Ord.thy/.ML converted to Isar
authoroheimb
Thu, 15 Feb 2001 16:07:57 +0100
changeset 11143 73ae4f643d57
parent 11142 42181d7cd7b2
child 11144 f53ea84bab23
Ord.thy/.ML converted to Isar
src/HOL/Ord.ML
--- a/src/HOL/Ord.ML	Thu Feb 15 16:01:47 2001 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,232 +0,0 @@
-(*  Title:      HOL/Ord.ML
-    ID:         $Id$
-    Author:     Tobias Nipkow, Cambridge University Computer Laboratory
-    Copyright   1993  University of Cambridge
-
-The type class for ordered types
-*)
-
-(*Tell Blast_tac about overloading of < and <= to reduce the risk of
-  its applying a rule for the wrong type*)
-Blast.overloaded ("op <", domain_type); 
-Blast.overloaded ("op <=", domain_type);
-
-(** mono **)
-
-val [prem] = Goalw [mono_def]
-    "[| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f)";
-by (REPEAT (ares_tac [allI, impI, prem] 1));
-qed "monoI";
-AddXIs [monoI];
-
-Goalw [mono_def] "[| mono(f);  A <= B |] ==> f(A) <= f(B)";
-by (Fast_tac 1);
-qed "monoD";
-AddXDs [monoD];
-
-
-section "Orders";
-
-(** Reflexivity **)
-
-AddIffs [order_refl];
-
-(*This form is useful with the classical reasoner*)
-Goal "!!x::'a::order. x = y ==> x <= y";
-by (etac ssubst 1);
-by (rtac order_refl 1);
-qed "order_eq_refl";
-
-Goal "~ x < (x::'a::order)";
-by (simp_tac (simpset() addsimps [order_less_le]) 1);
-qed "order_less_irrefl";
-Addsimps [order_less_irrefl];
-
-Goal "(x::'a::order) <= y = (x < y | x = y)";
-by (simp_tac (simpset() addsimps [order_less_le]) 1);
-   (*NOT suitable for AddIffs, since it can cause PROOF FAILED*)
-by (blast_tac (claset() addSIs [order_refl]) 1);
-qed "order_le_less";
-
-bind_thm ("order_le_imp_less_or_eq", order_le_less RS iffD1);
-
-Goal "!!x::'a::order. x < y ==> x <= y";
-by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
-qed "order_less_imp_le";
-
-(** Asymmetry **)
-
-Goal "(x::'a::order) < y ==> ~ (y<x)";
-by (asm_full_simp_tac (simpset() addsimps [order_less_le, order_antisym]) 1);
-qed "order_less_not_sym";
-
-(* [| n<m;  ~P ==> m<n |] ==> P *)
-bind_thm ("order_less_asym", order_less_not_sym RS contrapos_np);
-
-(* Transitivity *)
-
-Goal "!!x::'a::order. [| x < y; y < z |] ==> x < z";
-by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
-by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
-qed "order_less_trans";
-
-Goal "!!x::'a::order. [| x <= y; y < z |] ==> x < z";
-by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
-by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
-qed "order_le_less_trans";
-
-Goal "!!x::'a::order. [| x < y; y <= z |] ==> x < z";
-by (asm_full_simp_tac (simpset() addsimps [order_less_le]) 1);
-by (blast_tac (claset() addIs [order_trans,order_antisym]) 1);
-qed "order_less_le_trans";
-
-
-(** Useful for simplification, but too risky to include by default. **)
-
-Goal "(x::'a::order) < y ==>  (~ y < x) = True";
-by (blast_tac (claset() addEs [order_less_asym]) 1);
-qed "order_less_imp_not_less";
-
-Goal "(x::'a::order) < y ==>  (y < x --> P) = True";
-by (blast_tac (claset() addEs [order_less_asym]) 1);
-qed "order_less_imp_triv";
-
-Goal "(x::'a::order) < y ==>  (x = y) = False";
-by Auto_tac;
-qed "order_less_imp_not_eq";
-
-Goal "(x::'a::order) < y ==>  (y = x) = False";
-by Auto_tac;
-qed "order_less_imp_not_eq2";
-
-
-(** min **)
-
-val prems = Goalw [min_def] "(!!x. least <= x) ==> min least x = least";
-by (simp_tac (simpset() addsimps prems) 1);
-qed "min_leastL";
-
-val prems = Goalw [min_def]
- "(!!x::'a::order. least <= x) ==> min x least = least";
-by (cut_facts_tac prems 1);
-by (Asm_simp_tac 1);
-by (blast_tac (claset() addIs [order_antisym]) 1);
-qed "min_leastR";
-
-
-section "Linear/Total Orders";
-
-Goal "!!x::'a::linorder. x<y | x=y | y<x";
-by (simp_tac (simpset() addsimps [order_less_le]) 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (Blast_tac 1);
-qed "linorder_less_linear";
-
-val prems = Goal "[| (x::'a::linorder)<y ==> P; x=y ==> P; y<x ==> P |] ==> P";
-by (cut_facts_tac [linorder_less_linear] 1);
-by (REPEAT(eresolve_tac (prems@[disjE]) 1));
-qed "linorder_less_split";
-
-Goal "!!x::'a::linorder. (~ x < y) = (y <= x)";
-by (simp_tac (simpset() addsimps [order_less_le]) 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_antisym]) 1);
-qed "linorder_not_less";
-
-Goal "!!x::'a::linorder. (~ x <= y) = (y < x)";
-by (simp_tac (simpset() addsimps [order_less_le]) 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_antisym]) 1);
-qed "linorder_not_le";
-
-Goal "!!x::'a::linorder. (x ~= y) = (x<y | y<x)";
-by (cut_inst_tac [("x","x"),("y","y")] linorder_less_linear 1);
-by Auto_tac;
-qed "linorder_neq_iff";
-
-(* eliminates ~= in premises *)
-bind_thm("linorder_neqE", linorder_neq_iff RS iffD1 RS disjE);
-
-(** min & max **)
-
-Goalw [min_def] "min (x::'a::order) x = x";
-by (Simp_tac 1);
-qed "min_same";
-Addsimps [min_same];
-
-Goalw [max_def] "max (x::'a::order) x = x";
-by (Simp_tac 1);
-qed "max_same";
-Addsimps [max_same];
-
-Goalw [max_def] "!!z::'a::linorder. (z <= max x y) = (z <= x | z <= y)";
-by (Simp_tac 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_trans]) 1);
-qed "le_max_iff_disj";
-
-Goal "(x::'a::linorder) <= max x y";
-by (simp_tac (simpset() addsimps [le_max_iff_disj]) 1);
-qed "le_maxI1";
-
-Goal "(y::'a::linorder) <= max x y";
-by (simp_tac (simpset() addsimps [le_max_iff_disj]) 1);
-qed "le_maxI2";
-(*CANNOT use with AddSIs because blast_tac will give PROOF FAILED.*)
-
-Goalw [max_def] "!!z::'a::linorder. (z < max x y) = (z < x | z < y)";
-by (simp_tac (simpset() addsimps [order_le_less]) 1);
-by (cut_facts_tac [linorder_less_linear] 1);
-by (blast_tac (claset() addIs [order_less_trans]) 1);
-qed "less_max_iff_disj";
-
-Goalw [max_def] "!!z::'a::linorder. (max x y <= z) = (x <= z & y <= z)";
-by (Simp_tac 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_trans]) 1);
-qed "max_le_iff_conj";
-Addsimps [max_le_iff_conj];
-
-Goalw [max_def] "!!z::'a::linorder. (max x y < z) = (x < z & y < z)";
-by (simp_tac (simpset() addsimps [order_le_less]) 1);
-by (cut_facts_tac [linorder_less_linear] 1);
-by (blast_tac (claset() addIs [order_less_trans]) 1);
-qed "max_less_iff_conj";
-Addsimps [max_less_iff_conj];
-
-Goalw [min_def] "!!z::'a::linorder. (z <= min x y) = (z <= x & z <= y)";
-by (Simp_tac 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_trans]) 1);
-qed "le_min_iff_conj";
-Addsimps [le_min_iff_conj];
-(* AddIffs screws up a blast_tac in MiniML *)
-
-Goalw [min_def] "!!z::'a::linorder. (z < min x y) = (z < x & z < y)";
-by (simp_tac (simpset() addsimps [order_le_less]) 1);
-by (cut_facts_tac [linorder_less_linear] 1);
-by (blast_tac (claset() addIs [order_less_trans]) 1);
-qed "min_less_iff_conj";
-Addsimps [min_less_iff_conj];
-
-Goalw [min_def] "!!z::'a::linorder. (min x y <= z) = (x <= z | y <= z)";
-by (Simp_tac 1);
-by (cut_facts_tac [linorder_linear] 1);
-by (blast_tac (claset() addIs [order_trans]) 1);
-qed "min_le_iff_disj";
-
-Goalw [min_def] "!!z::'a::linorder. (min x y < z) = (x < z | y < z)";
-by (simp_tac (simpset() addsimps [order_le_less]) 1);
-by (cut_facts_tac [linorder_less_linear] 1);
-by (blast_tac (claset() addIs [order_less_trans]) 1);
-qed "min_less_iff_disj";
-
-Goalw [min_def]
- "P(min (i::'a::linorder) j) = ((i <= j --> P(i)) & (~ i <= j --> P(j)))";
-by (Simp_tac 1);
-qed "split_min";
-
-Goalw [max_def]
- "P(max (i::'a::linorder) j) = ((i <= j --> P(j)) & (~ i <= j --> P(i)))";
-by (Simp_tac 1);
-qed "split_max";