--- a/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Sat Aug 24 18:29:23 2013 +0200
+++ b/src/HOL/Multivariate_Analysis/Brouwer_Fixpoint.thy Sat Aug 24 21:23:40 2013 +0200
@@ -23,14 +23,20 @@
begin
(** move this **)
-lemma divide_nonneg_nonneg:assumes "a \<ge> 0" "b \<ge> 0" shows "0 \<le> a / (b::real)"
- apply(cases "b=0") defer apply(rule divide_nonneg_pos) using assms by auto
+lemma divide_nonneg_nonneg:
+ assumes "a \<ge> 0" "b \<ge> 0"
+ shows "0 \<le> a / (b::real)"
+ apply (cases "b=0")
+ defer
+ apply (rule divide_nonneg_pos)
+ using assms apply auto
+ done
lemma brouwer_compactness_lemma:
fixes f :: "'a::metric_space \<Rightarrow> 'b::euclidean_space"
assumes "compact s" "continuous_on s f" "\<not> (\<exists>x\<in>s. (f x = 0))"
obtains d where "0 < d" "\<forall>x\<in>s. d \<le> norm(f x)"
-proof (cases "s={}")
+proof (cases "s = {}")
case False
have "continuous_on s (norm \<circ> f)"
by (rule continuous_on_intros continuous_on_norm assms(2))+
@@ -59,7 +65,7 @@
by auto
show ?thesis
unfolding and_forall_thm Ball_def
- apply(subst choice_iff[THEN sym])+
+ apply (subst choice_iff[symmetric])+
apply rule
apply rule
proof -
@@ -81,7 +87,7 @@
qed
qed
-
+
subsection {* The key "counting" observation, somewhat abstracted. *}
lemma setsum_Un_disjoint':
@@ -105,15 +111,15 @@
hence lem1:"setsum (\<lambda>s. (card {f \<in> faces. face f s \<and> compo' f})) simplices =
setsum (\<lambda>s. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f s}) simplices +
setsum (\<lambda>s. card {f \<in> {f \<in> faces. compo' f \<and> \<not> (bnd f)}. face f s}) simplices"
- unfolding setsum_addf[THEN sym]
+ unfolding setsum_addf[symmetric]
apply -
apply(rule setsum_cong2)
using assms(1)
apply (auto simp add: card_Un_Int, auto simp add:conj_commute)
done
- have lem2:"setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f j}) simplices =
+ have lem2:"setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> bnd f}. face f j}) simplices =
1 * card {f \<in> faces. compo' f \<and> bnd f}"
- "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> \<not> bnd f}. face f j}) simplices =
+ "setsum (\<lambda>j. card {f \<in> {f \<in> faces. compo' f \<and> \<not> bnd f}. face f j}) simplices =
2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}"
apply(rule_tac[!] setsum_multicount)
using assms
@@ -133,7 +139,7 @@
{s \<in> simplices. (\<not> compo s) \<and> (card {f \<in> faces. face f s \<and> compo' f} = 2)}"
apply(rule setsum_Un_disjoint') using assms(2,6) by auto
have *:"int (\<Sum>s\<in>{s \<in> simplices. compo s}. card {f \<in> faces. face f s \<and> compo' f}) =
- int (card {f \<in> faces. compo' f \<and> bnd f} + 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}) -
+ int (card {f \<in> faces. compo' f \<and> bnd f} + 2 * card {f \<in> faces. compo' f \<and> \<not> bnd f}) -
int (card {s \<in> simplices. \<not> compo s \<and> card {f \<in> faces. face f s \<and> compo' f} = 2} * 2)"
using lem1[unfolded lem3 lem2 lem5] by auto
have even_minus_odd:"\<And>x y. even x \<Longrightarrow> odd (y::int) \<Longrightarrow> odd (x - y)"
@@ -141,8 +147,8 @@
have odd_minus_even:"\<And>x y. odd x \<Longrightarrow> even (y::int) \<Longrightarrow> odd (x - y)"
using assms by auto
show ?thesis
- unfolding even_nat_def card_eq_setsum and lem4[THEN sym] and *[unfolded card_eq_setsum]
- unfolding card_eq_setsum[THEN sym]
+ unfolding even_nat_def card_eq_setsum and lem4[symmetric] and *[unfolded card_eq_setsum]
+ unfolding card_eq_setsum[symmetric]
apply (rule odd_minus_even)
unfolding of_nat_add
apply(rule odd_plus_even)
@@ -188,10 +194,18 @@
assumes "card {a\<in>s. f ` (s - {a}) = t - {b}} = n"
shows "card {s'. \<exists>a\<in>s. (s' = s - {a}) \<and> (f ` s' = t - {b})} = n"
proof -
- have *:"{s'. \<exists>a\<in>s. (s' = s - {a}) \<and> (f ` s' = t - {b})} = (\<lambda>a. s - {a}) ` {a\<in>s. f ` (s - {a}) = t - {b}}"
+ have *: "{s'. \<exists>a\<in>s. (s' = s - {a}) \<and> (f ` s' = t - {b})} =
+ (\<lambda>a. s - {a}) ` {a\<in>s. f ` (s - {a}) = t - {b}}"
by auto
- show ?thesis unfolding * unfolding assms[THEN sym] apply(rule card_image) unfolding inj_on_def
- apply (rule, rule, rule) unfolding mem_Collect_eq apply auto done
+ show ?thesis
+ unfolding *
+ unfolding assms[symmetric]
+ apply (rule card_image)
+ unfolding inj_on_def
+ apply (rule, rule, rule)
+ unfolding mem_Collect_eq
+ apply auto
+ done
qed
lemma image_lemma_1:
@@ -199,12 +213,21 @@
shows "card {s'. \<exists>a\<in>s. s' = s - {a} \<and> f ` s' = t - {b}} = 1"
proof -
obtain a where a: "b = f a" "a\<in>s" using assms(4-5) by auto
- have inj: "inj_on f s" apply (rule eq_card_imp_inj_on) using assms(1-4) apply auto done
- have *: "{a \<in> s. f ` (s - {a}) = t - {b}} = {a}" apply (rule set_eqI) unfolding singleton_iff
+ have inj: "inj_on f s"
+ apply (rule eq_card_imp_inj_on)
+ using assms(1-4) apply auto
+ done
+ have *: "{a \<in> s. f ` (s - {a}) = t - {b}} = {a}"
+ apply (rule set_eqI)
+ unfolding singleton_iff
apply (rule, rule inj[unfolded inj_on_def, rule_format])
unfolding a using a(2) and assms and inj[unfolded inj_on_def] apply auto
done
- show ?thesis apply (rule image_lemma_0) unfolding * apply auto done
+ show ?thesis
+ apply (rule image_lemma_0)
+ unfolding *
+ apply auto
+ done
qed
lemma image_lemma_2:
@@ -215,7 +238,9 @@
case True
then show ?thesis
apply -
- apply (rule disjI1, rule image_lemma_0) using assms(1) apply auto done
+ apply (rule disjI1, rule image_lemma_0)
+ using assms(1) apply auto
+ done
next
let ?M = "{a\<in>s. f ` (s - {a}) = t - {b}}"
case False
@@ -268,7 +293,7 @@
"\<forall>f\<in> {f. \<exists>s\<in>simplices. face f s}. bnd f \<longrightarrow> (card {s\<in>simplices. face f s} = 1)"
"\<forall>f\<in> {f. \<exists>s\<in>simplices. face f s}. \<not>bnd f \<longrightarrow> (card {s\<in>simplices. face f s} = 2)"
"odd(card {f\<in>{f. \<exists>s\<in>simplices. face f s}. rl ` f = {0..n} \<and> bnd f})"
- shows "odd (card {s\<in>simplices. (rl ` s = {0..n+1})})"
+ shows "odd (card {s\<in>simplices. (rl ` s = {0..n+1})})"
apply (rule kuhn_counting_lemma)
defer
apply (rule assms)+
@@ -291,7 +316,8 @@
then have S: "?S = {s'. \<exists>a\<in>s. s' = s - {a} \<and> rl ` s' = {0..n + 1} - {n + 1}}"
apply -
apply (rule set_eqI)
- unfolding assms(2)[rule_format] mem_Collect_eq and *[OF s, unfolded mem_Collect_eq, where P="\<lambda>x. rl ` x = {0..n}"]
+ unfolding assms(2)[rule_format] mem_Collect_eq
+ unfolding *[OF s, unfolded mem_Collect_eq, where P="\<lambda>x. rl ` x = {0..n}"]
apply auto
done
show "rl ` s = {0..n+1} \<Longrightarrow> card ?S = 1" "rl ` s \<noteq> {0..n+1} \<Longrightarrow> card ?S = 0 \<or> card ?S = 2"
@@ -306,18 +332,23 @@
definition "kle n x y \<longleftrightarrow> (\<exists>k\<subseteq>{1..n::nat}. (\<forall>j. y(j) = x(j) + (if j \<in> k then (1::nat) else 0)))"
-lemma kle_refl[intro]: "kle n x x" unfolding kle_def by auto
+lemma kle_refl [intro]: "kle n x x"
+ unfolding kle_def by auto
lemma kle_antisym: "kle n x y \<and> kle n y x \<longleftrightarrow> (x = y)"
- unfolding kle_def apply rule apply(rule ext) by auto
+ unfolding kle_def
+ apply rule
+ apply auto
+ done
-lemma pointwise_minimal_pointwise_maximal: fixes s::"(nat\<Rightarrow>nat) set"
+lemma pointwise_minimal_pointwise_maximal:
+ fixes s :: "(nat \<Rightarrow> nat) set"
assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. (\<forall>j. x j \<le> y j) \<or> (\<forall>j. y j \<le> x j)"
shows "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<le> x j" "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. x j \<le> a j"
using assms unfolding atomize_conj
-proof (induct s rule:finite_induct)
+proof (induct s rule: finite_induct)
fix x and F::"(nat\<Rightarrow>nat) set"
- assume as:"finite F" "x \<notin> F"
+ assume as:"finite F" "x \<notin> F"
"\<lbrakk>F \<noteq> {}; \<forall>x\<in>F. \<forall>y\<in>F. (\<forall>j. x j \<le> y j) \<or> (\<forall>j. y j \<le> x j)\<rbrakk>
\<Longrightarrow> (\<exists>a\<in>F. \<forall>x\<in>F. \<forall>j. a j \<le> x j) \<and> (\<exists>a\<in>F. \<forall>x\<in>F. \<forall>j. x j \<le> a j)" "insert x F \<noteq> {}"
"\<forall>xa\<in>insert x F. \<forall>y\<in>insert x F. (\<forall>j. xa j \<le> y j) \<or> (\<forall>j. y j \<le> xa j)"
@@ -339,12 +370,15 @@
proof (erule disjE)
assume "\<forall>j. a j \<le> x j"
then show ?thesis
- apply (rule_tac x=a in bexI) using a apply auto done
+ apply (rule_tac x=a in bexI)
+ using a apply auto
+ done
next
assume "\<forall>j. x j \<le> a j"
then show ?thesis
apply (rule_tac x=x in bexI)
- apply (rule, rule) using a apply -
+ apply (rule, rule)
+ apply (insert a)
apply (erule_tac x=xa in ballE)
apply (erule_tac x=j in allE)+
apply auto
@@ -363,7 +397,8 @@
assume "\<forall>j. b j \<le> x j"
then show ?thesis
apply (rule_tac x=x in bexI)
- apply (rule, rule) using b apply -
+ apply (rule, rule)
+ apply (insert b)
apply (erule_tac x=xa in ballE)
apply (erule_tac x=j in allE)+
apply auto
@@ -432,121 +467,290 @@
qed
qed
-lemma kle_minimal: assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
- shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n a x" proof-
- have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<le> x j" apply(rule pointwise_minimal_pointwise_maximal(1)[OF assms(1-2)])
- apply(rule,rule) apply(drule_tac assms(3)[rule_format],assumption) using kle_imp_pointwise by auto
- then guess a .. note a=this show ?thesis apply(rule_tac x=a in bexI) proof fix x assume "x\<in>s"
- show "kle n a x" using assms(3)[rule_format,OF a(1) `x\<in>s`] apply- proof(erule disjE)
- assume "kle n x a" hence "x = a" apply- unfolding pointwise_antisym[THEN sym]
- apply(drule kle_imp_pointwise) using a(2)[rule_format,OF `x\<in>s`] by auto
- thus ?thesis using kle_refl by auto qed qed(insert a, auto) qed
+lemma kle_minimal:
+ assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
+ shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n a x"
+proof -
+ have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<le> x j"
+ apply (rule pointwise_minimal_pointwise_maximal(1)[OF assms(1-2)])
+ apply (rule, rule)
+ apply (drule_tac assms(3)[rule_format], assumption)
+ using kle_imp_pointwise apply auto
+ done
+ then guess a .. note a = this
+ show ?thesis
+ apply (rule_tac x=a in bexI)
+ proof
+ fix x
+ assume "x \<in> s"
+ show "kle n a x"
+ using assms(3)[rule_format,OF a(1) `x\<in>s`]
+ apply -
+ proof (erule disjE)
+ assume "kle n x a"
+ hence "x = a"
+ apply -
+ unfolding pointwise_antisym[symmetric]
+ apply (drule kle_imp_pointwise)
+ using a(2)[rule_format,OF `x\<in>s`] apply auto
+ done
+ thus ?thesis using kle_refl by auto
+ qed
+ qed (insert a, auto)
+qed
-lemma kle_maximal: assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
- shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n x a" proof-
- have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<ge> x j" apply(rule pointwise_minimal_pointwise_maximal(2)[OF assms(1-2)])
- apply(rule,rule) apply(drule_tac assms(3)[rule_format],assumption) using kle_imp_pointwise by auto
- then guess a .. note a=this show ?thesis apply(rule_tac x=a in bexI) proof fix x assume "x\<in>s"
- show "kle n x a" using assms(3)[rule_format,OF a(1) `x\<in>s`] apply- proof(erule disjE)
- assume "kle n a x" hence "x = a" apply- unfolding pointwise_antisym[THEN sym]
- apply(drule kle_imp_pointwise) using a(2)[rule_format,OF `x\<in>s`] by auto
- thus ?thesis using kle_refl by auto qed qed(insert a, auto) qed
+lemma kle_maximal:
+ assumes "finite s" "s \<noteq> {}" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
+ shows "\<exists>a\<in>s. \<forall>x\<in>s. kle n x a"
+proof -
+ have "\<exists>a\<in>s. \<forall>x\<in>s. \<forall>j. a j \<ge> x j"
+ apply (rule pointwise_minimal_pointwise_maximal(2)[OF assms(1-2)])
+ apply (rule, rule)
+ apply (drule_tac assms(3)[rule_format],assumption)
+ using kle_imp_pointwise apply auto
+ done
+ then guess a .. note a = this
+ show ?thesis
+ apply (rule_tac x=a in bexI)
+ proof
+ fix x
+ assume "x \<in> s"
+ show "kle n x a"
+ using assms(3)[rule_format,OF a(1) `x\<in>s`]
+ apply -
+ proof (erule disjE)
+ assume "kle n a x"
+ hence "x = a"
+ apply -
+ unfolding pointwise_antisym[symmetric]
+ apply (drule kle_imp_pointwise)
+ using a(2)[rule_format,OF `x\<in>s`] apply auto
+ done
+ thus ?thesis using kle_refl by auto
+ qed
+ qed (insert a, auto)
+qed
-lemma kle_strict_set: assumes "kle n x y" "x \<noteq> y"
- shows "1 \<le> card {k\<in>{1..n}. x k < y k}" proof-
+lemma kle_strict_set:
+ assumes "kle n x y" "x \<noteq> y"
+ shows "1 \<le> card {k\<in>{1..n}. x k < y k}"
+proof -
guess i using kle_strict(2)[OF assms] ..
- hence "card {i} \<le> card {k\<in>{1..n}. x k < y k}" apply- apply(rule card_mono) by auto
- thus ?thesis by auto qed
+ hence "card {i} \<le> card {k\<in>{1..n}. x k < y k}"
+ apply -
+ apply (rule card_mono)
+ apply auto
+ done
+ thus ?thesis by auto
+qed
lemma kle_range_combine:
assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x"
- "m1 \<le> card {k\<in>{1..n}. x k < y k}"
- "m2 \<le> card {k\<in>{1..n}. y k < z k}"
+ "m1 \<le> card {k\<in>{1..n}. x k < y k}"
+ "m2 \<le> card {k\<in>{1..n}. y k < z k}"
shows "kle n x z \<and> m1 + m2 \<le> card {k\<in>{1..n}. x k < z k}"
- apply(rule,rule kle_trans[OF assms(1-3)]) proof-
- have "\<And>j. x j < y j \<Longrightarrow> x j < z j" apply(rule less_le_trans) using kle_imp_pointwise[OF assms(2)] by auto moreover
- have "\<And>j. y j < z j \<Longrightarrow> x j < z j" apply(rule le_less_trans) using kle_imp_pointwise[OF assms(1)] by auto ultimately
- have *:"{k\<in>{1..n}. x k < y k} \<union> {k\<in>{1..n}. y k < z k} = {k\<in>{1..n}. x k < z k}" by auto
- have **:"{k \<in> {1..n}. x k < y k} \<inter> {k \<in> {1..n}. y k < z k} = {}" unfolding disjoint_iff_not_equal
- apply(rule,rule,unfold mem_Collect_eq,rule ccontr) apply(erule conjE)+ proof-
- fix i j assume as:"i \<in> {1..n}" "x i < y i" "j \<in> {1..n}" "y j < z j" "\<not> i \<noteq> j"
- guess kx using assms(1)[unfolded kle_def] .. note kx=this
- have "x i < y i" using as by auto hence "i \<in> kx" using as(1) kx apply(rule_tac ccontr) by auto
- hence "x i + 1 = y i" using kx by auto moreover
- guess ky using assms(2)[unfolded kle_def] .. note ky=this
- have "y i < z i" using as by auto hence "i \<in> ky" using as(1) ky apply(rule_tac ccontr) by auto
- hence "y i + 1 = z i" using ky by auto ultimately
+ apply (rule, rule kle_trans[OF assms(1-3)])
+proof -
+ have "\<And>j. x j < y j \<Longrightarrow> x j < z j"
+ apply (rule less_le_trans)
+ using kle_imp_pointwise[OF assms(2)] apply auto
+ done
+ moreover
+ have "\<And>j. y j < z j \<Longrightarrow> x j < z j"
+ apply (rule le_less_trans)
+ using kle_imp_pointwise[OF assms(1)] apply auto
+ done
+ ultimately
+ have *: "{k\<in>{1..n}. x k < y k} \<union> {k\<in>{1..n}. y k < z k} = {k\<in>{1..n}. x k < z k}"
+ by auto
+ have **: "{k \<in> {1..n}. x k < y k} \<inter> {k \<in> {1..n}. y k < z k} = {}"
+ unfolding disjoint_iff_not_equal
+ apply (rule, rule, unfold mem_Collect_eq, rule ccontr)
+ apply (erule conjE)+
+ proof -
+ fix i j
+ assume as: "i \<in> {1..n}" "x i < y i" "j \<in> {1..n}" "y j < z j" "\<not> i \<noteq> j"
+ guess kx using assms(1)[unfolded kle_def] .. note kx = this
+ have "x i < y i" using as by auto
+ hence "i \<in> kx" using as(1) kx
+ apply (rule_tac ccontr)
+ apply auto
+ done
+ hence "x i + 1 = y i" using kx by auto
+ moreover
+ guess ky using assms(2)[unfolded kle_def] .. note ky = this
+ have "y i < z i" using as by auto
+ hence "i \<in> ky" using as(1) ky
+ apply (rule_tac ccontr)
+ apply auto
+ done
+ hence "y i + 1 = z i" using ky by auto
+ ultimately
have "z i = x i + 2" by auto
- thus False using assms(3) unfolding kle_def by(auto simp add: split_if_eq1) qed
- have fin:"\<And>P. finite {x\<in>{1..n::nat}. P x}" by auto
- have "m1 + m2 \<le> card {k\<in>{1..n}. x k < y k} + card {k\<in>{1..n}. y k < z k}" using assms(4-5) by auto
- also have "\<dots> \<le> card {k\<in>{1..n}. x k < z k}" unfolding card_Un_Int[OF fin fin] unfolding * ** by auto
- finally show " m1 + m2 \<le> card {k \<in> {1..n}. x k < z k}" by auto qed
+ thus False using assms(3) unfolding kle_def
+ by (auto simp add: split_if_eq1)
+ qed
+ have fin: "\<And>P. finite {x\<in>{1..n::nat}. P x}" by auto
+ have "m1 + m2 \<le> card {k\<in>{1..n}. x k < y k} + card {k\<in>{1..n}. y k < z k}"
+ using assms(4-5) by auto
+ also have "\<dots> \<le> card {k\<in>{1..n}. x k < z k}"
+ unfolding card_Un_Int[OF fin fin] unfolding * ** by auto
+ finally show " m1 + m2 \<le> card {k \<in> {1..n}. x k < z k}" by auto
+qed
lemma kle_range_combine_l:
- assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x" "m \<le> card {k\<in>{1..n}. y(k) < z(k)}"
+ assumes "kle n x y"
+ and "kle n y z"
+ and "kle n x z \<or> kle n z x"
+ and "m \<le> card {k\<in>{1..n}. y(k) < z(k)}"
shows "kle n x z \<and> m \<le> card {k\<in>{1..n}. x(k) < z(k)}"
using kle_range_combine[OF assms(1-3) _ assms(4), of 0] by auto
lemma kle_range_combine_r:
- assumes "kle n x y" "kle n y z" "kle n x z \<or> kle n z x" "m \<le> card {k\<in>{1..n}. x k < y k}"
+ assumes "kle n x y"
+ and "kle n y z"
+ and "kle n x z \<or> kle n z x" "m \<le> card {k\<in>{1..n}. x k < y k}"
shows "kle n x z \<and> m \<le> card {k\<in>{1..n}. x(k) < z(k)}"
using kle_range_combine[OF assms(1-3) assms(4), of 0] by auto
lemma kle_range_induct:
- assumes "card s = Suc m" "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
- shows "\<exists>x\<in>s. \<exists>y\<in>s. kle n x y \<and> m \<le> card {k\<in>{1..n}. x k < y k}" proof-
-have "finite s" "s\<noteq>{}" using assms(1) by (auto intro: card_ge_0_finite)
-thus ?thesis using assms apply- proof(induct m arbitrary: s)
- case 0 thus ?case using kle_refl by auto next
- case (Suc m) then obtain a where a:"a\<in>s" "\<forall>x\<in>s. kle n a x" using kle_minimal[of s n] by auto
- show ?case proof(cases "s \<subseteq> {a}") case False
- hence "card (s - {a}) = Suc m" "s - {a} \<noteq> {}" using card_Diff_singleton[OF _ a(1)] Suc(4) `finite s` by auto
- then obtain x b where xb:"x\<in>s - {a}" "b\<in>s - {a}" "kle n x b" "m \<le> card {k \<in> {1..n}. x k < b k}"
- using Suc(1)[of "s - {a}"] using Suc(5) `finite s` by auto
- have "1 \<le> card {k \<in> {1..n}. a k < x k}" "m \<le> card {k \<in> {1..n}. x k < b k}"
- apply(rule kle_strict_set) apply(rule a(2)[rule_format]) using a and xb by auto
- thus ?thesis apply(rule_tac x=a in bexI, rule_tac x=b in bexI)
- using kle_range_combine[OF a(2)[rule_format] xb(3) Suc(5)[rule_format], of 1 "m"] using a(1) xb(1-2) by auto next
- case True hence "s = {a}" using Suc(3) by auto hence "card s = 1" by auto
- hence False using Suc(4) `finite s` by auto thus ?thesis by auto qed qed qed
+ assumes "card s = Suc m"
+ and "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
+ shows "\<exists>x\<in>s. \<exists>y\<in>s. kle n x y \<and> m \<le> card {k\<in>{1..n}. x k < y k}"
+proof -
+ have "finite s" "s\<noteq>{}" using assms(1)
+ by (auto intro: card_ge_0_finite)
+ thus ?thesis using assms
+ proof (induct m arbitrary: s)
+ case 0
+ thus ?case using kle_refl by auto
+ next
+ case (Suc m)
+ then obtain a where a: "a \<in> s" "\<forall>x\<in>s. kle n a x"
+ using kle_minimal[of s n] by auto
+ show ?case
+ proof (cases "s \<subseteq> {a}")
+ case False
+ hence "card (s - {a}) = Suc m" "s - {a} \<noteq> {}"
+ using card_Diff_singleton[OF _ a(1)] Suc(4) `finite s` by auto
+ then obtain x b where xb:"x\<in>s - {a}" "b\<in>s - {a}"
+ "kle n x b" "m \<le> card {k \<in> {1..n}. x k < b k}"
+ using Suc(1)[of "s - {a}"] using Suc(5) `finite s` by auto
+ have "1 \<le> card {k \<in> {1..n}. a k < x k}" "m \<le> card {k \<in> {1..n}. x k < b k}"
+ apply (rule kle_strict_set)
+ apply (rule a(2)[rule_format])
+ using a and xb apply auto
+ done
+ thus ?thesis
+ apply (rule_tac x=a in bexI, rule_tac x=b in bexI)
+ using kle_range_combine[OF a(2)[rule_format] xb(3) Suc(5)[rule_format], of 1 "m"]
+ using a(1) xb(1-2) apply auto
+ done
+ next
+ case True
+ hence "s = {a}" using Suc(3) by auto
+ hence "card s = 1" by auto
+ hence False using Suc(4) `finite s` by auto
+ thus ?thesis by auto
+ qed
+ qed
+qed
lemma kle_Suc: "kle n x y \<Longrightarrow> kle (n + 1) x y"
- unfolding kle_def apply(erule exE) apply(rule_tac x=k in exI) by auto
+ unfolding kle_def
+ apply (erule exE)
+ apply (rule_tac x=k in exI)
+ apply auto
+ done
-lemma kle_trans_1: assumes "kle n x y" shows "x j \<le> y j" "y j \<le> x j + 1"
- using assms[unfolded kle_def] by auto
+lemma kle_trans_1:
+ assumes "kle n x y"
+ shows "x j \<le> y j" "y j \<le> x j + 1"
+ using assms[unfolded kle_def] by auto
-lemma kle_trans_2: assumes "kle n a b" "kle n b c" "\<forall>j. c j \<le> a j + 1" shows "kle n a c" proof-
- guess kk1 using assms(1)[unfolded kle_def] .. note kk1=this
- guess kk2 using assms(2)[unfolded kle_def] .. note kk2=this
- show ?thesis unfolding kle_def apply(rule_tac x="kk1 \<union> kk2" in exI) apply(rule) defer proof
- fix i show "c i = a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)" proof(cases "i\<in>kk1 \<union> kk2")
- case True hence "c i \<ge> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
- unfolding kk1[THEN conjunct2,rule_format,of i] kk2[THEN conjunct2,rule_format,of i] by auto
- moreover have "c i \<le> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)" using True assms(3) by auto
- ultimately show ?thesis by auto next
- case False thus ?thesis using kk1 kk2 by auto qed qed(insert kk1 kk2, auto) qed
+lemma kle_trans_2:
+ assumes "kle n a b" "kle n b c" "\<forall>j. c j \<le> a j + 1"
+ shows "kle n a c"
+proof -
+ guess kk1 using assms(1)[unfolded kle_def] .. note kk1 = this
+ guess kk2 using assms(2)[unfolded kle_def] .. note kk2 = this
+ show ?thesis
+ unfolding kle_def
+ apply (rule_tac x="kk1 \<union> kk2" in exI)
+ apply (rule) defer
+ proof
+ fix i
+ show "c i = a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
+ proof (cases "i \<in> kk1 \<union> kk2")
+ case True
+ hence "c i \<ge> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
+ unfolding kk1[THEN conjunct2,rule_format,of i] kk2[THEN conjunct2,rule_format,of i]
+ by auto
+ moreover
+ have "c i \<le> a i + (if i \<in> kk1 \<union> kk2 then 1 else 0)"
+ using True assms(3) by auto
+ ultimately show ?thesis by auto
+ next
+ case False
+ thus ?thesis using kk1 kk2 by auto
+ qed
+ qed (insert kk1 kk2, auto)
+qed
-lemma kle_between_r: assumes "kle n a b" "kle n b c" "kle n a x" "kle n c x" shows "kle n b x"
- apply(rule kle_trans_2[OF assms(2,4)]) proof have *:"\<And>c b x::nat. x \<le> c + 1 \<Longrightarrow> c \<le> b \<Longrightarrow> x \<le> b + 1" by auto
- fix j show "x j \<le> b j + 1" apply(rule *)using kle_trans_1[OF assms(1),of j] kle_trans_1[OF assms(3), of j] by auto qed
+lemma kle_between_r:
+ assumes "kle n a b" "kle n b c" "kle n a x" "kle n c x"
+ shows "kle n b x"
+ apply (rule kle_trans_2[OF assms(2,4)])
+proof
+ have *: "\<And>c b x::nat. x \<le> c + 1 \<Longrightarrow> c \<le> b \<Longrightarrow> x \<le> b + 1" by auto
+ fix j
+ show "x j \<le> b j + 1"
+ apply (rule *)
+ using kle_trans_1[OF assms(1),of j] kle_trans_1[OF assms(3), of j] apply auto
+ done
+qed
-lemma kle_between_l: assumes "kle n a b" "kle n b c" "kle n x a" "kle n x c" shows "kle n x b"
- apply(rule kle_trans_2[OF assms(3,1)]) proof have *:"\<And>c b x::nat. c \<le> x + 1 \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> x + 1" by auto
- fix j show "b j \<le> x j + 1" apply(rule *) using kle_trans_1[OF assms(2),of j] kle_trans_1[OF assms(4), of j] by auto qed
+lemma kle_between_l:
+ assumes "kle n a b" "kle n b c" "kle n x a" "kle n x c"
+ shows "kle n x b"
+ apply (rule kle_trans_2[OF assms(3,1)])
+proof
+ have *: "\<And>c b x::nat. c \<le> x + 1 \<Longrightarrow> b \<le> c \<Longrightarrow> b \<le> x + 1"
+ by auto
+ fix j
+ show "b j \<le> x j + 1"
+ apply (rule *)
+ using kle_trans_1[OF assms(2),of j] kle_trans_1[OF assms(4), of j] apply auto
+ done
+qed
lemma kle_adjacent:
assumes "\<forall>j. b j = (if j = k then a(j) + 1 else a j)" "kle n a x" "kle n x b"
- shows "(x = a) \<or> (x = b)" proof(cases "x k = a k")
- case True show ?thesis apply(rule disjI1,rule ext) proof- fix j
- have "x j \<le> a j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]]
- unfolding assms(1)[rule_format] apply-apply(cases "j=k") using True by auto
- thus "x j = a j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]] by auto qed next
- case False show ?thesis apply(rule disjI2,rule ext) proof- fix j
+ shows "(x = a) \<or> (x = b)"
+proof (cases "x k = a k")
+ case True
+ show ?thesis
+ apply (rule disjI1, rule ext)
+ proof -
+ fix j
+ have "x j \<le> a j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]]
+ unfolding assms(1)[rule_format] apply-apply(cases "j=k")
+ using True by auto
+ thus "x j = a j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]] by auto
+ qed
+next
+ case False
+ show ?thesis apply(rule disjI2,rule ext)
+ proof -
+ fix j
have "x j \<ge> b j" using kle_imp_pointwise[OF assms(2),THEN spec[where x=j]]
- unfolding assms(1)[rule_format] apply-apply(cases "j=k") using False by auto
- thus "x j = b j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]] by auto qed qed
+ unfolding assms(1)[rule_format] apply-apply(cases "j=k")
+ using False by auto
+ thus "x j = b j" using kle_imp_pointwise[OF assms(3),THEN spec[where x=j]]
+ by auto
+ qed
+qed
+
subsection {* kuhn's notion of a simplex (a reformulation to avoid so much indexing). *}
@@ -556,182 +760,414 @@
(\<forall>x\<in>s. \<forall>j. j\<notin>{1..n} \<longrightarrow> (x j = p)) \<and>
(\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x))"
-lemma ksimplexI:"card s = n + 1 \<Longrightarrow> \<forall>x\<in>s. \<forall>j. x j \<le> p \<Longrightarrow> \<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p \<Longrightarrow> \<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x \<Longrightarrow> ksimplex p n s"
+lemma ksimplexI:
+ "card s = n + 1 \<Longrightarrow>
+ \<forall>x\<in>s. \<forall>j. x j \<le> p \<Longrightarrow>
+ \<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p \<Longrightarrow>
+ \<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x \<Longrightarrow>
+ ksimplex p n s"
unfolding ksimplex_def by auto
-lemma ksimplex_eq: "ksimplex p n (s::(nat \<Rightarrow> nat) set) \<longleftrightarrow>
- (card s = n + 1 \<and> finite s \<and>
- (\<forall>x\<in>s. \<forall>j. x(j) \<le> p) \<and>
- (\<forall>x\<in>s. \<forall>j. j\<notin>{1..n} \<longrightarrow> (x j = p)) \<and>
- (\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x))"
+lemma ksimplex_eq:
+ "ksimplex p n (s::(nat \<Rightarrow> nat) set) \<longleftrightarrow>
+ (card s = n + 1 \<and> finite s \<and>
+ (\<forall>x\<in>s. \<forall>j. x(j) \<le> p) \<and>
+ (\<forall>x\<in>s. \<forall>j. j\<notin>{1..n} \<longrightarrow> (x j = p)) \<and>
+ (\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x))"
unfolding ksimplex_def by (auto intro: card_ge_0_finite)
-lemma ksimplex_extrema: assumes "ksimplex p n s" obtains a b where "a \<in> s" "b \<in> s"
- "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))" proof(cases "n=0")
- case True obtain x where *:"s = {x}" using assms[unfolded ksimplex_eq True,THEN conjunct1]
+lemma ksimplex_extrema:
+ assumes "ksimplex p n s"
+ obtains a b where "a \<in> s" "b \<in> s"
+ "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))"
+proof (cases "n = 0")
+ case True
+ obtain x where *: "s = {x}"
+ using assms[unfolded ksimplex_eq True,THEN conjunct1]
unfolding add_0_left card_1_exists by auto
- show ?thesis apply(rule that[of x x]) unfolding * True by auto next
+ show ?thesis
+ apply (rule that[of x x]) unfolding * True
+ apply auto
+ done
+next
note assm = assms[unfolded ksimplex_eq]
- case False have "s\<noteq>{}" using assm by auto
- obtain a where a:"a\<in>s" "\<forall>x\<in>s. kle n a x" using `s\<noteq>{}` assm using kle_minimal[of s n] by auto
- obtain b where b:"b\<in>s" "\<forall>x\<in>s. kle n x b" using `s\<noteq>{}` assm using kle_maximal[of s n] by auto
- obtain c d where c_d:"c\<in>s" "d\<in>s" "kle n c d" "n \<le> card {k \<in> {1..n}. c k < d k}"
+ case False
+ have "s\<noteq>{}" using assm by auto
+ obtain a where a: "a \<in> s" "\<forall>x\<in>s. kle n a x"
+ using `s\<noteq>{}` assm using kle_minimal[of s n] by auto
+ obtain b where b: "b \<in> s" "\<forall>x\<in>s. kle n x b"
+ using `s\<noteq>{}` assm using kle_maximal[of s n] by auto
+ obtain c d where c_d: "c\<in>s" "d\<in>s" "kle n c d" "n \<le> card {k \<in> {1..n}. c k < d k}"
using kle_range_induct[of s n n] using assm by auto
- have "kle n c b \<and> n \<le> card {k \<in> {1..n}. c k < b k}" apply(rule kle_range_combine_r[where y=d]) using c_d a b by auto
- hence "kle n a b \<and> n \<le> card {k\<in>{1..n}. a(k) < b(k)}" apply-apply(rule kle_range_combine_l[where y=c]) using a `c\<in>s` `b\<in>s` by auto
- moreover have "card {1..n} \<ge> card {k\<in>{1..n}. a(k) < b(k)}" apply(rule card_mono) by auto
- ultimately have *:"{k\<in>{1 .. n}. a k < b k} = {1..n}" apply- apply(rule card_subset_eq) by auto
- show ?thesis apply(rule that[OF a(1) b(1)]) defer apply(subst *[THEN sym]) unfolding mem_Collect_eq proof
- guess k using a(2)[rule_format,OF b(1),unfolded kle_def] .. note k=this
- fix i show "b i = (if i \<in> {1..n} \<and> a i < b i then a i + 1 else a i)" proof(cases "i \<in> {1..n}")
- case True thus ?thesis unfolding k[THEN conjunct2,rule_format] by auto next
- case False have "a i = p" using assm and False `a\<in>s` by auto
- moreover have "b i = p" using assm and False `b\<in>s` by auto
- ultimately show ?thesis by auto qed qed(insert a(2) b(2) assm,auto) qed
+ have "kle n c b \<and> n \<le> card {k \<in> {1..n}. c k < b k}"
+ apply (rule kle_range_combine_r[where y=d])
+ using c_d a b apply auto
+ done
+ hence "kle n a b \<and> n \<le> card {k\<in>{1..n}. a(k) < b(k)}"
+ apply -
+ apply (rule kle_range_combine_l[where y=c])
+ using a `c\<in>s` `b\<in>s` apply auto
+ done
+ moreover
+ have "card {1..n} \<ge> card {k\<in>{1..n}. a(k) < b(k)}"
+ by (rule card_mono) auto
+ ultimately
+ have *: "{k\<in>{1 .. n}. a k < b k} = {1..n}"
+ apply -
+ apply (rule card_subset_eq)
+ apply auto
+ done
+ show ?thesis
+ apply (rule that[OF a(1) b(1)])
+ defer
+ apply (subst *[symmetric]) unfolding mem_Collect_eq
+ proof
+ guess k using a(2)[rule_format,OF b(1),unfolded kle_def] .. note k = this
+ fix i
+ show "b i = (if i \<in> {1..n} \<and> a i < b i then a i + 1 else a i)"
+ proof (cases "i \<in> {1..n}")
+ case True
+ thus ?thesis unfolding k[THEN conjunct2,rule_format] by auto
+ next
+ case False
+ have "a i = p" using assm and False `a\<in>s` by auto
+ moreover have "b i = p" using assm and False `b\<in>s` by auto
+ ultimately show ?thesis by auto
+ qed
+ qed(insert a(2) b(2) assm, auto)
+qed
lemma ksimplex_extrema_strong:
- assumes "ksimplex p n s" "n \<noteq> 0" obtains a b where "a \<in> s" "b \<in> s" "a \<noteq> b"
- "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))" proof-
- obtain a b where ab:"a \<in> s" "b \<in> s" "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))"
- apply(rule ksimplex_extrema[OF assms(1)]) by auto
- have "a \<noteq> b" apply(rule ccontr) unfolding not_not apply(drule cong[of _ _ 1 1]) using ab(4) assms(2) by auto
- thus ?thesis apply(rule_tac that[of a b]) using ab by auto qed
+ assumes "ksimplex p n s" "n \<noteq> 0"
+ obtains a b where "a \<in> s" "b \<in> s" "a \<noteq> b"
+ "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))"
+proof -
+ obtain a b where ab: "a \<in> s" "b \<in> s"
+ "\<forall>x\<in>s. kle n a x \<and> kle n x b" "\<forall>i. b(i) = (if i \<in> {1..n} then a(i) + 1 else a(i))"
+ apply (rule ksimplex_extrema[OF assms(1)])
+ apply auto
+ done
+ have "a \<noteq> b"
+ apply (rule notI)
+ apply (drule cong[of _ _ 1 1])
+ using ab(4) assms(2) apply auto
+ done
+ thus ?thesis
+ apply (rule_tac that[of a b])
+ using ab apply auto
+ done
+qed
lemma ksimplexD:
assumes "ksimplex p n s"
- shows "card s = n + 1" "finite s" "card s = n + 1" "\<forall>x\<in>s. \<forall>j. x j \<le> p" "\<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p"
- "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x" using assms unfolding ksimplex_eq by auto
+ shows "card s = n + 1" "finite s" "card s = n + 1"
+ "\<forall>x\<in>s. \<forall>j. x j \<le> p" "\<forall>x\<in>s. \<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p"
+ "\<forall>x\<in>s. \<forall>y\<in>s. kle n x y \<or> kle n y x"
+ using assms unfolding ksimplex_eq by auto
lemma ksimplex_successor:
assumes "ksimplex p n s" "a \<in> s"
shows "(\<forall>x\<in>s. kle n x a) \<or> (\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. y(j) = (if j = k then a(j) + 1 else a(j)))"
-proof(cases "\<forall>x\<in>s. kle n x a") case True thus ?thesis by auto next note assm = ksimplexD[OF assms(1)]
- case False then obtain b where b:"b\<in>s" "\<not> kle n b a" "\<forall>x\<in>{x \<in> s. \<not> kle n x a}. kle n b x"
+proof (cases "\<forall>x\<in>s. kle n x a")
+ case True
+ thus ?thesis by auto
+next
+ note assm = ksimplexD[OF assms(1)]
+ case False
+ then obtain b where b: "b\<in>s" "\<not> kle n b a" "\<forall>x\<in>{x \<in> s. \<not> kle n x a}. kle n b x"
using kle_minimal[of "{x\<in>s. \<not> kle n x a}" n] and assm by auto
- hence **:"1 \<le> card {k\<in>{1..n}. a k < b k}" apply- apply(rule kle_strict_set) using assm(6) and `a\<in>s` by(auto simp add:kle_refl)
+ hence **: "1 \<le> card {k\<in>{1..n}. a k < b k}"
+ apply -
+ apply (rule kle_strict_set)
+ using assm(6) and `a\<in>s` apply (auto simp add:kle_refl)
+ done
- let ?kle1 = "{x \<in> s. \<not> kle n x a}" have "card ?kle1 > 0" apply(rule ccontr) using assm(2) and False by auto
- hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)" using assm(2) by auto
- obtain c d where c_d: "c \<in> s" "\<not> kle n c a" "d \<in> s" "\<not> kle n d a" "kle n c d" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k < d k}"
+ let ?kle1 = "{x \<in> s. \<not> kle n x a}"
+ have "card ?kle1 > 0"
+ apply (rule ccontr)
+ using assm(2) and False apply auto
+ done
+ hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)"
+ using assm(2) by auto
+ obtain c d where c_d: "c \<in> s" "\<not> kle n c a" "d \<in> s" "\<not> kle n d a"
+ "kle n c d" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k < d k}"
using kle_range_induct[OF sizekle1, of n] using assm by auto
let ?kle2 = "{x \<in> s. kle n x a}"
- have "card ?kle2 > 0" apply(rule ccontr) using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) by auto
- hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)" using assm(2) by auto
- obtain e f where e_f: "e \<in> s" "kle n e a" "f \<in> s" "kle n f a" "kle n e f" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k < f k}"
+ have "card ?kle2 > 0"
+ apply (rule ccontr)
+ using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) apply auto
+ done
+ hence sizekle2: "card ?kle2 = Suc (card ?kle2 - 1)"
+ using assm(2) by auto
+ obtain e f where e_f: "e \<in> s" "kle n e a" "f \<in> s" "kle n f a"
+ "kle n e f" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k < f k}"
using kle_range_induct[OF sizekle2, of n] using assm by auto
- have "card {k\<in>{1..n}. a k < b k} = 1" proof(rule ccontr) case goal1
- hence as:"card {k\<in>{1..n}. a k < b k} \<ge> 2" using ** by auto
- have *:"finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}" using assm(2) by auto
- have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1" using sizekle1 sizekle2 by auto
- also have "\<dots> = n + 1" unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
- finally have n:"(card ?kle2 - 1) + (2 + (card ?kle1 - 1)) = n + 1" by auto
+ have "card {k\<in>{1..n}. a k < b k} = 1"
+ proof (rule ccontr)
+ case goal1
+ hence as: "card {k\<in>{1..n}. a k < b k} \<ge> 2"
+ using ** by auto
+ have *: "finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}"
+ using assm(2) by auto
+ have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1"
+ using sizekle1 sizekle2 by auto
+ also have "\<dots> = n + 1"
+ unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
+ finally have n: "(card ?kle2 - 1) + (2 + (card ?kle1 - 1)) = n + 1"
+ by auto
have "kle n e a \<and> card {x \<in> s. kle n x a} - 1 \<le> card {k \<in> {1..n}. e k < a k}"
- apply(rule kle_range_combine_r[where y=f]) using e_f using `a\<in>s` assm(6) by auto
+ apply (rule kle_range_combine_r[where y=f])
+ using e_f using `a\<in>s` assm(6) apply auto
+ done
moreover have "kle n b d \<and> card {x \<in> s. \<not> kle n x a} - 1 \<le> card {k \<in> {1..n}. b k < d k}"
- apply(rule kle_range_combine_l[where y=c]) using c_d using assm(6) and b by auto
- hence "kle n a d \<and> 2 + (card {x \<in> s. \<not> kle n x a} - 1) \<le> card {k \<in> {1..n}. a k < d k}" apply-
- apply(rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s` apply- by blast+
- ultimately have "kle n e d \<and> (card ?kle2 - 1) + (2 + (card ?kle1 - 1)) \<le> card {k\<in>{1..n}. e k < d k}" apply-
- apply(rule kle_range_combine[where y=a]) using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply - by blast+
- moreover have "card {k \<in> {1..n}. e k < d k} \<le> card {1..n}" apply(rule card_mono) by auto
- ultimately show False unfolding n by auto qed
- then guess k unfolding card_1_exists .. note k=this[unfolded mem_Collect_eq]
+ apply (rule kle_range_combine_l[where y=c])
+ using c_d using assm(6) and b apply auto
+ done
+ hence "kle n a d \<and> 2 + (card {x \<in> s. \<not> kle n x a} - 1) \<le> card {k \<in> {1..n}. a k < d k}"
+ apply -
+ apply (rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s`
+ apply blast+
+ done
+ ultimately
+ have "kle n e d \<and> (card ?kle2 - 1) + (2 + (card ?kle1 - 1)) \<le> card {k\<in>{1..n}. e k < d k}"
+ apply -
+ apply (rule kle_range_combine[where y=a]) using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`]
+ apply blast+
+ done
+ moreover have "card {k \<in> {1..n}. e k < d k} \<le> card {1..n}"
+ by (rule card_mono) auto
+ ultimately show False unfolding n by auto
+ qed
+ then guess k unfolding card_1_exists .. note k = this[unfolded mem_Collect_eq]
- show ?thesis apply(rule disjI2) apply(rule_tac x=b in bexI,rule_tac x=k in bexI) proof
- fix j::nat have "kle n a b" using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
- then guess kk unfolding kle_def .. note kk_raw=this note kk=this[THEN conjunct2,rule_format]
- have kkk:"k\<in>kk" apply(rule ccontr) using k(1) unfolding kk by auto
- show "b j = (if j = k then a j + 1 else a j)" proof(cases "j\<in>kk")
- case True hence "j=k" apply-apply(rule k(2)[rule_format]) using kk_raw kkk by auto
- thus ?thesis unfolding kk using kkk by auto next
- case False hence "j\<noteq>k" using k(2)[rule_format, of j k] using kk_raw kkk by auto
- thus ?thesis unfolding kk using kkk using False by auto qed qed(insert k(1) `b\<in>s`, auto) qed
+ show ?thesis
+ apply (rule disjI2)
+ apply (rule_tac x=b in bexI, rule_tac x=k in bexI)
+ proof
+ fix j :: nat
+ have "kle n a b"
+ using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
+ then guess kk unfolding kle_def .. note kk_raw = this
+ note kk = this[THEN conjunct2, rule_format]
+ have kkk: "k \<in> kk"
+ apply (rule ccontr)
+ using k(1)
+ unfolding kk apply auto
+ done
+ show "b j = (if j = k then a j + 1 else a j)"
+ proof (cases "j \<in> kk")
+ case True
+ hence "j = k"
+ apply - apply (rule k(2)[rule_format])
+ using kk_raw kkk apply auto
+ done
+ thus ?thesis unfolding kk using kkk by auto
+ next
+ case False
+ hence "j \<noteq> k"
+ using k(2)[rule_format, of j k] and kk_raw kkk by auto
+ thus ?thesis unfolding kk using kkk and False
+ by auto
+ qed
+ qed(insert k(1) `b\<in>s`, auto)
+qed
lemma ksimplex_predecessor:
assumes "ksimplex p n s" "a \<in> s"
shows "(\<forall>x\<in>s. kle n a x) \<or> (\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. a(j) = (if j = k then y(j) + 1 else y(j)))"
-proof(cases "\<forall>x\<in>s. kle n a x") case True thus ?thesis by auto next note assm = ksimplexD[OF assms(1)]
- case False then obtain b where b:"b\<in>s" "\<not> kle n a b" "\<forall>x\<in>{x \<in> s. \<not> kle n a x}. kle n x b"
+proof (cases "\<forall>x\<in>s. kle n a x")
+ case True
+ thus ?thesis by auto
+next
+ note assm = ksimplexD[OF assms(1)]
+ case False
+ then obtain b where b:"b\<in>s" "\<not> kle n a b" "\<forall>x\<in>{x \<in> s. \<not> kle n a x}. kle n x b"
using kle_maximal[of "{x\<in>s. \<not> kle n a x}" n] and assm by auto
- hence **:"1 \<le> card {k\<in>{1..n}. a k > b k}" apply- apply(rule kle_strict_set) using assm(6) and `a\<in>s` by(auto simp add:kle_refl)
+ hence **: "1 \<le> card {k\<in>{1..n}. a k > b k}"
+ apply -
+ apply (rule kle_strict_set)
+ using assm(6) and `a\<in>s` apply (auto simp add: kle_refl)
+ done
- let ?kle1 = "{x \<in> s. \<not> kle n a x}" have "card ?kle1 > 0" apply(rule ccontr) using assm(2) and False by auto
- hence sizekle1:"card ?kle1 = Suc (card ?kle1 - 1)" using assm(2) by auto
- obtain c d where c_d: "c \<in> s" "\<not> kle n a c" "d \<in> s" "\<not> kle n a d" "kle n d c" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k > d k}"
+ let ?kle1 = "{x \<in> s. \<not> kle n a x}"
+ have "card ?kle1 > 0"
+ apply (rule ccontr)
+ using assm(2) and False apply auto
+ done
+ hence sizekle1: "card ?kle1 = Suc (card ?kle1 - 1)"
+ using assm(2) by auto
+ obtain c d where c_d: "c \<in> s" "\<not> kle n a c" "d \<in> s" "\<not> kle n a d"
+ "kle n d c" "card ?kle1 - 1 \<le> card {k \<in> {1..n}. c k > d k}"
using kle_range_induct[OF sizekle1, of n] using assm by auto
let ?kle2 = "{x \<in> s. kle n a x}"
- have "card ?kle2 > 0" apply(rule ccontr) using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) by auto
- hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)" using assm(2) by auto
- obtain e f where e_f: "e \<in> s" "kle n a e" "f \<in> s" "kle n a f" "kle n f e" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k > f k}"
+ have "card ?kle2 > 0"
+ apply (rule ccontr)
+ using assm(6)[rule_format,of a a] and `a\<in>s` and assm(2) apply auto
+ done
+ hence sizekle2:"card ?kle2 = Suc (card ?kle2 - 1)"
+ using assm(2) by auto
+ obtain e f where e_f: "e \<in> s" "kle n a e" "f \<in> s" "kle n a f"
+ "kle n f e" "card ?kle2 - 1 \<le> card {k \<in> {1..n}. e k > f k}"
using kle_range_induct[OF sizekle2, of n] using assm by auto
- have "card {k\<in>{1..n}. a k > b k} = 1" proof(rule ccontr) case goal1
- hence as:"card {k\<in>{1..n}. a k > b k} \<ge> 2" using ** by auto
- have *:"finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}" using assm(2) by auto
- have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1" using sizekle1 sizekle2 by auto
- also have "\<dots> = n + 1" unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
- finally have n:"(card ?kle1 - 1) + 2 + (card ?kle2 - 1) = n + 1" by auto
+ have "card {k\<in>{1..n}. a k > b k} = 1"
+ proof (rule ccontr)
+ case goal1
+ hence as: "card {k\<in>{1..n}. a k > b k} \<ge> 2"
+ using ** by auto
+ have *: "finite ?kle2" "finite ?kle1" "?kle2 \<union> ?kle1 = s" "?kle2 \<inter> ?kle1 = {}"
+ using assm(2) by auto
+ have "(card ?kle2 - 1) + 2 + (card ?kle1 - 1) = card ?kle2 + card ?kle1"
+ using sizekle1 sizekle2 by auto
+ also have "\<dots> = n + 1"
+ unfolding card_Un_Int[OF *(1-2)] *(3-) using assm(3) by auto
+ finally have n: "(card ?kle1 - 1) + 2 + (card ?kle2 - 1) = n + 1"
+ by auto
have "kle n a e \<and> card {x \<in> s. kle n a x} - 1 \<le> card {k \<in> {1..n}. e k > a k}"
- apply(rule kle_range_combine_l[where y=f]) using e_f using `a\<in>s` assm(6) by auto
+ apply (rule kle_range_combine_l[where y=f])
+ using e_f and `a\<in>s` assm(6) apply auto
+ done
moreover have "kle n d b \<and> card {x \<in> s. \<not> kle n a x} - 1 \<le> card {k \<in> {1..n}. b k > d k}"
- apply(rule kle_range_combine_r[where y=c]) using c_d using assm(6) and b by auto
- hence "kle n d a \<and> (card {x \<in> s. \<not> kle n a x} - 1) + 2 \<le> card {k \<in> {1..n}. a k > d k}" apply-
- apply(rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s` by blast+
- ultimately have "kle n d e \<and> (card ?kle1 - 1 + 2) + (card ?kle2 - 1) \<le> card {k\<in>{1..n}. e k > d k}" apply-
- apply(rule kle_range_combine[where y=a]) using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply - by blast+
- moreover have "card {k \<in> {1..n}. e k > d k} \<le> card {1..n}" apply(rule card_mono) by auto
- ultimately show False unfolding n by auto qed
- then guess k unfolding card_1_exists .. note k=this[unfolded mem_Collect_eq]
+ apply (rule kle_range_combine_r[where y=c])
+ using c_d and assm(6) and b apply auto
+ done
+ hence "kle n d a \<and> (card {x \<in> s. \<not> kle n a x} - 1) + 2 \<le> card {k \<in> {1..n}. a k > d k}"
+ apply -
+ apply (rule kle_range_combine[where y=b]) using as and b assm(6) `a\<in>s` `d\<in>s`
+ apply blast+
+ done
+ ultimately have "kle n d e \<and> (card ?kle1 - 1 + 2) + (card ?kle2 - 1) \<le> card {k\<in>{1..n}. e k > d k}"
+ apply -
+ apply (rule kle_range_combine[where y=a])
+ using assm(6)[rule_format,OF `e\<in>s` `d\<in>s`] apply blast+
+ done
+ moreover have "card {k \<in> {1..n}. e k > d k} \<le> card {1..n}"
+ by (rule card_mono) auto
+ ultimately show False unfolding n by auto
+ qed
+ then guess k unfolding card_1_exists .. note k = this[unfolded mem_Collect_eq]
- show ?thesis apply(rule disjI2) apply(rule_tac x=b in bexI,rule_tac x=k in bexI) proof
- fix j::nat have "kle n b a" using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
- then guess kk unfolding kle_def .. note kk_raw=this note kk=this[THEN conjunct2,rule_format]
- have kkk:"k\<in>kk" apply(rule ccontr) using k(1) unfolding kk by auto
- show "a j = (if j = k then b j + 1 else b j)" proof(cases "j\<in>kk")
- case True hence "j=k" apply-apply(rule k(2)[rule_format]) using kk_raw kkk by auto
- thus ?thesis unfolding kk using kkk by auto next
- case False hence "j\<noteq>k" using k(2)[rule_format, of j k] using kk_raw kkk by auto
- thus ?thesis unfolding kk using kkk using False by auto qed qed(insert k(1) `b\<in>s`, auto) qed
+ show ?thesis
+ apply (rule disjI2)
+ apply (rule_tac x=b in bexI,rule_tac x=k in bexI)
+ proof
+ fix j :: nat
+ have "kle n b a"
+ using b and assm(6)[rule_format, OF `a\<in>s` `b\<in>s`] by auto
+ then guess kk unfolding kle_def .. note kk_raw = this
+ note kk = this[THEN conjunct2,rule_format]
+ have kkk: "k \<in> kk"
+ apply (rule ccontr)
+ using k(1)
+ unfolding kk
+ apply auto
+ done
+ show "a j = (if j = k then b j + 1 else b j)"
+ proof (cases "j \<in> kk")
+ case True
+ hence "j = k"
+ apply -
+ apply (rule k(2)[rule_format])
+ using kk_raw kkk apply auto
+ done
+ thus ?thesis unfolding kk using kkk by auto
+ next
+ case False
+ hence "j \<noteq> k" using k(2)[rule_format, of j k]
+ using kk_raw kkk by auto
+ thus ?thesis unfolding kk
+ using kkk and False by auto
+ qed
+ qed(insert k(1) `b\<in>s`, auto)
+qed
+
subsection {* The lemmas about simplices that we need. *}
-(* FIXME: These are clones of lemmas in Library/FuncSet *)
-lemma card_funspace': assumes "finite s" "finite t" "card s = m" "card t = n"
- shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = n ^ m" (is "card (?M s) = _")
- using assms apply - proof(induct m arbitrary: s)
- have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" apply(rule set_eqI,rule)unfolding mem_Collect_eq apply(rule,rule ext) by auto
- case 0 thus ?case by(auto simp add: *) next
- case (Suc m) guess a using card_eq_SucD[OF Suc(4)] .. then guess s0
- apply(erule_tac exE) apply(erule conjE)+ . note as0 = this
- have **:"card s0 = m" using as0 using Suc(2) Suc(4) by auto
- let ?l = "(\<lambda>(b,g) x. if x = a then b else g x)" have *:"?M (insert a s0) = ?l ` {(b,g). b\<in>t \<and> g\<in>?M s0}"
- apply(rule set_eqI,rule) unfolding mem_Collect_eq image_iff apply(erule conjE)
- apply(rule_tac x="(x a, \<lambda>y. if y\<in>s0 then x y else d)" in bexI) apply(rule ext) prefer 3 apply rule defer
- apply(erule bexE,rule) unfolding mem_Collect_eq apply(erule splitE)+ apply(erule conjE)+ proof-
- fix x xa xb xc y assume as:"x = (\<lambda>(b, g) x. if x = a then b else g x) xa" "xb \<in> UNIV - insert a s0" "xa = (xc, y)" "xc \<in> t"
- "\<forall>x\<in>s0. y x \<in> t" "\<forall>x\<in>UNIV - s0. y x = d" thus "x xb = d" unfolding as by auto qed auto
- have inj:"inj_on ?l {(b,g). b\<in>t \<and> g\<in>?M s0}" unfolding inj_on_def apply(rule,rule,rule) unfolding mem_Collect_eq apply(erule splitE conjE)+ proof-
+(* FIXME: These are clones of lemmas in Library/FuncSet *)
+lemma card_funspace':
+ assumes "finite s" "finite t" "card s = m" "card t = n"
+ shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = n ^ m" (is "card (?M s) = _")
+ using assms
+ apply -
+proof (induct m arbitrary: s)
+ have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}"
+ apply (rule set_eqI,rule)
+ unfolding mem_Collect_eq
+ apply (rule, rule ext)
+ apply auto
+ done
+ case 0
+ thus ?case by(auto simp add: *)
+next
+ case (Suc m)
+ guess a using card_eq_SucD[OF Suc(4)] ..
+ then guess s0 by (elim exE conjE) note as0 = this
+ have **: "card s0 = m"
+ using as0 using Suc(2) Suc(4) by auto
+ let ?l = "(\<lambda>(b, g) x. if x = a then b else g x)"
+ have *: "?M (insert a s0) = ?l ` {(b,g). b\<in>t \<and> g\<in>?M s0}"
+ apply (rule set_eqI, rule)
+ unfolding mem_Collect_eq image_iff
+ apply (erule conjE)
+ apply (rule_tac x="(x a, \<lambda>y. if y\<in>s0 then x y else d)" in bexI)
+ apply (rule ext)
+ prefer 3
+ apply rule
+ defer
+ apply (erule bexE,rule)
+ unfolding mem_Collect_eq
+ apply (erule splitE)+
+ apply (erule conjE)+
+ proof -
+ fix x xa xb xc y
+ assume as: "x = (\<lambda>(b, g) x. if x = a then b else g x) xa"
+ "xb \<in> UNIV - insert a s0" "xa = (xc, y)" "xc \<in> t"
+ "\<forall>x\<in>s0. y x \<in> t" "\<forall>x\<in>UNIV - s0. y x = d"
+ thus "x xb = d" unfolding as by auto
+ qed auto
+ have inj: "inj_on ?l {(b,g). b\<in>t \<and> g\<in>?M s0}"
+ unfolding inj_on_def
+ apply (rule, rule, rule)
+ unfolding mem_Collect_eq
+ apply (erule splitE conjE)+
+ proof -
case goal1 note as = this(1,4-)[unfolded goal1 split_conv]
have "xa = xb" using as(1)[THEN cong[of _ _ a]] by auto
- moreover have "ya = yb" proof(rule ext) fix x show "ya x = yb x" proof(cases "x = a")
- case False thus ?thesis using as(1)[THEN cong[of _ _ x x]] by auto next
- case True thus ?thesis using as(5,7) using as0(2) by auto qed qed
- ultimately show ?case unfolding goal1 by auto qed
+ moreover have "ya = yb"
+ proof (rule ext)
+ fix x
+ show "ya x = yb x"
+ proof (cases "x = a")
+ case False
+ thus ?thesis using as(1)[THEN cong[of _ _ x x]] by auto
+ next
+ case True
+ thus ?thesis using as(5,7) using as0(2) by auto
+ qed
+ qed
+ ultimately show ?case unfolding goal1 by auto
+ qed
have "finite s0" using `finite s` unfolding as0 by simp
- show ?case unfolding as0 * card_image[OF inj] using assms
- unfolding SetCompr_Sigma_eq apply-
+ show ?case
+ unfolding as0 * card_image[OF inj]
+ using assms
+ unfolding SetCompr_Sigma_eq
unfolding card_cartesian_product
- using Suc(1)[OF `finite s0` `finite t` ** `card t = n`] by auto
+ using Suc(1)[OF `finite s0` `finite t` ** `card t = n`]
+ by auto
qed
-lemma card_funspace: assumes "finite s" "finite t"
+lemma card_funspace:
+ assumes "finite s" "finite t"
shows "card {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)} = (card t) ^ (card s)"
using assms by (auto intro: card_funspace')
-lemma finite_funspace: assumes "finite s" "finite t"
+lemma finite_funspace:
+ assumes "finite s" "finite t"
shows "finite {f. (\<forall>x\<in>s. f x \<in> t) \<and> (\<forall>x\<in>UNIV - s. f x = d)}" (is "finite ?S")
proof (cases "card t > 0")
case True
@@ -743,95 +1179,266 @@
show ?thesis
proof (cases "s = {}")
have *:"{f. \<forall>x. f x = d} = {\<lambda>x. d}" by auto
- case True thus ?thesis using `t = {}` by (auto simp: *)
+ case True
+ thus ?thesis using `t = {}` by (auto simp: *)
next
- case False thus ?thesis using `t = {}` by simp
+ case False
+ thus ?thesis using `t = {}` by simp
qed
qed
lemma finite_simplices: "finite {s. ksimplex p n s}"
- apply(rule finite_subset[of _ "{s. s\<subseteq>{f. (\<forall>i\<in>{1..n}. f i \<in> {0..p}) \<and> (\<forall>i\<in>UNIV-{1..n}. f i = p)}}"])
- unfolding ksimplex_def defer apply(rule finite_Collect_subsets) apply(rule finite_funspace) by auto
+ apply (rule finite_subset[of _ "{s. s\<subseteq>{f. (\<forall>i\<in>{1..n}. f i \<in> {0..p}) \<and> (\<forall>i\<in>UNIV-{1..n}. f i = p)}}"])
+ unfolding ksimplex_def
+ defer
+ apply (rule finite_Collect_subsets)
+ apply (rule finite_funspace)
+ apply auto
+ done
-lemma simplex_top_face: assumes "0<p" "\<forall>x\<in>f. x (n + 1) = p"
- shows "(\<exists>s a. ksimplex p (n + 1) s \<and> a \<in> s \<and> (f = s - {a})) \<longleftrightarrow> ksimplex p n f" (is "?ls = ?rs") proof
- assume ?ls then guess s .. then guess a apply-apply(erule exE,(erule conjE)+) . note sa=this
- show ?rs unfolding ksimplex_def sa(3) apply(rule) defer apply rule defer apply(rule,rule,rule,rule) defer apply(rule,rule) proof-
- fix x y assume as:"x \<in>s - {a}" "y \<in>s - {a}" have xyp:"x (n + 1) = y (n + 1)"
- using as(1)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]]
- using as(2)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]] by auto
- show "kle n x y \<or> kle n y x" proof(cases "kle (n + 1) x y")
- case True then guess k unfolding kle_def .. note k=this hence *:"n+1 \<notin> k" using xyp by auto
- have "\<not> (\<exists>x\<in>k. x\<notin>{1..n})" apply(rule ccontr) unfolding not_not apply(erule bexE) proof-
- fix x assume as:"x \<in> k" "x \<notin> {1..n}" have "x \<noteq> n+1" using as and * by auto
- thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto qed
- thus ?thesis apply-apply(rule disjI1) unfolding kle_def using k apply(rule_tac x=k in exI) by auto next
- case False hence "kle (n + 1) y x" using ksimplexD(6)[OF sa(1),rule_format, of x y] using as by auto
- then guess k unfolding kle_def .. note k=this hence *:"n+1 \<notin> k" using xyp by auto
- hence "\<not> (\<exists>x\<in>k. x\<notin>{1..n})" apply-apply(rule ccontr) unfolding not_not apply(erule bexE) proof-
- fix x assume as:"x \<in> k" "x \<notin> {1..n}" have "x \<noteq> n+1" using as and * by auto
- thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto qed
- thus ?thesis apply-apply(rule disjI2) unfolding kle_def using k apply(rule_tac x=k in exI) by auto qed next
- fix x j assume as:"x\<in>s - {a}" "j\<notin>{1..n}"
- thus "x j = p" using as(1)[unfolded sa(3)[THEN sym], THEN assms(2)[rule_format]]
- apply(cases "j = n+1") using sa(1)[unfolded ksimplex_def] by auto qed(insert sa ksimplexD[OF sa(1)], auto) next
- assume ?rs note rs=ksimplexD[OF this] guess a b apply(rule ksimplex_extrema[OF `?rs`]) . note ab = this
+lemma simplex_top_face:
+ assumes "0 < p" "\<forall>x\<in>f. x (n + 1) = p"
+ shows "(\<exists>s a. ksimplex p (n + 1) s \<and> a \<in> s \<and> (f = s - {a})) \<longleftrightarrow> ksimplex p n f" (is "?ls = ?rs")
+proof
+ assume ?ls
+ then guess s ..
+ then guess a by (elim exE conjE) note sa = this
+ show ?rs
+ unfolding ksimplex_def sa(3)
+ apply rule
+ defer
+ apply rule
+ defer
+ apply (rule, rule, rule, rule)
+ defer
+ apply (rule, rule)
+ proof -
+ fix x y
+ assume as: "x \<in>s - {a}" "y \<in>s - {a}"
+ have xyp: "x (n + 1) = y (n + 1)"
+ using as(1)[unfolded sa(3)[symmetric], THEN assms(2)[rule_format]]
+ using as(2)[unfolded sa(3)[symmetric], THEN assms(2)[rule_format]]
+ by auto
+ show "kle n x y \<or> kle n y x"
+ proof (cases "kle (n + 1) x y")
+ case True
+ then guess k unfolding kle_def .. note k = this
+ hence *: "n + 1 \<notin> k" using xyp by auto
+ have "\<not> (\<exists>x\<in>k. x\<notin>{1..n})"
+ apply (rule ccontr)
+ unfolding not_not
+ apply(erule bexE)
+ proof -
+ fix x
+ assume as: "x \<in> k" "x \<notin> {1..n}"
+ have "x \<noteq> n + 1" using as and * by auto
+ thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto
+ qed
+ thus ?thesis
+ apply -
+ apply (rule disjI1)
+ unfolding kle_def
+ using k
+ apply (rule_tac x=k in exI)
+ apply auto
+ done
+ next
+ case False
+ hence "kle (n + 1) y x"
+ using ksimplexD(6)[OF sa(1),rule_format, of x y] and as by auto
+ then guess k unfolding kle_def .. note k = this
+ hence *: "n + 1 \<notin> k" using xyp by auto
+ hence "\<not> (\<exists>x\<in>k. x\<notin>{1..n})"
+ apply -
+ apply (rule ccontr)
+ unfolding not_not
+ apply (erule bexE)
+ proof -
+ fix x
+ assume as: "x \<in> k" "x \<notin> {1..n}"
+ have "x \<noteq> n + 1" using as and * by auto
+ thus False using as and k[THEN conjunct1,unfolded subset_eq] by auto
+ qed
+ thus ?thesis
+ apply -
+ apply (rule disjI2)
+ unfolding kle_def
+ using k apply (rule_tac x = k in exI) by auto
+ qed
+ next
+ fix x j
+ assume as: "x \<in> s - {a}" "j\<notin>{1..n}"
+ thus "x j = p"
+ using as(1)[unfolded sa(3)[symmetric], THEN assms(2)[rule_format]]
+ apply (cases "j = n+1")
+ using sa(1)[unfolded ksimplex_def]
+ apply auto
+ done
+ qed (insert sa ksimplexD[OF sa(1)], auto)
+next
+ assume ?rs note rs=ksimplexD[OF this]
+ guess a b apply (rule ksimplex_extrema[OF `?rs`]) . note ab = this
def c \<equiv> "\<lambda>i. if i = (n + 1) then p - 1 else a i"
- have "c\<notin>f" apply(rule ccontr) unfolding not_not apply(drule assms(2)[rule_format]) unfolding c_def using assms(1) by auto
- thus ?ls apply(rule_tac x="insert c f" in exI,rule_tac x=c in exI) unfolding ksimplex_def conj_assoc
- apply(rule conjI) defer apply(rule conjI) defer apply(rule conjI) defer apply(rule conjI) defer
- proof(rule_tac[3-5] ballI allI)+
- fix x j assume x:"x \<in> insert c f" thus "x j \<le> p" proof (cases "x=c")
- case True show ?thesis unfolding True c_def apply(cases "j=n+1") using ab(1) and rs(4) by auto
- qed(insert x rs(4), auto simp add:c_def)
- show "j \<notin> {1..n + 1} \<longrightarrow> x j = p" apply(cases "x=c") using x ab(1) rs(5) unfolding c_def by auto
- { fix z assume z:"z \<in> insert c f" hence "kle (n + 1) c z" apply(cases "z = c") (*defer apply(rule kle_Suc)*) proof-
- case False hence "z\<in>f" using z by auto
- then guess k apply(drule_tac ab(3)[THEN bspec[where x=z], THEN conjunct1]) unfolding kle_def apply(erule exE) .
- thus "kle (n + 1) c z" unfolding kle_def apply(rule_tac x="insert (n + 1) k" in exI) unfolding c_def
- using ab using rs(5)[rule_format,OF ab(1),of "n + 1"] assms(1) by auto qed auto } note * = this
- fix y assume y:"y \<in> insert c f" show "kle (n + 1) x y \<or> kle (n + 1) y x" proof(cases "x = c \<or> y = c")
+ have "c \<notin> f"
+ apply (rule ccontr) unfolding not_not
+ apply (drule assms(2)[rule_format])
+ unfolding c_def
+ using assms(1) apply auto
+ done
+ thus ?ls
+ apply (rule_tac x = "insert c f" in exI, rule_tac x = c in exI)
+ unfolding ksimplex_def conj_assoc
+ apply (rule conjI)
+ defer
+ apply (rule conjI)
+ defer
+ apply (rule conjI)
+ defer
+ apply (rule conjI)
+ defer
+ proof (rule_tac[3-5] ballI allI)+
+ fix x j
+ assume x: "x \<in> insert c f"
+ thus "x j \<le> p"
+ proof (cases "x=c")
+ case True
+ show ?thesis
+ unfolding True c_def
+ apply (cases "j=n+1")
+ using ab(1) and rs(4) apply auto
+ done
+ qed (insert x rs(4), auto simp add:c_def)
+ show "j \<notin> {1..n + 1} \<longrightarrow> x j = p"
+ apply (cases "x = c")
+ using x ab(1) rs(5) unfolding c_def by auto
+ {
+ fix z
+ assume z: "z \<in> insert c f"
+ hence "kle (n + 1) c z"
+ apply (cases "z = c") (*defer apply(rule kle_Suc)*)
+ proof -
+ case False
+ hence "z \<in> f" using z by auto
+ then guess k
+ apply (drule_tac ab(3)[THEN bspec[where x=z], THEN conjunct1])
+ unfolding kle_def
+ apply (erule exE)
+ done
+ thus "kle (n + 1) c z"
+ unfolding kle_def
+ apply (rule_tac x="insert (n + 1) k" in exI)
+ unfolding c_def
+ using ab
+ using rs(5)[rule_format,OF ab(1),of "n + 1"] assms(1)
+ apply auto
+ done
+ qed auto
+ } note * = this
+ fix y
+ assume y: "y \<in> insert c f"
+ show "kle (n + 1) x y \<or> kle (n + 1) y x"
+ proof (cases "x = c \<or> y = c")
case False hence **:"x\<in>f" "y\<in>f" using x y by auto
- show ?thesis using rs(6)[rule_format,OF **] by(auto dest: kle_Suc) qed(insert * x y, auto)
- qed(insert rs, auto) qed
+ show ?thesis using rs(6)[rule_format,OF **]
+ by(auto dest: kle_Suc)
+ qed (insert * x y, auto)
+ qed (insert rs, auto)
+qed
lemma ksimplex_fix_plane:
assumes "a \<in> s" "j\<in>{1..n::nat}" "\<forall>x\<in>s - {a}. x j = q" "a0 \<in> s" "a1 \<in> s"
- "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
- shows "(a = a0) \<or> (a = a1)" proof- have *:"\<And>P A x y. \<forall>x\<in>A. P x \<Longrightarrow> x\<in>A \<Longrightarrow> y\<in>A \<Longrightarrow> P x \<and> P y" by auto
- show ?thesis apply(rule ccontr) using *[OF assms(3), of a0 a1] unfolding assms(6)[THEN spec[where x=j]]
- using assms(1-2,4-5) by auto qed
+ "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
+ shows "(a = a0) \<or> (a = a1)"
+proof -
+ have *: "\<And>P A x y. \<forall>x\<in>A. P x \<Longrightarrow> x\<in>A \<Longrightarrow> y\<in>A \<Longrightarrow> P x \<and> P y"
+ by auto
+ show ?thesis
+ apply (rule ccontr)
+ using *[OF assms(3), of a0 a1]
+ unfolding assms(6)[THEN spec[where x=j]]
+ using assms(1-2,4-5) by auto
+qed
lemma ksimplex_fix_plane_0:
assumes "a \<in> s" "j\<in>{1..n::nat}" "\<forall>x\<in>s - {a}. x j = 0" "a0 \<in> s" "a1 \<in> s"
- "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
- shows "a = a1" apply(rule ccontr) using ksimplex_fix_plane[OF assms]
- using assms(3)[THEN bspec[where x=a1]] using assms(2,5)
- unfolding assms(6)[THEN spec[where x=j]] by simp
+ "\<forall>i. a1 i = ((if i\<in>{1..n} then a0 i + 1 else a0 i)::nat)"
+ shows "a = a1"
+ apply (rule ccontr)
+ using ksimplex_fix_plane[OF assms]
+ using assms(3)[THEN bspec[where x=a1]]
+ using assms(2,5)
+ unfolding assms(6)[THEN spec[where x=j]]
+ apply simp
+ done
lemma ksimplex_fix_plane_p:
assumes "ksimplex p n s" "a \<in> s" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = p" "a0 \<in> s" "a1 \<in> s"
- "\<forall>i. a1 i = (if i\<in>{1..n} then a0 i + 1 else a0 i)"
- shows "a = a0" proof(rule ccontr) note s = ksimplexD[OF assms(1),rule_format]
- assume as:"a \<noteq> a0" hence *:"a0 \<in> s - {a}" using assms(5) by auto
- hence "a1 = a" using ksimplex_fix_plane[OF assms(2-)] by auto
- thus False using as using assms(3,5) and assms(7)[rule_format,of j]
- unfolding assms(4)[rule_format,OF *] using s(4)[OF assms(6), of j] by auto qed
+ "\<forall>i. a1 i = (if i\<in>{1..n} then a0 i + 1 else a0 i)"
+ shows "a = a0"
+proof (rule ccontr)
+ note s = ksimplexD[OF assms(1),rule_format]
+ assume as: "a \<noteq> a0"
+ hence *: "a0 \<in> s - {a}"
+ using assms(5) by auto
+ hence "a1 = a"
+ using ksimplex_fix_plane[OF assms(2-)] by auto
+ thus False
+ using as and assms(3,5) and assms(7)[rule_format,of j]
+ unfolding assms(4)[rule_format,OF *]
+ using s(4)[OF assms(6), of j]
+ by auto
+qed
lemma ksimplex_replace_0:
assumes "ksimplex p n s" "a \<in> s" "n \<noteq> 0" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = 0"
- shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1" proof-
- have *:"\<And>s' a a'. s' - {a'} = s - {a} \<Longrightarrow> a' = a \<Longrightarrow> a' \<in> s' \<Longrightarrow> a \<in> s \<Longrightarrow> (s' = s)" by auto
- have **:"\<And>s' a'. ksimplex p n s' \<Longrightarrow> a' \<in> s' \<Longrightarrow> s' - {a'} = s - {a} \<Longrightarrow> s' = s" proof- case goal1
- guess a0 a1 apply(rule ksimplex_extrema_strong[OF assms(1,3)]) . note exta = this[rule_format]
- have a:"a = a1" apply(rule ksimplex_fix_plane_0[OF assms(2,4-5)]) using exta(1-2,5) by auto moreover
- guess b0 b1 apply(rule ksimplex_extrema_strong[OF goal1(1) assms(3)]) . note extb = this[rule_format]
- have a':"a' = b1" apply(rule ksimplex_fix_plane_0[OF goal1(2) assms(4), of b0]) unfolding goal1(3) using assms extb goal1 by auto moreover
- have "b0 = a0" unfolding kle_antisym[THEN sym, of b0 a0 n] using exta extb using goal1(3) unfolding a a' by blast
- hence "b1 = a1" apply-apply(rule ext) unfolding exta(5) extb(5) by auto ultimately
- show "s' = s" apply-apply(rule *[of _ a1 b1]) using exta(1-2) extb(1-2) goal1 by auto qed
- show ?thesis unfolding card_1_exists apply-apply(rule ex1I[of _ s])
- unfolding mem_Collect_eq defer apply(erule conjE bexE)+ apply(rule_tac a'=b in **) using assms(1,2) by auto qed
+ shows "card {s'. ksimplex p n s' \<and> (\<exists>b\<in>s'. s' - {b} = s - {a})} = 1"
+proof -
+ have *: "\<And>s' a a'. s' - {a'} = s - {a} \<Longrightarrow> a' = a \<Longrightarrow> a' \<in> s' \<Longrightarrow> a \<in> s \<Longrightarrow> (s' = s)"
+ by auto
+ have **: "\<And>s' a'. ksimplex p n s' \<Longrightarrow> a' \<in> s' \<Longrightarrow> s' - {a'} = s - {a} \<Longrightarrow> s' = s"
+ proof -
+ case goal1
+ guess a0 a1 by (rule ksimplex_extrema_strong[OF assms(1,3)]) note exta = this[rule_format]
+ have a:"a = a1"
+ apply (rule ksimplex_fix_plane_0[OF assms(2,4-5)])
+ using exta(1-2,5) apply auto
+ done
+ moreover
+ guess b0 b1 by (rule ksimplex_extrema_strong[OF goal1(1) assms(3)])
+ note extb = this[rule_format]
+ have a': "a' = b1"
+ apply (rule ksimplex_fix_plane_0[OF goal1(2) assms(4), of b0])
+ unfolding goal1(3)
+ using assms extb goal1 apply auto done
+ moreover
+ have "b0 = a0"
+ unfolding kle_antisym[symmetric, of b0 a0 n]
+ using exta extb and goal1(3)
+ unfolding a a' by blast
+ hence "b1 = a1"
+ apply -
+ apply (rule ext)
+ unfolding exta(5) extb(5)
+ apply auto
+ done
+ ultimately
+ show "s' = s"
+ apply -
+ apply (rule *[of _ a1 b1])
+ using exta(1-2) extb(1-2) goal1 apply auto
+ done
+ qed
+ show ?thesis
+ unfolding card_1_exists
+ apply -
+ apply(rule ex1I[of _ s])
+ unfolding mem_Collect_eq
+ defer
+ apply (erule conjE bexE)+
+ apply (rule_tac a'=b in **)
+ using assms(1,2) apply auto
+ done
+qed
lemma ksimplex_replace_1:
assumes "ksimplex p n s" "a \<in> s" "n \<noteq> 0" "j\<in>{1..n}" "\<forall>x\<in>s - {a}. x j = p"
@@ -842,10 +1449,10 @@
have a:"a = a0" apply(rule ksimplex_fix_plane_p[OF assms(1-2,4-5) exta(1,2)]) unfolding exta by auto moreover
guess b0 b1 apply(rule ksimplex_extrema_strong[OF goal1(1) assms(3)]) . note extb = this[rule_format]
have a':"a' = b0" apply(rule ksimplex_fix_plane_p[OF goal1(1-2) assms(4), of _ b1]) unfolding goal1 extb using extb(1,2) assms(5) by auto
- moreover have *:"b1 = a1" unfolding kle_antisym[THEN sym, of b1 a1 n] using exta extb using goal1(3) unfolding a a' by blast moreover
+ moreover have *:"b1 = a1" unfolding kle_antisym[symmetric, of b1 a1 n] using exta extb using goal1(3) unfolding a a' by blast moreover
have "a0 = b0" apply(rule ext) proof- case goal1 show "a0 x = b0 x"
using *[THEN cong, of x x] unfolding exta extb apply-apply(cases "x\<in>{1..n}") by auto qed
- ultimately show "s' = s" apply-apply(rule lem[OF goal1(3) _ goal1(2) assms(2)]) by auto qed
+ ultimately show "s' = s" apply-apply(rule lem[OF goal1(3) _ goal1(2) assms(2)]) by auto qed
show ?thesis unfolding card_1_exists apply(rule ex1I[of _ s]) unfolding mem_Collect_eq apply(rule,rule assms(1))
apply(rule_tac x=a in bexI) prefer 3 apply(erule conjE bexE)+ apply(rule_tac a'=b in lem) using assms(1-2) by auto qed
@@ -882,7 +1489,7 @@
fix x assume x:"x \<in> insert a3 (s - {a0})"
show "\<forall>j. x j \<le> p" proof(rule,cases "x = a3")
fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
- fix j case True show "x j\<le>p" unfolding True proof(cases "j=k")
+ fix j case True show "x j\<le>p" unfolding True proof(cases "j=k")
case False thus "a3 j \<le>p" unfolding True a3_def using `a1\<in>s` ksimplexD(4)[OF assms(1)] by auto next
guess a4 using assms(5)[unfolded bex_simps ball_simps,rule_format,OF k(1)] .. note a4=this
have "a2 k \<le> a4 k" using lem3[OF a4(1)[unfolded `a=a0`],THEN kle_imp_pointwise] by auto
@@ -892,17 +1499,17 @@
using k(1) k(2)assms(5) using * by simp qed qed
show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a3") fix j::nat assume j:"j\<notin>{1..n}"
{ case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
- case True show "x j = p" unfolding True a3_def using j k(1)
+ case True show "x j = p" unfolding True a3_def using j k(1)
using ksimplexD(5)[OF assms(1),rule_format,OF `a1\<in>s` j] by auto qed
fix y assume y:"y\<in>insert a3 (s - {a0})"
have lem4:"\<And>x. x\<in>s \<Longrightarrow> x\<noteq>a0 \<Longrightarrow> kle n x a3" proof- case goal1
- guess kk using a0a1(4)[rule_format,OF `x\<in>s`,THEN conjunct2,unfolded kle_def]
+ guess kk using a0a1(4)[rule_format,OF `x\<in>s`,THEN conjunct2,unfolded kle_def]
apply-apply(erule exE,erule conjE) . note kk=this
have "k\<notin>kk" proof assume "k\<in>kk"
hence "a1 k = x k + 1" using kk by auto
hence "a0 k = x k" unfolding a0a1(5)[rule_format] using k(1) by auto
hence "a2 k = x k + 1" unfolding k(2)[rule_format] by auto moreover
- have "a2 k \<le> x k" using lem3[of x,THEN kle_imp_pointwise] goal1 by auto
+ have "a2 k \<le> x k" using lem3[of x,THEN kle_imp_pointwise] goal1 by auto
ultimately show False by auto qed
thus ?case unfolding kle_def apply(rule_tac x="insert k kk" in exI) using kk(1)
unfolding a3_def kle_def kk(2)[rule_format] using k(1) by auto qed
@@ -911,7 +1518,7 @@
using x by auto next
case False show ?thesis proof(cases "x=a3") case True show ?thesis unfolding True
apply(rule disjI2,rule lem4) using y False by auto next
- case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
+ case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
using x y `y\<noteq>a3` by auto qed qed qed
hence "insert a3 (s - {a0}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
apply(rule_tac x="a3" in bexI) unfolding `a=a0` using `a3\<notin>s` by auto moreover
@@ -923,11 +1530,11 @@
have *:"\<forall>x\<in>s' - {a'}. x k = a2 k" unfolding a' proof fix x assume x:"x\<in>s-{a}"
hence "kle n a2 x" apply-apply(rule lem3) using `a=a0` by auto
hence "a2 k \<le> x k" apply(drule_tac kle_imp_pointwise) by auto moreover
- have "x k \<le> a2 k" unfolding k(2)[rule_format] using a0a1(4)[rule_format,of x,THEN conjunct1]
+ have "x k \<le> a2 k" unfolding k(2)[rule_format] using a0a1(4)[rule_format,of x,THEN conjunct1]
unfolding kle_def using x by auto ultimately show "x k = a2 k" by auto qed
have **:"a'=a_min \<or> a'=a_max" apply(rule ksimplex_fix_plane[OF a'(1) k(1) *]) using min_max by auto
show "s' \<in> {s, insert a3 (s - {a0})}" proof(cases "a'=a_min")
- case True have "a_max = a1" unfolding kle_antisym[THEN sym,of a_max a1 n] apply(rule)
+ case True have "a_max = a1" unfolding kle_antisym[symmetric,of a_max a1 n] apply(rule)
apply(rule a0a1(4)[rule_format,THEN conjunct2]) defer proof(rule min_max(4)[rule_format,THEN conjunct2])
show "a1\<in>s'" using a' unfolding `a=a0` using a0a1 by auto
show "a_max \<in> s" proof(rule ccontr) assume "a_max\<notin>s"
@@ -940,12 +1547,12 @@
hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` by auto
thus ?thesis by auto next
case False hence as:"a' = a_max" using ** by auto
- have "a_min = a2" unfolding kle_antisym[THEN sym, of _ _ n] apply rule
+ have "a_min = a2" unfolding kle_antisym[symmetric, of _ _ n] apply rule
apply(rule min_max(4)[rule_format,THEN conjunct1]) defer proof(rule lem3)
- show "a_min \<in> s - {a0}" unfolding a'(2)[THEN sym,unfolded `a=a0`]
+ show "a_min \<in> s - {a0}" unfolding a'(2)[symmetric,unfolded `a=a0`]
unfolding as using min_max(1-3) by auto
have "a2 \<noteq> a" unfolding `a=a0` using k(2)[rule_format,of k] by auto
- hence "a2 \<in> s - {a}" using a2 by auto thus "a2 \<in> s'" unfolding a'(2)[THEN sym] by auto qed
+ hence "a2 \<in> s - {a}" using a2 by auto thus "a2 \<in> s'" unfolding a'(2)[symmetric] by auto qed
hence "\<forall>i. a_min i = a2 i" by auto
hence "a' = a3" unfolding as `a=a0` apply-apply(subst fun_eq_iff,rule)
apply(erule_tac x=x in allE) unfolding a0a1(5)[rule_format] min_max(5)[rule_format]
@@ -990,7 +1597,7 @@
fix x assume x:"x \<in> insert a3 (s - {a1})"
show "\<forall>j. x j \<le> p" proof(rule,cases "x = a3")
fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
- fix j case True show "x j\<le>p" unfolding True proof(cases "j=k")
+ fix j case True show "x j\<le>p" unfolding True proof(cases "j=k")
case False thus "a3 j \<le>p" unfolding True a3_def using `a0\<in>s` ksimplexD(4)[OF assms(1)] by auto next
guess a4 using assms(5)[unfolded bex_simps ball_simps,rule_format,OF k(1)] .. note a4=this
case True have "a3 k \<le> a0 k" unfolding lem4[rule_format] by auto
@@ -998,7 +1605,7 @@
finally show "a3 j \<le> p" unfolding True by auto qed qed
show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a3") fix j::nat assume j:"j\<notin>{1..n}"
{ case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
- case True show "x j = p" unfolding True a3_def using j k(1)
+ case True show "x j = p" unfolding True a3_def using j k(1)
using ksimplexD(5)[OF assms(1),rule_format,OF `a0\<in>s` j] by auto qed
fix y assume y:"y\<in>insert a3 (s - {a1})"
have lem4:"\<And>x. x\<in>s \<Longrightarrow> x\<noteq>a1 \<Longrightarrow> kle n a3 x" proof- case goal1 hence *:"x\<in>s - {a1}" by auto
@@ -1014,7 +1621,7 @@
using x by auto next
case False show ?thesis proof(cases "x=a3") case True show ?thesis unfolding True
apply(rule disjI1,rule lem4) using y False by auto next
- case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
+ case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
using x y `y\<noteq>a3` by auto qed qed qed
hence "insert a3 (s - {a1}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
apply(rule_tac x="a3" in bexI) unfolding `a=a1` using `a3\<notin>s` by auto moreover
@@ -1034,11 +1641,11 @@
show False using k(2) unfolding as apply(erule_tac x=k in allE) by auto qed
hence a2':"a2 \<in> s' - {a'}" unfolding a' using a2 unfolding `a=a1` by auto
show "s' \<in> {s, insert a3 (s - {a1})}" proof(cases "a'=a_min")
- case True have "a_max \<in> s - {a1}" using min_max unfolding a'(2)[unfolded `a=a1`,THEN sym] True by auto
- hence "a_max = a2" unfolding kle_antisym[THEN sym,of a_max a2 n] apply-apply(rule)
+ case True have "a_max \<in> s - {a1}" using min_max unfolding a'(2)[unfolded `a=a1`,symmetric] True by auto
+ hence "a_max = a2" unfolding kle_antisym[symmetric,of a_max a2 n] apply-apply(rule)
apply(rule lem3,assumption) apply(rule min_max(4)[rule_format,THEN conjunct2]) using a2' by auto
hence a_max:"\<forall>i. a_max i = a2 i" by auto
- have *:"\<forall>j. a2 j = (if j\<in>{1..n} then a3 j + 1 else a3 j)"
+ have *:"\<forall>j. a2 j = (if j\<in>{1..n} then a3 j + 1 else a3 j)"
using k(2) unfolding lem4[rule_format] a0a1(5)[rule_format] apply-apply(rule,erule_tac x=j in allE)
proof- case goal1 thus ?case apply(cases "j\<in>{1..n}",case_tac[!] "j=k") by auto qed
have "\<forall>i. a_min i = a3 i" using a_max apply-apply(rule,erule_tac x=i in allE)
@@ -1046,24 +1653,24 @@
thus ?case apply(cases "i\<in>{1..n}") by auto qed hence "a_min = a3" unfolding fun_eq_iff .
hence "s' = insert a3 (s - {a1})" using a' unfolding `a=a1` True by auto thus ?thesis by auto next
case False hence as:"a'=a_max" using ** by auto
- have "a_min = a0" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
+ have "a_min = a0" unfolding kle_antisym[symmetric,of _ _ n] apply(rule)
apply(rule min_max(4)[rule_format,THEN conjunct1]) defer apply(rule a0a1(4)[rule_format,THEN conjunct1]) proof-
- have "a_min \<in> s - {a1}" using min_max(1,3) unfolding a'(2)[THEN sym,unfolded `a=a1`] as by auto
+ have "a_min \<in> s - {a1}" using min_max(1,3) unfolding a'(2)[symmetric,unfolded `a=a1`] as by auto
thus "a_min \<in> s" by auto have "a0 \<in> s - {a1}" using a0a1(1-3) by auto thus "a0 \<in> s'"
- unfolding a'(2)[THEN sym,unfolded `a=a1`] by auto qed
+ unfolding a'(2)[symmetric,unfolded `a=a1`] by auto qed
hence "\<forall>i. a_max i = a1 i" unfolding a0a1(5)[rule_format] min_max(5)[rule_format] by auto
hence "s' = s" apply-apply(rule lem1[OF a'(2)]) using `a\<in>s` `a'\<in>s'` unfolding as `a=a1` unfolding fun_eq_iff by auto
- thus ?thesis by auto qed qed
+ thus ?thesis by auto qed qed
ultimately have *:"?A = {s, insert a3 (s - {a1})}" by blast
have "s \<noteq> insert a3 (s - {a1})" using `a3\<notin>s` by auto
hence ?thesis unfolding * by auto } moreover
{ assume as:"a\<noteq>a0" "a\<noteq>a1" have "\<not> (\<forall>x\<in>s. kle n a x)" proof case goal1
- have "a=a0" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
+ have "a=a0" unfolding kle_antisym[symmetric,of _ _ n] apply(rule)
using goal1 a0a1 assms(2) by auto thus False using as by auto qed
hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. a j = (if j = k then y j + 1 else y j)" using ksimplex_predecessor[OF assms(1-2)] by blast
then guess u .. from this(2) guess k .. note k = this[rule_format] note u = `u\<in>s`
have "\<not> (\<forall>x\<in>s. kle n x a)" proof case goal1
- have "a=a1" unfolding kle_antisym[THEN sym,of _ _ n] apply(rule)
+ have "a=a1" unfolding kle_antisym[symmetric,of _ _ n] apply(rule)
using goal1 a0a1 assms(2) by auto thus False using as by auto qed
hence "\<exists>y\<in>s. \<exists>k\<in>{1..n}. \<forall>j. y j = (if j = k then a j + 1 else a j)" using ksimplex_successor[OF assms(1-2)] by blast
then guess v .. from this(2) guess l .. note l = this[rule_format] note v = `v\<in>s`
@@ -1122,21 +1729,21 @@
fix x assume x:"x \<in> insert a' (s - {a})"
show "\<forall>j. x j \<le> p" proof(rule,cases "x = a'")
fix j case False thus "x j\<le>p" using x ksimplexD(4)[OF assms(1)] by auto next
- fix j case True show "x j\<le>p" unfolding True proof(cases "j=l")
+ fix j case True show "x j\<le>p" unfolding True proof(cases "j=l")
case False thus "a' j \<le>p" unfolding True a'_def using `u\<in>s` ksimplexD(4)[OF assms(1)] by auto next
case True have *:"a l = u l" "v l = a l + 1" using k(2)[of l] l(2)[of l] `k\<noteq>l` by auto
- have "u l + 1 \<le> p" unfolding *[THEN sym] using ksimplexD(4)[OF assms(1)] using `v\<in>s` by auto
+ have "u l + 1 \<le> p" unfolding *[symmetric] using ksimplexD(4)[OF assms(1)] using `v\<in>s` by auto
thus "a' j \<le>p" unfolding a'_def True by auto qed qed
show "\<forall>j. j \<notin> {1..n} \<longrightarrow> x j = p" proof(rule,rule,cases "x=a'") fix j::nat assume j:"j\<notin>{1..n}"
{ case False thus "x j = p" using j x ksimplexD(5)[OF assms(1)] by auto }
- case True show "x j = p" unfolding True a'_def using j l(1)
+ case True show "x j = p" unfolding True a'_def using j l(1)
using ksimplexD(5)[OF assms(1),rule_format,OF `u\<in>s` j] by auto qed
fix y assume y:"y\<in>insert a' (s - {a})"
show "kle n x y \<or> kle n y x" proof(cases "y=a'")
case True show ?thesis unfolding True apply(cases "x=a'") defer apply(rule lem5) using x by auto next
case False show ?thesis proof(cases "x=a'") case True show ?thesis unfolding True
using lem5[of y] using y by auto next
- case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
+ case False thus ?thesis apply(rule_tac ksimplexD(6)[OF assms(1),rule_format])
using x y `y\<noteq>a'` by auto qed qed qed
hence "insert a' (s - {a}) \<in> ?A" unfolding mem_Collect_eq apply-apply(rule,assumption)
apply(rule_tac x="a'" in bexI) using aa' `a'\<notin>s` by auto moreover
@@ -1146,18 +1753,18 @@
from this(2) guess a'' .. note a''=this
have "u\<noteq>v" unfolding fun_eq_iff unfolding l(2) k(2) by auto
hence uv':"\<not> kle n v u" using uv using kle_antisym by auto
- have "u\<noteq>a" "v\<noteq>a" unfolding fun_eq_iff k(2) l(2) by auto
+ have "u\<noteq>a" "v\<noteq>a" unfolding fun_eq_iff k(2) l(2) by auto
hence uvs':"u\<in>s'" "v\<in>s'" using `u\<in>s` `v\<in>s` using a'' by auto
have lem6:"a \<in> s' \<or> a' \<in> s'" proof(cases "\<forall>x\<in>s'. kle n x u \<or> kle n v x")
case False then guess w unfolding ball_simps .. note w=this
hence "kle n u w" "kle n w v" using ksimplexD(6)[OF as] uvs' by auto
hence "w = a' \<or> w = a" using uxv[of w] uvs' w by auto thus ?thesis using w by auto next
case True have "\<not> (\<forall>x\<in>s'. kle n x u)" unfolding ball_simps apply(rule_tac x=v in bexI)
- using uv `u\<noteq>v` unfolding kle_antisym[of n u v,THEN sym] using `v\<in>s'` by auto
+ using uv `u\<noteq>v` unfolding kle_antisym[of n u v,symmetric] using `v\<in>s'` by auto
hence "\<exists>y\<in>s'. \<exists>k\<in>{1..n}. \<forall>j. y j = (if j = k then u j + 1 else u j)" using ksimplex_successor[OF as `u\<in>s'`] by blast
then guess w .. note w=this from this(2) guess kk .. note kk=this[rule_format]
- have "\<not> kle n w u" apply-apply(rule,drule kle_imp_pointwise)
- apply(erule_tac x=kk in allE) unfolding kk by auto
+ have "\<not> kle n w u" apply-apply(rule,drule kle_imp_pointwise)
+ apply(erule_tac x=kk in allE) unfolding kk by auto
hence *:"kle n v w" using True[rule_format,OF w(1)] by auto
hence False proof(cases "kk\<noteq>l") case True thus False using *[THEN kle_imp_pointwise, unfolded l(2) kk k(2)]
apply(erule_tac x=l in allE) using `k\<noteq>l` by auto next
@@ -1168,11 +1775,11 @@
case True hence "s' = s" apply-apply(rule lem1[OF a''(2)]) using a'' `a\<in>s` by auto
thus ?thesis by auto next case False hence "a'\<in>s'" using lem6 by auto
hence "s' = insert a' (s - {a})" apply-apply(rule lem1[of _ a'' _ a'])
- unfolding a''(2)[THEN sym] using a'' using `a'\<notin>s` by auto
- thus ?thesis by auto qed qed
+ unfolding a''(2)[symmetric] using a'' using `a'\<notin>s` by auto
+ thus ?thesis by auto qed qed
ultimately have *:"?A = {s, insert a' (s - {a})}" by blast
have "s \<noteq> insert a' (s - {a})" using `a'\<notin>s` by auto
- hence ?thesis unfolding * by auto }
+ hence ?thesis unfolding * by auto }
ultimately show ?thesis by auto qed
subsection {* Hence another step towards concreteness. *}
@@ -1183,13 +1790,13 @@
(rl ` f = {0 .. n}) \<and> ((\<exists>j\<in>{1..n+1}.\<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n+1}.\<forall>x\<in>f. x j = p))})"
shows "odd(card {s\<in>{s. ksimplex p (n + 1) s}. rl ` s = {0..n+1} })" proof-
have *:"\<And>x y. x = y \<Longrightarrow> odd (card x) \<Longrightarrow> odd (card y)" by auto
- have *:"odd(card {f\<in>{f. \<exists>s\<in>{s. ksimplex p (n + 1) s}. (\<exists>a\<in>s. f = s - {a})}.
+ have *:"odd(card {f\<in>{f. \<exists>s\<in>{s. ksimplex p (n + 1) s}. (\<exists>a\<in>s. f = s - {a})}.
(rl ` f = {0..n}) \<and>
((\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = 0) \<or>
(\<exists>j\<in>{1..n+1}. \<forall>x\<in>f. x j = p))})" apply(rule *[OF _ assms(2)]) by auto
show ?thesis apply(rule kuhn_complete_lemma[OF finite_simplices]) prefer 6 apply(rule *) apply(rule,rule,rule)
apply(subst ksimplex_def) defer apply(rule,rule assms(1)[rule_format]) unfolding mem_Collect_eq apply assumption
- apply default+ unfolding mem_Collect_eq apply(erule disjE bexE)+ defer apply(erule disjE bexE)+ defer
+ apply default+ unfolding mem_Collect_eq apply(erule disjE bexE)+ defer apply(erule disjE bexE)+ defer
apply default+ unfolding mem_Collect_eq apply(erule disjE bexE)+ unfolding mem_Collect_eq proof-
fix f s a assume as:"ksimplex p (n + 1) s" "a\<in>s" "f = s - {a}"
let ?S = "{s. ksimplex p (n + 1) s \<and> (\<exists>a\<in>s. f = s - {a})}"
@@ -1223,7 +1830,7 @@
using reduced_labelling[of label n x] using assms by auto
lemma reduced_labelling_zero: assumes "j\<in>{1..n}" "label x j = 0" shows "reduced label n x \<noteq> j - 1"
- using reduced_labelling[of label n x] using assms by fastforce
+ using reduced_labelling[of label n x] using assms by fastforce
lemma reduced_labelling_nonzero: assumes "j\<in>{1..n}" "label x j \<noteq> 0" shows "reduced label n x < j"
using assms and reduced_labelling[of label n x] apply(erule_tac x=j in allE) by auto
@@ -1231,7 +1838,7 @@
lemma reduced_labelling_Suc:
assumes "reduced lab (n + 1) x \<noteq> n + 1" shows "reduced lab (n + 1) x = reduced lab n x"
apply(subst eq_commute) apply(rule reduced_labelling_unique)
- using reduced_labelling[of lab "n+1" x] and assms by auto
+ using reduced_labelling[of lab "n+1" x] and assms by auto
lemma complete_face_top:
assumes "\<forall>x\<in>f. \<forall>j\<in>{1..n+1}. x j = 0 \<longrightarrow> lab x j = 0"
@@ -1242,13 +1849,13 @@
case True then guess j .. note j=this {fix x assume x:"x\<in>f"
have "reduced lab (n+1) x \<noteq> j - 1" using j apply-apply(rule reduced_labelling_zero) defer apply(rule assms(1)[rule_format]) using x by auto }
moreover have "j - 1 \<in> {0..n}" using j by auto
- then guess y unfolding `?l`[THEN conjunct1,THEN sym] and image_iff .. note y = this
+ then guess y unfolding `?l`[THEN conjunct1,symmetric] and image_iff .. note y = this
ultimately have False by auto thus "\<forall>x\<in>f. x (n + 1) = p" by auto next
case False hence ?b using `?l` by blast then guess j .. note j=this {fix x assume x:"x\<in>f"
have "reduced lab (n+1) x < j" using j apply-apply(rule reduced_labelling_nonzero) using assms(2)[rule_format,of x j] and x by auto } note * = this
have "j = n + 1" proof(rule ccontr) case goal1 hence "j < n + 1" using j by auto moreover
- have "n \<in> {0..n}" by auto then guess y unfolding `?l`[THEN conjunct1,THEN sym] image_iff ..
+ have "n \<in> {0..n}" by auto then guess y unfolding `?l`[THEN conjunct1,symmetric] image_iff ..
ultimately show False using *[of y] by auto qed
thus "\<forall>x\<in>f. x (n + 1) = p" using j by auto qed qed(auto)
@@ -1269,8 +1876,8 @@
{ fix x assume "x\<in>f" hence "reduced lab (n + 1) x < n + 1" apply-apply(rule reduced_labelling_nonzero)
defer using assms(3) using as(1)[unfolded ksimplex_def] by auto
hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc) using reduced_labelling(1) by auto }
- hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[THEN sym] apply- apply(rule set_eqI) unfolding image_iff by auto
- moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,THEN sym]] .. then guess a ..
+ hence "reduced lab (n + 1) ` f = {0..n}" unfolding as(2)[symmetric] apply- apply(rule set_eqI) unfolding image_iff by auto
+ moreover guess s using as(1)[unfolded simplex_top_face[OF assms(1) allp,symmetric]] .. then guess a ..
ultimately show "\<exists>s a. ksimplex p (n + 1) s \<and>
a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
apply(rule_tac x=s in exI,rule_tac x=a in exI) unfolding complete_face_top[OF *] using allp as(1) by auto
@@ -1278,24 +1885,24 @@
a \<in> s \<and> f = s - {a} \<and> reduced lab (n + 1) ` f = {0..n} \<and> ((\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0) \<or> (\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p))" (is ?ex)
then guess s .. then guess a apply-apply(erule exE,(erule conjE)+) . note sa=this
{ fix x assume "x\<in>f" hence "reduced lab (n + 1) x \<in> reduced lab (n + 1) ` f" by auto
- hence "reduced lab (n + 1) x < n + 1" using sa(4) by auto
+ hence "reduced lab (n + 1) x < n + 1" using sa(4) by auto
hence "reduced lab (n + 1) x = reduced lab n x" apply-apply(rule reduced_labelling_Suc)
using reduced_labelling(1) by auto }
- thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[THEN sym] apply-apply(rule set_eqI) unfolding image_iff by auto
+ thus part1:"reduced lab n ` f = {0..n}" unfolding sa(4)[symmetric] apply-apply(rule set_eqI) unfolding image_iff by auto
have *:"\<forall>x\<in>f. x (n + 1) = p" proof(cases "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = 0")
case True then guess j .. hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab (n + 1) x \<noteq> j - 1" apply-apply(rule reduced_labelling_zero) apply assumption
apply(rule assms(2)[rule_format]) using sa(1)[unfolded ksimplex_def] unfolding sa by auto moreover
have "j - 1 \<in> {0..n}" using `j\<in>{1..n+1}` by auto
- ultimately have False unfolding sa(4)[THEN sym] unfolding image_iff by fastforce thus ?thesis by auto next
+ ultimately have False unfolding sa(4)[symmetric] unfolding image_iff by fastforce thus ?thesis by auto next
case False hence "\<exists>j\<in>{1..n + 1}. \<forall>x\<in>f. x j = p" using sa(5) by fastforce then guess j .. note j=this
thus ?thesis proof(cases "j = n+1")
case False hence *:"j\<in>{1..n}" using j by auto
hence "\<And>x. x\<in>f \<Longrightarrow> reduced lab n x < j" apply(rule reduced_labelling_nonzero) proof- fix x assume "x\<in>f"
- hence "lab x j = 1" apply-apply(rule assms(3)[rule_format,OF j(1)])
+ hence "lab x j = 1" apply-apply(rule assms(3)[rule_format,OF j(1)])
using sa(1)[unfolded ksimplex_def] using j unfolding sa by auto thus "lab x j \<noteq> 0" by auto qed
moreover have "j\<in>{0..n}" using * by auto
- ultimately have False unfolding part1[THEN sym] using * unfolding image_iff by auto thus ?thesis by auto qed auto qed
- thus "ksimplex p n f" using as unfolding simplex_top_face[OF assms(1) *,THEN sym] by auto qed qed
+ ultimately have False unfolding part1[symmetric] using * unfolding image_iff by auto thus ?thesis by auto qed auto qed
+ thus "ksimplex p n f" using as unfolding simplex_top_face[OF assms(1) *,symmetric] by auto qed qed
lemma kuhn_induction_Suc:
assumes "0 < p" "\<forall>x. \<forall>j\<in>{1..Suc n}. (\<forall>j. x j \<le> p) \<and> (x j = 0) \<longrightarrow> (lab x j = 0)"
@@ -1344,12 +1951,13 @@
from goal2 have "i - 1 \<in> reduced label n ` s" using s by auto then guess v unfolding image_iff .. note v=this
show ?case apply(rule_tac x=u in exI, rule_tac x=v in exI) apply(rule conjI) defer apply(rule conjI) defer 2 proof(rule_tac[1-2] ballI)
show "label u i \<noteq> label v i" using reduced_labelling[of label n u] reduced_labelling[of label n v]
- unfolding u(2)[THEN sym] v(2)[THEN sym] using goal2 by auto
+ unfolding u(2)[symmetric] v(2)[symmetric] using goal2 by auto
fix j assume j:"j\<in>{1..n}" show "a j \<le> u j \<and> u j \<le> a j + 1" "a j \<le> v j \<and> v j \<le> a j + 1"
- using conjD[OF ab(4)[rule_format, OF u(1)]] and conjD[OF ab(4)[rule_format, OF v(1)]] apply-
+ using conjD[OF ab(4)[rule_format, OF u(1)]] and conjD[OF ab(4)[rule_format, OF v(1)]] apply-
apply(drule_tac[!] kle_imp_pointwise)+ apply(erule_tac[!] x=j in allE)+ unfolding ab(5)[rule_format] using j
by auto qed qed qed
+
subsection {* The main result for the unit cube. *}
lemma kuhn_labelling_lemma':
@@ -1358,76 +1966,167 @@
(\<forall>x i. P x \<and> Q i \<and> (x i = 0) \<longrightarrow> (l x i = 0)) \<and>
(\<forall>x i. P x \<and> Q i \<and> (x i = 1) \<longrightarrow> (l x i = 1)) \<and>
(\<forall>x i. P x \<and> Q i \<and> (l x i = 0) \<longrightarrow> x i \<le> f(x) i) \<and>
- (\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x) i \<le> x i)" proof-
- have and_forall_thm:"\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto
- have *:"\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)" by auto
- show ?thesis unfolding and_forall_thm apply(subst choice_iff[THEN sym])+ proof(rule,rule) case goal1
+ (\<forall>x i. P x \<and> Q i \<and> (l x i = 1) \<longrightarrow> f(x) i \<le> x i)"
+proof -
+ have and_forall_thm: "\<And>P Q. (\<forall>x. P x) \<and> (\<forall>x. Q x) \<longleftrightarrow> (\<forall>x. P x \<and> Q x)" by auto
+ have *: "\<forall>x y::real. 0 \<le> x \<and> x \<le> 1 \<and> 0 \<le> y \<and> y \<le> 1 \<longrightarrow> (x \<noteq> 1 \<and> x \<le> y \<or> x \<noteq> 0 \<and> y \<le> x)"
+ by auto
+ show ?thesis
+ unfolding and_forall_thm
+ apply (subst choice_iff[symmetric])+
+ proof (rule, rule)
+ case goal1
let ?R = "\<lambda>y. (P x \<and> Q xa \<and> x xa = 0 \<longrightarrow> y = (0::nat)) \<and>
- (P x \<and> Q xa \<and> x xa = 1 \<longrightarrow> y = 1) \<and> (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x xa \<le> (f x) xa) \<and> (P x \<and> Q xa \<and> y = 1 \<longrightarrow> (f x) xa \<le> x xa)"
- { assume "P x" "Q xa" hence "0 \<le> (f x) xa \<and> (f x) xa \<le> 1" using assms(2)[rule_format,of "f x" xa]
- apply(drule_tac assms(1)[rule_format]) by auto }
- hence "?R 0 \<or> ?R 1" by auto thus ?case by auto qed qed
+ (P x \<and> Q xa \<and> x xa = 1 \<longrightarrow> y = 1) \<and>
+ (P x \<and> Q xa \<and> y = 0 \<longrightarrow> x xa \<le> (f x) xa) \<and>
+ (P x \<and> Q xa \<and> y = 1 \<longrightarrow> (f x) xa \<le> x xa)"
+ {
+ assume "P x" "Q xa"
+ hence "0 \<le> (f x) xa \<and> (f x) xa \<le> 1"
+ using assms(2)[rule_format,of "f x" xa]
+ apply (drule_tac assms(1)[rule_format])
+ apply auto
+ done
+ }
+ hence "?R 0 \<or> ?R 1" by auto
+ thus ?case by auto
+ qed
+qed
lemma brouwer_cube:
- fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
+ fixes f :: "'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
assumes "continuous_on {0..(\<Sum>Basis)} f" "f ` {0..(\<Sum>Basis)} \<subseteq> {0..(\<Sum>Basis)}"
shows "\<exists>x\<in>{0..(\<Sum>Basis)}. f x = x"
- proof (rule ccontr)
- def n \<equiv> "DIM('a)" have n:"1 \<le> n" "0 < n" "n \<noteq> 0" unfolding n_def by(auto simp add: Suc_le_eq DIM_positive)
- assume "\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x = x)" hence *:"\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x - x = 0)" by auto
- guess d apply(rule brouwer_compactness_lemma[OF compact_interval _ *])
- apply(rule continuous_on_intros assms)+ . note d=this[rule_format]
- have *:"\<forall>x. x \<in> {0..\<Sum>Basis} \<longrightarrow> f x \<in> {0..\<Sum>Basis}" "\<forall>x. x \<in> {0..(\<Sum>Basis)::'a} \<longrightarrow>
+proof (rule ccontr)
+ def n \<equiv> "DIM('a)"
+ have n: "1 \<le> n" "0 < n" "n \<noteq> 0"
+ unfolding n_def by (auto simp add: Suc_le_eq DIM_positive)
+ assume "\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x = x)"
+ hence *: "\<not> (\<exists>x\<in>{0..\<Sum>Basis}. f x - x = 0)" by auto
+ guess d
+ apply (rule brouwer_compactness_lemma[OF compact_interval _ *])
+ apply (rule continuous_on_intros assms)+
+ done
+ note d = this [rule_format]
+ have *: "\<forall>x. x \<in> {0..\<Sum>Basis} \<longrightarrow> f x \<in> {0..\<Sum>Basis}" "\<forall>x. x \<in> {0..(\<Sum>Basis)::'a} \<longrightarrow>
(\<forall>i\<in>Basis. True \<longrightarrow> 0 \<le> x \<bullet> i \<and> x \<bullet> i \<le> 1)"
- using assms(2)[unfolded image_subset_iff Ball_def] unfolding mem_interval by auto
- guess label using kuhn_labelling_lemma[OF *] apply-apply(erule exE,(erule conjE)+) . note label = this[rule_format]
- have lem1:"\<forall>x\<in>{0..\<Sum>Basis}.\<forall>y\<in>{0..\<Sum>Basis}.\<forall>i\<in>Basis. label x i \<noteq> label y i
- \<longrightarrow> abs(f x \<bullet> i - x \<bullet> i) \<le> norm(f y - f x) + norm(y - x)" proof safe
- fix x y::'a assume xy:"x\<in>{0..\<Sum>Basis}" "y\<in>{0..\<Sum>Basis}"
- fix i assume i:"label x i \<noteq> label y i" "i\<in>Basis"
- have *:"\<And>x y fx fy::real. (x \<le> fx \<and> fy \<le> y \<or> fx \<le> x \<and> y \<le> fy)
- \<Longrightarrow> abs(fx - x) \<le> abs(fy - fx) + abs(y - x)" by auto
+ using assms(2)[unfolded image_subset_iff Ball_def]
+ unfolding mem_interval by auto
+ guess label using kuhn_labelling_lemma[OF *] by (elim exE conjE)
+ note label = this [rule_format]
+ have lem1: "\<forall>x\<in>{0..\<Sum>Basis}.\<forall>y\<in>{0..\<Sum>Basis}.\<forall>i\<in>Basis. label x i \<noteq> label y i
+ \<longrightarrow> abs(f x \<bullet> i - x \<bullet> i) \<le> norm(f y - f x) + norm(y - x)"
+ proof safe
+ fix x y :: 'a
+ assume xy: "x\<in>{0..\<Sum>Basis}" "y\<in>{0..\<Sum>Basis}"
+ fix i
+ assume i: "label x i \<noteq> label y i" "i \<in> Basis"
+ have *: "\<And>x y fx fy :: real. x \<le> fx \<and> fy \<le> y \<or> fx \<le> x \<and> y \<le> fy \<Longrightarrow>
+ abs (fx - x) \<le> abs (fy - fx) + abs (y - x)" by auto
have "\<bar>(f x - x) \<bullet> i\<bar> \<le> abs((f y - f x)\<bullet>i) + abs((y - x)\<bullet>i)"
unfolding inner_simps
- apply(rule *) apply(cases "label x i = 0") apply(rule disjI1,rule) prefer 3 proof(rule disjI2,rule)
- assume lx:"label x i = 0" hence ly:"label y i = 1" using i label(1)[of i y] by auto
- show "x \<bullet> i \<le> f x \<bullet> i" apply(rule label(4)[rule_format]) using xy lx i(2) by auto
- show "f y \<bullet> i \<le> y \<bullet> i" apply(rule label(5)[rule_format]) using xy ly i(2) by auto next
- assume "label x i \<noteq> 0" hence l:"label x i = 1" "label y i = 0"
+ apply (rule *)
+ apply (cases "label x i = 0")
+ apply (rule disjI1, rule)
+ prefer 3
+ proof (rule disjI2, rule)
+ assume lx: "label x i = 0"
+ hence ly: "label y i = 1"
+ using i label(1)[of i y] by auto
+ show "x \<bullet> i \<le> f x \<bullet> i"
+ apply (rule label(4)[rule_format])
+ using xy lx i(2) apply auto
+ done
+ show "f y \<bullet> i \<le> y \<bullet> i"
+ apply (rule label(5)[rule_format])
+ using xy ly i(2) apply auto
+ done
+ next
+ assume "label x i \<noteq> 0"
+ hence l:"label x i = 1" "label y i = 0"
using i label(1)[of i x] label(1)[of i y] by auto
- show "f x \<bullet> i \<le> x \<bullet> i" apply(rule label(5)[rule_format]) using xy l i(2) by auto
- show "y \<bullet> i \<le> f y \<bullet> i" apply(rule label(4)[rule_format]) using xy l i(2) by auto qed
- also have "\<dots> \<le> norm (f y - f x) + norm (y - x)" apply(rule add_mono) by(rule Basis_le_norm[OF i(2)])+
- finally show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)" unfolding inner_simps .
+ show "f x \<bullet> i \<le> x \<bullet> i"
+ apply (rule label(5)[rule_format])
+ using xy l i(2) apply auto
+ done
+ show "y \<bullet> i \<le> f y \<bullet> i"
+ apply (rule label(4)[rule_format])
+ using xy l i(2) apply auto
+ done
+ qed
+ also have "\<dots> \<le> norm (f y - f x) + norm (y - x)"
+ apply (rule add_mono)
+ apply (rule Basis_le_norm[OF i(2)])+
+ done
+ finally show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y - f x) + norm (y - x)"
+ unfolding inner_simps .
qed
have "\<exists>e>0. \<forall>x\<in>{0..\<Sum>Basis}. \<forall>y\<in>{0..\<Sum>Basis}. \<forall>z\<in>{0..\<Sum>Basis}. \<forall>i\<in>Basis.
- norm(x - z) < e \<and> norm(y - z) < e \<and> label x i \<noteq> label y i \<longrightarrow> abs((f(z) - z)\<bullet>i) < d / (real n)" proof-
- have d':"d / real n / 8 > 0" apply(rule divide_pos_pos)+ using d(1) unfolding n_def by (auto simp: DIM_positive)
- have *:"uniformly_continuous_on {0..\<Sum>Basis} f" by(rule compact_uniformly_continuous[OF assms(1) compact_interval])
- guess e using *[unfolded uniformly_continuous_on_def,rule_format,OF d'] apply-apply(erule exE,(erule conjE)+) .
+ norm(x - z) < e \<and> norm(y - z) < e \<and> label x i \<noteq> label y i \<longrightarrow> abs((f(z) - z)\<bullet>i) < d / (real n)"
+ proof -
+ have d':"d / real n / 8 > 0"
+ apply (rule divide_pos_pos)+
+ using d(1) unfolding n_def
+ apply (auto simp: DIM_positive)
+ done
+ have *: "uniformly_continuous_on {0..\<Sum>Basis} f"
+ by (rule compact_uniformly_continuous[OF assms(1) compact_interval])
+ guess e using *[unfolded uniformly_continuous_on_def,rule_format,OF d'] by (elim exE conjE)
note e=this[rule_format,unfolded dist_norm]
- show ?thesis apply(rule_tac x="min (e/2) (d/real n/8)" in exI)
+ show ?thesis
+ apply (rule_tac x="min (e/2) (d/real n/8)" in exI)
proof safe
- show "0 < min (e / 2) (d / real n / 8)" using d' e by auto
- fix x y z i assume as:"x \<in> {0..\<Sum>Basis}" "y \<in> {0..\<Sum>Basis}" "z \<in> {0..\<Sum>Basis}"
+ show "0 < min (e / 2) (d / real n / 8)"
+ using d' e by auto
+ fix x y z i
+ assume as: "x \<in> {0..\<Sum>Basis}" "y \<in> {0..\<Sum>Basis}" "z \<in> {0..\<Sum>Basis}"
"norm (x - z) < min (e / 2) (d / real n / 8)"
- "norm (y - z) < min (e / 2) (d / real n / 8)" "label x i \<noteq> label y i" and i:"i\<in>Basis"
- have *:"\<And>z fz x fx n1 n2 n3 n4 d4 d::real. abs(fx - x) \<le> n1 + n2 \<Longrightarrow> abs(fx - fz) \<le> n3 \<Longrightarrow> abs(x - z) \<le> n4 \<Longrightarrow>
- n1 < d4 \<Longrightarrow> n2 < 2 * d4 \<Longrightarrow> n3 < d4 \<Longrightarrow> n4 < d4 \<Longrightarrow> (8 * d4 = d) \<Longrightarrow> abs(fz - z) < d" by auto
- show "\<bar>(f z - z) \<bullet> i\<bar> < d / real n" unfolding inner_simps proof(rule *)
- show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y -f x) + norm (y - x)" apply(rule lem1[rule_format]) using as i by auto
+ "norm (y - z) < min (e / 2) (d / real n / 8)" "label x i \<noteq> label y i"
+ and i: "i \<in> Basis"
+ have *: "\<And>z fz x fx n1 n2 n3 n4 d4 d :: real. abs(fx - x) \<le> n1 + n2 \<Longrightarrow>
+ abs(fx - fz) \<le> n3 \<Longrightarrow> abs(x - z) \<le> n4 \<Longrightarrow>
+ n1 < d4 \<Longrightarrow> n2 < 2 * d4 \<Longrightarrow> n3 < d4 \<Longrightarrow> n4 < d4 \<Longrightarrow>
+ (8 * d4 = d) \<Longrightarrow> abs(fz - z) < d" by auto
+ show "\<bar>(f z - z) \<bullet> i\<bar> < d / real n" unfolding inner_simps
+ proof (rule *)
+ show "\<bar>f x \<bullet> i - x \<bullet> i\<bar> \<le> norm (f y -f x) + norm (y - x)"
+ apply (rule lem1[rule_format])
+ using as i apply auto
+ done
show "\<bar>f x \<bullet> i - f z \<bullet> i\<bar> \<le> norm (f x - f z)" "\<bar>x \<bullet> i - z \<bullet> i\<bar> \<le> norm (x - z)"
- unfolding inner_diff_left[THEN sym] by(rule Basis_le_norm[OF i])+
- have tria:"norm (y - x) \<le> norm (y - z) + norm (x - z)" using dist_triangle[of y x z,unfolded dist_norm]
+ unfolding inner_diff_left[symmetric] by(rule Basis_le_norm[OF i])+
+ have tria:"norm (y - x) \<le> norm (y - z) + norm (x - z)"
+ using dist_triangle[of y x z, unfolded dist_norm]
unfolding norm_minus_commute by auto
- also have "\<dots> < e / 2 + e / 2" apply(rule add_strict_mono) using as(4,5) by auto
- finally show "norm (f y - f x) < d / real n / 8" apply- apply(rule e(2)) using as by auto
- have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8" apply(rule add_strict_mono) using as by auto
+ also have "\<dots> < e / 2 + e / 2"
+ apply (rule add_strict_mono)
+ using as(4,5) apply auto
+ done
+ finally show "norm (f y - f x) < d / real n / 8"
+ apply -
+ apply (rule e(2))
+ using as apply auto
+ done
+ have "norm (y - z) + norm (x - z) < d / real n / 8 + d / real n / 8"
+ apply (rule add_strict_mono)
+ using as apply auto
+ done
thus "norm (y - x) < 2 * (d / real n / 8)" using tria by auto
- show "norm (f x - f z) < d / real n / 8" apply(rule e(2)) using as e(1) by auto qed(insert as, auto) qed qed
- then guess e apply-apply(erule exE,(erule conjE)+) . note e=this[rule_format]
+ show "norm (f x - f z) < d / real n / 8"
+ apply (rule e(2))
+ using as e(1) apply auto
+ done
+ qed (insert as, auto)
+ qed
+ qed
+ then guess e by (elim exE conjE) note e=this[rule_format]
guess p using real_arch_simple[of "1 + real n / e"] .. note p=this
- have "1 + real n / e > 0" apply(rule add_pos_pos) defer apply(rule divide_pos_pos) using e(1) n by auto
+ have "1 + real n / e > 0"
+ apply (rule add_pos_pos)
+ defer
+ apply (rule divide_pos_pos)
+ using e(1) n apply auto
+ done
hence "p > 0" using p by auto
obtain b :: "nat \<Rightarrow> 'a" where b: "bij_betw b {1..n} Basis"
@@ -1441,36 +2140,46 @@
unfolding b'_def using b by (auto simp: f_inv_into_f bij_betw_def)
have b'b[simp]:"\<And>i. i \<in> {1..n} \<Longrightarrow> b' (b i) = i"
unfolding b'_def using b by (auto simp: inv_into_f_eq bij_betw_def)
- have *:"\<And>x::nat. x=0 \<or> x=1 \<longleftrightarrow> x\<le>1" by auto
- have b'':"\<And>j. j\<in>{Suc 0..n} \<Longrightarrow> b j \<in>Basis" using b unfolding bij_betw_def by auto
- have q1:"0 < p" "0 < n" "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow>
+ have *: "\<And>x :: nat. x=0 \<or> x=1 \<longleftrightarrow> x\<le>1" by auto
+ have b'': "\<And>j. j \<in> {Suc 0..n} \<Longrightarrow> b j \<in> Basis"
+ using b unfolding bij_betw_def by auto
+ have q1: "0 < p" "0 < n" "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow>
(\<forall>i\<in>{1..n}. (label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0 \<or>
(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
- unfolding * using `p>0` `n>0` using label(1)[OF b''] by auto
- have q2:"\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. x i = 0 \<longrightarrow>
+ unfolding * using `p>0` `n>0` using label(1)[OF b''] by auto
+ have q2: "\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. x i = 0 \<longrightarrow>
(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0)"
"\<forall>x. (\<forall>i\<in>{1..n}. x i \<le> p) \<longrightarrow> (\<forall>i\<in>{1..n}. x i = p \<longrightarrow>
(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1)"
- apply(rule,rule,rule,rule)
+ apply (rule, rule, rule, rule)
defer
- proof(rule,rule,rule,rule)
- fix x i assume as:"\<forall>i\<in>{1..n}. x i \<le> p" "i \<in> {1..n}"
- { assume "x i = p \<or> x i = 0"
+ proof (rule, rule, rule, rule)
+ fix x i
+ assume as: "\<forall>i\<in>{1..n}. x i \<le> p" "i \<in> {1..n}"
+ {
+ assume "x i = p \<or> x i = 0"
have "(\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<in> {0::'a..\<Sum>Basis}"
unfolding mem_interval using as b'_Basis
- by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1) }
- note cube=this
- { assume "x i = p" thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1"
+ by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
+ }
+ note cube = this
+ {
+ assume "x i = p"
+ thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 1"
unfolding o_def using cube as `p>0`
- by (intro label(3)) (auto simp add: b'') }
- { assume "x i = 0" thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0"
+ by (intro label(3)) (auto simp add: b'')
+ }
+ {
+ assume "x i = 0"
+ thus "(label (\<Sum>i\<in>Basis. (real (x (b' i)) / real p) *\<^sub>R i) \<circ> b) i = 0"
unfolding o_def using cube as `p>0`
- by (intro label(2)) (auto simp add: b'') }
+ by (intro label(2)) (auto simp add: b'')
+ }
qed
- guess q apply(rule kuhn_lemma[OF q1 q2]) . note q=this
+ guess q by (rule kuhn_lemma[OF q1 q2]) note q = this
def z \<equiv> "(\<Sum>i\<in>Basis. (real (q (b' i)) / real p) *\<^sub>R i)::'a"
have "\<exists>i\<in>Basis. d / real n \<le> abs((f z - z)\<bullet>i)"
- proof(rule ccontr)
+ proof (rule ccontr)
have "\<forall>i\<in>Basis. q (b' i) \<in> {0..p}"
using q(1) b' by (auto intro: less_imp_le simp: bij_betw_def)
hence "z\<in>{0..\<Sum>Basis}"
@@ -1478,151 +2187,266 @@
by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
hence d_fz_z:"d \<le> norm (f z - z)" by (rule d)
case goal1
- hence as:"\<forall>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar> < d / real n"
- using `n>0` by(auto simp add: not_le inner_simps)
+ hence as: "\<forall>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar> < d / real n"
+ using `n > 0` by (auto simp add: not_le inner_simps)
have "norm (f z - z) \<le> (\<Sum>i\<in>Basis. \<bar>f z \<bullet> i - z \<bullet> i\<bar>)"
unfolding inner_diff_left[symmetric] by(rule norm_le_l1)
- also have "\<dots> < (\<Sum>(i::'a)\<in>Basis. d / real n)" apply(rule setsum_strict_mono) using as by auto
- also have "\<dots> = d" using DIM_positive[where 'a='a] by (auto simp: real_eq_of_nat n_def)
- finally show False using d_fz_z by auto qed then guess i .. note i=this
- have *:"b' i \<in> {1..n}" using i using b'[unfolded bij_betw_def] by auto
- guess r using q(2)[rule_format,OF *] .. then guess s apply-apply(erule exE,(erule conjE)+) . note rs=this[rule_format]
- have b'_im:"\<And>i. i\<in>Basis \<Longrightarrow> b' i \<in> {1..n}" using b' unfolding bij_betw_def by auto
+ also have "\<dots> < (\<Sum>(i::'a) \<in> Basis. d / real n)"
+ apply (rule setsum_strict_mono)
+ using as apply auto
+ done
+ also have "\<dots> = d"
+ using DIM_positive[where 'a='a] by (auto simp: real_eq_of_nat n_def)
+ finally show False using d_fz_z by auto
+ qed
+ then guess i .. note i = this
+ have *: "b' i \<in> {1..n}"
+ using i using b'[unfolded bij_betw_def] by auto
+ guess r using q(2)[rule_format,OF *] ..
+ then guess s by (elim exE conjE) note rs = this[rule_format]
+ have b'_im: "\<And>i. i \<in> Basis \<Longrightarrow> b' i \<in> {1..n}"
+ using b' unfolding bij_betw_def by auto
def r' \<equiv> "(\<Sum>i\<in>Basis. (real (r (b' i)) / real p) *\<^sub>R i)::'a"
- have "\<And>i. i\<in>Basis \<Longrightarrow> r (b' i) \<le> p" apply(rule order_trans) apply(rule rs(1)[OF b'_im,THEN conjunct2])
- using q(1)[rule_format,OF b'_im] by(auto simp add: Suc_le_eq)
+ have "\<And>i. i \<in> Basis \<Longrightarrow> r (b' i) \<le> p"
+ apply (rule order_trans)
+ apply (rule rs(1)[OF b'_im,THEN conjunct2])
+ using q(1)[rule_format,OF b'_im] apply (auto simp add: Suc_le_eq)
+ done
hence "r' \<in> {0..\<Sum>Basis}"
unfolding r'_def mem_interval using b'_Basis
by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
def s' \<equiv> "(\<Sum>i\<in>Basis. (real (s (b' i)) / real p) *\<^sub>R i)::'a"
- have "\<And>i. i\<in>Basis \<Longrightarrow> s (b' i) \<le> p" apply(rule order_trans) apply(rule rs(2)[OF b'_im,THEN conjunct2])
- using q(1)[rule_format,OF b'_im] by(auto simp add: Suc_le_eq)
+ have "\<And>i. i\<in>Basis \<Longrightarrow> s (b' i) \<le> p"
+ apply (rule order_trans)
+ apply (rule rs(2)[OF b'_im, THEN conjunct2])
+ using q(1)[rule_format,OF b'_im] apply (auto simp add: Suc_le_eq)
+ done
hence "s' \<in> {0..\<Sum>Basis}"
unfolding s'_def mem_interval using b'_Basis
by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1)
- have "z\<in>{0..\<Sum>Basis}"
+ have "z \<in> {0..\<Sum>Basis}"
unfolding z_def mem_interval using b'_Basis q(1)[rule_format,OF b'_im] `p>0`
by (auto simp add: inner_simps bij_betw_def zero_le_divide_iff divide_le_eq_1 less_imp_le)
- have *:"\<And>x. 1 + real x = real (Suc x)" by auto
- { have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
- apply(rule setsum_mono) using rs(1)[OF b'_im] by(auto simp add:* field_simps)
+ have *: "\<And>x. 1 + real x = real (Suc x)" by auto
+ { have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
+ apply (rule setsum_mono)
+ using rs(1)[OF b'_im] apply (auto simp add:* field_simps)
+ done
also have "\<dots> < e * real p" using p `e>0` `p>0`
- by(auto simp add: field_simps n_def real_of_nat_def)
- finally have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) < e * real p" . } moreover
- { have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
- apply(rule setsum_mono) using rs(2)[OF b'_im] by(auto simp add:* field_simps)
- also have "\<dots> < e * real p" using p `e>0` `p>0`
- by(auto simp add: field_simps n_def real_of_nat_def)
- finally have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) < e * real p" . } ultimately
- have "norm (r' - z) < e" "norm (s' - z) < e" unfolding r'_def s'_def z_def using `p>0`
- by (rule_tac[!] le_less_trans[OF norm_le_l1])
- (auto simp add: field_simps setsum_divide_distrib[symmetric] inner_diff_left)
+ by (auto simp add: field_simps n_def real_of_nat_def)
+ finally have "(\<Sum>i\<in>Basis. \<bar>real (r (b' i)) - real (q (b' i))\<bar>) < e * real p" .
+ }
+ moreover
+ { have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) \<le> (\<Sum>(i::'a)\<in>Basis. 1)"
+ apply (rule setsum_mono)
+ using rs(2)[OF b'_im] apply (auto simp add:* field_simps)
+ done
+ also have "\<dots> < e * real p" using p `e > 0` `p > 0`
+ by (auto simp add: field_simps n_def real_of_nat_def)
+ finally have "(\<Sum>i\<in>Basis. \<bar>real (s (b' i)) - real (q (b' i))\<bar>) < e * real p" .
+ }
+ ultimately
+ have "norm (r' - z) < e" "norm (s' - z) < e"
+ unfolding r'_def s'_def z_def
+ using `p>0`
+ apply (rule_tac[!] le_less_trans[OF norm_le_l1])
+ apply (auto simp add: field_simps setsum_divide_distrib[symmetric] inner_diff_left)
+ done
hence "\<bar>(f z - z) \<bullet> i\<bar> < d / real n"
using rs(3) i unfolding r'_def[symmetric] s'_def[symmetric] o_def bb'
by (intro e(2)[OF `r'\<in>{0..\<Sum>Basis}` `s'\<in>{0..\<Sum>Basis}` `z\<in>{0..\<Sum>Basis}`]) auto
thus False using i by auto
qed
+
subsection {* Retractions. *}
definition "retraction s t r \<longleftrightarrow>
t \<subseteq> s \<and> continuous_on s r \<and> (r ` s \<subseteq> t) \<and> (\<forall>x\<in>t. r x = x)"
-definition retract_of (infixl "retract'_of" 12) where
- "(t retract_of s) \<longleftrightarrow> (\<exists>r. retraction s t r)"
+definition retract_of (infixl "retract'_of" 12)
+ where "(t retract_of s) \<longleftrightarrow> (\<exists>r. retraction s t r)"
lemma retraction_idempotent: "retraction s t r \<Longrightarrow> x \<in> s \<Longrightarrow> r(r x) = r x"
unfolding retraction_def by auto
subsection {*preservation of fixpoints under (more general notion of) retraction. *}
-lemma invertible_fixpoint_property: fixes s::"('a::euclidean_space) set" and t::"('b::euclidean_space) set"
- assumes "continuous_on t i" "i ` t \<subseteq> s" "continuous_on s r" "r ` s \<subseteq> t" "\<forall>y\<in>t. r (i y) = y"
- "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)" "continuous_on t g" "g ` t \<subseteq> t"
- obtains y where "y\<in>t" "g y = y" proof-
- have "\<exists>x\<in>s. (i \<circ> g \<circ> r) x = x" apply(rule assms(6)[rule_format],rule)
- apply(rule continuous_on_compose assms)+ apply((rule continuous_on_subset)?,rule assms)+
- using assms(2,4,8) unfolding image_compose by(auto,blast)
- then guess x .. note x = this hence *:"g (r x) \<in> t" using assms(4,8) by auto
- have "r ((i \<circ> g \<circ> r) x) = r x" using x by auto
- thus ?thesis apply(rule_tac that[of "r x"]) using x unfolding o_def
- unfolding assms(5)[rule_format,OF *] using assms(4) by auto qed
+lemma invertible_fixpoint_property:
+ fixes s :: "('a::euclidean_space) set"
+ and t :: "('b::euclidean_space) set"
+ assumes "continuous_on t i" "i ` t \<subseteq> s"
+ "continuous_on s r" "r ` s \<subseteq> t"
+ "\<forall>y\<in>t. r (i y) = y"
+ "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)" "continuous_on t g" "g ` t \<subseteq> t"
+ obtains y where "y\<in>t" "g y = y"
+proof -
+ have "\<exists>x\<in>s. (i \<circ> g \<circ> r) x = x"
+ apply (rule assms(6)[rule_format], rule)
+ apply (rule continuous_on_compose assms)+
+ apply ((rule continuous_on_subset)?,rule assms)+
+ using assms(2,4,8) unfolding image_compose
+ apply auto
+ apply blast
+ done
+ then guess x .. note x = this
+ hence *: "g (r x) \<in> t" using assms(4,8) by auto
+ have "r ((i \<circ> g \<circ> r) x) = r x" using x by auto
+ thus ?thesis
+ apply (rule_tac that[of "r x"])
+ using x unfolding o_def
+ unfolding assms(5)[rule_format,OF *] using assms(4)
+ apply auto
+ done
+qed
lemma homeomorphic_fixpoint_property:
- fixes s::"('a::euclidean_space) set" and t::"('b::euclidean_space) set" assumes "s homeomorphic t"
+ fixes s :: "('a::euclidean_space) set"
+ and t :: "('b::euclidean_space) set"
+ assumes "s homeomorphic t"
shows "(\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)) \<longleftrightarrow>
- (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))" proof-
- guess r using assms[unfolded homeomorphic_def homeomorphism_def] .. then guess i ..
- thus ?thesis apply- apply rule apply(rule_tac[!] allI impI)+
- apply(rule_tac g=g in invertible_fixpoint_property[of t i s r]) prefer 10
- apply(rule_tac g=f in invertible_fixpoint_property[of s r t i]) by auto qed
+ (\<forall>g. continuous_on t g \<and> g ` t \<subseteq> t \<longrightarrow> (\<exists>y\<in>t. g y = y))"
+proof -
+ guess r using assms[unfolded homeomorphic_def homeomorphism_def] ..
+ then guess i ..
+ thus ?thesis
+ apply -
+ apply rule
+ apply (rule_tac[!] allI impI)+
+ apply (rule_tac g=g in invertible_fixpoint_property[of t i s r])
+ prefer 10
+ apply (rule_tac g=f in invertible_fixpoint_property[of s r t i])
+ apply auto
+ done
+qed
-lemma retract_fixpoint_property: fixes f::"'a::euclidean_space => 'b::euclidean_space" and s::"'a set"
- assumes "t retract_of s" "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)" "continuous_on t g" "g ` t \<subseteq> t"
- obtains y where "y \<in> t" "g y = y" proof- guess h using assms(1) unfolding retract_of_def ..
- thus ?thesis unfolding retraction_def apply-
- apply(rule invertible_fixpoint_property[OF continuous_on_id _ _ _ _ assms(2), of t h g]) prefer 7
- apply(rule_tac y=y in that) using assms by auto qed
+lemma retract_fixpoint_property:
+ fixes f :: "'a::euclidean_space => 'b::euclidean_space" and s::"'a set"
+ assumes "t retract_of s"
+ "\<forall>f. continuous_on s f \<and> f ` s \<subseteq> s \<longrightarrow> (\<exists>x\<in>s. f x = x)"
+ "continuous_on t g" "g ` t \<subseteq> t"
+ obtains y where "y \<in> t" "g y = y"
+proof -
+ guess h using assms(1) unfolding retract_of_def ..
+ thus ?thesis
+ unfolding retraction_def
+ apply -
+ apply (rule invertible_fixpoint_property[OF continuous_on_id _ _ _ _ assms(2), of t h g])
+ prefer 7
+ apply (rule_tac y=y in that)
+ using assms apply auto
+ done
+qed
+
subsection {*So the Brouwer theorem for any set with nonempty interior. *}
lemma brouwer_weak:
fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a::ordered_euclidean_space"
assumes "compact s" "convex s" "interior s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
- obtains x where "x \<in> s" "f x = x" proof-
- have *:"interior {0::'a..\<Sum>Basis} \<noteq> {}" unfolding interior_closed_interval interval_eq_empty by auto
- have *:"{0::'a..\<Sum>Basis} homeomorphic s" using homeomorphic_convex_compact[OF convex_interval(1) compact_interval * assms(2,1,3)] .
- have "\<forall>f. continuous_on {0::'a..\<Sum>Basis} f \<and> f ` {0::'a..\<Sum>Basis} \<subseteq> {0::'a..\<Sum>Basis} \<longrightarrow>
+ obtains x where "x \<in> s" "f x = x"
+proof -
+ have *: "interior {0::'a..\<Sum>Basis} \<noteq> {}"
+ unfolding interior_closed_interval interval_eq_empty by auto
+ have *: "{0::'a..\<Sum>Basis} homeomorphic s"
+ using homeomorphic_convex_compact[OF convex_interval(1) compact_interval * assms(2,1,3)] .
+ have "\<forall>f. continuous_on {0::'a..\<Sum>Basis} f \<and> f ` {0::'a..\<Sum>Basis} \<subseteq> {0::'a..\<Sum>Basis} \<longrightarrow>
(\<exists>x\<in>{0::'a..\<Sum>Basis}. f x = x)"
using brouwer_cube by auto
- thus ?thesis unfolding homeomorphic_fixpoint_property[OF *] apply(erule_tac x=f in allE)
- apply(erule impE) defer apply(erule bexE) apply(rule_tac x=y in that) using assms by auto qed
+ thus ?thesis
+ unfolding homeomorphic_fixpoint_property[OF *]
+ apply (erule_tac x=f in allE)
+ apply (erule impE)
+ defer
+ apply (erule bexE)
+ apply (rule_tac x=y in that)
+ using assms apply auto
+ done
+qed
+
subsection {* And in particular for a closed ball. *}
-lemma brouwer_ball: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
- assumes "0 < e" "continuous_on (cball a e) f" "f ` (cball a e) \<subseteq> (cball a e)"
+lemma brouwer_ball:
+ fixes f :: "'a::ordered_euclidean_space \<Rightarrow> 'a"
+ assumes "0 < e" "continuous_on (cball a e) f" "f ` (cball a e) \<subseteq> cball a e"
obtains x where "x \<in> cball a e" "f x = x"
- using brouwer_weak[OF compact_cball convex_cball,of a e f] unfolding interior_cball ball_eq_empty
+ using brouwer_weak[OF compact_cball convex_cball, of a e f]
+ unfolding interior_cball ball_eq_empty
using assms by auto
-text {*Still more general form; could derive this directly without using the
+text {*Still more general form; could derive this directly without using the
rather involved @{text "HOMEOMORPHIC_CONVEX_COMPACT"} theorem, just using
a scaling and translation to put the set inside the unit cube. *}
lemma brouwer: fixes f::"'a::ordered_euclidean_space \<Rightarrow> 'a"
assumes "compact s" "convex s" "s \<noteq> {}" "continuous_on s f" "f ` s \<subseteq> s"
- obtains x where "x \<in> s" "f x = x" proof-
- have "\<exists>e>0. s \<subseteq> cball 0 e" using compact_imp_bounded[OF assms(1)] unfolding bounded_pos
- apply(erule_tac exE,rule_tac x=b in exI) by(auto simp add: dist_norm)
- then guess e apply-apply(erule exE,(erule conjE)+) . note e=this
+ obtains x where "x \<in> s" "f x = x"
+proof -
+ have "\<exists>e>0. s \<subseteq> cball 0 e"
+ using compact_imp_bounded[OF assms(1)] unfolding bounded_pos
+ apply (erule_tac exE, rule_tac x=b in exI)
+ apply (auto simp add: dist_norm)
+ done
+ then guess e by (elim exE conjE)
+ note e = this
have "\<exists>x\<in> cball 0 e. (f \<circ> closest_point s) x = x"
- apply(rule_tac brouwer_ball[OF e(1), of 0 "f \<circ> closest_point s"]) apply(rule continuous_on_compose )
- apply(rule continuous_on_closest_point[OF assms(2) compact_imp_closed[OF assms(1)] assms(3)])
- apply(rule continuous_on_subset[OF assms(4)])
- using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)] apply - defer
- using assms(5)[unfolded subset_eq] using e(2)[unfolded subset_eq mem_cball] by(auto simp add: dist_norm)
+ apply (rule_tac brouwer_ball[OF e(1), of 0 "f \<circ> closest_point s"])
+ apply (rule continuous_on_compose )
+ apply (rule continuous_on_closest_point[OF assms(2) compact_imp_closed[OF assms(1)] assms(3)])
+ apply (rule continuous_on_subset[OF assms(4)])
+ apply (insert closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)])
+ defer
+ using assms(5)[unfolded subset_eq]
+ using e(2)[unfolded subset_eq mem_cball]
+ apply (auto simp add: dist_norm)
+ done
then guess x .. note x=this
- have *:"closest_point s x = x" apply(rule closest_point_self)
- apply(rule assms(5)[unfolded subset_eq,THEN bspec[where x="x"],unfolded image_iff])
- apply(rule_tac x="closest_point s x" in bexI) using x unfolding o_def
- using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3), of x] by auto
- show thesis apply(rule_tac x="closest_point s x" in that) unfolding x(2)[unfolded o_def]
- apply(rule closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)]) using * by auto qed
+ have *: "closest_point s x = x"
+ apply (rule closest_point_self)
+ apply (rule assms(5)[unfolded subset_eq,THEN bspec[where x="x"], unfolded image_iff])
+ apply (rule_tac x="closest_point s x" in bexI)
+ using x
+ unfolding o_def
+ using closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3), of x]
+ apply auto
+ done
+ show thesis
+ apply (rule_tac x="closest_point s x" in that)
+ unfolding x(2)[unfolded o_def]
+ apply (rule closest_point_in_set[OF compact_imp_closed[OF assms(1)] assms(3)])
+ using * by auto
+qed
text {*So we get the no-retraction theorem. *}
-lemma no_retraction_cball: assumes "0 < e" fixes type::"'a::ordered_euclidean_space"
- shows "\<not> (frontier(cball a e) retract_of (cball (a::'a) e))" proof case goal1
- have *:"\<And>xa. a - (2 *\<^sub>R a - xa) = -(a - xa)" using scaleR_left_distrib[of 1 1 a] by auto
- guess x apply(rule retract_fixpoint_property[OF goal1, of "\<lambda>x. scaleR 2 a - x"])
- apply(rule,rule,erule conjE) apply(rule brouwer_ball[OF assms]) apply assumption+
- apply(rule_tac x=x in bexI) apply assumption+ apply(rule continuous_on_intros)+
- unfolding frontier_cball subset_eq Ball_def image_iff apply(rule,rule,erule bexE)
- unfolding dist_norm apply(simp add: * norm_minus_commute) . note x = this
- hence "scaleR 2 a = scaleR 1 x + scaleR 1 x" by(auto simp add:algebra_simps)
- hence "a = x" unfolding scaleR_left_distrib[THEN sym] by auto
- thus False using x using assms by auto qed
+lemma no_retraction_cball:
+ assumes "0 < e"
+ fixes type :: "'a::ordered_euclidean_space"
+ shows "\<not> (frontier(cball a e) retract_of (cball (a::'a) e))"
+proof
+ case goal1
+ have *:"\<And>xa. a - (2 *\<^sub>R a - xa) = -(a - xa)"
+ using scaleR_left_distrib[of 1 1 a] by auto
+ guess x
+ apply (rule retract_fixpoint_property[OF goal1, of "\<lambda>x. scaleR 2 a - x"])
+ apply (rule,rule,erule conjE)
+ apply (rule brouwer_ball[OF assms])
+ apply assumption+
+ apply (rule_tac x=x in bexI)
+ apply assumption+
+ apply (rule continuous_on_intros)+
+ unfolding frontier_cball subset_eq Ball_def image_iff
+ apply (rule,rule,erule bexE)
+ unfolding dist_norm
+ apply (simp add: * norm_minus_commute)
+ done
+ note x = this
+ hence "scaleR 2 a = scaleR 1 x + scaleR 1 x" by (auto simp add:algebra_simps)
+ hence "a = x" unfolding scaleR_left_distrib[symmetric] by auto
+ thus False using x assms by auto
+qed
+
subsection {*Bijections between intervals. *}
@@ -1636,18 +2460,22 @@
field_simps inner_simps add_divide_distrib[symmetric] intro!: setsum_cong)
lemma continuous_interval_bij:
- "continuous (at x) (interval_bij (a,b::'a::ordered_euclidean_space) (u,v::'a))"
+ "continuous (at x) (interval_bij (a,b::'a::ordered_euclidean_space) (u,v::'a))"
by (auto simp add: divide_inverse interval_bij_def intro!: continuous_setsum continuous_intros)
lemma continuous_on_interval_bij: "continuous_on s (interval_bij (a,b) (u,v))"
- apply(rule continuous_at_imp_continuous_on) by(rule, rule continuous_interval_bij)
+ apply(rule continuous_at_imp_continuous_on)
+ apply (rule, rule continuous_interval_bij)
+ done
lemma in_interval_interval_bij:
fixes a b u v x :: "'a::ordered_euclidean_space"
- assumes "x \<in> {a..b}" "{u..v} \<noteq> {}" shows "interval_bij (a,b) (u,v) x \<in> {u..v}"
+ assumes "x \<in> {a..b}" "{u..v} \<noteq> {}"
+ shows "interval_bij (a,b) (u,v) x \<in> {u..v}"
apply (simp only: interval_bij_def split_conv mem_interval inner_setsum_left_Basis cong: ball_cong)
proof safe
- fix i :: 'a assume i:"i\<in>Basis"
+ fix i :: 'a
+ assume i: "i \<in> Basis"
have "{a..b} \<noteq> {}" using assms by auto
with i have *: "a\<bullet>i \<le> b\<bullet>i" "u\<bullet>i \<le> v\<bullet>i"
using assms(2) by (auto simp add: interval_eq_empty not_less)
@@ -1658,11 +2486,15 @@
thus "u \<bullet> i \<le> u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i)"
using * by auto
have "((x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i)) * (v \<bullet> i - u \<bullet> i) \<le> 1 * (v \<bullet> i - u \<bullet> i)"
- apply(rule mult_right_mono) unfolding divide_le_eq_1 using * x by auto
- thus "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i" using * by auto
+ apply (rule mult_right_mono)
+ unfolding divide_le_eq_1
+ using * x apply auto
+ done
+ thus "u \<bullet> i + (x \<bullet> i - a \<bullet> i) / (b \<bullet> i - a \<bullet> i) * (v \<bullet> i - u \<bullet> i) \<le> v \<bullet> i"
+ using * by auto
qed
-lemma interval_bij_bij:
+lemma interval_bij_bij:
"\<forall>(i::'a::ordered_euclidean_space)\<in>Basis. a\<bullet>i < b\<bullet>i \<and> u\<bullet>i < v\<bullet>i \<Longrightarrow>
interval_bij (a,b) (u,v) (interval_bij (u,v) (a,b) x) = x"
by (auto simp: interval_bij_def euclidean_eq_iff[where 'a='a])