--- a/src/Pure/General/graph.ML Thu Feb 23 14:46:38 2012 +0100
+++ b/src/Pure/General/graph.ML Thu Feb 23 15:15:59 2012 +0100
@@ -37,11 +37,11 @@
val immediate_succs: 'a T -> key -> key list
val all_preds: 'a T -> key list -> key list
val all_succs: 'a T -> key list -> key list
+ val strong_conn: 'a T -> key list list
val minimals: 'a T -> key list
val maximals: 'a T -> key list
val is_minimal: 'a T -> key -> bool
val is_maximal: 'a T -> key -> bool
- val strong_conn: 'a T -> key list list
val new_node: key * 'a -> 'a T -> 'a T (*exception DUP*)
val default_node: key * 'a -> 'a T -> 'a T
val del_nodes: key list -> 'a T -> 'a T (*exception UNDEF*)
@@ -169,17 +169,19 @@
fun all_preds G = flat o #1 o reachable (imm_preds G);
fun all_succs G = flat o #1 o reachable (imm_succs G);
-(*minimal and maximal elements*)
+(*strongly connected components; see: David King and John Launchbury,
+ "Structuring Depth First Search Algorithms in Haskell"*)
+fun strong_conn G =
+ rev (filter_out null (#1 (reachable (imm_preds G) (all_succs G (keys G)))));
+
+
+(* minimal and maximal elements *)
+
fun minimals G = fold_graph (fn (m, (_, (preds, _))) => Keys.is_empty preds ? cons m) G [];
fun maximals G = fold_graph (fn (m, (_, (_, succs))) => Keys.is_empty succs ? cons m) G [];
fun is_minimal G x = Keys.is_empty (imm_preds G x);
fun is_maximal G x = Keys.is_empty (imm_succs G x);
-(*strongly connected components; see: David King and John Launchbury,
- "Structuring Depth First Search Algorithms in Haskell"*)
-fun strong_conn G =
- rev (filter_out null (#1 (reachable (imm_preds G) (all_succs G (keys G)))));
-
(* nodes *)
--- a/src/Pure/General/graph.scala Thu Feb 23 14:46:38 2012 +0100
+++ b/src/Pure/General/graph.scala Thu Feb 23 15:15:59 2012 +0100
@@ -91,6 +91,11 @@
def all_preds(xs: List[Key]): List[Key] = reachable(imm_preds, xs)._1.flatten
def all_succs(xs: List[Key]): List[Key] = reachable(imm_succs, xs)._1.flatten
+ /*strongly connected components; see: David King and John Launchbury,
+ "Structuring Depth First Search Algorithms in Haskell"*/
+ def strong_conn: List[List[Key]] =
+ reachable(imm_preds, all_succs(keys.toList))._1.filterNot(_.isEmpty).reverse
+
/* minimal and maximal elements */
@@ -114,6 +119,12 @@
else new Graph[Key, A](rep + (x -> (info, (Set.empty, Set.empty))))
}
+ def default_node(x: Key, info: A): Graph[Key, A] =
+ {
+ if (rep.isDefinedAt(x)) this
+ else new_node(x, info)
+ }
+
def del_nodes(xs: List[Key]): Graph[Key, A] =
{
xs.foreach(get_entry)