColon}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}\ {\isasymRightarrow}\ {\isasymtau}} and \isa{{\isasymone}\ {\isasymColon}\ {\isasymtau}}
   are specified appropriately, such that \isa{{\isasymodot}} is associative and
-  \isa{{\isasymunit}} is a left and right unit element for the \isa{{\isasymodot}}
+  \isa{{\isasymone}} is a left and right unit element for the \isa{{\isasymodot}}
   operation.%
 \end{isamarkuptext}%
 \isamarkuptrue%
@@ -65,8 +65,8 @@
 \isanewline
 \isamarkupfalse%
 \isacommand{axclass}\ group\ {\isasymsubseteq}\ semigroup\isanewline
-\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
-\ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymunit}{\isachardoublequote}\isanewline
+\ \ left{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\ \ left{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymodot}\ x\ {\isacharequal}\ {\isasymone}{\isachardoublequote}\isanewline
 \isanewline
 \isamarkupfalse%
 \isacommand{axclass}\ agroup\ {\isasymsubseteq}\ group\isanewline
@@ -98,16 +98,16 @@
   well-known laws of general groups.%
 \end{isamarkuptext}%
 \isamarkuptrue%
-\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymunit}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isacharparenleft}{\isasymone}{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
 \isamarkupfalse%
 \isacommand{proof}\ {\isacharminus}\isanewline
 \ \ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ x{\isasyminv}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ {\isacharparenleft}x\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
 \isacommand{also}\ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
@@ -122,12 +122,12 @@
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
 \isacommand{also}\ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
 \isacommand{also}\ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymunit}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isacharparenleft}x{\isasyminv}{\isacharparenright}{\isasyminv}\ {\isasymodot}\ {\isacharparenleft}{\isasymone}\ {\isasymodot}\ x{\isasyminv}{\isacharparenright}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
@@ -137,7 +137,7 @@
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
 \isacommand{also}\ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
@@ -152,11 +152,11 @@
   much easier.%
 \end{isamarkuptext}%
 \isamarkuptrue%
-\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{theorem}\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ {\isacharparenleft}x{\isasymColon}{\isacharprime}a{\isasymColon}group{\isacharparenright}{\isachardoublequote}\isanewline
 \isamarkupfalse%
 \isacommand{proof}\ {\isacharminus}\isanewline
 \ \ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}x{\isasyminv}\ {\isasymodot}\ x{\isacharparenright}{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isachardot}left{\isacharunderscore}inverse{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
@@ -166,7 +166,7 @@
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
 \isacommand{also}\ \isamarkupfalse%
-\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymunit}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
+\isacommand{have}\ {\isachardoublequote}{\isachardot}{\isachardot}{\isachardot}\ {\isacharequal}\ {\isasymone}\ {\isasymodot}\ x{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ group{\isacharunderscore}right{\isacharunderscore}inverse{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
@@ -251,11 +251,11 @@
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}rule\ semigroup{\isachardot}assoc{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
-\isacommand{show}\ {\isachardoublequote}{\isasymunit}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\isacommand{show}\ {\isachardoublequote}{\isasymone}\ {\isasymodot}\ x\ {\isacharequal}\ x{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}rule\ group{\isachardot}left{\isacharunderscore}unit{\isacharparenright}\isanewline
 \ \ \isamarkupfalse%
-\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymunit}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
+\isacommand{show}\ {\isachardoublequote}x\ {\isasymodot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isanewline
 \ \ \ \ \isamarkupfalse%
 \isacommand{by}\ {\isacharparenleft}rule\ group{\isacharunderscore}right{\isacharunderscore}unit{\isacharparenright}\isanewline
 \isamarkupfalse%
@@ -289,13 +289,13 @@
 
   \medskip As a typical example, we show that type \isa{bool} with
   exclusive-or as \isa{{\isasymodot}} operation, identity as \isa{{\isasyminv}}, and
-  \isa{False} as \isa{{\isasymunit}} forms an Abelian group.%
+  \isa{False} as \isa{{\isasymone}} forms an Abelian group.%
 \end{isamarkuptext}%
 \isamarkuptrue%
 \isacommand{defs}\ {\isacharparenleft}\isakeyword{overloaded}{\isacharparenright}\isanewline
 \ \ times{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x\ {\isasymodot}\ y\ {\isasymequiv}\ x\ {\isasymnoteq}\ {\isacharparenleft}y{\isasymColon}bool{\isacharparenright}{\isachardoublequote}\isanewline
 \ \ inverse{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}x{\isasyminv}\ {\isasymequiv}\ x{\isasymColon}bool{\isachardoublequote}\isanewline
-\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}{\isasymunit}\ {\isasymequiv}\ False{\isachardoublequote}\isamarkupfalse%
+\ \ unit{\isacharunderscore}bool{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymequiv}\ False{\isachardoublequote}\isamarkupfalse%
 %
 \begin{isamarkuptext}%
 \medskip It is important to note that above $\DEFS$ are just
@@ -342,9 +342,9 @@
   \medskip We could now also instantiate our group theory classes to
   many other concrete types.  For example, \isa{int\ {\isasymColon}\ agroup}
   (e.g.\ by defining \isa{{\isasymodot}} as addition, \isa{{\isasyminv}} as negation
-  and \isa{{\isasymunit}} as zero) or \isa{list\ {\isasymColon}\ {\isacharparenleft}type{\isacharparenright}\ semigroup}
+  and \isa{{\isasymone}} as zero) or \isa{list\ {\isasymColon}\ {\isacharparenleft}type{\isacharparenright}\ semigroup}
   (e.g.\ if \isa{{\isasymodot}} is defined as list append).  Thus, the
-  characteristic constants \isa{{\isasymodot}}, \isa{{\isasyminv}}, \isa{{\isasymunit}}
+  characteristic constants \isa{{\isasymodot}}, \isa{{\isasyminv}}, \isa{{\isasymone}}
   really become overloaded, i.e.\ have different meanings on different
   types.%
 \end{isamarkuptext}%
--- a/doc-src/AxClass/generated/isabellesym.sty	Mon Dec 03 20:59:29 2001 +0100
+++ b/doc-src/AxClass/generated/isabellesym.sty	Mon Dec 03 20:59:57 2001 +0100
@@ -7,6 +7,16 @@
 
 % symbol definitions
 
+\newcommand{\isasymzero}{\isatext{\textzerooldstyle}}  %requires textcomp
+\newcommand{\isasymone}{\isatext{\textoneoldstyle}}  %requires textcomp
+\newcommand{\isasymtwo}{\isatext{\texttwooldstyle}}  %requires textcomp
+\newcommand{\isasymthree}{\isatext{\textthreeoldstyle}}  %requires textcomp
+\newcommand{\isasymfour}{\isatext{\textfouroldstyle}}  %requires textcomp
+\newcommand{\isasymfive}{\isatext{\textfiveoldstyle}}  %requires textcomp
+\newcommand{\isasymsix}{\isatext{\textsixoldstyle}}  %requires textcomp
+\newcommand{\isasymseven}{\isatext{\textsevenoldstyle}}  %requires textcomp
+\newcommand{\isasymeight}{\isatext{\texteightoldstyle}}  %requires textcomp
+\newcommand{\isasymnine}{\isatext{\textnineoldstyle}}  %requires textcomp
 \newcommand{\isasymA}{\isamath{\mathcal{A}}}
 \newcommand{\isasymB}{\isamath{\mathcal{B}}}
 \newcommand{\isasymC}{\isamath{\mathcal{C}}}
@@ -307,7 +317,7 @@
 \newcommand{\isasymnatural}{\isamath{\natural}}
 \newcommand{\isasymsharp}{\isamath{\sharp}}
 \newcommand{\isasymangle}{\isamath{\angle}}
-\newcommand{\isasymcopyright}{\isatext{\copyright}}
+\newcommand{\isasymcopyright}{\isatext{\rm\copyright}}
 \newcommand{\isasymregistered}{\isatext{\rm\textregistered}}
 \newcommand{\isasymhyphen}{\isatext{\rm-}}
 \newcommand{\isasyminverse}{\isamath{{}^{-1}}}
@@ -319,20 +329,21 @@
 \newcommand{\isasymthreequarters}{\isatext{\rm\textthreequarters}}  %requires latin1
 \newcommand{\isasymordfeminine}{\isatext{\rm\textordfeminine}}
 \newcommand{\isasymordmasculine}{\isatext{\rm\textordmasculine}}
-\newcommand{\isasymsection}{\isatext{\S}}
-\newcommand{\isasymparagraph}{\isatext{\P}}
+\newcommand{\isasymsection}{\isatext{\rm\S}}
+\newcommand{\isasymparagraph}{\isatext{\rm\P}}
 \newcommand{\isasymexclamdown}{\isatext{\rm\textexclamdown}}
 \newcommand{\isasymquestiondown}{\isatext{\rm\textquestiondown}}
+\newcommand{\isasymeuro}{\isatext{\EUR}}  %requires marvosym
 \newcommand{\isasympounds}{\isamath{\pounds}}
 \newcommand{\isasymyen}{\isatext{\yen}}  %requires amssymb
 \newcommand{\isasymcent}{\isatext{\cent}}  %requires wasysym
 \newcommand{\isasymcurrency}{\isatext{\currency}}  %requires wasysym
 \newcommand{\isasymdegree}{\isatext{\rm\textdegree}}  %requires latin1
-\newcommand{\isasymwp}{\isamath{\wp}}
 \newcommand{\isasymamalg}{\isamath{\amalg}}
 \newcommand{\isasymmho}{\isamath{\mho}}  %requires latexsym
 \newcommand{\isasymlozenge}{\isamath{\lozenge}}  %requires amssym
 \newcommand{\isasymJoin}{\isamath{\Join}}  %requires latexsym
+\newcommand{\isasymwp}{\isamath{\wp}}
 \newcommand{\isasymwrong}{\isamath{\wr}}
 \newcommand{\isasymspacespace}{\isamath{~~}}
 \newcommand{\isasymacute}{\isatext{\'\relax}}