Isar_examples/W_correct moved to W0;
authorwenzelm
Tue, 26 Feb 2002 00:24:37 +0100
changeset 12946 75447c743810
parent 12945 95853fbcc718
child 12947 3f468029f5da
Isar_examples/W_correct moved to W0;
src/HOL/IsaMakefile
src/HOL/Isar_examples/ROOT.ML
src/HOL/Isar_examples/W_correct.thy
--- a/src/HOL/IsaMakefile	Tue Feb 26 00:21:31 2002 +0100
+++ b/src/HOL/IsaMakefile	Tue Feb 26 00:24:37 2002 +0100
@@ -432,9 +432,7 @@
 
 HOL-W0: HOL $(LOG)/HOL-W0.gz
 
-$(LOG)/HOL-W0.gz: $(OUT)/HOL W0/I.ML W0/I.thy W0/Maybe.ML W0/Maybe.thy \
-  W0/MiniML.ML W0/MiniML.thy W0/ROOT.ML W0/Type.ML W0/Type.thy W0/W.ML \
-  W0/W.thy
+$(LOG)/HOL-W0.gz: $(OUT)/HOL W0/ROOT.ML W0/W0.thy W0/document/root.tex
 	@$(ISATOOL) usedir $(OUT)/HOL W0
 
 
@@ -568,9 +566,9 @@
   Isar_examples/KnasterTarski.thy Isar_examples/MutilatedCheckerboard.thy \
   Isar_examples/NestedDatatype.thy Isar_examples/Peirce.thy \
   Isar_examples/Puzzle.thy Isar_examples/Summation.thy \
-  Isar_examples/ROOT.ML Isar_examples/W_correct.thy \
-  Isar_examples/document/proof.sty Isar_examples/document/root.bib \
-  Isar_examples/document/root.tex Isar_examples/document/style.tex
+  Isar_examples/ROOT.ML Isar_examples/document/proof.sty \
+  Isar_examples/document/root.bib Isar_examples/document/root.tex \
+  Isar_examples/document/style.tex
 	@$(ISATOOL) usedir $(OUT)/HOL Isar_examples
 
 
--- a/src/HOL/Isar_examples/ROOT.ML	Tue Feb 26 00:21:31 2002 +0100
+++ b/src/HOL/Isar_examples/ROOT.ML	Tue Feb 26 00:24:37 2002 +0100
@@ -13,8 +13,6 @@
 time_use_thy "Summation";
 time_use_thy "KnasterTarski";
 time_use_thy "MutilatedCheckerboard";
-with_path "../W0" (no_document time_use_thy) "Type";
-with_path "../W0" time_use_thy "W_correct";
 with_path "../NumberTheory" (no_document time_use_thy) "Primes";
 with_path "../NumberTheory" time_use_thy "Fibonacci";
 time_use_thy "Puzzle";
--- a/src/HOL/Isar_examples/W_correct.thy	Tue Feb 26 00:21:31 2002 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,142 +0,0 @@
-(*  Title:      HOL/Isar_examples/W_correct.thy
-    ID:         $Id$
-    Author:     Markus Wenzel, TU Muenchen
-
-Correctness of Milner's type inference algorithm W (let-free version).
-*)
-
-header {* Milner's type inference algorithm~W (let-free version) *}
-
-theory W_correct = Main + Type:
-
-text_raw {*
-  \footnote{Based upon \url{http://isabelle.in.tum.de/library/HOL/W0/}
-  by Dieter Nazareth and Tobias Nipkow.}
-*}
-
-
-subsection "Mini ML with type inference rules"
-
-datatype
-  expr = Var nat | Abs expr | App expr expr
-
-
-text {* Type inference rules. *}
-
-consts
-  has_type :: "(typ list * expr * typ) set"
-
-syntax
-  "_has_type" :: "typ list => expr => typ => bool"
-    ("((_) |-/ (_) :: (_))" [60, 0, 60] 60)
-translations
-  "a |- e :: t" == "(a, e, t) : has_type"
-
-inductive has_type
-  intros
-    Var: "n < length a ==> a |- Var n :: a ! n"
-    Abs: "t1#a |- e :: t2 ==> a |- Abs e :: t1 -> t2"
-    App: "a |- e1 :: t2 -> t1 ==> a |- e2 :: t2
-      ==> a |- App e1 e2 :: t1"
-
-
-text {* Type assigment is closed wrt.\ substitution. *}
-
-lemma has_type_subst_closed: "a |- e :: t ==> $s a |- e :: $s t"
-proof -
-  assume "a |- e :: t"
-  thus ?thesis (is "?P a e t")
-  proof induct
-    case (Var a n)
-    hence "n < length (map ($ s) a)" by simp
-    hence "map ($ s) a |- Var n :: map ($ s) a ! n"
-      by (rule has_type.Var)
-    also have "map ($ s) a ! n = $ s (a ! n)"
-      by (rule nth_map)
-    also have "map ($ s) a = $ s a"
-      by (simp only: app_subst_list)
-    finally show "?P a (Var n) (a ! n)" .
-  next
-    case (Abs a e t1 t2)
-    hence "$ s t1 # map ($ s) a |- e :: $ s t2"
-      by (simp add: app_subst_list)
-    hence "map ($ s) a |- Abs e :: $ s t1 -> $ s t2"
-      by (rule has_type.Abs)
-    thus "?P a (Abs e) (t1 -> t2)"
-      by (simp add: app_subst_list)
-  next
-    case App
-    thus ?case by (simp add: has_type.App)
-  qed
-qed
-
-
-subsection {* Type inference algorithm W *}
-
-consts
-  W :: "expr => typ list => nat => (subst * typ * nat) maybe"
-
-primrec
-  "W (Var i) a n =
-    (if i < length a then Ok (id_subst, a ! i, n) else Fail)"
-  "W (Abs e) a n =
-    ((s, t, m) := W e (TVar n # a) (Suc n);
-     Ok (s, (s n) -> t, m))"
-  "W (App e1 e2) a n =
-    ((s1, t1, m1) := W e1 a n;
-     (s2, t2, m2) := W e2 ($s1 a) m1;
-     u := mgu ($ s2 t1) (t2 -> TVar m2);
-     Ok ($u o $s2 o s1, $u (TVar m2), Suc m2))"
-
-
-subsection {* Correctness theorem *}
-
-theorem W_correct: "!!a s t m n. Ok (s, t, m) = W e a n ==> $ s a |- e :: t"
-  (is "PROP ?P e")
-proof (induct e)
-  fix a s t m n
-  {
-    fix i
-    assume "Ok (s, t, m) = W (Var i) a n"
-    thus "$ s a |- Var i :: t" by (simp add: has_type.Var split: if_splits)
-  next
-    fix e assume hyp: "PROP ?P e"
-    assume "Ok (s, t, m) = W (Abs e) a n"
-    then obtain t' where "t = s n -> t'"
-        and "Ok (s, t', m) = W e (TVar n # a) (Suc n)"
-      by (auto split: bind_splits)
-    with hyp show "$ s a |- Abs e :: t"
-      by (force intro: has_type.Abs)
-  next
-    fix e1 e2 assume hyp1: "PROP ?P e1" and hyp2: "PROP ?P e2"
-    assume "Ok (s, t, m) = W (App e1 e2) a n"
-    then obtain s1 t1 n1 s2 t2 n2 u where
-          s: "s = $ u o $ s2 o s1"
-        and t: "t = u n2"
-        and mgu_ok: "mgu ($ s2 t1) (t2 -> TVar n2) = Ok u"
-        and W1_ok: "Ok (s1, t1, n1) = W e1 a n"
-        and W2_ok: "Ok (s2, t2, n2) = W e2 ($ s1 a) n1"
-      by (auto split: bind_splits simp: that)
-    show "$ s a |- App e1 e2 :: t"
-    proof (rule has_type.App)
-      from s have s': "$ u ($ s2 ($ s1 a)) = $s a"
-        by (simp add: subst_comp_tel o_def)
-      show "$s a |- e1 :: $ u t2 -> t"
-      proof -
-        from W1_ok have "$ s1 a |- e1 :: t1" by (rule hyp1)
-        hence "$ u ($ s2 ($ s1 a)) |- e1 :: $ u ($ s2 t1)"
-          by (intro has_type_subst_closed)
-        with s' t mgu_ok show ?thesis by simp
-      qed
-      show "$ s a |- e2 :: $ u t2"
-      proof -
-        from W2_ok have "$ s2 ($ s1 a) |- e2 :: t2" by (rule hyp2)
-        hence "$ u ($ s2 ($ s1 a)) |- e2 :: $ u t2"
-          by (rule has_type_subst_closed)
-        with s' show ?thesis by simp
-      qed
-    qed
-  }
-qed
-
-end