--- a/src/HOL/Library/FuncSet.thy Fri Oct 25 11:31:16 2024 +0200
+++ b/src/HOL/Library/FuncSet.thy Fri Oct 25 13:43:12 2024 +0200
@@ -405,17 +405,13 @@
lemma PiE_insert_eq: "Pi\<^sub>E (insert x S) T = (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
proof -
- {
- fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S"
- then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
- by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem)
- }
+ have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" if "f \<in> Pi\<^sub>E (insert x S) T" "x \<notin> S" for f
+ using that
+ by (auto intro!: image_eqI[where x="(f x, f(x := undefined))"] intro: fun_upd_in_PiE PiE_mem)
moreover
- {
- fix f assume "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S"
- then have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)"
- by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb)
- }
+ have "f \<in> (\<lambda>(y, g). g(x := y)) ` (T x \<times> Pi\<^sub>E S T)" if "f \<in> Pi\<^sub>E (insert x S) T" "x \<in> S" for f
+ using that
+ by (auto intro!: image_eqI[where x="(f x, f)"] intro: fun_upd_in_PiE PiE_mem simp: insert_absorb)
ultimately show ?thesis
by (auto intro: PiE_fun_upd)
qed
@@ -487,8 +483,7 @@
by auto
qed (auto simp: PiE_def)
-lemma PiE_eq_iff:
- "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
+lemma PiE_eq_iff: "Pi\<^sub>E I F = Pi\<^sub>E I F' \<longleftrightarrow> (\<forall>i\<in>I. F i = F' i) \<or> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
proof (intro iffI disjCI)
assume eq[simp]: "Pi\<^sub>E I F = Pi\<^sub>E I F'"
assume "\<not> ((\<exists>i\<in>I. F i = {}) \<and> (\<exists>i\<in>I. F' i = {}))"
@@ -528,8 +523,7 @@
by simp
qed simp
-lemma PiE_eq:
- "PiE I S = PiE I T \<longleftrightarrow> PiE I S = {} \<and> PiE I T = {} \<or> (\<forall>i \<in> I. S i = T i)"
+lemma PiE_eq: "PiE I S = PiE I T \<longleftrightarrow> PiE I S = {} \<and> PiE I T = {} \<or> (\<forall>i \<in> I. S i = T i)"
by (auto simp: PiE_eq_iff PiE_eq_empty_iff)
lemma PiE_UNIV [simp]: "PiE UNIV (\<lambda>i. UNIV) = UNIV"
@@ -542,7 +536,7 @@
proof -
have "x \<in> S i \<Longrightarrow> \<exists>f\<in>Pi\<^sub>E I S. x = f i" for x
using that
- by (force intro: bexI [where x="\<lambda>k. if k=i then x else f k"])
+ by (force intro: bexI [where x="\<lambda>k. if k=i then x else f k"])
then show ?thesis
using that by force
qed
@@ -552,15 +546,16 @@
lemma PiE_singleton:
assumes "f \<in> extensional A"
- shows "PiE A (\<lambda>x. {f x}) = {f}"
+ shows "PiE A (\<lambda>x. {f x}) = {f}"
proof -
- {
- fix g assume "g \<in> PiE A (\<lambda>x. {f x})"
- hence "g x = f x" for x
+ have "g = f" if "g \<in> PiE A (\<lambda>x. {f x})" for g
+ proof -
+ from that have "g x = f x" for x
using assms by (cases "x \<in> A") (auto simp: extensional_def)
- hence "g = f" by (simp add: fun_eq_iff)
- }
- thus ?thesis using assms by (auto simp: extensional_def)
+ then show ?thesis by (simp add: fun_eq_iff)
+ qed
+ with assms show ?thesis
+ by (auto simp: extensional_def)
qed
lemma PiE_eq_singleton: "(\<Pi>\<^sub>E i\<in>I. S i) = {\<lambda>i\<in>I. f i} \<longleftrightarrow> (\<forall>i\<in>I. S i = {f i})"
@@ -568,14 +563,15 @@
lemma PiE_over_singleton_iff: "(\<Pi>\<^sub>E x\<in>{a}. B x) = (\<Union>b \<in> B a. {\<lambda>x \<in> {a}. b})"
proof -
- have "\<And>x. \<lbrakk>x a \<in> B a; x \<in> extensional {a}\<rbrakk> \<Longrightarrow> \<exists>xa\<in>B a. x = (\<lambda>x\<in>{a}. xa)"
- using PiE_singleton by fastforce
+ have "\<exists>xa\<in>B a. x = (\<lambda>x\<in>{a}. xa)" if "x a \<in> B a" and "x \<in> extensional {a}" for x
+ using that PiE_singleton by fastforce
then show ?thesis
by (auto simp: PiE_iff split: if_split_asm)
qed
lemma all_PiE_elements:
- "(\<forall>z \<in> PiE I S. \<forall>i \<in> I. P i (z i)) \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. \<forall>x \<in> S i. P i x)" (is "?lhs = ?rhs")
+ "(\<forall>z \<in> PiE I S. \<forall>i \<in> I. P i (z i)) \<longleftrightarrow> PiE I S = {} \<or> (\<forall>i \<in> I. \<forall>x \<in> S i. P i x)"
+ (is "?lhs = ?rhs")
proof (cases "PiE I S = {}")
case False
then obtain f where f: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> S i"
@@ -616,12 +612,12 @@
shows "{f. f \<in> (insert x S) \<rightarrow>\<^sub>E T \<and> inj_on f (insert x S)} =
(\<lambda>(y, g). g(x:=y)) ` {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
proof -
- have "\<And>a f y. \<lbrakk>f \<in> S \<rightarrow>\<^sub>E T - {a}; a = (if y = x then a else f y); y \<in> S\<rbrakk>
- \<Longrightarrow> False"
- using assms by (auto dest!: PiE_mem split: if_split_asm)
+ have False if "f \<in> S \<rightarrow>\<^sub>E T - {a}" and "a = (if y = x then a else f y)" and "y \<in> S" for a f y
+ using assms that by (auto dest!: PiE_mem split: if_split_asm)
moreover
- have "\<And>f. \<lbrakk> f \<in> insert x S \<rightarrow>\<^sub>E T; inj_on f S; \<forall>xb\<in>S. f x \<noteq> f xb\<rbrakk>
- \<Longrightarrow> \<exists>b. b \<in> S \<rightarrow>\<^sub>E T - {f x} \<and> inj_on b S \<and> f = b(x := f x)"
+ have "\<exists>b. b \<in> S \<rightarrow>\<^sub>E T - {f x} \<and> inj_on b S \<and> f = b(x := f x)"
+ if "f \<in> insert x S \<rightarrow>\<^sub>E T" and "inj_on f S" and "\<forall>xb\<in>S. f x \<noteq> f xb" for f
+ using that
unfolding inj_on_def
by (smt (verit, ccfv_threshold) PiE_restrict fun_upd_apply fun_upd_triv insert_Diff insert_iff
restrict_PiE_iff restrict_upd)
@@ -630,15 +626,15 @@
apply (auto simp: image_iff intro: extensional_funcset_fun_upd_inj_onI
extensional_funcset_fun_upd_extends_rangeI del: PiE_I PiE_E)
apply (smt (verit, best) PiE_cong PiE_mem inj_on_def insertCI)
- by blast
+ apply blast
+ done
qed
lemma extensional_funcset_extend_domain_inj_onI:
assumes "x \<notin> S"
shows "inj_on (\<lambda>(y, g). g(x := y)) {(y, g). y \<in> T \<and> g \<in> S \<rightarrow>\<^sub>E (T - {y}) \<and> inj_on g S}"
using assms
- apply (simp add: inj_on_def)
- by (metis PiE_restrict fun_upd_apply restrict_fupd)
+ by (simp add: inj_on_def) (metis PiE_restrict fun_upd_apply restrict_fupd)
subsubsection \<open>Misc properties of functions, composition and restriction from HOL Light\<close>
@@ -654,24 +650,19 @@
by (metis (mono_tags, opaque_lifting) f_inv_into_f imageI inv_into_into mem_Collect_eq)
qed auto
-lemma function_factors_left:
- "(\<forall>x y. (g x = g y) \<longrightarrow> (f x = f y)) \<longleftrightarrow> (\<exists>h. f = h \<circ> g)"
+lemma function_factors_left: "(\<forall>x y. (g x = g y) \<longrightarrow> (f x = f y)) \<longleftrightarrow> (\<exists>h. f = h \<circ> g)"
using function_factors_left_gen [of "\<lambda>x. True" g f] unfolding o_def by blast
-lemma function_factors_right_gen:
- "(\<forall>x. P x \<longrightarrow> (\<exists>y. g y = f x)) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = g(h x))"
+lemma function_factors_right_gen: "(\<forall>x. P x \<longrightarrow> (\<exists>y. g y = f x)) \<longleftrightarrow> (\<exists>h. \<forall>x. P x \<longrightarrow> f x = g(h x))"
by metis
-lemma function_factors_right:
- "(\<forall>x. \<exists>y. g y = f x) \<longleftrightarrow> (\<exists>h. f = g \<circ> h)"
+lemma function_factors_right: "(\<forall>x. \<exists>y. g y = f x) \<longleftrightarrow> (\<exists>h. f = g \<circ> h)"
unfolding o_def by metis
-lemma restrict_compose_right:
- "restrict (g \<circ> restrict f S) S = restrict (g \<circ> f) S"
+lemma restrict_compose_right: "restrict (g \<circ> restrict f S) S = restrict (g \<circ> f) S"
by auto
-lemma restrict_compose_left:
- "f ` S \<subseteq> T \<Longrightarrow> restrict (restrict g T \<circ> f) S = restrict (g \<circ> f) S"
+lemma restrict_compose_left: "f ` S \<subseteq> T \<Longrightarrow> restrict (restrict g T \<circ> f) S = restrict (g \<circ> f) S"
by fastforce
@@ -696,80 +687,89 @@
lemma card_PiE: "finite S \<Longrightarrow> card (\<Pi>\<^sub>E i \<in> S. T i) = (\<Prod> i\<in>S. card (T i))"
proof (induct rule: finite_induct)
case empty
- then show ?case by auto
+ then show ?case
+ by auto
next
case (insert x S)
then show ?case
by (simp add: PiE_insert_eq inj_combinator card_image card_cartesian_product)
qed
-lemma card_funcsetE: "finite A \<Longrightarrow> card (A \<rightarrow>\<^sub>E B) = card B ^ card A"
- by (subst card_PiE, auto)
+lemma card_funcsetE: "finite A \<Longrightarrow> card (A \<rightarrow>\<^sub>E B) = card B ^ card A"
+ by (subst card_PiE) auto
-lemma card_inj_on_subset_funcset: assumes finB: "finite B"
- and finC: "finite C"
- and AB: "A \<subseteq> B"
-shows "card {f \<in> B \<rightarrow>\<^sub>E C. inj_on f A} =
- card C^(card B - card A) * prod ((-) (card C)) {0 ..< card A}"
+lemma card_inj_on_subset_funcset:
+ assumes finB: "finite B"
+ and finC: "finite C"
+ and AB: "A \<subseteq> B"
+ shows "card {f \<in> B \<rightarrow>\<^sub>E C. inj_on f A} =
+ card C^(card B - card A) * prod ((-) (card C)) {0 ..< card A}"
proof -
- define D where "D = B - A"
- from AB have B: "B = A \<union> D" and disj: "A \<inter> D = {}" unfolding D_def by auto
- have sub: "card B - card A = card D" unfolding D_def using finB AB
+ define D where "D = B - A"
+ from AB have B: "B = A \<union> D" and disj: "A \<inter> D = {}"
+ unfolding D_def by auto
+ have sub: "card B - card A = card D"
+ unfolding D_def using finB AB
by (metis card_Diff_subset finite_subset)
- have "finite A" "finite D" using finB unfolding B by auto
- thus ?thesis unfolding sub unfolding B using disj
+ from finB B have "finite A" "finite D" by auto
+ then show ?thesis
+ unfolding sub unfolding B using disj
proof (induct A rule: finite_induct)
case empty
- from card_funcsetE[OF this(1), of C] show ?case by auto
+ from card_funcsetE[OF this(1), of C] show ?case
+ by auto
next
case (insert a A)
- have "{f. f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f (insert a A)}
- = {f(a := c) | f c. f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A \<and> c \<in> C - f ` A}"
+ have "{f. f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f (insert a A)} =
+ {f(a := c) | f c. f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A \<and> c \<in> C - f ` A}"
(is "?l = ?r")
proof
- show "?r \<subseteq> ?l"
- by (auto intro: inj_on_fun_updI split: if_splits)
- {
- fix f
- assume f: "f \<in> ?l"
- let ?g = "f(a := undefined)"
- let ?h = "?g(a := f a)"
+ show "?r \<subseteq> ?l"
+ by (auto intro: inj_on_fun_updI split: if_splits)
+ have "f \<in> ?r" if f: "f \<in> ?l" for f
+ proof -
+ let ?g = "f(a := undefined)"
+ let ?h = "?g(a := f a)"
have mem: "f a \<in> C - ?g ` A" using insert(1,2,4,5) f by auto
from f have f: "f \<in> insert a A \<union> D \<rightarrow>\<^sub>E C" "inj_on f (insert a A)" by auto
hence "?g \<in> A \<union> D \<rightarrow>\<^sub>E C" "inj_on ?g A" using \<open>a \<notin> A\<close> \<open>insert a A \<inter> D = {}\<close>
by (auto split: if_splits simp: inj_on_def)
with mem have "?h \<in> ?r" by blast
also have "?h = f" by auto
- finally have "f \<in> ?r" .
- }
- thus "?l \<subseteq> ?r" by auto
+ finally show ?thesis .
+ qed
+ then show "?l \<subseteq> ?r" by auto
qed
- also have "\<dots> = (\<lambda> (f, c). f (a := c)) `
+ also have "\<dots> = (\<lambda> (f, c). f (a := c)) `
(Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
by auto
- also have "card (...) = card (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
- proof (rule card_image, intro inj_onI, clarsimp, goal_cases)
+ also have "card (...) = card (Sigma {f . f \<in> A \<union> D \<rightarrow>\<^sub>E C \<and> inj_on f A} (\<lambda> f. C - f ` A))"
+ proof (rule card_image, intro inj_onI, clarsimp, goal_cases)
case (1 f c g d)
- let ?f = "f(a := c, a := undefined)"
- let ?g = "g(a := d, a := undefined)"
- from 1 have id: "f(a := c) = g(a := d)" by auto
- from fun_upd_eqD[OF id]
- have cd: "c = d" by auto
- from id have "?f = ?g" by auto
- also have "?f = f" using `f \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5)
+ let ?f = "f(a := c, a := undefined)"
+ let ?g = "g(a := d, a := undefined)"
+ from 1 have id: "f(a := c) = g(a := d)"
+ by auto
+ from fun_upd_eqD[OF id]
+ have cd: "c = d"
+ by auto
+ from id have "?f = ?g"
+ by auto
+ also have "?f = f" using `f \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5)
by (intro ext, auto)
- also have "?g = g" using `g \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5)
+ also have "?g = g" using `g \<in> A \<union> D \<rightarrow>\<^sub>E C` insert(1,2,4,5)
by (intro ext, auto)
- finally show "f = g \<and> c = d" using cd by auto
+ finally show "f = g \<and> c = d"
+ using cd by auto
qed
- also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card (C - f ` A))"
+ also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card (C - f ` A))"
by (rule card_SigmaI, rule finite_subset[of _ "A \<union> D \<rightarrow>\<^sub>E C"],
insert \<open>finite C\<close> \<open>finite D\<close> \<open>finite A\<close>, auto intro!: finite_PiE)
also have "\<dots> = (\<Sum>f\<in>{f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}. card C - card A)"
by (rule sum.cong[OF refl], subst card_Diff_subset, insert \<open>finite A\<close>, auto simp: card_image)
- also have "\<dots> = (card C - card A) * card {f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}"
+ also have "\<dots> = (card C - card A) * card {f \<in> A \<union> D \<rightarrow>\<^sub>E C. inj_on f A}"
by simp
- also have "\<dots> = card C ^ card D * ((card C - card A) * prod ((-) (card C)) {0..<card A})"
+ also have "\<dots> = card C ^ card D * ((card C - card A) * prod ((-) (card C)) {0..<card A})"
using insert by (auto simp: ac_simps)
also have "(card C - card A) * prod ((-) (card C)) {0..<card A} =
prod ((-) (card C)) {0..<Suc (card A)}" by simp
@@ -789,7 +789,7 @@
\<close>
lemma pigeonhole_card:
assumes "f \<in> A \<rightarrow> B" "finite A" "finite B" "B \<noteq> {}"
- shows "\<exists>y\<in>B. card (f -` {y} \<inter> A) * card B \<ge> card A"
+ shows "\<exists>y\<in>B. card (f -` {y} \<inter> A) * card B \<ge> card A"
proof -
from assms have "card B > 0"
by auto
@@ -802,11 +802,11 @@
unfolding M_def using assms by (intro sum_mono Max.coboundedI) auto
also have "\<dots> = card B * M"
by simp
- finally have "M * card B \<ge> card A"
+ finally have *: "M * card B \<ge> card A"
by (simp add: mult_ac)
- moreover have "M \<in> (\<lambda>y. card (f -` {y} \<inter> A)) ` B"
- unfolding M_def using assms \<open>B \<noteq> {}\<close> by (intro Max_in) auto
- ultimately show ?thesis
+ from assms have "M \<in> (\<lambda>y. card (f -` {y} \<inter> A)) ` B"
+ unfolding M_def by (intro Max_in) auto
+ with * show ?thesis
by blast
qed
--- a/src/HOL/ex/Birthday_Paradox.thy Fri Oct 25 11:31:16 2024 +0200
+++ b/src/HOL/ex/Birthday_Paradox.thy Fri Oct 25 13:43:12 2024 +0200
@@ -1,68 +1,81 @@
-(* Title: HOL/ex/Birthday_Paradox.thy
- Author: Lukas Bulwahn, TU Muenchen, 2007
+(* Title: HOL/ex/Birthday_Paradox.thy
+ Author: Lukas Bulwahn, TU Muenchen, 2007
*)
section \<open>A Formulation of the Birthday Paradox\<close>
theory Birthday_Paradox
-imports Main "HOL-Library.FuncSet"
+ imports "HOL-Library.FuncSet"
begin
section \<open>Cardinality\<close>
lemma card_product_dependent:
assumes "finite S"
- assumes "\<forall>x \<in> S. finite (T x)"
+ and "\<forall>x \<in> S. finite (T x)"
shows "card {(x, y). x \<in> S \<and> y \<in> T x} = (\<Sum>x \<in> S. card (T x))"
- using card_SigmaI[OF assms, symmetric] by (auto intro!: arg_cong[where f=card] simp add: Sigma_def)
+ using card_SigmaI[OF assms, symmetric]
+ by (auto intro!: arg_cong[where f=card] simp add: Sigma_def)
lemma card_extensional_funcset_inj_on:
assumes "finite S" "finite T" "card S \<le> card T"
shows "card {f \<in> extensional_funcset S T. inj_on f S} = fact (card T) div (fact (card T - card S))"
-using assms
+ using assms
proof (induct S arbitrary: T rule: finite_induct)
case empty
- from this show ?case by (simp add: Collect_conv_if PiE_empty_domain)
+ from this show ?case
+ by (simp add: Collect_conv_if PiE_empty_domain)
next
case (insert x S)
- { fix x
- from \<open>finite T\<close> have "finite (T - {x})" by auto
- from \<open>finite S\<close> this have "finite (extensional_funcset S (T - {x}))"
+ have finite_delete: "finite {f : extensional_funcset S (T - {x}). inj_on f S}" for x
+ proof -
+ from \<open>finite T\<close> have "finite (T - {x})"
+ by auto
+ from \<open>finite S\<close> this have *: "finite (extensional_funcset S (T - {x}))"
by (rule finite_PiE)
- moreover
- have "{f : extensional_funcset S (T - {x}). inj_on f S} \<subseteq> (extensional_funcset S (T - {x}))" by auto
- ultimately have "finite {f : extensional_funcset S (T - {x}). inj_on f S}"
+ have "{f : extensional_funcset S (T - {x}). inj_on f S} \<subseteq> (extensional_funcset S (T - {x}))"
+ by auto
+ with * show ?thesis
by (auto intro: finite_subset)
- } note finite_delete = this
- from insert have hyps: "\<forall>y \<in> T. card ({g. g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}) = fact (card T - 1) div fact ((card T - 1) - card S)"(is "\<forall> _ \<in> T. _ = ?k") by auto
+ qed
+ from insert have hyps: "\<forall>y \<in> T. card ({g. g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}) =
+ fact (card T - 1) div fact ((card T - 1) - card S)"(is "\<forall> _ \<in> T. _ = ?k")
+ by auto
from extensional_funcset_extend_domain_inj_on_eq[OF \<open>x \<notin> S\<close>]
have "card {f. f \<in> extensional_funcset (insert x S) T \<and> inj_on f (insert x S)} =
- card ((\<lambda>(y, g). g(x := y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S})"
+ card ((\<lambda>(y, g). g(x := y)) ` {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S})"
by metis
- also from extensional_funcset_extend_domain_inj_onI[OF \<open>x \<notin> S\<close>, of T] have "\<dots> = card {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
+ also from extensional_funcset_extend_domain_inj_onI[OF \<open>x \<notin> S\<close>, of T]
+ have "\<dots> = card {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S}"
by (simp add: card_image)
also have "card {(y, g). y \<in> T \<and> g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S} =
- card {(y, g). y \<in> T \<and> g \<in> {f \<in> extensional_funcset S (T - {y}). inj_on f S}}" by auto
- also from \<open>finite T\<close> finite_delete have "... = (\<Sum>y \<in> T. card {g. g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S})"
+ card {(y, g). y \<in> T \<and> g \<in> {f \<in> extensional_funcset S (T - {y}). inj_on f S}}"
+ by auto
+ also from \<open>finite T\<close> finite_delete
+ have "\<dots> = (\<Sum>y \<in> T. card {g. g \<in> extensional_funcset S (T - {y}) \<and> inj_on g S})"
by (subst card_product_dependent) auto
- also from hyps have "... = (card T) * ?k"
+ also from hyps have "\<dots> = (card T) * ?k"
by auto
- also have "... = card T * fact (card T - 1) div fact (card T - card (insert x S))"
+ also have "\<dots> = card T * fact (card T - 1) div fact (card T - card (insert x S))"
using insert unfolding div_mult1_eq[of "card T" "fact (card T - 1)"]
by (simp add: fact_mod)
- also have "... = fact (card T) div fact (card T - card (insert x S))"
+ also have "\<dots> = fact (card T) div fact (card T - card (insert x S))"
using insert by (simp add: fact_reduce[of "card T"])
finally show ?case .
qed
lemma card_extensional_funcset_not_inj_on:
assumes "finite S" "finite T" "card S \<le> card T"
- shows "card {f \<in> extensional_funcset S T. \<not> inj_on f S} = (card T) ^ (card S) - (fact (card T)) div (fact (card T - card S))"
+ shows "card {f \<in> extensional_funcset S T. \<not> inj_on f S} =
+ (card T) ^ (card S) - (fact (card T)) div (fact (card T - card S))"
proof -
- have subset: "{f : extensional_funcset S T. inj_on f S} <= extensional_funcset S T" by auto
- from finite_subset[OF subset] assms have finite: "finite {f : extensional_funcset S T. inj_on f S}"
+ have subset: "{f \<in> extensional_funcset S T. inj_on f S} \<subseteq> extensional_funcset S T"
+ by auto
+ from finite_subset[OF subset] assms
+ have finite: "finite {f : extensional_funcset S T. inj_on f S}"
by (auto intro!: finite_PiE)
- have "{f \<in> extensional_funcset S T. \<not> inj_on f S} = extensional_funcset S T - {f \<in> extensional_funcset S T. inj_on f S}" by auto
+ have "{f \<in> extensional_funcset S T. \<not> inj_on f S} =
+ extensional_funcset S T - {f \<in> extensional_funcset S T. inj_on f S}" by auto
from assms this finite subset show ?thesis
by (simp add: card_Diff_subset card_PiE card_extensional_funcset_inj_on prod_constant)
qed
@@ -71,16 +84,18 @@
"prod f {m..(n::nat)} = (if n < m then 1 else (if n = 0 then f 0 else f n * prod f {m..(n - 1)}))"
by auto (auto simp add: gr0_conv_Suc atLeastAtMostSuc_conv)
+
section \<open>Birthday paradox\<close>
lemma birthday_paradox:
assumes "card S = 23" "card T = 365"
shows "2 * card {f \<in> extensional_funcset S T. \<not> inj_on f S} \<ge> card (extensional_funcset S T)"
proof -
- from \<open>card S = 23\<close> \<open>card T = 365\<close> have "finite S" "finite T" "card S <= card T" by (auto intro: card_ge_0_finite)
+ from \<open>card S = 23\<close> \<open>card T = 365\<close> have "finite S" "finite T" "card S \<le> card T"
+ by (auto intro: card_ge_0_finite)
from assms show ?thesis
using card_PiE[OF \<open>finite S\<close>, of "\<lambda>i. T"] \<open>finite S\<close>
- card_extensional_funcset_not_inj_on[OF \<open>finite S\<close> \<open>finite T\<close> \<open>card S <= card T\<close>]
+ card_extensional_funcset_not_inj_on[OF \<open>finite S\<close> \<open>finite T\<close> \<open>card S \<le> card T\<close>]
by (simp add: fact_div_fact prod_upto_nat_unfold prod_constant)
qed