--- a/src/HOL/Number_Theory/Pocklington.thy Tue Aug 01 17:33:04 2017 +0200
+++ b/src/HOL/Number_Theory/Pocklington.thy Tue Aug 01 22:19:37 2017 +0200
@@ -8,186 +8,223 @@
imports Residues
begin
-subsection\<open>Lemmas about previously defined terms\<close>
+subsection \<open>Lemmas about previously defined terms\<close>
-lemma prime_nat_iff'':
- "prime (p::nat) \<longleftrightarrow> p \<noteq> 0 \<and> p \<noteq> 1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)"
+lemma prime_nat_iff'': "prime (p::nat) \<longleftrightarrow> p \<noteq> 0 \<and> p \<noteq> 1 \<and> (\<forall>m. 0 < m \<and> m < p \<longrightarrow> coprime p m)"
unfolding prime_nat_iff
proof safe
- fix m assume p: "p > 0" "p \<noteq> 1" and m: "m dvd p" "m \<noteq> p"
- and *: "\<forall>m. m > 0 \<and> m < p \<longrightarrow> coprime p m"
+ fix m
+ assume p: "p > 0" "p \<noteq> 1"
+ and m: "m dvd p" "m \<noteq> p"
+ and *: "\<forall>m. m > 0 \<and> m < p \<longrightarrow> coprime p m"
from p m have "m \<noteq> 0" by (intro notI) auto
moreover from p m have "m < p" by (auto dest: dvd_imp_le)
- ultimately have "coprime p m" using * by blast
+ ultimately have "coprime p m"
+ using * by blast
with m show "m = 1" by simp
-qed (auto simp: prime_nat_iff simp del: One_nat_def
- intro!: prime_imp_coprime dest: dvd_imp_le)
+qed (auto simp: prime_nat_iff simp del: One_nat_def intro!: prime_imp_coprime dest: dvd_imp_le)
lemma finite_number_segment: "card { m. 0 < m \<and> m < n } = n - 1"
-proof-
+proof -
have "{ m. 0 < m \<and> m < n } = {1..<n}" by auto
- thus ?thesis by simp
+ then show ?thesis by simp
qed
-subsection\<open>Some basic theorems about solving congruences\<close>
+subsection \<open>Some basic theorems about solving congruences\<close>
-lemma cong_solve:
- fixes n::nat assumes an: "coprime a n" shows "\<exists>x. [a * x = b] (mod n)"
-proof-
- {assume "a=0" hence ?thesis using an by (simp add: cong_nat_def)}
- moreover
- {assume az: "a\<noteq>0"
- from bezout_add_strong_nat[OF az, of n]
- obtain d x y where dxy: "d dvd a" "d dvd n" "a*x = n*y + d" by blast
+lemma cong_solve:
+ fixes n :: nat
+ assumes an: "coprime a n"
+ shows "\<exists>x. [a * x = b] (mod n)"
+proof (cases "a = 0")
+ case True
+ with an show ?thesis
+ by (simp add: cong_nat_def)
+next
+ case False
+ from bezout_add_strong_nat [OF this]
+ obtain d x y where dxy: "d dvd a" "d dvd n" "a * x = n * y + d" by blast
from dxy(1,2) have d1: "d = 1"
- by (metis assms coprime_nat)
- hence "a*x*b = (n*y + 1)*b" using dxy(3) by simp
- hence "a*(x*b) = n*(y*b) + b"
- by (auto simp add: algebra_simps)
- hence "a*(x*b) mod n = (n*(y*b) + b) mod n" by simp
- hence "a*(x*b) mod n = b mod n" by (simp add: mod_add_left_eq)
- hence "[a*(x*b) = b] (mod n)" unfolding cong_nat_def .
- hence ?thesis by blast}
-ultimately show ?thesis by blast
+ by (metis assms coprime_nat)
+ with dxy(3) have "a * x * b = (n * y + 1) * b"
+ by simp
+ then have "a * (x * b) = n * (y * b) + b"
+ by (auto simp: algebra_simps)
+ then have "a * (x * b) mod n = (n * (y * b) + b) mod n"
+ by simp
+ then have "a * (x * b) mod n = b mod n"
+ by (simp add: mod_add_left_eq)
+ then have "[a * (x * b) = b] (mod n)"
+ by (simp only: cong_nat_def)
+ then show ?thesis by blast
qed
-lemma cong_solve_unique:
- fixes n::nat assumes an: "coprime a n" and nz: "n \<noteq> 0"
+lemma cong_solve_unique:
+ fixes n :: nat
+ assumes an: "coprime a n" and nz: "n \<noteq> 0"
shows "\<exists>!x. x < n \<and> [a * x = b] (mod n)"
-proof-
+proof -
+ from cong_solve[OF an] obtain x where x: "[a * x = b] (mod n)"
+ by blast
let ?P = "\<lambda>x. x < n \<and> [a * x = b] (mod n)"
- from cong_solve[OF an] obtain x where x: "[a*x = b] (mod n)" by blast
let ?x = "x mod n"
- from x have th: "[a * ?x = b] (mod n)"
+ from x have *: "[a * ?x = b] (mod n)"
by (simp add: cong_nat_def mod_mult_right_eq[of a x n])
- from mod_less_divisor[ of n x] nz th have Px: "?P ?x" by simp
- {fix y assume Py: "y < n" "[a * y = b] (mod n)"
- from Py(2) th have "[a * y = a*?x] (mod n)" by (simp add: cong_nat_def)
- hence "[y = ?x] (mod n)"
- by (metis an cong_mult_lcancel_nat)
+ from mod_less_divisor[ of n x] nz * have Px: "?P ?x" by simp
+ have "y = ?x" if Py: "y < n" "[a * y = b] (mod n)" for y
+ proof -
+ from Py(2) * have "[a * y = a * ?x] (mod n)"
+ by (simp add: cong_nat_def)
+ then have "[y = ?x] (mod n)"
+ by (metis an cong_mult_lcancel_nat)
with mod_less[OF Py(1)] mod_less_divisor[ of n x] nz
- have "y = ?x" by (simp add: cong_nat_def)}
+ show ?thesis
+ by (simp add: cong_nat_def)
+ qed
with Px show ?thesis by blast
qed
lemma cong_solve_unique_nontrivial:
- assumes p: "prime (p::nat)" and pa: "coprime p a" and x0: "0 < x" and xp: "x < p"
+ fixes p :: nat
+ assumes p: "prime p"
+ and pa: "coprime p a"
+ and x0: "0 < x"
+ and xp: "x < p"
shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = a] (mod p)"
-proof-
+proof -
from pa have ap: "coprime a p"
- by (metis gcd.commute)
- have px:"coprime x p"
+ by (metis gcd.commute)
+ have px: "coprime x p"
by (metis gcd.commute p prime_nat_iff'' x0 xp)
obtain y where y: "y < p" "[x * y = a] (mod p)" "\<forall>z. z < p \<and> [x * z = a] (mod p) \<longrightarrow> z = y"
by (metis cong_solve_unique neq0_conv p prime_gt_0_nat px)
- {assume y0: "y = 0"
- with y(2) have th: "p dvd a"
+ have "y \<noteq> 0"
+ proof
+ assume "y = 0"
+ with y(2) have "p dvd a"
by (auto dest: cong_dvd_eq_nat)
- have False
- by (metis gcd_nat.absorb1 not_prime_1 p pa th)}
- with y show ?thesis unfolding Ex1_def using neq0_conv by blast
+ then show False
+ by (metis gcd_nat.absorb1 not_prime_1 p pa)
+ qed
+ with y show ?thesis
+ by blast
qed
lemma cong_unique_inverse_prime:
- assumes "prime (p::nat)" and "0 < x" and "x < p"
+ fixes p :: nat
+ assumes "prime p" and "0 < x" and "x < p"
shows "\<exists>!y. 0 < y \<and> y < p \<and> [x * y = 1] (mod p)"
- by (rule cong_solve_unique_nontrivial) (insert assms, simp_all)
+ by (rule cong_solve_unique_nontrivial) (use assms in simp_all)
lemma chinese_remainder_coprime_unique:
- fixes a::nat
+ fixes a :: nat
assumes ab: "coprime a b" and az: "a \<noteq> 0" and bz: "b \<noteq> 0"
- and ma: "coprime m a" and nb: "coprime n b"
+ and ma: "coprime m a" and nb: "coprime n b"
shows "\<exists>!x. coprime x (a * b) \<and> x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
-proof-
+proof -
let ?P = "\<lambda>x. x < a * b \<and> [x = m] (mod a) \<and> [x = n] (mod b)"
from binary_chinese_remainder_unique_nat[OF ab az bz]
- obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)"
- "\<forall>y. ?P y \<longrightarrow> y = x" by blast
- from ma nb x
- have "coprime x a" "coprime x b"
+ obtain x where x: "x < a * b" "[x = m] (mod a)" "[x = n] (mod b)" "\<forall>y. ?P y \<longrightarrow> y = x"
+ by blast
+ from ma nb x have "coprime x a" "coprime x b"
by (metis cong_gcd_eq_nat)+
then have "coprime x (a*b)"
by (metis coprime_mul_eq)
- with x show ?thesis by blast
+ with x show ?thesis
+ by blast
qed
-subsection\<open>Lucas's theorem\<close>
+subsection \<open>Lucas's theorem\<close>
lemma lucas_coprime_lemma:
- fixes n::nat
- assumes m: "m\<noteq>0" and am: "[a^m = 1] (mod n)"
+ fixes n :: nat
+ assumes m: "m \<noteq> 0" and am: "[a^m = 1] (mod n)"
shows "coprime a n"
-proof-
- {assume "n=1" hence ?thesis by simp}
- moreover
- {assume "n = 0" hence ?thesis using am m
- by (metis am cong_0_nat gcd_nat.right_neutral power_eq_one_eq_nat)}
- moreover
- {assume n: "n\<noteq>0" "n\<noteq>1"
- from m obtain m' where m': "m = Suc m'" by (cases m, blast+)
- {fix d
- assume d: "d dvd a" "d dvd n"
- from n have n1: "1 < n" by arith
- from am mod_less[OF n1] have am1: "a^m mod n = 1" unfolding cong_nat_def by simp
- from dvd_mult2[OF d(1), of "a^m'"] have dam:"d dvd a^m" by (simp add: m')
- from dvd_mod_iff[OF d(2), of "a^m"] dam am1
- have "d = 1" by simp }
- hence ?thesis by auto
- }
- ultimately show ?thesis by blast
+proof -
+ consider "n = 1" | "n = 0" | "n > 1" by arith
+ then show ?thesis
+ proof cases
+ case 1
+ then show ?thesis by simp
+ next
+ case 2
+ with am m show ?thesis
+ by (metis am cong_0_nat gcd_nat.right_neutral power_eq_one_eq_nat)
+ next
+ case 3
+ from m obtain m' where m': "m = Suc m'" by (cases m) blast+
+ have "d = 1" if d: "d dvd a" "d dvd n" for d
+ proof -
+ from am mod_less[OF \<open>n > 1\<close>] have am1: "a^m mod n = 1"
+ by (simp add: cong_nat_def)
+ from dvd_mult2[OF d(1), of "a^m'"] have dam: "d dvd a^m"
+ by (simp add: m')
+ from dvd_mod_iff[OF d(2), of "a^m"] dam am1 show ?thesis
+ by simp
+ qed
+ then show ?thesis by blast
+ qed
qed
lemma lucas_weak:
- fixes n::nat
- assumes n: "n \<ge> 2" and an: "[a ^ (n - 1) = 1] (mod n)"
- and nm: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)"
+ fixes n :: nat
+ assumes n: "n \<ge> 2"
+ and an: "[a ^ (n - 1) = 1] (mod n)"
+ and nm: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)"
shows "prime n"
proof (rule totient_imp_prime)
show "totient n = n - 1"
proof (rule ccontr)
have "[a ^ totient n = 1] (mod n)"
- by (rule euler_theorem, rule lucas_coprime_lemma [of "n - 1"])
- (use n an in auto)
+ by (rule euler_theorem, rule lucas_coprime_lemma [of "n - 1"]) (use n an in auto)
moreover assume "totient n \<noteq> n - 1"
- then have "totient n > 0 \<and> totient n < n - 1"
- using \<open>n \<ge> 2\<close> and totient_less[of n] by simp
+ then have "totient n > 0" "totient n < n - 1"
+ using \<open>n \<ge> 2\<close> and totient_less[of n] by simp_all
ultimately show False
using nm by auto
qed
-qed (insert n, auto)
+qed (use n in auto)
lemma nat_exists_least_iff: "(\<exists>(n::nat). P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))"
by (metis ex_least_nat_le not_less0)
-lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> (P (Least P) \<and> (\<forall>m < (Least P). \<not> P m))"
+lemma nat_exists_least_iff': "(\<exists>(n::nat). P n) \<longleftrightarrow> P (Least P) \<and> (\<forall>m < (Least P). \<not> P m)"
(is "?lhs \<longleftrightarrow> ?rhs")
-proof-
- {assume ?rhs hence ?lhs by blast}
- moreover
- { assume H: ?lhs then obtain n where n: "P n" by blast
+proof
+ show ?lhs if ?rhs
+ using that by blast
+ show ?rhs if ?lhs
+ proof -
+ from \<open>?lhs\<close> obtain n where n: "P n" by blast
let ?x = "Least P"
- {fix m assume m: "m < ?x"
- from not_less_Least[OF m] have "\<not> P m" .}
- with LeastI_ex[OF H] have ?rhs by blast}
- ultimately show ?thesis by blast
+ have "\<not> P m" if "m < ?x" for m
+ by (rule not_less_Least[OF that])
+ with LeastI_ex[OF \<open>?lhs\<close>] show ?thesis
+ by blast
+ qed
qed
theorem lucas:
assumes n2: "n \<ge> 2" and an1: "[a^(n - 1) = 1] (mod n)"
- and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> [a^((n - 1) div p) \<noteq> 1] (mod n)"
+ and pn: "\<forall>p. prime p \<and> p dvd n - 1 \<longrightarrow> [a^((n - 1) div p) \<noteq> 1] (mod n)"
shows "prime n"
proof-
- from n2 have n01: "n\<noteq>0" "n\<noteq>1" "n - 1 \<noteq> 0" by arith+
- from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1" by simp
+ from n2 have n01: "n \<noteq> 0" "n \<noteq> 1" "n - 1 \<noteq> 0"
+ by arith+
+ from mod_less_divisor[of n 1] n01 have onen: "1 mod n = 1"
+ by simp
from lucas_coprime_lemma[OF n01(3) an1] cong_imp_coprime_nat an1
have an: "coprime a n" "coprime (a^(n - 1)) n"
by (auto simp add: coprime_exp gcd.commute)
- {assume H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
+ have False if H0: "\<exists>m. 0 < m \<and> m < n - 1 \<and> [a ^ m = 1] (mod n)" (is "EX m. ?P m")
+ proof -
from H0[unfolded nat_exists_least_iff[of ?P]] obtain m where
- m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k" by blast
- {assume nm1: "(n - 1) mod m > 0"
+ m: "0 < m" "m < n - 1" "[a ^ m = 1] (mod n)" "\<forall>k <m. \<not>?P k"
+ by blast
+ have False if nm1: "(n - 1) mod m > 0"
+ proof -
from mod_less_divisor[OF m(1)] have th0:"(n - 1) mod m < m" by blast
let ?y = "a^ ((n - 1) div m * m)"
note mdeq = div_mult_mod_eq[of "(n - 1)" m]
@@ -199,53 +236,62 @@
using power_mod[of "a^m" n "(n - 1) div m"] by simp
also have "\<dots> = 1" using m(3)[unfolded cong_nat_def onen] onen
by (metis power_one)
- finally have th3: "?y mod n = 1" .
- have th2: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)"
+ finally have *: "?y mod n = 1" .
+ have **: "[?y * a ^ ((n - 1) mod m) = ?y* 1] (mod n)"
using an1[unfolded cong_nat_def onen] onen
div_mult_mod_eq[of "(n - 1)" m, symmetric]
- by (simp add:power_add[symmetric] cong_nat_def th3 del: One_nat_def)
- have th1: "[a ^ ((n - 1) mod m) = 1] (mod n)"
- by (metis cong_mult_rcancel_nat mult.commute th2 yn)
- from m(4)[rule_format, OF th0] nm1
- less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] th1
- have False by blast }
- hence "(n - 1) mod m = 0" by auto
+ by (simp add:power_add[symmetric] cong_nat_def * del: One_nat_def)
+ have "[a ^ ((n - 1) mod m) = 1] (mod n)"
+ by (metis cong_mult_rcancel_nat mult.commute ** yn)
+ with m(4)[rule_format, OF th0] nm1
+ less_trans[OF mod_less_divisor[OF m(1), of "n - 1"] m(2)] show ?thesis
+ by blast
+ qed
+ then have "(n - 1) mod m = 0" by auto
then have mn: "m dvd n - 1" by presburger
- then obtain r where r: "n - 1 = m*r" unfolding dvd_def by blast
- from n01 r m(2) have r01: "r\<noteq>0" "r\<noteq>1" by - (rule ccontr, simp)+
+ then obtain r where r: "n - 1 = m * r"
+ unfolding dvd_def by blast
+ from n01 r m(2) have r01: "r \<noteq> 0" "r \<noteq> 1" by auto
obtain p where p: "prime p" "p dvd r"
by (metis prime_factor_nat r01(2))
- hence th: "prime p \<and> p dvd n - 1" unfolding r by (auto intro: dvd_mult)
- have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n" using r
+ then have th: "prime p \<and> p dvd n - 1"
+ unfolding r by (auto intro: dvd_mult)
+ from r have "(a ^ ((n - 1) div p)) mod n = (a^(m*r div p)) mod n"
by (simp add: power_mult)
- also have "\<dots> = (a^(m*(r div p))) mod n"
- using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0]
- by simp
- also have "\<dots> = ((a^m)^(r div p)) mod n" by (simp add: power_mult)
- also have "\<dots> = ((a^m mod n)^(r div p)) mod n" using power_mod ..
- also have "\<dots> = 1" using m(3) onen by (simp add: cong_nat_def)
+ also have "\<dots> = (a^(m*(r div p))) mod n"
+ using div_mult1_eq[of m r p] p(2)[unfolded dvd_eq_mod_eq_0] by simp
+ also have "\<dots> = ((a^m)^(r div p)) mod n"
+ by (simp add: power_mult)
+ also have "\<dots> = ((a^m mod n)^(r div p)) mod n"
+ using power_mod ..
+ also from m(3) onen have "\<dots> = 1"
+ by (simp add: cong_nat_def)
finally have "[(a ^ ((n - 1) div p))= 1] (mod n)"
using onen by (simp add: cong_nat_def)
- with pn th have False by blast}
- hence th: "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)" by blast
- from lucas_weak[OF n2 an1 th] show ?thesis .
+ with pn th show ?thesis by blast
+ qed
+ then have "\<forall>m. 0 < m \<and> m < n - 1 \<longrightarrow> \<not> [a ^ m = 1] (mod n)"
+ by blast
+ then show ?thesis by (rule lucas_weak[OF n2 an1])
qed
-subsection\<open>Definition of the order of a number mod n (0 in non-coprime case)\<close>
+subsection \<open>Definition of the order of a number mod n (0 in non-coprime case)\<close>
definition "ord n a = (if coprime n a then Least (\<lambda>d. d > 0 \<and> [a ^d = 1] (mod n)) else 0)"
-(* This has the expected properties. *)
+text \<open>This has the expected properties.\<close>
lemma coprime_ord:
- fixes n::nat
+ fixes n::nat
assumes "coprime n a"
shows "ord n a > 0 \<and> [a ^(ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> [a^ m \<noteq> 1] (mod n))"
proof-
let ?P = "\<lambda>d. 0 < d \<and> [a ^ d = 1] (mod n)"
- from bigger_prime[of a] obtain p where p: "prime p" "a < p" by blast
- from assms have o: "ord n a = Least ?P" by (simp add: ord_def)
+ from bigger_prime[of a] obtain p where p: "prime p" "a < p"
+ by blast
+ from assms have o: "ord n a = Least ?P"
+ by (simp add: ord_def)
have ex: "\<exists>m>0. ?P m"
proof (cases "n \<ge> 2")
case True
@@ -266,136 +312,143 @@
unfolding o[symmetric] by auto
qed
-(* With the special value 0 for non-coprime case, it's more convenient. *)
-lemma ord_works:
- fixes n::nat
- shows "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> ~[a^ m = 1] (mod n))"
-apply (cases "coprime n a")
-using coprime_ord[of n a]
-by (auto simp add: ord_def cong_nat_def)
+text \<open>With the special value \<open>0\<close> for non-coprime case, it's more convenient.\<close>
+lemma ord_works: "[a ^ (ord n a) = 1] (mod n) \<and> (\<forall>m. 0 < m \<and> m < ord n a \<longrightarrow> \<not> [a^ m = 1] (mod n))"
+ for n :: nat
+ by (cases "coprime n a") (use coprime_ord[of n a] in \<open>auto simp add: ord_def cong_nat_def\<close>)
-lemma ord:
- fixes n::nat
- shows "[a^(ord n a) = 1] (mod n)" using ord_works by blast
+lemma ord: "[a^(ord n a) = 1] (mod n)"
+ for n :: nat
+ using ord_works by blast
-lemma ord_minimal:
- fixes n::nat
- shows "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> ~[a^m = 1] (mod n)"
+lemma ord_minimal: "0 < m \<Longrightarrow> m < ord n a \<Longrightarrow> \<not> [a^m = 1] (mod n)"
+ for n :: nat
using ord_works by blast
-lemma ord_eq_0:
- fixes n::nat
- shows "ord n a = 0 \<longleftrightarrow> ~coprime n a"
-by (cases "coprime n a", simp add: coprime_ord, simp add: ord_def)
+lemma ord_eq_0: "ord n a = 0 \<longleftrightarrow> \<not> coprime n a"
+ for n :: nat
+ by (cases "coprime n a") (simp add: coprime_ord, simp add: ord_def)
-lemma divides_rexp:
- "x dvd y \<Longrightarrow> (x::nat) dvd (y^(Suc n))"
+lemma divides_rexp: "x dvd y \<Longrightarrow> x dvd (y ^ Suc n)"
+ for x y :: nat
by (simp add: dvd_mult2[of x y])
-lemma ord_divides:
- fixes n::nat
- shows "[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d" (is "?lhs \<longleftrightarrow> ?rhs")
+lemma ord_divides:"[a ^ d = 1] (mod n) \<longleftrightarrow> ord n a dvd d"
+ (is "?lhs \<longleftrightarrow> ?rhs")
+ for n :: nat
proof
- assume rh: ?rhs
- then obtain k where "d = ord n a * k" unfolding dvd_def by blast
- hence "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)"
+ assume ?rhs
+ then obtain k where "d = ord n a * k"
+ unfolding dvd_def by blast
+ then have "[a ^ d = (a ^ (ord n a) mod n)^k] (mod n)"
by (simp add : cong_nat_def power_mult power_mod)
also have "[(a ^ (ord n a) mod n)^k = 1] (mod n)"
using ord[of a n, unfolded cong_nat_def]
by (simp add: cong_nat_def power_mod)
- finally show ?lhs .
+ finally show ?lhs .
next
- assume lh: ?lhs
- { assume H: "\<not> coprime n a"
- hence o: "ord n a = 0" by (simp add: ord_def)
- {assume d: "d=0" with o H have ?rhs by (simp add: cong_nat_def)}
- moreover
- {assume d0: "d\<noteq>0" then obtain d' where d': "d = Suc d'" by (cases d, auto)
- from H
- obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto
- from lh
- obtain q1 q2 where q12:"a ^ d + n * q1 = 1 + n * q2"
- by (metis H d0 gcd.commute lucas_coprime_lemma)
- hence "a ^ d + n * q1 - n * q2 = 1" by simp
- with dvd_diff_nat [OF dvd_add [OF divides_rexp]] dvd_mult2 d' p
- have "p dvd 1"
+ assume ?lhs
+ show ?rhs
+ proof (cases "coprime n a")
+ case prem: False
+ then have o: "ord n a = 0" by (simp add: ord_def)
+ show ?thesis
+ proof (cases d)
+ case 0
+ with o prem show ?thesis by (simp add: cong_nat_def)
+ next
+ case (Suc d')
+ then have d0: "d \<noteq> 0" by simp
+ from prem obtain p where p: "p dvd n" "p dvd a" "p \<noteq> 1" by auto
+ from \<open>?lhs\<close> obtain q1 q2 where q12: "a ^ d + n * q1 = 1 + n * q2"
+ by (metis prem d0 gcd.commute lucas_coprime_lemma)
+ then have "a ^ d + n * q1 - n * q2 = 1" by simp
+ with dvd_diff_nat [OF dvd_add [OF divides_rexp]] dvd_mult2 Suc p have "p dvd 1"
by metis
with p(3) have False by simp
- hence ?rhs ..}
- ultimately have ?rhs by blast}
- moreover
- {assume H: "coprime n a"
+ then show ?thesis ..
+ qed
+ next
+ case H: True
let ?o = "ord n a"
let ?q = "d div ord n a"
let ?r = "d mod ord n a"
have eqo: "[(a^?o)^?q = 1] (mod n)"
by (metis cong_exp_nat ord power_one)
from H have onz: "?o \<noteq> 0" by (simp add: ord_eq_0)
- hence op: "?o > 0" by simp
- from div_mult_mod_eq[of d "ord n a"] lh
- have "[a^(?o*?q + ?r) = 1] (mod n)" by (simp add: cong_nat_def mult.commute)
- hence "[(a^?o)^?q * (a^?r) = 1] (mod n)"
+ then have op: "?o > 0" by simp
+ from div_mult_mod_eq[of d "ord n a"] \<open>?lhs\<close>
+ have "[a^(?o*?q + ?r) = 1] (mod n)"
+ by (simp add: cong_nat_def mult.commute)
+ then have "[(a^?o)^?q * (a^?r) = 1] (mod n)"
by (simp add: cong_nat_def power_mult[symmetric] power_add[symmetric])
- hence th: "[a^?r = 1] (mod n)"
+ then have th: "[a^?r = 1] (mod n)"
using eqo mod_mult_left_eq[of "(a^?o)^?q" "a^?r" n]
- apply (simp add: cong_nat_def del: One_nat_def)
- by (metis mod_mult_left_eq nat_mult_1)
- {assume r: "?r = 0" hence ?rhs by (simp add: dvd_eq_mod_eq_0)}
- moreover
- {assume r: "?r \<noteq> 0"
+ by (simp add: cong_nat_def del: One_nat_def) (metis mod_mult_left_eq nat_mult_1)
+ show ?thesis
+ proof (cases "?r = 0")
+ case True
+ then show ?thesis by (simp add: dvd_eq_mod_eq_0)
+ next
+ case False
with mod_less_divisor[OF op, of d] have r0o:"?r >0 \<and> ?r < ?o" by simp
from conjunct2[OF ord_works[of a n], rule_format, OF r0o] th
- have ?rhs by blast}
- ultimately have ?rhs by blast}
- ultimately show ?rhs by blast
+ show ?thesis by blast
+ qed
+ qed
qed
-lemma order_divides_totient:
- "ord n a dvd totient n" if "coprime n a"
+lemma order_divides_totient: "ord n a dvd totient n" if "coprime n a"
by (metis euler_theorem gcd.commute ord_divides that)
lemma order_divides_expdiff:
fixes n::nat and a::nat assumes na: "coprime n a"
shows "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
-proof-
- {fix n::nat and a::nat and d::nat and e::nat
- assume na: "coprime n a" and ed: "(e::nat) \<le> d"
- hence "\<exists>c. d = e + c" by presburger
- then obtain c where c: "d = e + c" by presburger
+proof -
+ have th: "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
+ if na: "coprime n a" and ed: "(e::nat) \<le> d"
+ for n a d e :: nat
+ proof -
+ from na ed have "\<exists>c. d = e + c" by presburger
+ then obtain c where c: "d = e + c" ..
from na have an: "coprime a n"
by (metis gcd.commute)
have aen: "coprime (a^e) n"
- by (metis coprime_exp gcd.commute na)
+ by (metis coprime_exp gcd.commute na)
have acn: "coprime (a^c) n"
- by (metis coprime_exp gcd.commute na)
- have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)"
- using c by simp
+ by (metis coprime_exp gcd.commute na)
+ from c have "[a^d = a^e] (mod n) \<longleftrightarrow> [a^(e + c) = a^(e + 0)] (mod n)"
+ by simp
also have "\<dots> \<longleftrightarrow> [a^e* a^c = a^e *a^0] (mod n)" by (simp add: power_add)
also have "\<dots> \<longleftrightarrow> [a ^ c = 1] (mod n)"
using cong_mult_lcancel_nat [OF aen, of "a^c" "a^0"] by simp
- also have "\<dots> \<longleftrightarrow> ord n a dvd c" by (simp only: ord_divides)
+ also have "\<dots> \<longleftrightarrow> ord n a dvd c"
+ by (simp only: ord_divides)
also have "\<dots> \<longleftrightarrow> [e + c = e + 0] (mod ord n a)"
- using cong_add_lcancel_nat
+ using cong_add_lcancel_nat
by (metis cong_dvd_eq_nat dvd_0_right cong_dvd_modulus_nat cong_mult_self_nat nat_mult_1)
- finally have "[a^d = a^e] (mod n) \<longleftrightarrow> [d = e] (mod (ord n a))"
- using c by simp }
- note th = this
- have "e \<le> d \<or> d \<le> e" by arith
- moreover
- {assume ed: "e \<le> d" from th[OF na ed] have ?thesis .}
- moreover
- {assume de: "d \<le> e"
- from th[OF na de] have ?thesis
- by (metis cong_sym_nat)}
- ultimately show ?thesis by blast
+ finally show ?thesis
+ using c by simp
+ qed
+ consider "e \<le> d" | "d \<le> e" by arith
+ then show ?thesis
+ proof cases
+ case 1
+ with na show ?thesis by (rule th)
+ next
+ case 2
+ from th[OF na this] show ?thesis
+ by (metis cong_sym_nat)
+ qed
qed
-subsection\<open>Another trivial primality characterization\<close>
+
+subsection \<open>Another trivial primality characterization\<close>
-lemma prime_prime_factor:
- "prime (n::nat) \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)"
+lemma prime_prime_factor: "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>p. prime p \<and> p dvd n \<longrightarrow> p = n)"
(is "?lhs \<longleftrightarrow> ?rhs")
-proof (cases "n=0 \<or> n=1")
+ for n :: nat
+proof (cases "n = 0 \<or> n = 1")
case True
then show ?thesis
by (metis bigger_prime dvd_0_right not_prime_1 not_prime_0)
@@ -405,7 +458,7 @@
proof
assume "prime n"
then show ?rhs
- by (metis not_prime_1 prime_nat_iff)
+ by (metis not_prime_1 prime_nat_iff)
next
assume ?rhs
with False show "prime n"
@@ -413,322 +466,402 @@
qed
qed
-lemma prime_divisor_sqrt:
- "prime (n::nat) \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d\<^sup>2 \<le> n \<longrightarrow> d = 1)"
+lemma prime_divisor_sqrt: "prime n \<longleftrightarrow> n \<noteq> 1 \<and> (\<forall>d. d dvd n \<and> d\<^sup>2 \<le> n \<longrightarrow> d = 1)"
+ for n :: nat
proof -
- {assume "n=0 \<or> n=1" hence ?thesis
- by auto}
- moreover
- {assume n: "n\<noteq>0" "n\<noteq>1"
- hence np: "n > 1" by arith
- {fix d assume d: "d dvd n" "d\<^sup>2 \<le> n" and H: "\<forall>m. m dvd n \<longrightarrow> m=1 \<or> m=n"
- from H d have d1n: "d = 1 \<or> d=n" by blast
- {assume dn: "d=n"
- have "n\<^sup>2 > n*1" using n by (simp add: power2_eq_square)
- with dn d(2) have "d=1" by simp}
- with d1n have "d = 1" by blast }
+ consider "n = 0" | "n = 1" | "n \<noteq> 0" "n \<noteq> 1" by blast
+ then show ?thesis
+ proof cases
+ case 1
+ then show ?thesis by simp
+ next
+ case 2
+ then show ?thesis by simp
+ next
+ case n: 3
+ then have np: "n > 1" by arith
+ {
+ fix d
+ assume d: "d dvd n" "d\<^sup>2 \<le> n"
+ and H: "\<forall>m. m dvd n \<longrightarrow> m = 1 \<or> m = n"
+ from H d have d1n: "d = 1 \<or> d = n" by blast
+ then have "d = 1"
+ proof
+ assume dn: "d = n"
+ from n have "n\<^sup>2 > n * 1"
+ by (simp add: power2_eq_square)
+ with dn d(2) show ?thesis by simp
+ qed
+ }
moreover
- {fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'\<^sup>2 \<le> n \<longrightarrow> d' = 1"
+ {
+ fix d assume d: "d dvd n" and H: "\<forall>d'. d' dvd n \<and> d'\<^sup>2 \<le> n \<longrightarrow> d' = 1"
from d n have "d \<noteq> 0"
by (metis dvd_0_left_iff)
- hence dp: "d > 0" by simp
+ then have dp: "d > 0" by simp
from d[unfolded dvd_def] obtain e where e: "n= d*e" by blast
from n dp e have ep:"e > 0" by simp
- have "d\<^sup>2 \<le> n \<or> e\<^sup>2 \<le> n" using dp ep
+ from dp ep have "d\<^sup>2 \<le> n \<or> e\<^sup>2 \<le> n"
by (auto simp add: e power2_eq_square mult_le_cancel_left)
- moreover
- {assume h: "d\<^sup>2 \<le> n"
- from H[rule_format, of d] h d have "d = 1" by blast}
- moreover
- {assume h: "e\<^sup>2 \<le> n"
- from e have "e dvd n" unfolding dvd_def by (simp add: mult.commute)
- with H[rule_format, of e] h have "e=1" by simp
- with e have "d = n" by simp}
- ultimately have "d=1 \<or> d=n" by blast}
- ultimately have ?thesis unfolding prime_nat_iff using np n(2) by blast}
- ultimately show ?thesis by auto
+ then have "d = 1 \<or> d = n"
+ proof
+ assume "d\<^sup>2 \<le> n"
+ with H[rule_format, of d] d have "d = 1" by blast
+ then show ?thesis ..
+ next
+ assume h: "e\<^sup>2 \<le> n"
+ from e have "e dvd n" by (simp add: dvd_def mult.commute)
+ with H[rule_format, of e] h have "e = 1" by simp
+ with e have "d = n" by simp
+ then show ?thesis ..
+ qed
+ }
+ ultimately show ?thesis
+ unfolding prime_nat_iff using np n(2) by blast
+ qed
qed
lemma prime_prime_factor_sqrt:
- "prime (n::nat) \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<^sup>2 \<le> n)"
+ "prime (n::nat) \<longleftrightarrow> n \<noteq> 0 \<and> n \<noteq> 1 \<and> (\<nexists>p. prime p \<and> p dvd n \<and> p\<^sup>2 \<le> n)"
(is "?lhs \<longleftrightarrow>?rhs")
-proof-
- {assume "n=0 \<or> n=1"
- hence ?thesis
- by (metis not_prime_0 not_prime_1)}
- moreover
- {assume n: "n\<noteq>0" "n\<noteq>1"
- {assume H: ?lhs
- from H[unfolded prime_divisor_sqrt] n
- have ?rhs
- by (metis prime_prime_factor) }
- moreover
- {assume H: ?rhs
- {fix d assume d: "d dvd n" "d\<^sup>2 \<le> n" "d\<noteq>1"
+proof -
+ consider "n = 0" | "n = 1" | "n \<noteq> 0" "n \<noteq> 1"
+ by blast
+ then show ?thesis
+ proof cases
+ case 1
+ then show ?thesis by (metis not_prime_0)
+ next
+ case 2
+ then show ?thesis by (metis not_prime_1)
+ next
+ case n: 3
+ show ?thesis
+ proof
+ assume ?lhs
+ from this[unfolded prime_divisor_sqrt] n show ?rhs
+ by (metis prime_prime_factor)
+ next
+ assume ?rhs
+ {
+ fix d
+ assume d: "d dvd n" "d\<^sup>2 \<le> n" "d \<noteq> 1"
then obtain p where p: "prime p" "p dvd d"
- by (metis prime_factor_nat)
+ by (metis prime_factor_nat)
from d(1) n have dp: "d > 0"
- by (metis dvd_0_left neq0_conv)
+ by (metis dvd_0_left neq0_conv)
from mult_mono[OF dvd_imp_le[OF p(2) dp] dvd_imp_le[OF p(2) dp]] d(2)
have "p\<^sup>2 \<le> n" unfolding power2_eq_square by arith
- with H n p(1) dvd_trans[OF p(2) d(1)] have False by blast}
- with n prime_divisor_sqrt have ?lhs by auto}
- ultimately have ?thesis by blast }
- ultimately show ?thesis by (cases "n=0 \<or> n=1", auto)
+ with \<open>?rhs\<close> n p(1) dvd_trans[OF p(2) d(1)] have False
+ by blast
+ }
+ with n prime_divisor_sqrt show ?lhs by auto
+ qed
+ qed
qed
-subsection\<open>Pocklington theorem\<close>
+subsection \<open>Pocklington theorem\<close>
lemma pocklington_lemma:
- assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and an: "[a^ (n - 1) = 1] (mod n)"
- and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
- and pp: "prime (p::nat)" and pn: "p dvd n"
+ fixes p :: nat
+ assumes n: "n \<ge> 2" and nqr: "n - 1 = q * r"
+ and an: "[a^ (n - 1) = 1] (mod n)"
+ and aq: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n"
+ and pp: "prime p" and pn: "p dvd n"
shows "[p = 1] (mod q)"
proof -
- have p01: "p \<noteq> 0" "p \<noteq> 1" using pp by (auto intro: prime_gt_0_nat)
- obtain k where k: "a ^ (q * r) - 1 = n*k"
+ have p01: "p \<noteq> 0" "p \<noteq> 1"
+ using pp by (auto intro: prime_gt_0_nat)
+ obtain k where k: "a ^ (q * r) - 1 = n * k"
by (metis an cong_to_1_nat dvd_def nqr)
- from pn[unfolded dvd_def] obtain l where l: "n = p*l" by blast
- {assume a0: "a = 0"
- hence "a^ (n - 1) = 0" using n by (simp add: power_0_left)
- with n an mod_less[of 1 n] have False by (simp add: power_0_left cong_nat_def)}
- hence a0: "a\<noteq>0" ..
- from n nqr have aqr0: "a ^ (q * r) \<noteq> 0" using a0 by simp
- hence "(a ^ (q * r) - 1) + 1 = a ^ (q * r)" by simp
- with k l have "a ^ (q * r) = p*l*k + 1" by simp
- hence "a ^ (r * q) + p * 0 = 1 + p * (l*k)" by (simp add: ac_simps)
- hence odq: "ord p (a^r) dvd q"
+ from pn[unfolded dvd_def] obtain l where l: "n = p * l"
+ by blast
+ have a0: "a \<noteq> 0"
+ proof
+ assume "a = 0"
+ with n have "a^ (n - 1) = 0"
+ by (simp add: power_0_left)
+ with n an mod_less[of 1 n] show False
+ by (simp add: power_0_left cong_nat_def)
+ qed
+ with n nqr have aqr0: "a ^ (q * r) \<noteq> 0"
+ by simp
+ then have "(a ^ (q * r) - 1) + 1 = a ^ (q * r)"
+ by simp
+ with k l have "a ^ (q * r) = p * l * k + 1"
+ by simp
+ then have "a ^ (r * q) + p * 0 = 1 + p * (l * k)"
+ by (simp add: ac_simps)
+ then have odq: "ord p (a^r) dvd q"
unfolding ord_divides[symmetric] power_mult[symmetric]
- by (metis an cong_dvd_modulus_nat mult.commute nqr pn)
- from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d" by blast
- {assume d1: "d \<noteq> 1"
+ by (metis an cong_dvd_modulus_nat mult.commute nqr pn)
+ from odq[unfolded dvd_def] obtain d where d: "q = ord p (a^r) * d"
+ by blast
+ have d1: "d = 1"
+ proof (rule ccontr)
+ assume d1: "d \<noteq> 1"
obtain P where P: "prime P" "P dvd d"
- by (metis d1 prime_factor_nat)
+ by (metis d1 prime_factor_nat)
from d dvd_mult[OF P(2), of "ord p (a^r)"] have Pq: "P dvd q" by simp
from aq P(1) Pq have caP:"coprime (a^ ((n - 1) div P) - 1) n" by blast
from Pq obtain s where s: "q = P*s" unfolding dvd_def by blast
- have P0: "P \<noteq> 0" using P(1)
- by (metis not_prime_0)
+ from P(1) have P0: "P \<noteq> 0"
+ by (metis not_prime_0)
from P(2) obtain t where t: "d = P*t" unfolding dvd_def by blast
from d s t P0 have s': "ord p (a^r) * t = s"
- by (metis mult.commute mult_cancel1 mult.assoc)
+ by (metis mult.commute mult_cancel1 mult.assoc)
have "ord p (a^r) * t*r = r * ord p (a^r) * t"
by (metis mult.assoc mult.commute)
- hence exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t"
+ then have exps: "a^(ord p (a^r) * t*r) = ((a ^ r) ^ ord p (a^r)) ^ t"
by (simp only: power_mult)
- then have th: "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)"
+ then have "[((a ^ r) ^ ord p (a^r)) ^ t= 1] (mod p)"
by (metis cong_exp_nat ord power_one)
- have pd0: "p dvd a^(ord p (a^r) * t*r) - 1"
- by (metis cong_to_1_nat exps th)
- from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r" using P0 by simp
+ then have pd0: "p dvd a^(ord p (a^r) * t*r) - 1"
+ by (metis cong_to_1_nat exps)
+ from nqr s s' have "(n - 1) div P = ord p (a^r) * t*r"
+ using P0 by simp
with caP have "coprime (a^(ord p (a^r) * t*r) - 1) n" by simp
- with p01 pn pd0 coprime_common_divisor_nat have False
- by auto}
- hence d1: "d = 1" by blast
- hence o: "ord p (a^r) = q" using d by simp
- from pp totient_prime [of p]
- have totient_eq: "totient p = p - 1" by simp
- {fix d assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
+ with p01 pn pd0 coprime_common_divisor_nat show False
+ by auto
+ qed
+ with d have o: "ord p (a^r) = q" by simp
+ from pp totient_prime [of p] have totient_eq: "totient p = p - 1"
+ by simp
+ {
+ fix d
+ assume d: "d dvd p" "d dvd a" "d \<noteq> 1"
from pp[unfolded prime_nat_iff] d have dp: "d = p" by blast
from n have "n \<noteq> 0" by simp
then have False using d dp pn
- by auto (metis One_nat_def Suc_pred an dvd_1_iff_1 gcd_greatest_iff lucas_coprime_lemma)}
- hence cpa: "coprime p a" by auto
+ by auto (metis One_nat_def Suc_pred an dvd_1_iff_1 gcd_greatest_iff lucas_coprime_lemma)
+ }
+ then have cpa: "coprime p a" by auto
have arp: "coprime (a^r) p"
- by (metis coprime_exp cpa gcd.commute)
- from euler_theorem [OF arp, simplified ord_divides] o totient_eq
- have "q dvd (p - 1)" by simp
- then obtain d where d:"p - 1 = q * d"
+ by (metis coprime_exp cpa gcd.commute)
+ from euler_theorem [OF arp, simplified ord_divides] o totient_eq have "q dvd (p - 1)"
+ by simp
+ then obtain d where d:"p - 1 = q * d"
unfolding dvd_def by blast
- have p0:"p \<noteq> 0"
- by (metis p01(1))
- from p0 d have "p + q * 0 = 1 + q * d" by simp
+ have "p \<noteq> 0"
+ by (metis p01(1))
+ with d have "p + q * 0 = 1 + q * d" by simp
then show ?thesis
by (metis cong_iff_lin_nat mult.commute)
qed
theorem pocklington:
- assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q\<^sup>2"
- and an: "[a^ (n - 1) = 1] (mod n)"
- and aq: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
+ assumes n: "n \<ge> 2" and nqr: "n - 1 = q * r" and sqr: "n \<le> q\<^sup>2"
+ and an: "[a^ (n - 1) = 1] (mod n)"
+ and aq: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a^ ((n - 1) div p) - 1) n"
shows "prime n"
-unfolding prime_prime_factor_sqrt[of n]
-proof-
- let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> \<not> (\<exists>p. prime p \<and> p dvd n \<and> p\<^sup>2 \<le> n)"
- from n have n01: "n\<noteq>0" "n\<noteq>1" by arith+
- {fix p assume p: "prime p" "p dvd n" "p\<^sup>2 \<le> n"
- from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)" by (simp add: power2_eq_square)
- hence pq: "p \<le> q"
- by (metis le0 power_le_imp_le_base)
- from pocklington_lemma[OF n nqr an aq p(1,2)]
- have th: "q dvd p - 1"
- by (metis cong_to_1_nat)
- have "p - 1 \<noteq> 0" using prime_ge_2_nat [OF p(1)] by arith
- with pq th have False
- by (simp add: nat_dvd_not_less)}
+ unfolding prime_prime_factor_sqrt[of n]
+proof -
+ let ?ths = "n \<noteq> 0 \<and> n \<noteq> 1 \<and> (\<nexists>p. prime p \<and> p dvd n \<and> p\<^sup>2 \<le> n)"
+ from n have n01: "n \<noteq> 0" "n \<noteq> 1" by arith+
+ {
+ fix p
+ assume p: "prime p" "p dvd n" "p\<^sup>2 \<le> n"
+ from p(3) sqr have "p^(Suc 1) \<le> q^(Suc 1)"
+ by (simp add: power2_eq_square)
+ then have pq: "p \<le> q"
+ by (metis le0 power_le_imp_le_base)
+ from pocklington_lemma[OF n nqr an aq p(1,2)] have *: "q dvd p - 1"
+ by (metis cong_to_1_nat)
+ have "p - 1 \<noteq> 0"
+ using prime_ge_2_nat [OF p(1)] by arith
+ with pq * have False
+ by (simp add: nat_dvd_not_less)
+ }
with n01 show ?ths by blast
qed
-(* Variant for application, to separate the exponentiation. *)
+text \<open>Variant for application, to separate the exponentiation.\<close>
lemma pocklington_alt:
- assumes n: "n \<ge> 2" and nqr: "n - 1 = q*r" and sqr: "n \<le> q\<^sup>2"
- and an: "[a^ (n - 1) = 1] (mod n)"
- and aq:"\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)"
+ assumes n: "n \<ge> 2" and nqr: "n - 1 = q * r" and sqr: "n \<le> q\<^sup>2"
+ and an: "[a^ (n - 1) = 1] (mod n)"
+ and aq: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> (\<exists>b. [a^((n - 1) div p) = b] (mod n) \<and> coprime (b - 1) n)"
shows "prime n"
-proof-
- {fix p assume p: "prime p" "p dvd q"
- from aq[rule_format] p obtain b where
- b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n" by blast
- {assume a0: "a=0"
- from n an have "[0 = 1] (mod n)" unfolding a0 power_0_left by auto
- hence False using n by (simp add: cong_nat_def dvd_eq_mod_eq_0[symmetric])}
- hence a0: "a\<noteq> 0" ..
- hence a1: "a \<ge> 1" by arith
+proof -
+ {
+ fix p
+ assume p: "prime p" "p dvd q"
+ from aq[rule_format] p obtain b where b: "[a^((n - 1) div p) = b] (mod n)" "coprime (b - 1) n"
+ by blast
+ have a0: "a \<noteq> 0"
+ proof
+ assume a0: "a = 0"
+ from n an have "[0 = 1] (mod n)"
+ unfolding a0 power_0_left by auto
+ then show False
+ using n by (simp add: cong_nat_def dvd_eq_mod_eq_0[symmetric])
+ qed
+ then have a1: "a \<ge> 1" by arith
from one_le_power[OF a1] have ath: "1 \<le> a ^ ((n - 1) div p)" .
- {assume b0: "b = 0"
+ have b0: "b \<noteq> 0"
+ proof
+ assume b0: "b = 0"
from p(2) nqr have "(n - 1) mod p = 0"
by (metis mod_0 mod_mod_cancel mod_mult_self1_is_0)
with div_mult_mod_eq[of "n - 1" p]
have "(n - 1) div p * p= n - 1" by auto
- hence eq: "(a^((n - 1) div p))^p = a^(n - 1)"
+ then have eq: "(a^((n - 1) div p))^p = a^(n - 1)"
by (simp only: power_mult[symmetric])
- have "p - 1 \<noteq> 0" using prime_ge_2_nat [OF p(1)] by arith
+ have "p - 1 \<noteq> 0"
+ using prime_ge_2_nat [OF p(1)] by arith
then have pS: "Suc (p - 1) = p" by arith
- from b have d: "n dvd a^((n - 1) div p)" unfolding b0
- by auto
- from divides_rexp[OF d, of "p - 1"] pS eq cong_dvd_eq_nat [OF an] n
- have False
- by simp}
- then have b0: "b \<noteq> 0" ..
- hence b1: "b \<ge> 1" by arith
- from cong_imp_coprime_nat[OF Cong.cong_diff_nat[OF cong_sym_nat [OF b(1)] cong_refl_nat[of 1] b1]]
- ath b1 b nqr
+ from b have d: "n dvd a^((n - 1) div p)"
+ unfolding b0 by auto
+ from divides_rexp[OF d, of "p - 1"] pS eq cong_dvd_eq_nat [OF an] n show False
+ by simp
+ qed
+ then have b1: "b \<ge> 1" by arith
+ from cong_imp_coprime_nat[OF Cong.cong_diff_nat[OF cong_sym_nat [OF b(1)] cong_refl_nat[of 1] b1]]
+ ath b1 b nqr
have "coprime (a ^ ((n - 1) div p) - 1) n"
- by simp}
- hence th: "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n "
+ by simp
+ }
+ then have "\<forall>p. prime p \<and> p dvd q \<longrightarrow> coprime (a ^ ((n - 1) div p) - 1) n "
by blast
- from pocklington[OF n nqr sqr an th] show ?thesis .
+ then show ?thesis by (rule pocklington[OF n nqr sqr an])
qed
-subsection\<open>Prime factorizations\<close>
+subsection \<open>Prime factorizations\<close>
(* FIXME some overlap with material in UniqueFactorization, class unique_factorization *)
-definition "primefact ps n = (foldr op * ps 1 = n \<and> (\<forall>p\<in> set ps. prime p))"
+definition "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> (\<forall>p\<in> set ps. prime p)"
-lemma primefact:
- assumes n: "n \<noteq> (0::nat)"
+lemma primefact:
+ fixes n :: nat
+ assumes n: "n \<noteq> 0"
shows "\<exists>ps. primefact ps n"
proof -
- have "\<exists>xs. mset xs = prime_factorization n" by (rule ex_mset)
- then guess xs .. note xs = this
- from assms have "n = prod_mset (prime_factorization n)"
+ obtain xs where xs: "mset xs = prime_factorization n"
+ using ex_mset [of "prime_factorization n"] by blast
+ from assms have "n = prod_mset (prime_factorization n)"
by (simp add: prod_mset_prime_factorization)
also have "\<dots> = prod_mset (mset xs)" by (simp add: xs)
- also have "\<dots> = foldr op * xs 1" by (induction xs) simp_all
+ also have "\<dots> = foldr op * xs 1" by (induct xs) simp_all
finally have "foldr op * xs 1 = n" ..
- moreover from xs have "\<forall>p\<in>#mset xs. prime p"
- by auto
+ moreover from xs have "\<forall>p\<in>#mset xs. prime p" by auto
ultimately have "primefact xs n" by (auto simp: primefact_def)
- thus ?thesis ..
+ then show ?thesis ..
qed
lemma primefact_contains:
- assumes pf: "primefact ps n" and p: "prime p" and pn: "p dvd n"
- shows "(p::nat) \<in> set ps"
+ fixes p :: nat
+ assumes pf: "primefact ps n"
+ and p: "prime p"
+ and pn: "p dvd n"
+ shows "p \<in> set ps"
using pf p pn
-proof(induct ps arbitrary: p n)
- case Nil thus ?case by (auto simp add: primefact_def)
+proof (induct ps arbitrary: p n)
+ case Nil
+ then show ?case by (auto simp: primefact_def)
next
- case (Cons q qs p n)
+ case (Cons q qs)
from Cons.prems[unfolded primefact_def]
- have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p" and p: "prime p" "p dvd q * foldr op * qs 1" by simp_all
- {assume "p dvd q"
- with p(1) q(1) have "p = q" unfolding prime_nat_iff by auto
- hence ?case by simp}
- moreover
- { assume h: "p dvd foldr op * qs 1"
+ have q: "prime q" "q * foldr op * qs 1 = n" "\<forall>p \<in>set qs. prime p"
+ and p: "prime p" "p dvd q * foldr op * qs 1"
+ by simp_all
+ consider "p dvd q" | "p dvd foldr op * qs 1"
+ by (metis p prime_dvd_mult_eq_nat)
+ then show ?case
+ proof cases
+ case 1
+ with p(1) q(1) have "p = q"
+ unfolding prime_nat_iff by auto
+ then show ?thesis by simp
+ next
+ case prem: 2
from q(3) have pqs: "primefact qs (foldr op * qs 1)"
by (simp add: primefact_def)
- from Cons.hyps[OF pqs p(1) h] have ?case by simp}
- ultimately show ?case
- by (metis p prime_dvd_mult_eq_nat)
+ from Cons.hyps[OF pqs p(1) prem] show ?thesis by simp
+ qed
qed
lemma primefact_variant: "primefact ps n \<longleftrightarrow> foldr op * ps 1 = n \<and> list_all prime ps"
by (auto simp add: primefact_def list_all_iff)
-(* Variant of Lucas theorem. *)
-
+text \<open>Variant of Lucas theorem.\<close>
lemma lucas_primefact:
assumes n: "n \<ge> 2" and an: "[a^(n - 1) = 1] (mod n)"
- and psn: "foldr op * ps 1 = n - 1"
- and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps"
+ and psn: "foldr op * ps 1 = n - 1"
+ and psp: "list_all (\<lambda>p. prime p \<and> \<not> [a^((n - 1) div p) = 1] (mod n)) ps"
shows "prime n"
-proof-
- {fix p assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
+proof -
+ {
+ fix p
+ assume p: "prime p" "p dvd n - 1" "[a ^ ((n - 1) div p) = 1] (mod n)"
from psn psp have psn1: "primefact ps (n - 1)"
by (auto simp add: list_all_iff primefact_variant)
from p(3) primefact_contains[OF psn1 p(1,2)] psp
- have False by (induct ps, auto)}
+ have False by (induct ps) auto
+ }
with lucas[OF n an] show ?thesis by blast
qed
-(* Variant of Pocklington theorem. *)
-
+text \<open>Variant of Pocklington theorem.\<close>
lemma pocklington_primefact:
assumes n: "n \<ge> 2" and qrn: "q*r = n - 1" and nq2: "n \<le> q\<^sup>2"
- and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q"
- and bqn: "(b^q) mod n = 1"
- and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps"
+ and arnb: "(a^r) mod n = b" and psq: "foldr op * ps 1 = q"
+ and bqn: "(b^q) mod n = 1"
+ and psp: "list_all (\<lambda>p. prime p \<and> coprime ((b^(q div p)) mod n - 1) n) ps"
shows "prime n"
-proof-
+proof -
from bqn psp qrn
have bqn: "a ^ (n - 1) mod n = 1"
- and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps"
- unfolding arnb[symmetric] power_mod
+ and psp: "list_all (\<lambda>p. prime p \<and> coprime (a^(r *(q div p)) mod n - 1) n) ps"
+ unfolding arnb[symmetric] power_mod
by (simp_all add: power_mult[symmetric] algebra_simps)
- from n have n0: "n > 0" by arith
+ from n have n0: "n > 0" by arith
from div_mult_mod_eq[of "a^(n - 1)" n]
mod_less_divisor[OF n0, of "a^(n - 1)"]
have an1: "[a ^ (n - 1) = 1] (mod n)"
by (metis bqn cong_nat_def mod_mod_trivial)
- {fix p assume p: "prime p" "p dvd q"
+ have "coprime (a ^ ((n - 1) div p) - 1) n" if p: "prime p" "p dvd q" for p
+ proof -
from psp psq have pfpsq: "primefact ps q"
by (auto simp add: primefact_variant list_all_iff)
from psp primefact_contains[OF pfpsq p]
have p': "coprime (a ^ (r * (q div p)) mod n - 1) n"
by (simp add: list_all_iff)
- from p prime_nat_iff have p01: "p \<noteq> 0" "p \<noteq> 1" "p =Suc(p - 1)"
+ from p prime_nat_iff have p01: "p \<noteq> 0" "p \<noteq> 1" "p = Suc (p - 1)"
by auto
from div_mult1_eq[of r q p] p(2)
have eq1: "r* (q div p) = (n - 1) div p"
unfolding qrn[symmetric] dvd_eq_mod_eq_0 by (simp add: mult.commute)
- have ath: "\<And>a (b::nat). a <= b \<Longrightarrow> a \<noteq> 0 ==> 1 <= a \<and> 1 <= b" by arith
- {assume "a ^ ((n - 1) div p) mod n = 0"
- then obtain s where s: "a ^ ((n - 1) div p) = n*s"
+ have ath: "a \<le> b \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> 1 \<le> a \<and> 1 \<le> b" for a b :: nat
+ by arith
+ {
+ assume "a ^ ((n - 1) div p) mod n = 0"
+ then obtain s where s: "a ^ ((n - 1) div p) = n * s"
unfolding mod_eq_0_iff by blast
- hence eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp
- from qrn[symmetric] have qn1: "q dvd n - 1" unfolding dvd_def by auto
- from dvd_trans[OF p(2) qn1]
- have npp: "(n - 1) div p * p = n - 1" by simp
- with eq0 have "a^ (n - 1) = (n*s)^p"
+ then have eq0: "(a^((n - 1) div p))^p = (n*s)^p" by simp
+ from qrn[symmetric] have qn1: "q dvd n - 1"
+ by (auto simp: dvd_def)
+ from dvd_trans[OF p(2) qn1] have npp: "(n - 1) div p * p = n - 1"
+ by simp
+ with eq0 have "a ^ (n - 1) = (n * s) ^ p"
by (simp add: power_mult[symmetric])
- hence "1 = (n*s)^(Suc (p - 1)) mod n" using bqn p01 by simp
+ with bqn p01 have "1 = (n * s)^(Suc (p - 1)) mod n"
+ by simp
also have "\<dots> = 0" by (simp add: mult.assoc)
- finally have False by simp }
- then have th11: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto
- have th1: "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"
- unfolding cong_nat_def by simp
- from th1 ath[OF mod_less_eq_dividend th11]
- have th: "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
+ finally have False by simp
+ }
+ then have *: "a ^ ((n - 1) div p) mod n \<noteq> 0" by auto
+ have "[a ^ ((n - 1) div p) mod n = a ^ ((n - 1) div p)] (mod n)"
+ by (simp add: cong_nat_def)
+ with ath[OF mod_less_eq_dividend *]
+ have "[a ^ ((n - 1) div p) mod n - 1 = a ^ ((n - 1) div p) - 1] (mod n)"
by (metis cong_diff_nat cong_refl_nat)
- have "coprime (a ^ ((n - 1) div p) - 1) n"
- by (metis cong_imp_coprime_nat eq1 p' th) }
- with pocklington[OF n qrn[symmetric] nq2 an1]
- show ?thesis by blast
+ then show ?thesis
+ by (metis cong_imp_coprime_nat eq1 p')
+ qed
+ with pocklington[OF n qrn[symmetric] nq2 an1] show ?thesis
+ by blast
qed
end
--- a/src/HOL/Number_Theory/Residues.thy Tue Aug 01 17:33:04 2017 +0200
+++ b/src/HOL/Number_Theory/Residues.thy Tue Aug 01 22:19:37 2017 +0200
@@ -17,24 +17,26 @@
Totient
begin
-definition QuadRes :: "int \<Rightarrow> int \<Rightarrow> bool" where
- "QuadRes p a = (\<exists>y. ([y^2 = a] (mod p)))"
+definition QuadRes :: "int \<Rightarrow> int \<Rightarrow> bool"
+ where "QuadRes p a = (\<exists>y. ([y^2 = a] (mod p)))"
-definition Legendre :: "int \<Rightarrow> int \<Rightarrow> int" where
- "Legendre a p = (if ([a = 0] (mod p)) then 0
- else if QuadRes p a then 1
- else -1)"
+definition Legendre :: "int \<Rightarrow> int \<Rightarrow> int"
+ where "Legendre a p =
+ (if ([a = 0] (mod p)) then 0
+ else if QuadRes p a then 1
+ else -1)"
+
subsection \<open>A locale for residue rings\<close>
definition residue_ring :: "int \<Rightarrow> int ring"
-where
- "residue_ring m =
- \<lparr>carrier = {0..m - 1},
- monoid.mult = \<lambda>x y. (x * y) mod m,
- one = 1,
- zero = 0,
- add = \<lambda>x y. (x + y) mod m\<rparr>"
+ where
+ "residue_ring m =
+ \<lparr>carrier = {0..m - 1},
+ monoid.mult = \<lambda>x y. (x * y) mod m,
+ one = 1,
+ zero = 0,
+ add = \<lambda>x y. (x + y) mod m\<rparr>"
locale residues =
fixes m :: int and R (structure)
@@ -88,37 +90,37 @@
\<close>
lemma res_carrier_eq: "carrier R = {0..m - 1}"
- unfolding R_def residue_ring_def by auto
+ by (auto simp: R_def residue_ring_def)
lemma res_add_eq: "x \<oplus> y = (x + y) mod m"
- unfolding R_def residue_ring_def by auto
+ by (auto simp: R_def residue_ring_def)
lemma res_mult_eq: "x \<otimes> y = (x * y) mod m"
- unfolding R_def residue_ring_def by auto
+ by (auto simp: R_def residue_ring_def)
lemma res_zero_eq: "\<zero> = 0"
- unfolding R_def residue_ring_def by auto
+ by (auto simp: R_def residue_ring_def)
lemma res_one_eq: "\<one> = 1"
- unfolding R_def residue_ring_def units_of_def by auto
+ by (auto simp: R_def residue_ring_def units_of_def)
lemma res_units_eq: "Units R = {x. 0 < x \<and> x < m \<and> coprime x m}"
using m_gt_one
unfolding Units_def R_def residue_ring_def
apply auto
- apply (subgoal_tac "x \<noteq> 0")
- apply auto
- apply (metis invertible_coprime_int)
+ apply (subgoal_tac "x \<noteq> 0")
+ apply auto
+ apply (metis invertible_coprime_int)
apply (subst (asm) coprime_iff_invertible'_int)
- apply (auto simp add: cong_int_def mult.commute)
+ apply (auto simp add: cong_int_def mult.commute)
done
lemma res_neg_eq: "\<ominus> x = (- x) mod m"
using m_gt_one unfolding R_def a_inv_def m_inv_def residue_ring_def
apply simp
apply (rule the_equality)
- apply (simp add: mod_add_right_eq)
- apply (simp add: add.commute mod_add_right_eq)
+ apply (simp add: mod_add_right_eq)
+ apply (simp add: add.commute mod_add_right_eq)
apply (metis add.right_neutral minus_add_cancel mod_add_right_eq mod_pos_pos_trivial)
done
@@ -139,18 +141,16 @@
using insert m_gt_one by auto
lemma add_cong: "(x mod m) \<oplus> (y mod m) = (x + y) mod m"
- unfolding R_def residue_ring_def
- by (auto simp add: mod_simps)
+ by (auto simp: R_def residue_ring_def mod_simps)
lemma mult_cong: "(x mod m) \<otimes> (y mod m) = (x * y) mod m"
- unfolding R_def residue_ring_def
- by (auto simp add: mod_simps)
+ by (auto simp: R_def residue_ring_def mod_simps)
lemma zero_cong: "\<zero> = 0"
- unfolding R_def residue_ring_def by auto
+ by (auto simp: R_def residue_ring_def)
lemma one_cong: "\<one> = 1 mod m"
- using m_gt_one unfolding R_def residue_ring_def by auto
+ using m_gt_one by (auto simp: R_def residue_ring_def)
(* FIXME revise algebra library to use 1? *)
lemma pow_cong: "(x mod m) (^) n = x^n mod m"
@@ -173,24 +173,26 @@
assumes "1 < m" and "coprime a m"
shows "a mod m \<in> Units R"
proof (cases "a mod m = 0")
- case True with assms show ?thesis
+ case True
+ with assms show ?thesis
by (auto simp add: res_units_eq gcd_red_int [symmetric])
next
case False
from assms have "0 < m" by simp
- with pos_mod_sign [of m a] have "0 \<le> a mod m" .
+ then have "0 \<le> a mod m" by (rule pos_mod_sign [of m a])
with False have "0 < a mod m" by simp
with assms show ?thesis
by (auto simp add: res_units_eq gcd_red_int [symmetric] ac_simps)
qed
lemma res_eq_to_cong: "(a mod m) = (b mod m) \<longleftrightarrow> [a = b] (mod m)"
- unfolding cong_int_def by auto
+ by (auto simp: cong_int_def)
text \<open>Simplifying with these will translate a ring equation in R to a congruence.\<close>
-lemmas res_to_cong_simps = add_cong mult_cong pow_cong one_cong
- prod_cong sum_cong neg_cong res_eq_to_cong
+lemmas res_to_cong_simps =
+ add_cong mult_cong pow_cong one_cong
+ prod_cong sum_cong neg_cong res_eq_to_cong
text \<open>Other useful facts about the residue ring.\<close>
lemma one_eq_neg_one: "\<one> = \<ominus> \<one> \<Longrightarrow> m = 2"
@@ -220,11 +222,11 @@
lemma is_field: "field R"
proof -
- have "\<And>x. \<lbrakk>gcd x (int p) \<noteq> 1; 0 \<le> x; x < int p\<rbrakk> \<Longrightarrow> x = 0"
+ have "gcd x (int p) \<noteq> 1 \<Longrightarrow> 0 \<le> x \<Longrightarrow> x < int p \<Longrightarrow> x = 0" for x
by (metis dual_order.order_iff_strict gcd.commute less_le_not_le p_prime prime_imp_coprime prime_nat_int_transfer zdvd_imp_le)
then show ?thesis
- apply (intro cring.field_intro2 cring)
- apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq res_units_eq)
+ apply (intro cring.field_intro2 cring)
+ apply (auto simp add: res_carrier_eq res_one_eq res_zero_eq res_units_eq)
done
qed
@@ -245,23 +247,26 @@
subsection \<open>Euler's theorem\<close>
-lemma (in residues) totient_eq:
- "totient (nat m) = card (Units R)"
+lemma (in residues) totient_eq: "totient (nat m) = card (Units R)"
proof -
have *: "inj_on nat (Units R)"
by (rule inj_onI) (auto simp add: res_units_eq)
define m' where "m' = nat m"
- from m_gt_one have m: "m = int m'" "m' > 1" by (simp_all add: m'_def)
- from m have "x \<in> Units R \<longleftrightarrow> x \<in> int ` totatives m'" for x
+ from m_gt_one have "m = int m'" "m' > 1"
+ by (simp_all add: m'_def)
+ then have "x \<in> Units R \<longleftrightarrow> x \<in> int ` totatives m'" for x
unfolding res_units_eq
by (cases x; cases "x = m") (auto simp: totatives_def transfer_int_nat_gcd)
- hence "Units R = int ` totatives m'" by blast
- hence "totatives m' = nat ` Units R" by (simp add: image_image)
+ then have "Units R = int ` totatives m'"
+ by blast
+ then have "totatives m' = nat ` Units R"
+ by (simp add: image_image)
then have "card (totatives (nat m)) = card (nat ` Units R)"
by (simp add: m'_def)
also have "\<dots> = card (Units R)"
using * card_image [of nat "Units R"] by auto
- finally show ?thesis by (simp add: totient_def)
+ finally show ?thesis
+ by (simp add: totient_def)
qed
lemma (in residues_prime) totient_eq: "totient p = p - 1"
@@ -324,26 +329,26 @@
have "(\<Otimes>i\<in>Units R. i) = (\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) \<otimes> (\<Otimes>i\<in>\<Union>?Inverse_Pairs. i)"
apply (subst UR)
apply (subst finprod_Un_disjoint)
- apply (auto intro: funcsetI)
+ apply (auto intro: funcsetI)
using inv_one apply auto[1]
using inv_eq_neg_one_eq apply auto
done
also have "(\<Otimes>i\<in>{\<one>, \<ominus> \<one>}. i) = \<ominus> \<one>"
apply (subst finprod_insert)
- apply auto
+ apply auto
apply (frule one_eq_neg_one)
using a apply force
done
also have "(\<Otimes>i\<in>(\<Union>?Inverse_Pairs). i) = (\<Otimes>A\<in>?Inverse_Pairs. (\<Otimes>y\<in>A. y))"
apply (subst finprod_Union_disjoint)
- apply auto
- apply (metis Units_inv_inv)+
+ apply auto
+ apply (metis Units_inv_inv)+
done
also have "\<dots> = \<one>"
apply (rule finprod_one)
- apply auto
+ apply auto
apply (subst finprod_insert)
- apply auto
+ apply auto
apply (metis inv_eq_self)
done
finally have "(\<Otimes>i\<in>Units R. i) = \<ominus> \<one>"
@@ -361,7 +366,7 @@
finally have "fact (p - 1) mod p = \<ominus> \<one>" .
then show ?thesis
by (metis of_nat_fact Divides.transfer_int_nat_functions(2)
- cong_int_def res_neg_eq res_one_eq)
+ cong_int_def res_neg_eq res_one_eq)
qed
lemma wilson_theorem:
@@ -380,13 +385,11 @@
text \<open>
This result can be transferred to the multiplicative group of
- $\mathbb{Z}/p\mathbb{Z}$ for $p$ prime.\<close>
+ \<open>\<int>/p\<int>\<close> for \<open>p\<close> prime.\<close>
lemma mod_nat_int_pow_eq:
fixes n :: nat and p a :: int
- assumes "a \<ge> 0" "p \<ge> 0"
- shows "(nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)"
- using assms
+ shows "a \<ge> 0 \<Longrightarrow> p \<ge> 0 \<Longrightarrow> (nat a ^ n) mod (nat p) = nat ((a ^ n) mod p)"
by (simp add: int_one_le_iff_zero_less nat_mod_distrib order_less_imp_le nat_power_eq[symmetric])
theorem residue_prime_mult_group_has_gen :
@@ -394,43 +397,55 @@
assumes prime_p : "prime p"
shows "\<exists>a \<in> {1 .. p - 1}. {1 .. p - 1} = {a^i mod p|i . i \<in> UNIV}"
proof -
- have "p\<ge>2" using prime_gt_1_nat[OF prime_p] by simp
- interpret R:residues_prime "p" "residue_ring p" unfolding residues_prime_def
- by (simp add: prime_p)
- have car: "carrier (residue_ring (int p)) - {\<zero>\<^bsub>residue_ring (int p)\<^esub>} = {1 .. int p - 1}"
+ have "p \<ge> 2"
+ using prime_gt_1_nat[OF prime_p] by simp
+ interpret R: residues_prime p "residue_ring p"
+ by (simp add: residues_prime_def prime_p)
+ have car: "carrier (residue_ring (int p)) - {\<zero>\<^bsub>residue_ring (int p)\<^esub>} = {1 .. int p - 1}"
by (auto simp add: R.zero_cong R.res_carrier_eq)
- obtain a where a:"a \<in> {1 .. int p - 1}"
- and a_gen:"{1 .. int p - 1} = {a(^)\<^bsub>residue_ring (int p)\<^esub>i|i::nat . i \<in> UNIV}"
- apply atomize_elim using field.finite_field_mult_group_has_gen[OF R.is_field]
+
+ have "x (^)\<^bsub>residue_ring (int p)\<^esub> i = x ^ i mod (int p)"
+ if "x \<in> {1 .. int p - 1}" for x and i :: nat
+ using that R.pow_cong[of x i] by auto
+ moreover
+ obtain a where a: "a \<in> {1 .. int p - 1}"
+ and a_gen: "{1 .. int p - 1} = {a(^)\<^bsub>residue_ring (int p)\<^esub>i|i::nat . i \<in> UNIV}"
+ using field.finite_field_mult_group_has_gen[OF R.is_field]
by (auto simp add: car[symmetric] carrier_mult_of)
- { fix x fix i :: nat assume x: "x \<in> {1 .. int p - 1}"
- hence "x (^)\<^bsub>residue_ring (int p)\<^esub> i = x ^ i mod (int p)" using R.pow_cong[of x i] by auto}
- note * = this
- have **:"nat ` {1 .. int p - 1} = {1 .. p - 1}" (is "?L = ?R")
+ moreover
+ have "nat ` {1 .. int p - 1} = {1 .. p - 1}" (is "?L = ?R")
proof
- { fix n assume n: "n \<in> ?L"
- then have "n \<in> ?R" using \<open>p\<ge>2\<close> by force
- } thus "?L \<subseteq> ?R" by blast
- { fix n assume n: "n \<in> ?R"
- then have "n \<in> ?L" using \<open>p\<ge>2\<close> Set_Interval.transfer_nat_int_set_functions(2) by fastforce
- } thus "?R \<subseteq> ?L" by blast
+ have "n \<in> ?R" if "n \<in> ?L" for n
+ using that \<open>p\<ge>2\<close> by force
+ then show "?L \<subseteq> ?R" by blast
+ have "n \<in> ?L" if "n \<in> ?R" for n
+ using that \<open>p\<ge>2\<close> Set_Interval.transfer_nat_int_set_functions(2) by fastforce
+ then show "?R \<subseteq> ?L" by blast
qed
+ moreover
have "nat ` {a^i mod (int p) | i::nat. i \<in> UNIV} = {nat a^i mod p | i . i \<in> UNIV}" (is "?L = ?R")
proof
- { fix x assume x: "x \<in> ?L"
- then obtain i where i:"x = nat (a^i mod (int p))" by blast
- hence "x = nat a ^ i mod p" using mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> by auto
- hence "x \<in> ?R" using i by blast
- } thus "?L \<subseteq> ?R" by blast
- { fix x assume x: "x \<in> ?R"
- then obtain i where i:"x = nat a^i mod p" by blast
- hence "x \<in> ?L" using mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> by auto
- } thus "?R \<subseteq> ?L" by blast
+ have "x \<in> ?R" if "x \<in> ?L" for x
+ proof -
+ from that obtain i where i: "x = nat (a^i mod (int p))"
+ by blast
+ then have "x = nat a ^ i mod p"
+ using mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> by auto
+ with i show ?thesis by blast
+ qed
+ then show "?L \<subseteq> ?R" by blast
+ have "x \<in> ?L" if "x \<in> ?R" for x
+ proof -
+ from that obtain i where i: "x = nat a^i mod p"
+ by blast
+ with mod_nat_int_pow_eq[of a "int p" i] a \<open>p\<ge>2\<close> show ?thesis
+ by auto
+ qed
+ then show "?R \<subseteq> ?L" by blast
qed
- hence "{1 .. p - 1} = {nat a^i mod p | i. i \<in> UNIV}"
- using * a a_gen ** by presburger
- moreover
- have "nat a \<in> {1 .. p - 1}" using a by force
+ ultimately have "{1 .. p - 1} = {nat a^i mod p | i. i \<in> UNIV}"
+ by presburger
+ moreover from a have "nat a \<in> {1 .. p - 1}" by force
ultimately show ?thesis ..
qed
--- a/src/HOL/Number_Theory/Totient.thy Tue Aug 01 17:33:04 2017 +0200
+++ b/src/HOL/Number_Theory/Totient.thy Tue Aug 01 22:19:37 2017 +0200
@@ -177,7 +177,7 @@
lemma totient_less:
assumes "n > 1"
- shows "totient n < n"
+ shows "totient n < n"
proof -
from assms have "card (totatives n) \<le> card {0<..<n}"
using totatives_less[of _ n] totatives_subset[of n] by (intro card_mono) auto