base abstract specification of NOT on recursive equation rather than bit projection
--- a/src/HOL/Bit_Operations.thy Tue Nov 21 19:19:16 2023 +0000
+++ b/src/HOL/Bit_Operations.thy Wed Nov 22 17:50:36 2023 +0000
@@ -156,6 +156,7 @@
definition possible_bit :: \<open>'a itself \<Rightarrow> nat \<Rightarrow> bool\<close>
where \<open>possible_bit TYPE('a) n \<longleftrightarrow> 2 ^ n \<noteq> 0\<close>
+ \<comment> \<open>This auxiliary avoids non-termination with extensionality.\<close>
lemma possible_bit_0 [simp]:
\<open>possible_bit TYPE('a) 0\<close>
@@ -1331,7 +1332,7 @@
class ring_bit_operations = semiring_bit_operations + ring_parity +
fixes not :: \<open>'a \<Rightarrow> 'a\<close> (\<open>NOT\<close>)
- assumes bit_not_iff_eq: \<open>\<And>n. bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
+ assumes not_rec: \<open>NOT a = of_bool (even a) + 2 * NOT (a div 2)\<close>
assumes minus_eq_not_minus_1: \<open>- a = NOT (a - 1)\<close>
begin
@@ -1342,10 +1343,6 @@
(type \<^typ>\<open>nat\<close>).
\<close>
-lemma bit_not_iff [bit_simps]:
- \<open>bit (NOT a) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> \<not> bit a n\<close>
- by (simp add: bit_not_iff_eq fold_possible_bit)
-
lemma bits_minus_1_mod_2_eq [simp]:
\<open>(- 1) mod 2 = 1\<close>
by (simp add: mod_2_eq_odd)
@@ -1358,18 +1355,41 @@
\<open>- a = NOT a + 1\<close>
using not_eq_complement [of a] by simp
-lemma bit_minus_iff [bit_simps]:
- \<open>bit (- a) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> \<not> bit (a - 1) n\<close>
- by (simp add: minus_eq_not_minus_1 bit_not_iff)
-
lemma even_not_iff [simp]:
- \<open>even (NOT a) \<longleftrightarrow> odd a\<close>
- using bit_not_iff [of a 0] by (auto simp add: bit_0)
+ \<open>even (NOT a) \<longleftrightarrow> odd a\<close>
+ by (simp add: not_rec [of a])
+
+lemma bit_not_iff [bit_simps]:
+ \<open>bit (NOT a) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> \<not> bit a n\<close>
+proof (cases \<open>possible_bit TYPE('a) n\<close>)
+ case False
+ then show ?thesis
+ by (auto dest: bit_imp_possible_bit)
+next
+ case True
+ moreover have \<open>bit (NOT a) n \<longleftrightarrow> \<not> bit a n\<close>
+ using \<open>possible_bit TYPE('a) n\<close> proof (induction n arbitrary: a)
+ case 0
+ then show ?case
+ by (simp add: bit_0)
+ next
+ case (Suc n)
+ from Suc.prems Suc.IH [of \<open>a div 2\<close>]
+ show ?case
+ by (simp add: impossible_bit possible_bit_less_imp not_rec [of a] even_bit_succ_iff bit_double_iff flip: bit_Suc)
+ qed
+ ultimately show ?thesis
+ by simp
+qed
lemma bit_not_exp_iff [bit_simps]:
\<open>bit (NOT (2 ^ m)) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> n \<noteq> m\<close>
by (auto simp add: bit_not_iff bit_exp_iff)
+lemma bit_minus_iff [bit_simps]:
+ \<open>bit (- a) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> \<not> bit (a - 1) n\<close>
+ by (simp add: minus_eq_not_minus_1 bit_not_iff)
+
lemma bit_minus_1_iff [simp]:
\<open>bit (- 1) n \<longleftrightarrow> possible_bit TYPE('a) n\<close>
by (simp add: bit_minus_iff)
@@ -1382,6 +1402,10 @@
\<open>bit (- 2) n \<longleftrightarrow> possible_bit TYPE('a) n \<and> n > 0\<close>
by (simp add: bit_minus_iff bit_1_iff)
+lemma bit_not_iff_eq:
+ \<open>bit (NOT a) n \<longleftrightarrow> 2 ^ n \<noteq> 0 \<and> \<not> bit a n\<close>
+ by (simp add: bit_simps possible_bit_def)
+
lemma not_one_eq [simp]:
\<open>NOT 1 = - 2\<close>
by (simp add: bit_eq_iff bit_not_iff) (simp add: bit_1_iff)
@@ -1670,6 +1694,8 @@
fix k l :: int and m n :: nat
show \<open>- k = NOT (k - 1)\<close>
by (simp add: not_int_def)
+ show \<open>NOT k = of_bool (even k) + 2 * NOT (k div 2)\<close>
+ by (auto simp add: not_int_def elim: oddE)
show \<open>k AND l = of_bool (odd k \<and> odd l) + 2 * (k div 2 AND l div 2)\<close>
by (fact and_int_rec)
show \<open>k OR l = of_bool (odd k \<or> odd l) + 2 * (k div 2 OR l div 2)\<close>
@@ -1685,7 +1711,7 @@
finally show ?thesis by (simp only: bit_simps bit_and_int_iff)
(auto simp add: bit_simps bit_not_int_iff' push_bit_int_def)
qed
-qed (simp_all add: bit_not_int_iff mask_int_def set_bit_int_def flip_bit_int_def
+qed (simp_all add: mask_int_def set_bit_int_def flip_bit_int_def
push_bit_int_def drop_bit_int_def take_bit_int_def)
end
--- a/src/HOL/Code_Numeral.thy Tue Nov 21 19:19:16 2023 +0000
+++ b/src/HOL/Code_Numeral.thy Wed Nov 22 17:50:36 2023 +0000
@@ -352,8 +352,8 @@
bits_div_0 bits_div_by_1 bits_mod_div_trivial even_succ_div_2
exp_div_exp_eq div_exp_eq mod_exp_eq mult_exp_mod_exp_eq div_exp_mod_exp_eq
even_mask_div_iff even_mult_exp_div_exp_iff
- and_rec or_rec xor_rec mask_eq_exp_minus_1
- set_bit_def bit_unset_bit_iff flip_bit_def bit_not_iff_eq minus_eq_not_minus_1)+
+ and_rec or_rec xor_rec mask_eq_exp_minus_1 not_rec
+ set_bit_def bit_unset_bit_iff flip_bit_def not_rec minus_eq_not_minus_1)+
end
--- a/src/HOL/Library/Word.thy Tue Nov 21 19:19:16 2023 +0000
+++ b/src/HOL/Library/Word.thy Wed Nov 22 17:50:36 2023 +0000
@@ -997,6 +997,15 @@
instance proof
fix v w :: \<open>'a word\<close> and n m :: nat
+ show \<open>NOT v = of_bool (even v) + 2 * NOT (v div 2)\<close>
+ apply transfer
+ apply (rule bit_eqI)
+ apply (auto simp add: even_bit_succ_iff bit_simps bit_0 simp flip: bit_Suc)
+ apply (metis Suc_pred bit_0 not_gr_zero)
+ using odd_bit_iff_bit_pred apply blast
+ done
+ show \<open>- v = NOT (v - 1)\<close>
+ by transfer (simp add: minus_eq_not_minus_1)
show \<open>v AND w = of_bool (odd v \<and> odd w) + 2 * (v div 2 AND w div 2)\<close>
apply transfer
apply (rule bit_eqI)
@@ -1029,10 +1038,6 @@
by transfer (simp add: drop_bit_take_bit flip: drop_bit_eq_div)
show \<open>take_bit n v = v mod 2 ^ n\<close>
by transfer (simp flip: take_bit_eq_mod)
- show \<open>bit (NOT v) n \<longleftrightarrow> 2 ^ n \<noteq> (0 :: 'a word) \<and> \<not> bit v n\<close>
- by transfer (auto simp add: bit_simps)
- show \<open>- v = NOT (v - 1)\<close>
- by transfer (simp add: minus_eq_not_minus_1)
qed
end