use Z3 4.3.2 to fix most FIXMEs
authorblanchet
Fri, 25 Apr 2014 22:13:17 +0200
changeset 56727 75f4fdafb285
parent 56726 9fba10c97aef
child 56736 0f5cf342961c
use Z3 4.3.2 to fix most FIXMEs
src/HOL/SMT_Examples/SMT_Examples.certs
src/HOL/SMT_Examples/SMT_Examples.certs2
src/HOL/SMT_Examples/SMT_Examples.thy
src/HOL/SMT_Examples/SMT_Tests.thy
src/HOL/SMT_Examples/SMT_Word_Examples.certs2
--- a/src/HOL/SMT_Examples/SMT_Examples.certs	Fri Apr 25 22:13:17 2014 +0200
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs	Fri Apr 25 22:13:17 2014 +0200
@@ -1,1528 +1,3 @@
-d97439af6f5bc7794ab403d0f6cc318d103016a1 1288 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f9 :: S1
-#25 := f9
-#26 := (= f9 f1)
-decl f20 :: S1
-#59 := f20
-#60 := (= f20 f1)
-decl f21 :: S1
-#61 := f21
-#62 := (= f21 f1)
-#249 := (not #62)
-decl f31 :: S1
-#97 := f31
-#98 := (= f31 f1)
-decl f62 :: S1
-#207 := f62
-#208 := (= f62 f1)
-decl f58 :: S1
-#189 := f58
-#190 := (= f58 f1)
-#388 := (not #190)
-decl f47 :: S1
-#151 := f47
-#152 := (= f47 f1)
-#289 := (not #98)
-#980 := [hypothesis]: #289
-decl f46 :: S1
-#149 := f46
-#150 := (= f46 f1)
-#346 := (not #150)
-decl f48 :: S1
-#156 := f48
-#157 := (= f48 f1)
-decl f57 :: S1
-#187 := f57
-#188 := (= f57 f1)
-#387 := (not #188)
-decl f45 :: S1
-#144 := f45
-#145 := (= f45 f1)
-#339 := (not #145)
-decl f42 :: S1
-#135 := f42
-#136 := (= f42 f1)
-#1467 := (or #136 #98)
-decl f40 :: S1
-#128 := f40
-#129 := (= f40 f1)
-#330 := (not #136)
-#1095 := [hypothesis]: #330
-decl f32 :: S1
-#99 := f32
-#100 := (= f32 f1)
-#290 := (not #100)
-decl f16 :: S1
-#46 := f16
-#47 := (= f16 f1)
-decl f17 :: S1
-#48 := f17
-#49 := (= f17 f1)
-#236 := (not #49)
-decl f28 :: S1
-#86 := f28
-#87 := (= f28 f1)
-#1450 := (or #87 #98 #136)
-decl f29 :: S1
-#90 := f29
-#91 := (= f29 f1)
-#281 := (not #91)
-#322 := (not #129)
-#277 := (not #87)
-#867 := [hypothesis]: #277
-#1427 := (or #322 #87)
-decl f51 :: S1
-#166 := f51
-#167 := (= f51 f1)
-#363 := (not #167)
-decl f54 :: S1
-#175 := f54
-#176 := (= f54 f1)
-decl f56 :: S1
-#182 := f56
-#183 := (= f56 f1)
-#380 := (not #183)
-#372 := (not #176)
-#1160 := [hypothesis]: #372
-#1189 := (or #388 #176)
-decl f18 :: S1
-#52 := f18
-#53 := (= f18 f1)
-decl f33 :: S1
-#104 := f33
-#105 := (= f33 f1)
-#297 := (not #105)
-decl f36 :: S1
-#113 := f36
-#114 := (= f36 f1)
-#347 := (not #152)
-#1155 := [hypothesis]: #190
-#393 := (or #388 #347)
-#730 := [asserted]: #393
-#1156 := [unit-resolution #730 #1155]: #347
-#389 := (or #387 #388)
-#726 := [asserted]: #389
-#1157 := [unit-resolution #726 #1155]: #387
-#194 := (or #188 #157)
-decl f6 :: S1
-#16 := f6
-#17 := (= f6 f1)
-#579 := (or #17 #188 #157)
-#840 := (iff #579 #194)
-#835 := (or false #188 #157)
-#838 := (iff #835 #194)
-#839 := [rewrite]: #838
-#836 := (iff #579 #835)
-#759 := (iff #17 false)
-#18 := (not #17)
-#439 := [asserted]: #18
-#760 := [iff-false #439]: #759
-#837 := [monotonicity #760]: #836
-#841 := [trans #837 #839]: #840
-#195 := (or #17 #194)
-#580 := (iff #195 #579)
-#581 := [rewrite]: #580
-#568 := [asserted]: #195
-#582 := [mp #568 #581]: #579
-#842 := [mp #582 #841]: #194
-#1158 := [unit-resolution #842 #1157]: #157
-#354 := (not #157)
-#355 := (or #354 #346)
-#702 := [asserted]: #355
-#1159 := [unit-resolution #702 #1158]: #346
-decl f44 :: S1
-#142 := f44
-#143 := (= f44 f1)
-#338 := (not #143)
-decl f61 :: S1
-#203 := f61
-#204 := (= f61 f1)
-decl f60 :: S1
-#199 := f60
-#200 := (= f60 f1)
-#400 := (not #200)
-decl f37 :: S1
-#118 := f37
-#119 := (= f37 f1)
-#313 := (not #119)
-#356 := (or #354 #313)
-#703 := [asserted]: #356
-#1161 := [unit-resolution #703 #1158]: #313
-#983 := (or #400 #150 #152 #119)
-#248 := (not #60)
-decl f23 :: S1
-#68 := f23
-#69 := (= f23 f1)
-decl f34 :: S1
-#106 := f34
-#107 := (= f34 f1)
-#298 := (not #107)
-#1051 := [hypothesis]: #347
-#1052 := [hypothesis]: #346
-#306 := (not #114)
-decl f25 :: S1
-#75 := f25
-#76 := (= f25 f1)
-decl f39 :: S1
-#124 := f39
-#125 := (= f39 f1)
-#318 := (not #125)
-decl f50 :: S1
-#162 := f50
-#163 := (= f50 f1)
-decl f59 :: S1
-#196 := f59
-#197 := (= f59 f1)
-#398 := (not #197)
-#1024 := [hypothesis]: #200
-#401 := (or #400 #398)
-#736 := [asserted]: #401
-#1021 := [unit-resolution #736 #1024]: #398
-#198 := (or #197 #163)
-#573 := [asserted]: #198
-#1022 := [unit-resolution #573 #1021]: #163
-#359 := (not #163)
-#362 := (or #359 #318)
-#707 := [asserted]: #362
-#1019 := [unit-resolution #707 #1022]: #318
-decl f26 :: S1
-#80 := f26
-#81 := (= f26 f1)
-#1153 := [hypothesis]: #313
-decl f35 :: S1
-#111 := f35
-#112 := (= f35 f1)
-#305 := (not #112)
-decl f43 :: S1
-#137 := f43
-#138 := (= f43 f1)
-#331 := (not #138)
-decl f52 :: S1
-#168 := f52
-#169 := (= f52 f1)
-#364 := (not #169)
-#402 := (or #400 #364)
-#737 := [asserted]: #402
-#1020 := [unit-resolution #737 #1024]: #364
-decl f49 :: S1
-#160 := f49
-#161 := (= f49 f1)
-#358 := (not #161)
-#360 := (or #358 #359)
-#705 := [asserted]: #360
-#1017 := [unit-resolution #705 #1022]: #358
-decl f41 :: S1
-#130 := f41
-#131 := (= f41 f1)
-#323 := (not #131)
-#1126 := (or #323 #119 #125)
-#272 := (not #81)
-decl f15 :: S1
-#43 := f15
-#44 := (= f15 f1)
-decl f13 :: S1
-#37 := f13
-#38 := (= f13 f1)
-#228 := (not #38)
-decl f11 :: S1
-#31 := f11
-#32 := (= f11 f1)
-#218 := (not #26)
-decl f7 :: S1
-#19 := f7
-#20 := (= f7 f1)
-decl f8 :: S1
-#21 := f8
-#22 := (= f8 f1)
-#214 := (not #22)
-#1154 := [hypothesis]: #318
-decl f38 :: S1
-#122 := f38
-#123 := (= f38 f1)
-#317 := (not #123)
-#1151 := [hypothesis]: #131
-#327 := (or #323 #317)
-#681 := [asserted]: #327
-#1152 := [unit-resolution #681 #1151]: #317
-#524 := (or #123 #125 #87)
-#126 := (or #125 #87)
-#127 := (or #123 #126)
-#525 := (iff #127 #524)
-#526 := [rewrite]: #525
-#513 := [asserted]: #127
-#527 := [mp #513 #526]: #524
-#1149 := [unit-resolution #527 #1152 #1154]: #87
-#280 := (or #277 #236)
-#647 := [asserted]: #280
-#1150 := [unit-resolution #647 #1149]: #236
-#783 := (or #47 #49)
-decl f4 :: S1
-#10 := f4
-#11 := (= f4 f1)
-#464 := (or #47 #49 #11)
-#786 := (iff #464 #783)
-#780 := (or #47 #49 false)
-#784 := (iff #780 #783)
-#785 := [rewrite]: #784
-#781 := (iff #464 #780)
-#755 := (iff #11 false)
-#12 := (not #11)
-#437 := [asserted]: #12
-#756 := [iff-false #437]: #755
-#782 := [monotonicity #756]: #781
-#787 := [trans #782 #785]: #786
-#50 := (or #49 #11)
-#51 := (or #47 #50)
-#465 := (iff #51 #464)
-#466 := [rewrite]: #465
-#457 := [asserted]: #51
-#467 := [mp #457 #466]: #464
-#788 := [mp #467 #787]: #783
-#1147 := [unit-resolution #788 #1150]: #47
-#235 := (not #47)
-#247 := (or #235 #214)
-#623 := [asserted]: #247
-#1148 := [unit-resolution #623 #1147]: #214
-#764 := (or #20 #22)
-decl f3 :: S1
-#7 := f3
-#8 := (= f3 f1)
-#443 := (or #20 #22 #8)
-#767 := (iff #443 #764)
-#761 := (or #20 #22 false)
-#765 := (iff #761 #764)
-#766 := [rewrite]: #765
-#762 := (iff #443 #761)
-#752 := (iff #8 false)
-#9 := (not #8)
-#436 := [asserted]: #9
-#754 := [iff-false #436]: #752
-#763 := [monotonicity #754]: #762
-#768 := [trans #763 #766]: #767
-#23 := (or #22 #8)
-#24 := (or #20 #23)
-#444 := (iff #24 #443)
-#445 := [rewrite]: #444
-#440 := [asserted]: #24
-#446 := [mp #440 #445]: #443
-#769 := [mp #446 #768]: #764
-#1145 := [unit-resolution #769 #1148]: #20
-#213 := (not #20)
-#221 := (or #218 #213)
-#606 := [asserted]: #221
-#1146 := [unit-resolution #606 #1145]: #218
-decl f12 :: S1
-#33 := f12
-#34 := (= f12 f1)
-#224 := (not #34)
-decl f30 :: S1
-#92 := f30
-#93 := (= f30 f1)
-#282 := (not #93)
-#328 := (or #323 #282)
-#682 := [asserted]: #328
-#1143 := [unit-resolution #682 #1151]: #282
-decl f27 :: S1
-#84 := f27
-#85 := (= f27 f1)
-#276 := (not #85)
-#278 := (or #276 #277)
-#645 := [asserted]: #278
-#1144 := [unit-resolution #645 #1149]: #276
-decl f19 :: S1
-#54 := f19
-#55 := (= f19 f1)
-#241 := (not #55)
-#245 := (or #241 #235)
-#621 := [asserted]: #245
-#1141 := [unit-resolution #621 #1147]: #241
-#499 := (or #91 #93 #85 #55)
-#94 := (or #85 #55)
-#95 := (or #93 #94)
-#96 := (or #91 #95)
-#500 := (iff #96 #499)
-#501 := [rewrite]: #500
-#488 := [asserted]: #96
-#502 := [mp #488 #501]: #499
-#1142 := [unit-resolution #502 #1141 #1144 #1143]: #91
-#296 := (or #281 #249)
-#659 := [asserted]: #296
-#1139 := [unit-resolution #659 #1142]: #249
-#240 := (not #53)
-#243 := (or #240 #235)
-#619 := [asserted]: #243
-#1140 := [unit-resolution #619 #1147]: #240
-decl f10 :: S1
-#27 := f10
-#28 := (= f10 f1)
-#219 := (not #28)
-#222 := (or #219 #213)
-#607 := [asserted]: #222
-#1137 := [unit-resolution #607 #1145]: #219
-#474 := (or #60 #62 #53 #28)
-#63 := (or #53 #28)
-#64 := (or #62 #63)
-#65 := (or #60 #64)
-#475 := (iff #65 #474)
-#476 := [rewrite]: #475
-#463 := [asserted]: #65
-#477 := [mp #463 #476]: #474
-#1138 := [unit-resolution #477 #1137 #1140 #1139]: #60
-#263 := (or #248 #224)
-#635 := [asserted]: #263
-#1135 := [unit-resolution #635 #1138]: #224
-#453 := (or #32 #34 #26)
-#35 := (or #34 #26)
-#36 := (or #32 #35)
-#454 := (iff #36 #453)
-#455 := [rewrite]: #454
-#442 := [asserted]: #36
-#456 := [mp #442 #455]: #453
-#1136 := [unit-resolution #456 #1135 #1146]: #32
-#223 := (not #32)
-#231 := (or #228 #223)
-#612 := [asserted]: #231
-#1133 := [unit-resolution #612 #1136]: #228
-#45 := (or #44 #38)
-#452 := [asserted]: #45
-#1134 := [unit-resolution #452 #1133]: #44
-#233 := (not #44)
-#274 := (or #272 #233)
-#643 := [asserted]: #274
-#1131 := [unit-resolution #643 #1134]: #272
-#519 := (or #119 #112 #81)
-#120 := (or #112 #81)
-#121 := (or #119 #120)
-#520 := (iff #121 #519)
-#521 := [rewrite]: #520
-#508 := [asserted]: #121
-#522 := [mp #508 #521]: #519
-#1132 := [unit-resolution #522 #1131 #1153]: #112
-decl f14 :: S1
-#39 := f14
-#40 := (= f14 f1)
-#229 := (not #40)
-#232 := (or #229 #223)
-#613 := [asserted]: #232
-#1129 := [unit-resolution #613 #1136]: #229
-decl f22 :: S1
-#66 := f22
-#67 := (= f22 f1)
-#256 := (not #67)
-#259 := (or #256 #248)
-#631 := [asserted]: #259
-#1130 := [unit-resolution #631 #1138]: #256
-decl f24 :: S1
-#73 := f24
-#74 := (= f24 f1)
-#264 := (not #74)
-#275 := (or #264 #233)
-#644 := [asserted]: #275
-#1127 := [unit-resolution #644 #1134]: #264
-#484 := (or #74 #76 #67 #40)
-#77 := (or #67 #40)
-#78 := (or #76 #77)
-#79 := (or #74 #78)
-#485 := (iff #79 #484)
-#486 := [rewrite]: #485
-#473 := [asserted]: #79
-#487 := [mp #473 #486]: #484
-#1128 := [unit-resolution #487 #1127 #1130 #1129]: #76
-#265 := (not #76)
-#309 := (or #305 #265)
-#668 := [asserted]: #309
-#1125 := [unit-resolution #668 #1128 #1132]: false
-#1123 := [lemma #1125]: #1126
-#1018 := [unit-resolution #1123 #1019 #1153]: #323
-#559 := (or #167 #169 #161 #131)
-#170 := (or #161 #131)
-#171 := (or #169 #170)
-#172 := (or #167 #171)
-#560 := (iff #172 #559)
-#561 := [rewrite]: #560
-#548 := [asserted]: #172
-#562 := [mp #548 #561]: #559
-#1015 := [unit-resolution #562 #1018 #1017 #1020]: #167
-#378 := (or #363 #331)
-#719 := [asserted]: #378
-#1016 := [unit-resolution #719 #1015]: #331
-#1026 := (or #305 #138 #125 #150 #152)
-#1049 := [hypothesis]: #112
-#307 := (or #305 #306)
-#666 := [asserted]: #307
-#1050 := [unit-resolution #666 #1049]: #306
-#544 := (or #150 #152 #143 #114)
-#153 := (or #143 #114)
-#154 := (or #152 #153)
-#155 := (or #150 #154)
-#545 := (iff #155 #544)
-#546 := [rewrite]: #545
-#533 := [asserted]: #155
-#547 := [mp #533 #546]: #544
-#1047 := [unit-resolution #547 #1050 #1052 #1051]: #143
-#342 := (or #338 #298)
-#692 := [asserted]: #342
-#1048 := [unit-resolution #692 #1047]: #298
-#308 := (or #305 #297)
-#667 := [asserted]: #308
-#1045 := [unit-resolution #667 #1049]: #297
-#341 := (or #338 #330)
-#691 := [asserted]: #341
-#1046 := [unit-resolution #691 #1047]: #330
-#1096 := [hypothesis]: #331
-#1063 := (or #277 #138 #136 #105 #107)
-#1083 := [hypothesis]: #87
-#1084 := [unit-resolution #647 #1083]: #236
-#1081 := [unit-resolution #788 #1084]: #47
-#1082 := [unit-resolution #623 #1081]: #214
-#1079 := [unit-resolution #769 #1082]: #20
-#1080 := [unit-resolution #607 #1079]: #219
-#1077 := [unit-resolution #619 #1081]: #240
-#1078 := [hypothesis]: #298
-#1075 := [hypothesis]: #297
-#1076 := [unit-resolution #621 #1081]: #241
-#1073 := [unit-resolution #645 #1083]: #276
-#1085 := (or #289 #85 #55 #138 #136)
-#1093 := [hypothesis]: #98
-#291 := (or #289 #290)
-#654 := [asserted]: #291
-#1094 := [unit-resolution #654 #1093]: #290
-#534 := (or #136 #138 #129 #100)
-#139 := (or #129 #100)
-#140 := (or #138 #139)
-#141 := (or #136 #140)
-#535 := (iff #141 #534)
-#536 := [rewrite]: #535
-#523 := [asserted]: #141
-#537 := [mp #523 #536]: #534
-#1091 := [unit-resolution #537 #1094 #1096 #1095]: #129
-#1092 := [hypothesis]: #241
-#1089 := [hypothesis]: #276
-#292 := (or #289 #281)
-#655 := [asserted]: #292
-#1090 := [unit-resolution #655 #1093]: #281
-#1087 := [unit-resolution #502 #1090 #1089 #1092]: #93
-#326 := (or #322 #282)
-#680 := [asserted]: #326
-#1088 := [unit-resolution #680 #1087 #1091]: false
-#1086 := [lemma #1088]: #1085
-#1074 := [unit-resolution #1086 #1073 #1076 #1096 #1095]: #289
-#509 := (or #105 #107 #98 #69)
-#108 := (or #98 #69)
-#109 := (or #107 #108)
-#110 := (or #105 #109)
-#510 := (iff #110 #509)
-#511 := [rewrite]: #510
-#498 := [asserted]: #110
-#512 := [mp #498 #511]: #509
-#1071 := [unit-resolution #512 #1074 #1075 #1078]: #69
-#257 := (not #69)
-#261 := (or #257 #248)
-#633 := [asserted]: #261
-#1072 := [unit-resolution #633 #1071]: #248
-#1069 := [unit-resolution #477 #1072 #1077 #1080]: #62
-#295 := (or #290 #249)
-#658 := [asserted]: #295
-#1070 := [unit-resolution #658 #1069]: #290
-#1067 := [unit-resolution #537 #1070 #1096 #1095]: #129
-#1068 := [unit-resolution #659 #1069]: #281
-#1065 := [unit-resolution #502 #1068 #1073 #1076]: #93
-#1066 := [unit-resolution #680 #1065 #1067]: false
-#1064 := [lemma #1066]: #1063
-#1043 := [unit-resolution #1064 #1046 #1096 #1045 #1048]: #277
-#1044 := [unit-resolution #527 #1043 #1154]: #123
-#325 := (or #322 #317)
-#679 := [asserted]: #325
-#1041 := [unit-resolution #679 #1044]: #322
-#1042 := [unit-resolution #537 #1041 #1096 #1046]: #100
-#1039 := [unit-resolution #654 #1042]: #289
-#1040 := [unit-resolution #512 #1039 #1045 #1048]: #69
-#1037 := [unit-resolution #633 #1040]: #248
-#1038 := [unit-resolution #658 #1042]: #249
-#294 := (or #290 #281)
-#657 := [asserted]: #294
-#1035 := [unit-resolution #657 #1042]: #281
-#329 := (or #317 #282)
-#683 := [asserted]: #329
-#1036 := [unit-resolution #683 #1044]: #282
-#1053 := (or #235 #62 #60)
-#1061 := [hypothesis]: #248
-#1062 := [hypothesis]: #249
-#1059 := [hypothesis]: #47
-#1060 := [unit-resolution #619 #1059]: #240
-#1057 := [unit-resolution #477 #1060 #1062 #1061]: #28
-#1058 := [unit-resolution #623 #1059]: #214
-#1055 := [unit-resolution #769 #1058]: #20
-#1056 := [unit-resolution #607 #1055 #1057]: false
-#1054 := [lemma #1056]: #1053
-#1033 := [unit-resolution #1054 #1038 #1037]: #235
-#1034 := [unit-resolution #788 #1033]: #49
-#279 := (or #276 #236)
-#646 := [asserted]: #279
-#1031 := [unit-resolution #646 #1034]: #276
-#1032 := [unit-resolution #502 #1031 #1036 #1035]: #55
-#242 := (or #240 #241)
-#618 := [asserted]: #242
-#1029 := [unit-resolution #618 #1032]: #240
-#1030 := [unit-resolution #477 #1029 #1038 #1037]: #28
-#246 := (or #241 #214)
-#622 := [asserted]: #246
-#1027 := [unit-resolution #622 #1032]: #214
-#1028 := [unit-resolution #769 #1027]: #20
-#1025 := [unit-resolution #607 #1028 #1030]: false
-#1023 := [lemma #1025]: #1026
-#1013 := [unit-resolution #1023 #1016 #1019 #1052 #1051]: #305
-#1014 := [unit-resolution #522 #1013 #1153]: #81
-#1097 := (or #272 #125 #76)
-#1124 := [hypothesis]: #81
-#1121 := [unit-resolution #643 #1124]: #233
-#1122 := [unit-resolution #452 #1121]: #38
-#1119 := [unit-resolution #612 #1122]: #223
-#273 := (or #272 #264)
-#642 := [asserted]: #273
-#1120 := [unit-resolution #642 #1124]: #264
-#1117 := [hypothesis]: #265
-#230 := (or #228 #229)
-#611 := [asserted]: #230
-#1118 := [unit-resolution #611 #1122]: #229
-#1115 := [unit-resolution #487 #1118 #1117 #1120]: #67
-#260 := (or #256 #224)
-#632 := [asserted]: #260
-#1116 := [unit-resolution #632 #1115]: #224
-#1113 := [unit-resolution #456 #1116 #1119]: #26
-#220 := (or #218 #219)
-#605 := [asserted]: #220
-#1114 := [unit-resolution #605 #1113]: #219
-#1111 := [unit-resolution #631 #1115]: #248
-#1112 := [unit-resolution #606 #1113]: #213
-#1109 := [unit-resolution #769 #1112]: #22
-#244 := (or #240 #214)
-#620 := [asserted]: #244
-#1110 := [unit-resolution #620 #1109]: #240
-#1107 := [unit-resolution #477 #1110 #1111 #1114]: #62
-#1108 := [unit-resolution #659 #1107]: #281
-#1105 := [unit-resolution #622 #1109]: #241
-#1106 := [unit-resolution #623 #1109]: #235
-#1103 := [unit-resolution #788 #1106]: #49
-#1104 := [unit-resolution #646 #1103]: #276
-#1101 := [unit-resolution #502 #1104 #1105 #1108]: #93
-#1102 := [unit-resolution #647 #1103]: #277
-#1099 := [unit-resolution #527 #1102 #1154]: #123
-#1100 := [unit-resolution #683 #1099 #1101]: false
-#1098 := [lemma #1100]: #1097
-#1011 := [unit-resolution #1098 #1014 #1019]: #76
-#311 := (or #306 #265)
-#670 := [asserted]: #311
-#1012 := [unit-resolution #670 #1011]: #306
-#1009 := [unit-resolution #547 #1012 #1052 #1051]: #143
-#1010 := [unit-resolution #692 #1009]: #298
-#312 := (or #297 #265)
-#671 := [asserted]: #312
-#1007 := [unit-resolution #671 #1011]: #297
-#1008 := [unit-resolution #691 #1009]: #330
-#1005 := [unit-resolution #1064 #1008 #1016 #1007 #1010]: #277
-#1006 := [unit-resolution #527 #1005 #1019]: #123
-#1003 := [unit-resolution #679 #1006]: #322
-#1004 := [unit-resolution #537 #1003 #1016 #1008]: #100
-#1001 := [unit-resolution #654 #1004]: #289
-#1002 := [unit-resolution #512 #1001 #1007 #1010]: #69
-#999 := [unit-resolution #633 #1002]: #248
-#1000 := [unit-resolution #658 #1004]: #249
-#997 := [unit-resolution #643 #1014]: #233
-#998 := [unit-resolution #452 #997]: #38
-#995 := [unit-resolution #612 #998]: #223
-#262 := (or #257 #224)
-#634 := [asserted]: #262
-#996 := [unit-resolution #634 #1002]: #224
-#993 := [unit-resolution #456 #996 #995]: #26
-#994 := [unit-resolution #605 #993]: #219
-#991 := [unit-resolution #477 #994 #1000 #999]: #53
-#992 := [unit-resolution #657 #1004]: #281
-#989 := [unit-resolution #683 #1006]: #282
-#990 := [unit-resolution #1054 #999 #1000]: #235
-#987 := [unit-resolution #788 #990]: #49
-#988 := [unit-resolution #646 #987]: #276
-#985 := [unit-resolution #502 #988 #989 #992]: #55
-#986 := [unit-resolution #618 #985 #991]: false
-#984 := [lemma #986]: #983
-#1162 := [unit-resolution #984 #1159 #1156 #1161]: #400
-#590 := (or #204 #200 #176)
-#205 := (or #200 #176)
-#206 := (or #204 #205)
-#591 := (iff #206 #590)
-#592 := [rewrite]: #591
-#583 := [asserted]: #206
-#593 := [mp #583 #592]: #590
-#1163 := [unit-resolution #593 #1162 #1160]: #204
-#404 := (not #204)
-#411 := (or #404 #380)
-#744 := [asserted]: #411
-#1164 := [unit-resolution #744 #1163]: #380
-decl f55 :: S1
-#180 := f55
-#181 := (= f55 f1)
-#379 := (not #181)
-#392 := (or #388 #379)
-#729 := [asserted]: #392
-#1165 := [unit-resolution #729 #1155]: #379
-decl f53 :: S1
-#173 := f53
-#174 := (= f53 f1)
-#371 := (not #174)
-#913 := (or #248 #181 #183 #150 #152 #119)
-#937 := [hypothesis]: #60
-#938 := [unit-resolution #631 #937]: #256
-#939 := (or #306 #67 #119)
-#971 := [hypothesis]: #256
-#950 := [hypothesis]: #114
-#947 := [unit-resolution #670 #950]: #265
-#948 := [unit-resolution #666 #950]: #305
-#945 := [unit-resolution #522 #948 #1153]: #81
-#946 := [unit-resolution #642 #945]: #264
-#943 := [unit-resolution #487 #946 #947 #971]: #40
-#944 := [unit-resolution #643 #945]: #233
-#941 := [unit-resolution #452 #944]: #38
-#942 := [unit-resolution #611 #941 #943]: false
-#940 := [lemma #942]: #939
-#935 := [unit-resolution #940 #938 #1153]: #306
-#936 := [unit-resolution #547 #935 #1052 #1051]: #143
-#933 := [unit-resolution #691 #936]: #330
-#934 := [unit-resolution #635 #937]: #224
-#952 := (or #223 #67 #119)
-#959 := [hypothesis]: #32
-#960 := [unit-resolution #612 #959]: #228
-#957 := [unit-resolution #452 #960]: #44
-#958 := [unit-resolution #643 #957]: #272
-#955 := [unit-resolution #522 #958 #1153]: #112
-#956 := [unit-resolution #613 #959]: #229
-#953 := [unit-resolution #644 #957]: #264
-#954 := [unit-resolution #487 #953 #956 #971]: #76
-#951 := [unit-resolution #668 #954 #955]: false
-#949 := [lemma #951]: #952
-#931 := [unit-resolution #949 #938 #1153]: #223
-#932 := [unit-resolution #456 #931 #934]: #26
-#929 := [unit-resolution #606 #932]: #213
-#930 := [unit-resolution #769 #929]: #22
-#927 := [unit-resolution #622 #930]: #241
-#928 := [unit-resolution #623 #930]: #235
-#925 := [unit-resolution #788 #928]: #49
-#926 := [unit-resolution #646 #925]: #276
-#961 := (or #297 #67 #119)
-#972 := [hypothesis]: #105
-#969 := [unit-resolution #671 #972]: #265
-#970 := [unit-resolution #667 #972]: #305
-#967 := [unit-resolution #522 #970 #1153]: #81
-#968 := [unit-resolution #642 #967]: #264
-#965 := [unit-resolution #487 #968 #969 #971]: #40
-#966 := [unit-resolution #643 #967]: #233
-#963 := [unit-resolution #452 #966]: #38
-#964 := [unit-resolution #611 #963 #965]: false
-#962 := [lemma #964]: #961
-#923 := [unit-resolution #962 #938 #1153]: #297
-#924 := [unit-resolution #633 #937]: #257
-#921 := [unit-resolution #692 #936]: #298
-#922 := [unit-resolution #512 #921 #924 #923]: #98
-#919 := [hypothesis]: #380
-#920 := [hypothesis]: #379
-#340 := (or #338 #339)
-#690 := [asserted]: #340
-#917 := [unit-resolution #690 #936]: #339
-#569 := (or #181 #183 #174 #145)
-#184 := (or #174 #145)
-#185 := (or #183 #184)
-#186 := (or #181 #185)
-#570 := (iff #186 #569)
-#571 := [rewrite]: #570
-#558 := [asserted]: #186
-#572 := [mp #558 #571]: #569
-#918 := [unit-resolution #572 #917 #920 #919]: #174
-#375 := (or #371 #331)
-#716 := [asserted]: #375
-#915 := [unit-resolution #716 #918]: #331
-#916 := [unit-resolution #1086 #915 #922 #926 #927 #933]: false
-#914 := [lemma #916]: #913
-#1166 := [unit-resolution #914 #1165 #1164 #1159 #1156 #1161]: #248
-#753 := (or #371 #150 #152 #119 #60)
-#793 := [hypothesis]: #174
-#374 := (or #371 #363)
-#715 := [asserted]: #374
-#794 := [unit-resolution #715 #793]: #363
-#791 := [unit-resolution #716 #793]: #331
-#802 := (or #236 #119 #150 #152 #138 #60 #167)
-#881 := [hypothesis]: #363
-#819 := [hypothesis]: #49
-#820 := [unit-resolution #647 #819]: #277
-#834 := (or #322 #167 #87)
-#849 := [hypothesis]: #129
-#324 := (or #322 #323)
-#678 := [asserted]: #324
-#850 := [unit-resolution #678 #849]: #323
-#847 := [unit-resolution #679 #849]: #317
-#848 := [unit-resolution #527 #847 #867]: #125
-#361 := (or #358 #318)
-#706 := [asserted]: #361
-#845 := [unit-resolution #706 #848]: #358
-#846 := [unit-resolution #562 #845 #881 #850]: #169
-#843 := [unit-resolution #707 #848]: #359
-#844 := [unit-resolution #573 #843]: #197
-#403 := (or #398 #364)
-#738 := [asserted]: #403
-#833 := [unit-resolution #738 #844 #846]: false
-#831 := [lemma #833]: #834
-#817 := [unit-resolution #831 #820 #881]: #322
-#818 := [unit-resolution #646 #819]: #276
-#851 := (or #282 #167 #87)
-#869 := [hypothesis]: #93
-#870 := [unit-resolution #682 #869]: #323
-#868 := [unit-resolution #683 #869]: #317
-#865 := [unit-resolution #527 #868 #867]: #125
-#866 := [unit-resolution #706 #865]: #358
-#863 := [unit-resolution #562 #866 #881 #870]: #169
-#864 := [unit-resolution #707 #865]: #359
-#861 := [unit-resolution #573 #864]: #197
-#862 := [unit-resolution #738 #861 #863]: false
-#852 := [lemma #862]: #851
-#815 := [unit-resolution #852 #820 #881]: #282
-#821 := (or #55 #138 #129 #150 #152 #93 #85 #60 #119)
-#832 := [hypothesis]: #322
-#829 := [hypothesis]: #282
-#830 := [unit-resolution #502 #1092 #829 #1089]: #91
-#827 := [unit-resolution #657 #830]: #290
-#891 := (or #67 #55 #85 #138 #60 #150 #152 #119)
-#911 := [unit-resolution #940 #971 #1153]: #306
-#912 := [unit-resolution #547 #911 #1052 #1051]: #143
-#909 := [unit-resolution #691 #912]: #330
-#910 := [unit-resolution #949 #971 #1153]: #223
-#907 := [unit-resolution #962 #971 #1153]: #297
-#908 := [unit-resolution #692 #912]: #298
-#905 := [unit-resolution #1086 #909 #1096 #1089 #1092]: #289
-#906 := [unit-resolution #512 #905 #908 #907]: #69
-#903 := [unit-resolution #634 #906]: #224
-#904 := [unit-resolution #456 #903 #910]: #26
-#901 := [unit-resolution #605 #904]: #219
-#902 := [unit-resolution #606 #904]: #213
-#899 := [unit-resolution #769 #902]: #22
-#900 := [unit-resolution #620 #899]: #240
-#897 := [unit-resolution #477 #900 #1061 #901]: #62
-#898 := [unit-resolution #658 #897]: #290
-#895 := [unit-resolution #537 #898 #1096 #909]: #129
-#896 := [unit-resolution #659 #897]: #281
-#893 := [unit-resolution #502 #896 #1092 #1089]: #93
-#894 := [unit-resolution #680 #893 #895]: false
-#892 := [lemma #894]: #891
-#828 := [unit-resolution #892 #1092 #1089 #1096 #1061 #1052 #1051 #1153]: #67
-#258 := (or #256 #257)
-#630 := [asserted]: #258
-#825 := [unit-resolution #630 #828]: #257
-#826 := [unit-resolution #655 #830]: #289
-#973 := (or #330 #69 #98 #150 #152)
-#981 := [hypothesis]: #136
-#982 := [unit-resolution #691 #981]: #338
-#979 := [unit-resolution #547 #982 #1052 #1051]: #114
-#977 := [hypothesis]: #257
-#345 := (or #330 #298)
-#695 := [asserted]: #345
-#978 := [unit-resolution #695 #981]: #298
-#975 := [unit-resolution #512 #978 #977 #980]: #105
-#310 := (or #306 #297)
-#669 := [asserted]: #310
-#976 := [unit-resolution #669 #975 #979]: false
-#974 := [lemma #976]: #973
-#823 := [unit-resolution #974 #826 #825 #1052 #1051]: #330
-#824 := [unit-resolution #537 #823 #827 #1096 #832]: false
-#822 := [lemma #824]: #821
-#816 := [unit-resolution #822 #817 #1096 #1052 #1051 #815 #818 #1061 #1153]: #55
-#813 := [unit-resolution #618 #816]: #240
-#814 := [unit-resolution #622 #816]: #214
-#811 := [unit-resolution #769 #814]: #20
-#812 := [unit-resolution #607 #811]: #219
-#809 := [unit-resolution #477 #812 #1061 #813]: #62
-#810 := [unit-resolution #658 #809]: #290
-#807 := [unit-resolution #537 #810 #1096 #817]: #136
-#808 := [unit-resolution #691 #807]: #338
-#805 := [unit-resolution #547 #808 #1052 #1051]: #114
-#293 := (or #289 #249)
-#656 := [asserted]: #293
-#806 := [unit-resolution #656 #809]: #289
-#803 := [unit-resolution #974 #807 #806 #1052 #1051]: #69
-#804 := [unit-resolution #630 #803]: #256
-#801 := [unit-resolution #940 #804 #805 #1153]: false
-#799 := [lemma #801]: #802
-#792 := [unit-resolution #799 #791 #1052 #1051 #1153 #1061 #794]: #236
-#789 := [unit-resolution #788 #792]: #47
-#790 := [unit-resolution #1054 #789 #1061]: #62
-#778 := [unit-resolution #658 #790]: #290
-#779 := [unit-resolution #656 #790]: #289
-#795 := (or #330 #119 #150 #152 #98)
-#800 := [unit-resolution #974 #981 #980 #1052 #1051]: #69
-#797 := [unit-resolution #630 #800]: #256
-#798 := [unit-resolution #940 #797 #979 #1153]: false
-#796 := [lemma #798]: #795
-#776 := [unit-resolution #796 #779 #1052 #1051 #1153]: #330
-#777 := [unit-resolution #537 #776 #791 #778]: #129
-#774 := [unit-resolution #831 #777 #794]: #87
-#775 := [unit-resolution #659 #790]: #281
-#772 := [unit-resolution #621 #789]: #241
-#773 := [unit-resolution #680 #777]: #282
-#770 := [unit-resolution #502 #773 #772 #775]: #85
-#771 := [unit-resolution #645 #770 #774]: false
-#751 := [lemma #771]: #753
-#1167 := [unit-resolution #751 #1159 #1156 #1161 #1166]: #371
-#1168 := [unit-resolution #572 #1167 #1165 #1164]: #145
-#1169 := [unit-resolution #690 #1168]: #338
-#1170 := [unit-resolution #547 #1169 #1159 #1156]: #114
-#1171 := [unit-resolution #669 #1170]: #297
-#344 := (or #339 #298)
-#694 := [asserted]: #344
-#1172 := [unit-resolution #694 #1168]: #298
-#1173 := [unit-resolution #940 #1170 #1161]: #67
-#1174 := [unit-resolution #630 #1173]: #257
-#1175 := [unit-resolution #512 #1174 #1172 #1171]: #98
-#1176 := [unit-resolution #656 #1175]: #249
-#1177 := [unit-resolution #632 #1173]: #224
-#1178 := [unit-resolution #666 #1170]: #305
-#1179 := [unit-resolution #522 #1178 #1161]: #81
-#1180 := [unit-resolution #643 #1179]: #233
-#1181 := [unit-resolution #452 #1180]: #38
-#1182 := [unit-resolution #612 #1181]: #223
-#1183 := [unit-resolution #456 #1182 #1177]: #26
-#1184 := [unit-resolution #605 #1183]: #219
-#1185 := [unit-resolution #477 #1184 #1166 #1176]: #53
-#1186 := [unit-resolution #606 #1183]: #213
-#1187 := [unit-resolution #769 #1186]: #22
-#1188 := [unit-resolution #620 #1187 #1185]: false
-#1190 := [lemma #1188]: #1189
-#1365 := [unit-resolution #1190 #1160]: #388
-#211 := (or #208 #190)
-decl f5 :: S1
-#13 := f5
-#14 := (= f5 f1)
-#600 := (or #14 #208 #190)
-#858 := (iff #600 #211)
-#853 := (or false #208 #190)
-#856 := (iff #853 #211)
-#857 := [rewrite]: #856
-#854 := (iff #600 #853)
-#757 := (iff #14 false)
-#15 := (not #14)
-#438 := [asserted]: #15
-#758 := [iff-false #438]: #757
-#855 := [monotonicity #758]: #854
-#859 := [trans #855 #857]: #858
-#212 := (or #14 #211)
-#601 := (iff #212 #600)
-#602 := [rewrite]: #601
-#589 := [asserted]: #212
-#603 := [mp #589 #602]: #600
-#860 := [mp #603 #859]: #211
-#1366 := [unit-resolution #860 #1365]: #208
-#408 := (not #208)
-#410 := (or #408 #380)
-#743 := [asserted]: #410
-#1367 := [unit-resolution #743 #1366]: #380
-#409 := (or #408 #404)
-#742 := [asserted]: #409
-#1368 := [unit-resolution #742 #1366]: #404
-#1369 := [unit-resolution #593 #1368 #1160]: #200
-#1239 := (or #119 #183 #400)
-#1224 := [unit-resolution #1123 #1153 #1019]: #323
-#1225 := [unit-resolution #562 #1224 #1017 #1020]: #167
-#1226 := [unit-resolution #715 #1225]: #371
-#1222 := (or #379 #400 #119)
-#1216 := [hypothesis]: #181
-#390 := (or #387 #379)
-#727 := [asserted]: #390
-#1217 := [unit-resolution #727 #1216]: #387
-#1218 := [unit-resolution #842 #1217]: #157
-#394 := (or #379 #347)
-#731 := [asserted]: #394
-#1219 := [unit-resolution #731 #1216]: #347
-#1220 := [unit-resolution #984 #1219 #1024 #1153]: #150
-#1221 := [unit-resolution #702 #1220 #1218]: false
-#1223 := [lemma #1221]: #1222
-#1227 := [unit-resolution #1223 #1153 #1024]: #379
-#1228 := [unit-resolution #572 #1227 #1226 #919]: #145
-#1229 := [unit-resolution #694 #1228]: #298
-#1192 := (or #297 #125 #119)
-#1191 := [unit-resolution #1098 #967 #969 #1154]: false
-#1193 := [lemma #1191]: #1192
-#1230 := [unit-resolution #1193 #1153 #1019]: #297
-#1231 := [unit-resolution #719 #1225]: #331
-#343 := (or #339 #330)
-#693 := [asserted]: #343
-#1232 := [unit-resolution #693 #1228]: #330
-#1233 := [unit-resolution #1064 #1232 #1231 #1230 #1229]: #277
-#1234 := [unit-resolution #527 #1233 #1019]: #123
-#1214 := (or #339 #138 #119 #125 #98)
-#1194 := [hypothesis]: #145
-#1195 := [unit-resolution #693 #1194]: #330
-#1196 := [unit-resolution #694 #1194]: #298
-#1197 := [unit-resolution #1193 #1153 #1154]: #297
-#1198 := [unit-resolution #1064 #1195 #1096 #1197 #1196]: #277
-#1199 := [unit-resolution #527 #1198 #1154]: #123
-#1200 := [unit-resolution #679 #1199]: #322
-#1201 := [unit-resolution #537 #1200 #1096 #1195]: #100
-#1202 := [unit-resolution #658 #1201]: #249
-#1203 := [unit-resolution #512 #1196 #1197 #980]: #69
-#1204 := [unit-resolution #633 #1203]: #248
-#1205 := [unit-resolution #634 #1203]: #224
-#1206 := [unit-resolution #630 #1203]: #256
-#1207 := [unit-resolution #949 #1206 #1153]: #223
-#1208 := [unit-resolution #456 #1207 #1205]: #26
-#1209 := [unit-resolution #605 #1208]: #219
-#1210 := [unit-resolution #477 #1209 #1204 #1202]: #53
-#1211 := [unit-resolution #606 #1208]: #213
-#1212 := [unit-resolution #769 #1211]: #22
-#1213 := [unit-resolution #620 #1212 #1210]: false
-#1215 := [lemma #1213]: #1214
-#1235 := [unit-resolution #1215 #1228 #1153 #1019 #1231]: #98
-#1236 := [unit-resolution #654 #1235]: #290
-#1237 := [unit-resolution #537 #1236 #1231 #1232]: #129
-#1238 := [unit-resolution #679 #1237 #1234]: false
-#1240 := [lemma #1238]: #1239
-#1370 := [unit-resolution #1240 #1367 #1369]: #119
-#1371 := [unit-resolution #703 #1370]: #354
-#1372 := [unit-resolution #842 #1371]: #188
-#1373 := [unit-resolution #727 #1372]: #379
-#1374 := [unit-resolution #737 #1369]: #364
-#1375 := [unit-resolution #736 #1369]: #398
-#1376 := [unit-resolution #573 #1375]: #163
-#1377 := [unit-resolution #705 #1376]: #358
-#1378 := [unit-resolution #707 #1376]: #318
-#391 := (or #387 #347)
-#728 := [asserted]: #391
-#1379 := [unit-resolution #728 #1372]: #347
-#357 := (or #346 #313)
-#704 := [asserted]: #357
-#1380 := [unit-resolution #704 #1370]: #346
-#1351 := (or #98 #125 #161 #169 #181 #183 #150 #152)
-#1258 := [hypothesis]: #364
-#1259 := [hypothesis]: #358
-#1332 := (or #136 #150 #152 #181 #183 #125 #161 #169 #98)
-#1317 := (or #129 #125 #136 #161 #169 #181 #183 #150 #152 #98)
-#1297 := (or #105 #125 #98 #161 #169 #181 #183 #129 #136)
-#1276 := (or #290 #125 #161 #169 #181 #183 #98 #105)
-#1256 := [hypothesis]: #100
-#1257 := [unit-resolution #657 #1256]: #281
-#1260 := [unit-resolution #658 #1256]: #249
-#1254 := (or #60 #62 #91 #125)
-#1241 := [hypothesis]: #281
-#1242 := [unit-resolution #1054 #1061 #1062]: #235
-#1243 := [unit-resolution #788 #1242]: #49
-#1244 := [unit-resolution #646 #1243]: #276
-#1245 := [unit-resolution #647 #1243]: #277
-#1246 := [unit-resolution #527 #1245 #1154]: #123
-#1247 := [unit-resolution #683 #1246]: #282
-#1248 := [unit-resolution #502 #1247 #1244 #1241]: #55
-#1249 := [unit-resolution #618 #1248]: #240
-#1250 := [unit-resolution #477 #1249 #1061 #1062]: #28
-#1251 := [unit-resolution #622 #1248]: #214
-#1252 := [unit-resolution #769 #1251]: #20
-#1253 := [unit-resolution #607 #1252 #1250]: false
-#1255 := [lemma #1253]: #1254
-#1261 := [unit-resolution #1255 #1260 #1257 #1154]: #60
-#1262 := [unit-resolution #633 #1261]: #257
-#1263 := [unit-resolution #512 #1262 #980 #1075]: #107
-#1264 := [unit-resolution #694 #1263]: #339
-#1265 := [unit-resolution #572 #1264 #920 #919]: #174
-#1266 := [unit-resolution #715 #1265]: #363
-#1267 := [unit-resolution #562 #1266 #1259 #1258]: #131
-#1268 := [unit-resolution #682 #1267]: #282
-#1269 := [unit-resolution #681 #1267]: #317
-#1270 := [unit-resolution #527 #1269 #1154]: #87
-#1271 := [unit-resolution #645 #1270]: #276
-#1272 := [unit-resolution #502 #1271 #1268 #1257]: #55
-#1273 := [unit-resolution #647 #1270]: #236
-#1274 := [unit-resolution #788 #1273]: #47
-#1275 := [unit-resolution #621 #1274 #1272]: false
-#1277 := [lemma #1275]: #1276
-#1278 := [unit-resolution #1277 #1075 #1259 #1258 #920 #919 #980 #1154]: #290
-#1279 := [unit-resolution #537 #1278 #832 #1095]: #138
-#1280 := [unit-resolution #716 #1279]: #371
-#1281 := [unit-resolution #572 #1280 #920 #919]: #145
-#1282 := [unit-resolution #694 #1281]: #298
-#1283 := [unit-resolution #512 #1282 #980 #1075]: #69
-#1284 := [unit-resolution #633 #1283]: #248
-#1285 := [unit-resolution #719 #1279]: #363
-#1286 := [unit-resolution #562 #1285 #1259 #1258]: #131
-#1287 := [unit-resolution #681 #1286]: #317
-#1288 := [unit-resolution #527 #1287 #1154]: #87
-#1289 := [unit-resolution #647 #1288]: #236
-#1290 := [unit-resolution #788 #1289]: #47
-#1291 := [unit-resolution #1054 #1290 #1284]: #62
-#1292 := [unit-resolution #645 #1288]: #276
-#1293 := [unit-resolution #682 #1286]: #282
-#1294 := [unit-resolution #621 #1290]: #241
-#1295 := [unit-resolution #502 #1294 #1293 #1292]: #91
-#1296 := [unit-resolution #659 #1295 #1291]: false
-#1298 := [lemma #1296]: #1297
-#1299 := [unit-resolution #1298 #832 #980 #1259 #1258 #920 #919 #1154 #1095]: #105
-#1300 := [unit-resolution #669 #1299]: #306
-#1301 := [unit-resolution #547 #1300 #1052 #1051]: #143
-#1302 := [unit-resolution #690 #1301]: #339
-#1303 := [unit-resolution #572 #1302 #920 #919]: #174
-#1304 := [unit-resolution #716 #1303]: #331
-#1305 := [unit-resolution #537 #1304 #832 #1095]: #100
-#1306 := [unit-resolution #657 #1305]: #281
-#1307 := [unit-resolution #715 #1303]: #363
-#1308 := [unit-resolution #562 #1307 #1259 #1258]: #131
-#1309 := [unit-resolution #682 #1308]: #282
-#1310 := [unit-resolution #681 #1308]: #317
-#1311 := [unit-resolution #527 #1310 #1154]: #87
-#1312 := [unit-resolution #645 #1311]: #276
-#1313 := [unit-resolution #502 #1312 #1309 #1306]: #55
-#1314 := [unit-resolution #647 #1311]: #236
-#1315 := [unit-resolution #788 #1314]: #47
-#1316 := [unit-resolution #621 #1315 #1313]: false
-#1318 := [lemma #1316]: #1317
-#1319 := [unit-resolution #1318 #1095 #1154 #1259 #1258 #920 #919 #1052 #1051 #980]: #129
-#1320 := [unit-resolution #678 #1319]: #323
-#1321 := [unit-resolution #562 #1320 #1259 #1258]: #167
-#1322 := [unit-resolution #715 #1321]: #371
-#1323 := [unit-resolution #572 #1322 #920 #919]: #145
-#1324 := [unit-resolution #690 #1323]: #338
-#1325 := [unit-resolution #547 #1324 #1052 #1051]: #114
-#1326 := [unit-resolution #679 #1319]: #317
-#1327 := [unit-resolution #527 #1326 #1154]: #87
-#335 := (or #331 #322)
-#687 := [asserted]: #335
-#1328 := [unit-resolution #687 #1319]: #331
-#1329 := [unit-resolution #694 #1323]: #298
-#1330 := [unit-resolution #1064 #1329 #1095 #1328 #1327]: #105
-#1331 := [unit-resolution #669 #1330 #1325]: false
-#1333 := [lemma #1331]: #1332
-#1334 := [unit-resolution #1333 #980 #1051 #920 #919 #1154 #1259 #1258 #1052]: #136
-#1335 := [unit-resolution #974 #1334 #980 #1052 #1051]: #69
-#1336 := [unit-resolution #633 #1335]: #248
-#1337 := [unit-resolution #693 #1334]: #339
-#1338 := [unit-resolution #572 #1337 #920 #919]: #174
-#1339 := [unit-resolution #715 #1338]: #363
-#1340 := [unit-resolution #562 #1339 #1259 #1258]: #131
-#1341 := [unit-resolution #681 #1340]: #317
-#1342 := [unit-resolution #527 #1341 #1154]: #87
-#1343 := [unit-resolution #647 #1342]: #236
-#1344 := [unit-resolution #788 #1343]: #47
-#1345 := [unit-resolution #1054 #1344 #1336]: #62
-#1346 := [unit-resolution #645 #1342]: #276
-#1347 := [unit-resolution #682 #1340]: #282
-#1348 := [unit-resolution #621 #1344]: #241
-#1349 := [unit-resolution #502 #1348 #1347 #1346]: #91
-#1350 := [unit-resolution #659 #1349 #1345]: false
-#1352 := [lemma #1350]: #1351
-#1381 := [unit-resolution #1352 #1378 #1377 #1374 #1373 #1367 #1380 #1379]: #98
-#1382 := [unit-resolution #654 #1381]: #290
-#1363 := (or #317 #100 #181 #183 #161 #169)
-#1353 := [hypothesis]: #123
-#1354 := [unit-resolution #681 #1353]: #323
-#1355 := [unit-resolution #562 #1354 #1259 #1258]: #167
-#1356 := [unit-resolution #715 #1355]: #371
-#1357 := [unit-resolution #572 #1356 #920 #919]: #145
-#1358 := [unit-resolution #679 #1353]: #322
-#1359 := [hypothesis]: #290
-#1360 := [unit-resolution #719 #1355]: #331
-#1361 := [unit-resolution #537 #1360 #1359 #1358]: #136
-#1362 := [unit-resolution #693 #1361 #1357]: false
-#1364 := [lemma #1362]: #1363
-#1383 := [unit-resolution #1364 #1382 #1373 #1367 #1377 #1374]: #317
-#1384 := [unit-resolution #527 #1383 #1378]: #87
-#1385 := [unit-resolution #645 #1384]: #276
-#1386 := [unit-resolution #655 #1381]: #281
-#1387 := [unit-resolution #647 #1384]: #236
-#1388 := [unit-resolution #788 #1387]: #47
-#1389 := [unit-resolution #621 #1388]: #241
-#1390 := [unit-resolution #502 #1389 #1386 #1385]: #93
-#1391 := [unit-resolution #682 #1390]: #323
-#1392 := [unit-resolution #562 #1391 #1377 #1374]: #167
-#1393 := [unit-resolution #715 #1392]: #371
-#1394 := [unit-resolution #572 #1393 #1373 #1367]: #145
-#1395 := [unit-resolution #680 #1390]: #322
-#1396 := [unit-resolution #719 #1392]: #331
-#1397 := [unit-resolution #537 #1396 #1382 #1395]: #136
-#1398 := [unit-resolution #693 #1397 #1394]: false
-#1399 := [lemma #1398]: #176
-#376 := (or #372 #363)
-#717 := [asserted]: #376
-#1426 := [unit-resolution #717 #1399]: #363
-#1428 := [unit-resolution #831 #1426]: #1427
-#1429 := [unit-resolution #1428 #867]: #322
-#1431 := (or #136 #129 #100)
-#377 := (or #372 #331)
-#718 := [asserted]: #377
-#1430 := [unit-resolution #718 #1399]: #331
-#1432 := [unit-resolution #537 #1430]: #1431
-#1433 := [unit-resolution #1432 #1429 #1095]: #100
-#1434 := [unit-resolution #657 #1433]: #281
-#1435 := (or #282 #87)
-#1436 := [unit-resolution #852 #1426]: #1435
-#1437 := [unit-resolution #1436 #867]: #282
-#1419 := (or #214 #93 #91)
-#1413 := [hypothesis]: #22
-#1414 := [unit-resolution #622 #1413]: #241
-#1415 := [unit-resolution #502 #1414 #829 #1241]: #85
-#1416 := [unit-resolution #623 #1413]: #235
-#1417 := [unit-resolution #788 #1416]: #49
-#1418 := [unit-resolution #646 #1417 #1415]: false
-#1420 := [lemma #1418]: #1419
-#1438 := [unit-resolution #1420 #1437 #1434]: #214
-#1439 := [unit-resolution #769 #1438]: #20
-#1440 := [unit-resolution #607 #1439]: #219
-#1441 := [unit-resolution #658 #1433]: #249
-#1442 := [unit-resolution #606 #1439]: #218
-#1424 := (or #248 #26 #98)
-#1421 := [hypothesis]: #218
-#1411 := (or #223 #98 #69 #67)
-#1400 := [unit-resolution #949 #959 #971]: #119
-#1401 := [unit-resolution #703 #1400]: #354
-#1402 := [unit-resolution #842 #1401]: #188
-#1403 := [unit-resolution #728 #1402]: #347
-#1404 := [unit-resolution #704 #1400]: #346
-#1405 := [unit-resolution #487 #953 #971 #956]: #76
-#1406 := [unit-resolution #670 #1405]: #306
-#1407 := [unit-resolution #547 #1406 #1404 #1403]: #143
-#1408 := [unit-resolution #671 #1405]: #297
-#1409 := [unit-resolution #512 #1408 #980 #977]: #107
-#1410 := [unit-resolution #692 #1409 #1407]: false
-#1412 := [lemma #1410]: #1411
-#1422 := [unit-resolution #1412 #924 #980 #938]: #223
-#1423 := [unit-resolution #456 #1422 #934 #1421]: false
-#1425 := [lemma #1423]: #1424
-#1443 := [unit-resolution #1425 #1442 #980]: #248
-#1444 := [unit-resolution #477 #1443 #1441 #1440]: #53
-#1445 := [unit-resolution #618 #1444]: #241
-#1446 := [unit-resolution #1054 #1443 #1441]: #235
-#1447 := [unit-resolution #788 #1446]: #49
-#1448 := [unit-resolution #646 #1447]: #276
-#1449 := [unit-resolution #502 #1448 #1445 #1437 #1434]: false
-#1451 := [lemma #1449]: #1450
-#1452 := [unit-resolution #1451 #1095 #980]: #87
-#1453 := [unit-resolution #647 #1452]: #236
-#1454 := [unit-resolution #788 #1453]: #47
-#1455 := [unit-resolution #623 #1454]: #214
-#1456 := [unit-resolution #769 #1455]: #20
-#1457 := [unit-resolution #606 #1456]: #218
-#1458 := [unit-resolution #1425 #1457 #980]: #248
-#1459 := [unit-resolution #1054 #1458 #1454]: #62
-#1460 := [unit-resolution #658 #1459]: #290
-#1461 := [unit-resolution #1432 #1460 #1095]: #129
-#1462 := [unit-resolution #621 #1454]: #241
-#1463 := [unit-resolution #645 #1452]: #276
-#1464 := [unit-resolution #659 #1459]: #281
-#1465 := [unit-resolution #502 #1464 #1463 #1462]: #93
-#1466 := [unit-resolution #680 #1465 #1461]: false
-#1468 := [lemma #1466]: #1467
-#1481 := [unit-resolution #1468 #980]: #136
-#1482 := [unit-resolution #693 #1481]: #339
-#1479 := (or #387 #145)
-#1469 := [hypothesis]: #188
-#1470 := [unit-resolution #726 #1469]: #388
-#1471 := [unit-resolution #860 #1470]: #208
-#1472 := [hypothesis]: #339
-#1473 := [unit-resolution #727 #1469]: #379
-#1475 := (or #181 #183 #145)
-#373 := (or #371 #372)
-#714 := [asserted]: #373
-#1474 := [unit-resolution #714 #1399]: #371
-#1476 := [unit-resolution #572 #1474]: #1475
-#1477 := [unit-resolution #1476 #1473 #1472]: #183
-#1478 := [unit-resolution #743 #1477 #1471]: false
-#1480 := [lemma #1478]: #1479
-#1483 := [unit-resolution #1480 #1482]: #387
-#1484 := [unit-resolution #842 #1483]: #157
-#1485 := [unit-resolution #702 #1484]: #346
-#1486 := [unit-resolution #703 #1484]: #313
-#1487 := [unit-resolution #796 #1486 #1481 #1485 #980]: #152
-#1488 := [unit-resolution #730 #1487]: #388
-#1489 := [unit-resolution #860 #1488]: #208
-#1490 := [unit-resolution #731 #1487]: #379
-#1491 := [unit-resolution #1476 #1490 #1482]: #183
-#1492 := [unit-resolution #743 #1491 #1489]: false
-#1493 := [lemma #1492]: #98
-#1515 := [unit-resolution #656 #1493]: #249
-#1511 := [unit-resolution #655 #1493]: #281
-#1512 := [unit-resolution #1420 #829 #1511]: #214
-#1513 := [unit-resolution #769 #1512]: #20
-#1514 := [unit-resolution #607 #1513]: #219
-#1516 := [unit-resolution #606 #1513]: #218
-#1509 := (or #248 #26)
-#1494 := [unit-resolution #654 #1493]: #290
-#1495 := [unit-resolution #1432 #1095 #1494]: #129
-#300 := (or #297 #289)
-#661 := [asserted]: #300
-#1496 := [unit-resolution #661 #1493]: #297
-#302 := (or #298 #289)
-#663 := [asserted]: #302
-#1497 := [unit-resolution #663 #1493]: #298
-#1498 := (or #277 #136 #105 #107)
-#1499 := [unit-resolution #1064 #1430]: #1498
-#1500 := [unit-resolution #1499 #1095 #1497 #1496]: #277
-#1501 := [unit-resolution #1428 #1500 #1495]: false
-#1502 := [lemma #1501]: #136
-#1503 := [unit-resolution #693 #1502]: #339
-#1504 := [unit-resolution #1480 #1503]: #387
-#1505 := [unit-resolution #842 #1504]: #157
-#1506 := [unit-resolution #703 #1505]: #313
-#1507 := [unit-resolution #949 #938 #1506]: #223
-#1508 := [unit-resolution #456 #1507 #934 #1421]: false
-#1510 := [lemma #1508]: #1509
-#1517 := [unit-resolution #1510 #1516]: #248
-#1518 := [unit-resolution #477 #1517 #1515 #1514]: #53
-#1519 := [unit-resolution #618 #1518]: #241
-#1520 := [unit-resolution #1054 #1517 #1515]: #235
-#1521 := [unit-resolution #788 #1520]: #49
-#1522 := [unit-resolution #646 #1521]: #276
-#1523 := [unit-resolution #502 #1522 #1519 #1511 #829]: false
-#1524 := [lemma #1523]: #93
-#1525 := [unit-resolution #1436 #1524]: #87
-#321 := (or #318 #277)
-#677 := [asserted]: #321
-#1526 := [unit-resolution #677 #1525]: #318
-#1527 := [unit-resolution #1255 #1526 #1511 #1515]: #60
-#1528 := [unit-resolution #1510 #1527]: #26
-#1529 := [unit-resolution #647 #1525]: #236
-#1530 := [unit-resolution #788 #1529]: #47
-#1531 := [unit-resolution #623 #1530]: #214
-#1532 := [unit-resolution #769 #1531]: #20
-[unit-resolution #606 #1532 #1528]: false
-unsat
-a69a9e8c5e31ec6b9da4cf96f47b52cf6b9404d9 117 0
-#2 := false
-decl f3 :: (-> S3 S2 S1)
-#10 := (:var 0 S2)
-decl f4 :: (-> S4 S1 S3)
-decl f6 :: S1
-#16 := f6
-decl f5 :: S4
-#7 := f5
-#17 := (f4 f5 f6)
-#18 := (f3 #17 #10)
-#573 := (pattern #18)
-decl f1 :: S1
-#3 := f1
-#19 := (= #18 f1)
-#76 := (not #19)
-#574 := (forall (vars (?v0 S2)) (:pat #573) #76)
-decl f7 :: S2
-#21 := f7
-#22 := (f3 #17 f7)
-#23 := (= #22 f1)
-#150 := (= f6 f1)
-#151 := (iff #23 #150)
-#8 := (:var 1 S1)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#566 := (pattern #11)
-#13 := (= #8 f1)
-#12 := (= #11 f1)
-#14 := (iff #12 #13)
-#567 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #566) #14)
-#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
-#570 := (iff #15 #567)
-#568 := (iff #14 #14)
-#569 := [refl]: #568
-#571 := [quant-intro #569]: #570
-#62 := (~ #15 #15)
-#60 := (~ #14 #14)
-#61 := [refl]: #60
-#63 := [nnf-pos #61]: #62
-#46 := [asserted]: #15
-#53 := [mp~ #46 #63]: #15
-#572 := [mp #53 #571]: #567
-#152 := (not #567)
-#228 := (or #152 #151)
-#561 := [quant-inst #16 #21]: #228
-#237 := [unit-resolution #561 #572]: #151
-decl ?v0!0 :: S2
-#66 := ?v0!0
-#67 := (f3 #17 ?v0!0)
-#68 := (= #67 f1)
-#236 := (iff #68 #150)
-#238 := (or #152 #236)
-#229 := [quant-inst #16 #66]: #238
-#227 := [unit-resolution #229 #572]: #236
-#240 := (not #236)
-#199 := (or #240 #150)
-#55 := (not #23)
-#215 := [hypothesis]: #55
-#83 := (or #68 #23)
-#79 := (forall (vars (?v0 S2)) #76)
-#82 := (or #79 #55)
-#84 := (and #83 #82)
-#20 := (exists (vars (?v0 S2)) #19)
-#48 := (not #20)
-#49 := (iff #48 #23)
-#85 := (~ #49 #84)
-#57 := (~ #23 #23)
-#65 := [refl]: #57
-#64 := (~ #55 #55)
-#56 := [refl]: #64
-#80 := (~ #48 #79)
-#77 := (~ #76 #76)
-#78 := [refl]: #77
-#81 := [nnf-neg #78]: #80
-#73 := (not #48)
-#74 := (~ #73 #68)
-#69 := (~ #20 #68)
-#70 := [sk]: #69
-#75 := [nnf-neg #70]: #74
-#86 := [nnf-pos #75 #81 #56 #65]: #85
-#24 := (iff #20 #23)
-#25 := (not #24)
-#50 := (iff #25 #49)
-#51 := [rewrite]: #50
-#47 := [asserted]: #25
-#54 := [mp #47 #51]: #49
-#87 := [mp~ #54 #86]: #84
-#90 := [and-elim #87]: #83
-#557 := [unit-resolution #90 #215]: #68
-#243 := (not #68)
-#222 := (or #240 #243 #150)
-#558 := [def-axiom]: #222
-#541 := [unit-resolution #558 #557]: #199
-#203 := [unit-resolution #541 #227]: #150
-#241 := (not #150)
-#562 := (not #151)
-#204 := (or #562 #241)
-#563 := (or #562 #23 #241)
-#564 := [def-axiom]: #563
-#205 := [unit-resolution #564 #215]: #204
-#206 := [unit-resolution #205 #203 #237]: false
-#543 := [lemma #206]: #23
-#579 := (or #574 #55)
-#580 := (iff #82 #579)
-#577 := (iff #79 #574)
-#575 := (iff #76 #76)
-#576 := [refl]: #575
-#578 := [quant-intro #576]: #577
-#581 := [monotonicity #578]: #580
-#91 := [and-elim #87]: #82
-#582 := [mp #91 #581]: #579
-#242 := [unit-resolution #582 #543]: #574
-#555 := (not #574)
-#214 := (or #555 #55)
-#219 := [quant-inst #21]: #214
-[unit-resolution #219 #543 #242]: false
-unsat
-fdf61e060f49731790f4d6c8f9b26c21349c60b3 117 0
-#2 := false
-decl f1 :: S1
-#3 := f1
-decl f7 :: S1
-#25 := f7
-#206 := (= f7 f1)
-decl f3 :: (-> S3 S2 S1)
-decl f6 :: S2
-#20 := f6
-decl f4 :: (-> S4 S1 S3)
-decl f5 :: S4
-#7 := f5
-#26 := (f4 f5 f7)
-#30 := (f3 #26 f6)
-#31 := (= #30 f1)
-#292 := (iff #31 #206)
-#10 := (:var 0 S2)
-#8 := (:var 1 S1)
-#9 := (f4 f5 #8)
-#11 := (f3 #9 #10)
-#622 := (pattern #11)
-#13 := (= #8 f1)
-#12 := (= #11 f1)
-#14 := (iff #12 #13)
-#623 := (forall (vars (?v0 S1) (?v1 S2)) (:pat #622) #14)
-#15 := (forall (vars (?v0 S1) (?v1 S2)) #14)
-#626 := (iff #15 #623)
-#624 := (iff #14 #14)
-#625 := [refl]: #624
-#627 := [quant-intro #625]: #626
-#73 := (~ #15 #15)
-#71 := (~ #14 #14)
-#72 := [refl]: #71
-#74 := [nnf-pos #72]: #73
-#54 := [asserted]: #15
-#62 := [mp~ #54 #74]: #15
-#628 := [mp #62 #627]: #623
-#295 := (not #623)
-#611 := (or #295 #292)
-#270 := [quant-inst #25 #20]: #611
-#297 := [unit-resolution #270 #628]: #292
-decl ?v0!3 :: S2
-#120 := ?v0!3
-#123 := (f3 #26 ?v0!3)
-#124 := (= #123 f1)
-#296 := (iff #124 #206)
-#299 := (or #295 #296)
-#278 := [quant-inst #25 #120]: #299
-#298 := [unit-resolution #278 #628]: #296
-#614 := (not #296)
-#599 := (or #614 #206)
-#108 := (not #31)
-#27 := (f3 #26 #10)
-#654 := (pattern #27)
-#28 := (= #27 f1)
-#132 := (not #28)
-#655 := (forall (vars (?v0 S2)) (:pat #654) #132)
-#207 := [hypothesis]: #31
-#660 := (or #655 #108)
-#135 := (forall (vars (?v0 S2)) #132)
-#138 := (or #135 #108)
-#661 := (iff #138 #660)
-#658 := (iff #135 #655)
-#656 := (iff #132 #132)
-#657 := [refl]: #656
-#659 := [quant-intro #657]: #658
-#662 := [monotonicity #659]: #661
-#139 := (or #124 #31)
-#140 := (and #139 #138)
-#29 := (exists (vars (?v0 S2)) #28)
-#57 := (not #29)
-#58 := (iff #57 #31)
-#141 := (~ #58 #140)
-#81 := (~ #31 #31)
-#119 := [refl]: #81
-#109 := (~ #108 #108)
-#80 := [refl]: #109
-#136 := (~ #57 #135)
-#133 := (~ #132 #132)
-#134 := [refl]: #133
-#137 := [nnf-neg #134]: #136
-#129 := (not #57)
-#130 := (~ #129 #124)
-#125 := (~ #29 #124)
-#126 := [sk]: #125
-#131 := [nnf-neg #126]: #130
-#142 := [nnf-pos #131 #137 #80 #119]: #141
-#32 := (iff #29 #31)
-#33 := (not #32)
-#59 := (iff #33 #58)
-#60 := [rewrite]: #59
-#56 := [asserted]: #33
-#63 := [mp #56 #60]: #58
-#143 := [mp~ #63 #142]: #140
-#147 := [and-elim #143]: #138
-#663 := [mp #147 #662]: #660
-#293 := [unit-resolution #663 #207]: #655
-#610 := (not #655)
-#283 := (or #610 #108)
-#284 := [quant-inst #20]: #283
-#617 := [unit-resolution #284 #207 #293]: false
-#618 := [lemma #617]: #108
-#146 := [and-elim #143]: #139
-#262 := [unit-resolution #146 #618]: #124
-#208 := (not #124)
-#294 := (or #614 #208 #206)
-#285 := [def-axiom]: #294
-#600 := [unit-resolution #285 #262]: #599
-#601 := [unit-resolution #600 #298]: #206
-#616 := (not #206)
-#275 := (not #292)
-#602 := (or #275 #616)
-#612 := (or #275 #31 #616)
-#271 := [def-axiom]: #612
-#603 := [unit-resolution #271 #618]: #602
-[unit-resolution #603 #601 #297]: false
-unsat
 43550507f510d81bc4fb9ef8c1fd14424eaa9070 37 0
 #2 := false
 #10 := 0::Int
@@ -1561,908 +36,3 @@
 #53 := [not-or-elim #52]: #11
 [th-lemma arith farkas 1 1 1 #53 #57 #55]: false
 unsat
-76d09b53549e91e8b6b69b6b905b5e8307464c6f 106 0
-#2 := false
-decl f7 :: S2
-#19 := f7
-decl f3 :: (-> S3 S2 S2)
-decl f4 :: S3
-#7 := f4
-#20 := (f3 f4 f7)
-#21 := (= #20 f7)
-#74 := (not #21)
-decl f1 :: S1
-#3 := f1
-decl f5 :: (-> S4 S1 S1)
-decl f6 :: S4
-#12 := f6
-#22 := (f5 f6 f1)
-#23 := (= #22 f1)
-#75 := (not #23)
-#558 := [hypothesis]: #75
-#13 := (:var 0 S1)
-#14 := (f5 f6 #13)
-#569 := (pattern #14)
-#16 := (= #13 f1)
-#15 := (= #14 f1)
-#17 := (iff #15 #16)
-#570 := (forall (vars (?v0 S1)) (:pat #569) #17)
-#18 := (forall (vars (?v0 S1)) #17)
-#573 := (iff #18 #570)
-#571 := (iff #17 #17)
-#572 := [refl]: #571
-#574 := [quant-intro #572]: #573
-#62 := (~ #18 #18)
-#61 := (~ #17 #17)
-#72 := [refl]: #61
-#63 := [nnf-pos #72]: #62
-#48 := [asserted]: #18
-#73 := [mp~ #48 #63]: #18
-#575 := [mp #73 #574]: #570
-#239 := (not #570)
-#218 := (or #239 #23)
-#146 := (= f1 f1)
-#147 := (iff #23 #146)
-#554 := (or #239 #147)
-#212 := (iff #554 #218)
-#550 := (iff #218 #218)
-#223 := [rewrite]: #550
-#238 := (iff #147 #23)
-#1 := true
-#24 := (iff #23 true)
-#50 := (iff #24 #23)
-#51 := [rewrite]: #50
-#236 := (iff #147 #24)
-#232 := (iff #146 true)
-#225 := [rewrite]: #232
-#237 := [monotonicity #225]: #236
-#235 := [trans #237 #51]: #238
-#343 := [monotonicity #235]: #212
-#224 := [trans #343 #223]: #212
-#556 := [quant-inst #3]: #554
-#557 := [mp #556 #224]: #218
-#559 := [unit-resolution #557 #575 #558]: false
-#560 := [lemma #559]: #23
-#64 := (or #74 #75)
-#52 := (and #21 #23)
-#55 := (not #52)
-#81 := (iff #55 #64)
-#65 := (not #64)
-#76 := (not #65)
-#79 := (iff #76 #64)
-#80 := [rewrite]: #79
-#77 := (iff #55 #76)
-#66 := (iff #52 #65)
-#67 := [rewrite]: #66
-#78 := [monotonicity #67]: #77
-#82 := [trans #78 #80]: #81
-#25 := (and #21 #24)
-#26 := (not #25)
-#56 := (iff #26 #55)
-#53 := (iff #25 #52)
-#54 := [monotonicity #51]: #53
-#57 := [monotonicity #54]: #56
-#49 := [asserted]: #26
-#60 := [mp #49 #57]: #55
-#83 := [mp #60 #82]: #64
-#555 := [unit-resolution #83 #560]: #74
-#8 := (:var 0 S2)
-#9 := (f3 f4 #8)
-#562 := (pattern #9)
-#10 := (= #9 #8)
-#563 := (forall (vars (?v0 S2)) (:pat #562) #10)
-#11 := (forall (vars (?v0 S2)) #10)
-#566 := (iff #11 #563)
-#564 := (iff #10 #10)
-#565 := [refl]: #564
-#567 := [quant-intro #565]: #566
-#70 := (~ #11 #11)
-#68 := (~ #10 #10)
-#69 := [refl]: #68
-#71 := [nnf-pos #69]: #70
-#47 := [asserted]: #11
-#59 := [mp~ #47 #71]: #11
-#568 := [mp #59 #567]: #563
-#551 := (not #563)
-#210 := (or #551 #21)
-#215 := [quant-inst #19]: #210
-[unit-resolution #215 #568 #555]: false
-unsat
-d9c8c0d6c38991be073d0ed9988535642e4f47a6 396 0
-#2 := false
-decl f12 :: (-> S9 S10 S4)
-decl f14 :: (-> S1 S10)
-decl f1 :: S1
-#3 := f1
-#120 := (f14 f1)
-decl f13 :: S9
-#19 := f13
-#121 := (f12 f13 #120)
-decl f3 :: (-> S2 S3 S4)
-decl f5 :: (-> Int S3)
-#117 := 3::Int
-#118 := (f5 3::Int)
-decl f4 :: S2
-#7 := f4
-#119 := (f3 f4 #118)
-#122 := (= #119 #121)
-decl f15 :: (-> S11 S12 S4)
-decl f17 :: (-> S13 S12 S12)
-decl f20 :: S12
-#26 := f20
-decl f18 :: (-> S14 S1 S13)
-decl f19 :: S14
-#24 := f19
-#513 := (f18 f19 f1)
-#514 := (f17 #513 f20)
-decl f16 :: S11
-#23 := f16
-#495 := (f15 f16 #514)
-#626 := (= #495 #121)
-#831 := (= #121 #495)
-#20 := (:var 0 S1)
-#25 := (f18 f19 #20)
-#848 := (pattern #25)
-#21 := (f14 #20)
-#847 := (pattern #21)
-#27 := (f17 #25 f20)
-#28 := (f15 f16 #27)
-#22 := (f12 f13 #21)
-#29 := (= #22 #28)
-#849 := (forall (vars (?v0 S1)) (:pat #847 #848) #29)
-#30 := (forall (vars (?v0 S1)) #29)
-#852 := (iff #30 #849)
-#850 := (iff #29 #29)
-#851 := [refl]: #850
-#853 := [quant-intro #851]: #852
-#302 := (~ #30 #30)
-#301 := (~ #29 #29)
-#346 := [refl]: #301
-#303 := [nnf-pos #346]: #302
-#159 := [asserted]: #30
-#347 := [mp~ #159 #303]: #30
-#854 := [mp #347 #853]: #849
-#620 := (not #849)
-#827 := (or #620 #831)
-#500 := [quant-inst #3]: #827
-#646 := [unit-resolution #500 #854]: #831
-#627 := [symm #646]: #626
-#636 := (= #119 #495)
-decl f23 :: S11
-#43 := f23
-#524 := (f15 f23 #514)
-#617 := (= #524 #495)
-#802 := (= #495 #524)
-#41 := (:var 0 S12)
-#44 := (f15 f23 #41)
-#856 := (pattern #44)
-#42 := (f15 f16 #41)
-#855 := (pattern #42)
-#45 := (= #42 #44)
-#857 := (forall (vars (?v0 S12)) (:pat #855 #856) #45)
-#46 := (forall (vars (?v0 S12)) #45)
-#860 := (iff #46 #857)
-#858 := (iff #45 #45)
-#859 := [refl]: #858
-#861 := [quant-intro #859]: #860
-#304 := (~ #46 #46)
-#348 := (~ #45 #45)
-#349 := [refl]: #348
-#305 := [nnf-pos #349]: #304
-#164 := [asserted]: #46
-#312 := [mp~ #164 #305]: #46
-#862 := [mp #312 #861]: #857
-#834 := (not #857)
-#805 := (or #834 #802)
-#794 := [quant-inst #514]: #805
-#645 := [unit-resolution #794 #862]: #802
-#624 := [symm #645]: #617
-#635 := (= #119 #524)
-decl f27 :: (-> S17 Int S4)
-decl f31 :: (-> S19 S4 Int)
-#101 := (f15 f23 f20)
-decl f32 :: S19
-#74 := f32
-#804 := (f31 f32 #101)
-#80 := 1::Int
-#801 := (+ 1::Int #804)
-decl f28 :: S17
-#57 := f28
-#795 := (f27 f28 #801)
-#655 := (= #795 #524)
-#796 := (= #524 #795)
-#70 := (:var 1 S1)
-#71 := (f18 f19 #70)
-#72 := (f17 #71 #41)
-#899 := (pattern #72)
-#106 := (f31 f32 #44)
-#214 := (+ 1::Int #106)
-#219 := (f27 f28 #214)
-#105 := (f15 f23 #72)
-#222 := (= #105 #219)
-#900 := (forall (vars (?v0 S1) (?v1 S12)) (:pat #899) #222)
-#225 := (forall (vars (?v0 S1) (?v1 S12)) #222)
-#903 := (iff #225 #900)
-#901 := (iff #222 #222)
-#902 := [refl]: #901
-#904 := [quant-intro #902]: #903
-#324 := (~ #225 #225)
-#358 := (~ #222 #222)
-#359 := [refl]: #358
-#325 := [nnf-pos #359]: #324
-#58 := 0::Int
-#81 := (+ 0::Int 1::Int)
-#107 := (+ #106 #81)
-#108 := (f27 f28 #107)
-#109 := (= #105 #108)
-#110 := (forall (vars (?v0 S1) (?v1 S12)) #109)
-#226 := (iff #110 #225)
-#223 := (iff #109 #222)
-#220 := (= #108 #219)
-#217 := (= #107 #214)
-#211 := (+ #106 1::Int)
-#215 := (= #211 #214)
-#216 := [rewrite]: #215
-#212 := (= #107 #211)
-#169 := (= #81 1::Int)
-#170 := [rewrite]: #169
-#213 := [monotonicity #170]: #212
-#218 := [trans #213 #216]: #217
-#221 := [monotonicity #218]: #220
-#224 := [monotonicity #221]: #223
-#227 := [quant-intro #224]: #226
-#210 := [asserted]: #110
-#230 := [mp #210 #227]: #225
-#328 := [mp~ #230 #325]: #225
-#905 := [mp #328 #904]: #900
-#797 := (not #900)
-#798 := (or #797 #796)
-#793 := [quant-inst #3 #26]: #798
-#644 := [unit-resolution #793 #905]: #796
-#616 := [symm #644]: #655
-#633 := (= #119 #795)
-decl f6 :: (-> S5 S6 S4)
-decl f11 :: S6
-#14 := f11
-decl f24 :: S5
-#49 := f24
-#103 := (f6 f24 f11)
-#810 := (f31 f32 #103)
-#807 := (+ 1::Int #810)
-#522 := (f27 f28 #807)
-#654 := (= #522 #795)
-#648 := (= #795 #522)
-#638 := (= #801 #807)
-#682 := (= 1::Int #807)
-#689 := (= #807 1::Int)
-#792 := (<= #810 0::Int)
-#791 := (= #810 0::Int)
-#59 := (f27 f28 0::Int)
-#487 := (f31 f32 #59)
-#492 := (= #487 0::Int)
-#8 := (:var 0 Int)
-#130 := (f27 f28 #8)
-#920 := (pattern #130)
-#131 := (f31 f32 #130)
-#132 := (= #131 #8)
-#260 := (>= #8 0::Int)
-#261 := (not #260)
-#264 := (or #261 #132)
-#921 := (forall (vars (?v0 Int)) (:pat #920) #264)
-#267 := (forall (vars (?v0 Int)) #264)
-#924 := (iff #267 #921)
-#922 := (iff #264 #264)
-#923 := [refl]: #922
-#925 := [quant-intro #923]: #924
-#336 := (~ #267 #267)
-#335 := (~ #264 #264)
-#362 := [refl]: #335
-#337 := [nnf-pos #362]: #336
-#129 := (<= 0::Int #8)
-#133 := (implies #129 #132)
-#134 := (forall (vars (?v0 Int)) #133)
-#270 := (iff #134 #267)
-#251 := (not #129)
-#252 := (or #251 #132)
-#255 := (forall (vars (?v0 Int)) #252)
-#268 := (iff #255 #267)
-#265 := (iff #252 #264)
-#262 := (iff #251 #261)
-#258 := (iff #129 #260)
-#259 := [rewrite]: #258
-#263 := [monotonicity #259]: #262
-#266 := [monotonicity #263]: #265
-#269 := [quant-intro #266]: #268
-#256 := (iff #134 #255)
-#253 := (iff #133 #252)
-#254 := [rewrite]: #253
-#257 := [quant-intro #254]: #256
-#271 := [trans #257 #269]: #270
-#250 := [asserted]: #134
-#272 := [mp #250 #271]: #267
-#363 := [mp~ #272 #337]: #267
-#926 := [mp #363 #925]: #921
-#822 := (not #921)
-#824 := (or #822 #492)
-#501 := (>= 0::Int 0::Int)
-#837 := (not #501)
-#829 := (or #837 #492)
-#463 := (or #822 #829)
-#825 := (iff #463 #824)
-#826 := (iff #824 #824)
-#812 := [rewrite]: #826
-#821 := (iff #829 #492)
-#817 := (or false #492)
-#820 := (iff #817 #492)
-#815 := [rewrite]: #820
-#818 := (iff #829 #817)
-#479 := (iff #837 false)
-#1 := true
-#472 := (not true)
-#477 := (iff #472 false)
-#478 := [rewrite]: #477
-#814 := (iff #837 #472)
-#488 := (iff #501 true)
-#830 := [rewrite]: #488
-#476 := [monotonicity #830]: #814
-#816 := [trans #476 #478]: #479
-#819 := [monotonicity #816]: #818
-#458 := [trans #819 #815]: #821
-#823 := [monotonicity #458]: #825
-#813 := [trans #823 #812]: #825
-#464 := [quant-inst #58]: #463
-#520 := [mp #464 #813]: #824
-#696 := [unit-resolution #520 #926]: #492
-#697 := (= #810 #487)
-#104 := (= #103 #59)
-#208 := [asserted]: #104
-#700 := [monotonicity #208]: #697
-#701 := [trans #700 #696]: #791
-#702 := (not #791)
-#698 := (or #702 #792)
-#703 := [th-lemma arith triangle-eq]: #698
-#683 := [unit-resolution #703 #701]: #792
-#799 := (>= #810 0::Int)
-#629 := (or #702 #799)
-#684 := [th-lemma arith triangle-eq]: #629
-#665 := [unit-resolution #684 #701]: #799
-#690 := [th-lemma arith eq-propagate -1 -1 #665 #683]: #689
-#637 := [symm #690]: #682
-#681 := (= #801 1::Int)
-#641 := (<= #804 0::Int)
-#640 := (= #804 0::Int)
-#659 := (= #804 #487)
-#102 := (= #101 #59)
-#207 := [asserted]: #102
-#666 := [monotonicity #207]: #659
-#625 := [trans #666 #696]: #640
-#656 := (not #640)
-#658 := (or #656 #641)
-#660 := [th-lemma arith triangle-eq]: #658
-#667 := [unit-resolution #660 #625]: #641
-#642 := (>= #804 0::Int)
-#669 := (or #656 #642)
-#670 := [th-lemma arith triangle-eq]: #669
-#671 := [unit-resolution #670 #625]: #642
-#661 := [th-lemma arith eq-propagate -1 -1 #671 #667]: #681
-#643 := [trans #661 #637]: #638
-#649 := [monotonicity #643]: #648
-#639 := [symm #649]: #654
-#631 := (= #119 #522)
-decl f8 :: (-> S7 S6 S6)
-decl f9 :: (-> S8 Int S7)
-decl f10 :: S8
-#12 := f10
-#509 := (f9 f10 3::Int)
-#510 := (f8 #509 f11)
-#532 := (f6 f24 #510)
-#523 := (= #532 #522)
-#47 := (:var 0 S6)
-#88 := (:var 1 Int)
-#89 := (f9 f10 #88)
-#90 := (f8 #89 #47)
-#906 := (pattern #90)
-#50 := (f6 f24 #47)
-#112 := (f31 f32 #50)
-#233 := (+ 1::Int #112)
-#238 := (f27 f28 #233)
-#111 := (f6 f24 #90)
-#241 := (= #111 #238)
-#907 := (forall (vars (?v0 Int) (?v1 S6)) (:pat #906) #241)
-#244 := (forall (vars (?v0 Int) (?v1 S6)) #241)
-#910 := (iff #244 #907)
-#908 := (iff #241 #241)
-#909 := [refl]: #908
-#911 := [quant-intro #909]: #910
-#330 := (~ #244 #244)
-#329 := (~ #241 #241)
-#326 := [refl]: #329
-#331 := [nnf-pos #326]: #330
-#113 := (+ #112 #81)
-#114 := (f27 f28 #113)
-#115 := (= #111 #114)
-#116 := (forall (vars (?v0 Int) (?v1 S6)) #115)
-#245 := (iff #116 #244)
-#242 := (iff #115 #241)
-#239 := (= #114 #238)
-#236 := (= #113 #233)
-#229 := (+ #112 1::Int)
-#234 := (= #229 #233)
-#235 := [rewrite]: #234
-#231 := (= #113 #229)
-#232 := [monotonicity #170]: #231
-#237 := [trans #232 #235]: #236
-#240 := [monotonicity #237]: #239
-#243 := [monotonicity #240]: #242
-#246 := [quant-intro #243]: #245
-#228 := [asserted]: #116
-#249 := [mp #228 #246]: #244
-#327 := [mp~ #249 #331]: #244
-#912 := [mp #327 #911]: #907
-#803 := (not #907)
-#517 := (or #803 #523)
-#800 := [quant-inst #117 #14]: #517
-#694 := [unit-resolution #800 #912]: #523
-#628 := (= #119 #532)
-decl f7 :: S5
-#11 := f7
-#511 := (f6 f7 #510)
-#806 := (= #511 #532)
-#864 := (pattern #50)
-#48 := (f6 f7 #47)
-#863 := (pattern #48)
-#51 := (= #48 #50)
-#865 := (forall (vars (?v0 S6)) (:pat #863 #864) #51)
-#52 := (forall (vars (?v0 S6)) #51)
-#868 := (iff #52 #865)
-#866 := (iff #51 #51)
-#867 := [refl]: #866
-#869 := [quant-intro #867]: #868
-#314 := (~ #52 #52)
-#313 := (~ #51 #51)
-#310 := [refl]: #313
-#315 := [nnf-pos #310]: #314
-#165 := [asserted]: #52
-#311 := [mp~ #165 #315]: #52
-#870 := [mp #311 #869]: #865
-#832 := (not #865)
-#811 := (or #832 #806)
-#521 := [quant-inst #510]: #811
-#693 := [unit-resolution #521 #870]: #806
-#502 := (= #119 #511)
-#13 := (f9 f10 #8)
-#840 := (pattern #13)
-#9 := (f5 #8)
-#839 := (pattern #9)
-#15 := (f8 #13 f11)
-#16 := (f6 f7 #15)
-#10 := (f3 f4 #9)
-#17 := (= #10 #16)
-#841 := (forall (vars (?v0 Int)) (:pat #839 #840) #17)
-#18 := (forall (vars (?v0 Int)) #17)
-#844 := (iff #18 #841)
-#842 := (iff #17 #17)
-#843 := [refl]: #842
-#845 := [quant-intro #843]: #844
-#344 := (~ #18 #18)
-#342 := (~ #17 #17)
-#343 := [refl]: #342
-#345 := [nnf-pos #343]: #344
-#158 := [asserted]: #18
-#300 := [mp~ #158 #345]: #18
-#846 := [mp #300 #845]: #841
-#515 := (not #841)
-#512 := (or #515 #502)
-#516 := [quant-inst #117]: #512
-#647 := [unit-resolution #516 #846]: #502
-#630 := [trans #647 #693]: #628
-#632 := [trans #630 #694]: #631
-#634 := [trans #632 #639]: #633
-#618 := [trans #634 #616]: #635
-#606 := [trans #618 #624]: #636
-#607 := [trans #606 #627]: #122
-#123 := (not #122)
-#247 := [asserted]: #123
-[unit-resolution #247 #607]: false
-unsat
-c4f4c8220660d1979009b33a643f0927bee816b1 1 0
-unsat
-db6426d59fdd57da8ca5d11de399761d1f1443de 1 0
-unsat
-e7ef76d73ccb9bc09d2b5368495a7a59d1bae3dc 1 0
-unsat
-8578dab7bf88c7d119f9af2e5f7eaf948f1bdb87 84 0
-WARNING: failed to find a pattern for quantifier (quantifier id: k!10)
-#2 := false
-#8 := 0::Int
-#7 := (:var 0 Int)
-#49 := (<= #7 0::Int)
-#50 := (not #49)
-#47 := (>= #7 0::Int)
-#45 := (not #47)
-#53 := (or #45 #50)
-#56 := (forall (vars (?v0 Int)) #53)
-#525 := (not #56)
-#218 := (<= 0::Int 0::Int)
-#539 := (not #218)
-#207 := (>= 0::Int 0::Int)
-#201 := (not #207)
-#537 := (or #201 #539)
-#526 := (or #525 #537)
-#170 := (iff #526 #525)
-#527 := (or #525 false)
-#530 := (iff #527 #525)
-#169 := [rewrite]: #530
-#164 := (iff #526 #527)
-#523 := (iff #537 false)
-#182 := (or false false)
-#185 := (iff #182 false)
-#522 := [rewrite]: #185
-#183 := (iff #537 #182)
-#178 := (iff #539 false)
-#1 := true
-#543 := (not true)
-#222 := (iff #543 false)
-#544 := [rewrite]: #222
-#194 := (iff #539 #543)
-#198 := (iff #218 true)
-#535 := [rewrite]: #198
-#536 := [monotonicity #535]: #194
-#520 := [trans #536 #544]: #178
-#534 := (iff #201 false)
-#538 := (iff #201 #543)
-#541 := (iff #207 true)
-#542 := [rewrite]: #541
-#326 := [monotonicity #542]: #538
-#193 := [trans #326 #544]: #534
-#184 := [monotonicity #193 #520]: #183
-#524 := [trans #184 #522]: #523
-#528 := [monotonicity #524]: #164
-#531 := [trans #528 #169]: #170
-#521 := [quant-inst #8]: #526
-#529 := [mp #521 #531]: #525
-#69 := (~ #56 #56)
-#67 := (~ #53 #53)
-#68 := [refl]: #67
-#70 := [nnf-pos #68]: #69
-#10 := (< 0::Int #7)
-#9 := (< #7 0::Int)
-#11 := (or #9 #10)
-#12 := (forall (vars (?v0 Int)) #11)
-#13 := (if #12 false true)
-#14 := (not #13)
-#59 := (iff #14 #56)
-#57 := (iff #12 #56)
-#54 := (iff #11 #53)
-#51 := (iff #10 #50)
-#52 := [rewrite]: #51
-#46 := (iff #9 #45)
-#48 := [rewrite]: #46
-#55 := [monotonicity #48 #52]: #54
-#58 := [quant-intro #55]: #57
-#43 := (iff #14 #12)
-#35 := (not #12)
-#38 := (not #35)
-#41 := (iff #38 #12)
-#42 := [rewrite]: #41
-#39 := (iff #14 #38)
-#36 := (iff #13 #35)
-#37 := [rewrite]: #36
-#40 := [monotonicity #37]: #39
-#44 := [trans #40 #42]: #43
-#60 := [trans #44 #58]: #59
-#34 := [asserted]: #14
-#61 := [mp #34 #60]: #56
-#63 := [mp~ #61 #70]: #56
-[unit-resolution #63 #529]: false
-unsat
-252d255c564463d916bc68156eea8dbe7fb0be0a 165 0
-WARNING: failed to find a pattern for quantifier (quantifier id: k!10)
-#2 := false
-#7 := 0::Int
-#8 := (:var 0 Int)
-#55 := (<= #8 0::Int)
-#56 := (not #55)
-#52 := (>= #8 0::Int)
-#51 := (not #52)
-#59 := (or #51 #56)
-#62 := (forall (vars (?v0 Int)) #59)
-#95 := (not #62)
-#587 := (<= 0::Int 0::Int)
-#586 := (not #587)
-#585 := (>= 0::Int 0::Int)
-#248 := (not #585)
-#593 := (or #248 #586)
-#290 := (or #95 #593)
-#569 := (iff #290 #95)
-#292 := (or #95 false)
-#572 := (iff #292 #95)
-#287 := [rewrite]: #572
-#293 := (iff #290 #292)
-#576 := (iff #593 false)
-#578 := (or false false)
-#575 := (iff #578 false)
-#579 := [rewrite]: #575
-#300 := (iff #593 #578)
-#201 := (iff #586 false)
-#1 := true
-#594 := (not true)
-#592 := (iff #594 false)
-#595 := [rewrite]: #592
-#306 := (iff #586 #594)
-#304 := (iff #587 true)
-#305 := [rewrite]: #304
-#307 := [monotonicity #305]: #306
-#577 := [trans #307 #595]: #201
-#581 := (iff #248 false)
-#589 := (iff #248 #594)
-#233 := (iff #585 true)
-#234 := [rewrite]: #233
-#249 := [monotonicity #234]: #589
-#582 := [trans #249 #595]: #581
-#301 := [monotonicity #582 #577]: #300
-#580 := [trans #301 #579]: #576
-#571 := [monotonicity #580]: #293
-#573 := [trans #571 #287]: #569
-#291 := [quant-inst #7]: #290
-#570 := [mp #291 #573]: #95
-decl z3name!0 :: bool
-#92 := z3name!0
-#15 := 3::Int
-#39 := -1::Int
-#99 := (if z3name!0 -1::Int 3::Int)
-#284 := (= #99 3::Int)
-#604 := (not #284)
-#602 := (>= #99 3::Int)
-#259 := (not #602)
-#102 := (<= #99 0::Int)
-#65 := (if #62 -1::Int 3::Int)
-#71 := (<= #65 0::Int)
-#103 := (~ #71 #102)
-#100 := (= #65 #99)
-#97 := (~ #62 z3name!0)
-#88 := (or z3name!0 #95)
-#93 := (not z3name!0)
-#94 := (or #93 #62)
-#89 := (and #94 #88)
-#96 := [intro-def]: #89
-#98 := [apply-def #96]: #97
-#101 := [monotonicity #98]: #100
-#104 := [monotonicity #101]: #103
-#13 := 1::Int
-#14 := (- 1::Int)
-#10 := (< 0::Int #8)
-#9 := (< #8 0::Int)
-#11 := (or #9 #10)
-#12 := (forall (vars (?v0 Int)) #11)
-#16 := (if #12 #14 3::Int)
-#17 := (< 0::Int #16)
-#18 := (not #17)
-#84 := (iff #18 #71)
-#42 := (if #12 -1::Int 3::Int)
-#45 := (< 0::Int #42)
-#48 := (not #45)
-#82 := (iff #48 #71)
-#72 := (not #71)
-#77 := (not #72)
-#80 := (iff #77 #71)
-#81 := [rewrite]: #80
-#78 := (iff #48 #77)
-#75 := (iff #45 #72)
-#68 := (< 0::Int #65)
-#73 := (iff #68 #72)
-#74 := [rewrite]: #73
-#69 := (iff #45 #68)
-#66 := (= #42 #65)
-#63 := (iff #12 #62)
-#60 := (iff #11 #59)
-#57 := (iff #10 #56)
-#58 := [rewrite]: #57
-#53 := (iff #9 #51)
-#54 := [rewrite]: #53
-#61 := [monotonicity #54 #58]: #60
-#64 := [quant-intro #61]: #63
-#67 := [monotonicity #64]: #66
-#70 := [monotonicity #67]: #69
-#76 := [trans #70 #74]: #75
-#79 := [monotonicity #76]: #78
-#83 := [trans #79 #81]: #82
-#49 := (iff #18 #48)
-#46 := (iff #17 #45)
-#43 := (= #16 #42)
-#40 := (= #14 -1::Int)
-#41 := [rewrite]: #40
-#44 := [monotonicity #41]: #43
-#47 := [monotonicity #44]: #46
-#50 := [monotonicity #47]: #49
-#85 := [trans #50 #83]: #84
-#38 := [asserted]: #18
-#86 := [mp #38 #85]: #71
-#133 := [mp~ #86 #104]: #102
-#389 := (not #102)
-#596 := (or #259 #389)
-#270 := [th-lemma arith farkas 1 1]: #596
-#271 := [unit-resolution #270 #133]: #259
-#603 := [hypothesis]: #284
-#605 := (or #604 #602)
-#606 := [th-lemma arith triangle-eq]: #605
-#601 := [unit-resolution #606 #603 #271]: false
-#607 := [lemma #601]: #604
-#286 := (or z3name!0 #284)
-#265 := [def-axiom]: #286
-#574 := [unit-resolution #265 #607]: z3name!0
-decl ?v0!1 :: Int
-#115 := ?v0!1
-#118 := (<= ?v0!1 0::Int)
-#119 := (not #118)
-#116 := (>= ?v0!1 0::Int)
-#117 := (not #116)
-#120 := (or #117 #119)
-#121 := (not #120)
-#126 := (or z3name!0 #121)
-#129 := (and #94 #126)
-#130 := (~ #89 #129)
-#127 := (~ #88 #126)
-#122 := (~ #95 #121)
-#123 := [sk]: #122
-#113 := (~ z3name!0 z3name!0)
-#114 := [refl]: #113
-#128 := [monotonicity #114 #123]: #127
-#111 := (~ #94 #94)
-#109 := (~ #62 #62)
-#107 := (~ #59 #59)
-#108 := [refl]: #107
-#110 := [nnf-pos #108]: #109
-#105 := (~ #93 #93)
-#106 := [refl]: #105
-#112 := [monotonicity #106 #110]: #111
-#131 := [monotonicity #112 #128]: #130
-#132 := [mp~ #96 #131]: #129
-#136 := [and-elim #132]: #94
-#563 := [unit-resolution #136 #574]: #62
-[unit-resolution #563 #570]: false
-unsat
-8a78832884e41117489fba88c88de0b5cacb832a 143 0
-#2 := false
-#10 := 0::Int
-#8 := (:var 0 Int)
-#68 := (<= #8 0::Int)
-#69 := (not #68)
-#146 := (not false)
-#149 := (or #146 #69)
-#152 := (not #149)
-#155 := (forall (vars (?v0 Int)) #152)
-#182 := (iff #155 false)
-#177 := (forall (vars (?v0 Int)) false)
-#180 := (iff #177 false)
-#181 := [elim-unused]: #180
-#178 := (iff #155 #177)
-#175 := (iff #152 false)
-#1 := true
-#170 := (not true)
-#173 := (iff #170 false)
-#174 := [rewrite]: #173
-#171 := (iff #152 #170)
-#168 := (iff #149 true)
-#163 := (or true #69)
-#166 := (iff #163 true)
-#167 := [rewrite]: #166
-#164 := (iff #149 #163)
-#161 := (iff #146 true)
-#162 := [rewrite]: #161
-#165 := [monotonicity #162]: #164
-#169 := [trans #165 #167]: #168
-#172 := [monotonicity #169]: #171
-#176 := [trans #172 #174]: #175
-#179 := [quant-intro #176]: #178
-#183 := [trans #179 #181]: #182
-#59 := -1::Int
-#60 := (* -1::Int #8)
-#7 := (:var 1 Int)
-#61 := (+ #7 #60)
-#62 := (<= #61 0::Int)
-#65 := (not #62)
-#72 := (or #65 #69)
-#75 := (forall (vars (?v1 Int)) #72)
-#78 := (not #75)
-#81 := (or #78 #69)
-#107 := (not #81)
-#125 := (forall (vars (?v0 Int)) #107)
-#158 := (iff #125 #155)
-#129 := (forall (vars (?v1 Int)) #69)
-#132 := (not #129)
-#135 := (or #132 #69)
-#138 := (not #135)
-#141 := (forall (vars (?v0 Int)) #138)
-#156 := (iff #141 #155)
-#157 := [rewrite]: #156
-#142 := (iff #125 #141)
-#143 := [rewrite]: #142
-#159 := [trans #143 #157]: #158
-#118 := (and #75 #68)
-#121 := (forall (vars (?v0 Int)) #118)
-#126 := (iff #121 #125)
-#115 := (iff #118 #107)
-#124 := [rewrite]: #115
-#127 := [quant-intro #124]: #126
-#103 := (not #69)
-#106 := (and #75 #103)
-#110 := (forall (vars (?v0 Int)) #106)
-#122 := (iff #110 #121)
-#119 := (iff #106 #118)
-#116 := (iff #103 #68)
-#117 := [rewrite]: #116
-#120 := [monotonicity #117]: #119
-#123 := [quant-intro #120]: #122
-#84 := (exists (vars (?v0 Int)) #81)
-#87 := (not #84)
-#111 := (~ #87 #110)
-#108 := (~ #107 #106)
-#104 := (~ #103 #103)
-#105 := [refl]: #104
-#94 := (not #78)
-#95 := (~ #94 #75)
-#100 := (~ #75 #75)
-#98 := (~ #72 #72)
-#99 := [refl]: #98
-#101 := [nnf-pos #99]: #100
-#102 := [nnf-neg #101]: #95
-#109 := [nnf-neg #102 #105]: #108
-#112 := [nnf-neg #109]: #111
-#11 := (< 0::Int #8)
-#9 := (<= #7 #8)
-#12 := (implies #9 #11)
-#13 := (forall (vars (?v1 Int)) #12)
-#14 := (implies #13 #11)
-#15 := (exists (vars (?v0 Int)) #14)
-#16 := (not #15)
-#90 := (iff #16 #87)
-#37 := (not #9)
-#38 := (or #37 #11)
-#41 := (forall (vars (?v1 Int)) #38)
-#47 := (not #41)
-#48 := (or #47 #11)
-#53 := (exists (vars (?v0 Int)) #48)
-#56 := (not #53)
-#88 := (iff #56 #87)
-#85 := (iff #53 #84)
-#82 := (iff #48 #81)
-#70 := (iff #11 #69)
-#71 := [rewrite]: #70
-#79 := (iff #47 #78)
-#76 := (iff #41 #75)
-#73 := (iff #38 #72)
-#66 := (iff #37 #65)
-#63 := (iff #9 #62)
-#64 := [rewrite]: #63
-#67 := [monotonicity #64]: #66
-#74 := [monotonicity #67 #71]: #73
-#77 := [quant-intro #74]: #76
-#80 := [monotonicity #77]: #79
-#83 := [monotonicity #80 #71]: #82
-#86 := [quant-intro #83]: #85
-#89 := [monotonicity #86]: #88
-#57 := (iff #16 #56)
-#54 := (iff #15 #53)
-#51 := (iff #14 #48)
-#44 := (implies #41 #11)
-#49 := (iff #44 #48)
-#50 := [rewrite]: #49
-#45 := (iff #14 #44)
-#42 := (iff #13 #41)
-#39 := (iff #12 #38)
-#40 := [rewrite]: #39
-#43 := [quant-intro #40]: #42
-#46 := [monotonicity #43]: #45
-#52 := [trans #46 #50]: #51
-#55 := [quant-intro #52]: #54
-#58 := [monotonicity #55]: #57
-#91 := [trans #58 #89]: #90
-#36 := [asserted]: #16
-#92 := [mp #36 #91]: #87
-#113 := [mp~ #92 #112]: #110
-#114 := [mp #113 #123]: #121
-#128 := [mp #114 #127]: #125
-#160 := [mp #128 #159]: #155
-[mp #160 #183]: false
-unsat
--- a/src/HOL/SMT_Examples/SMT_Examples.certs2	Fri Apr 25 22:13:17 2014 +0200
+++ b/src/HOL/SMT_Examples/SMT_Examples.certs2	Fri Apr 25 22:13:17 2014 +0200
@@ -1,2288 +1,3107 @@
-7a16ef230bca5702aa346494226903ec25809d32 6 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((@x28 (rewrite (= (not true) false))))
-(mp (asserted (not true)) @x28 false))))
-
-27731fc512042f0ea1785a47796a8bfd64c4a8cf 7 0
+6ef15d5757e12551f288742c4dce61fbb4a48e2d 9 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((@x34 (monotonicity (rewrite (= (or |p$| (not |p$|)) true)) (= (not (or |p$| (not |p$|))) (not true)))))
-(let ((@x38 (trans @x34 (rewrite (= (not true) false)) (= (not (or |p$| (not |p$|))) false))))
-(mp (asserted (not (or |p$| (not |p$|)))) @x38 false)))))
+(let ((@x36 (monotonicity (rewrite (= (and p$ true) p$)) (= (= (and p$ true) p$) (= p$ p$)))))
+(let ((@x40 (trans @x36 (rewrite (= (= p$ p$) true)) (= (= (and p$ true) p$) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= (and p$ true) p$)) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= (and p$ true) p$)) false))))
+(mp (asserted (not (= (and p$ true) p$))) @x47 false)))))))
 
-5330fb77bfecb903300c8a50f577df102088abaa 9 0
+d23c7684cffd678dfbdd7b614197ecef170e9b21 6 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((@x34 (monotonicity (rewrite (= (and |p$| true) |p$|)) (= (= (and |p$| true) |p$|) (= |p$| |p$|)))))
-(let ((@x38 (trans @x34 (rewrite (= (= |p$| |p$|) true)) (= (= (and |p$| true) |p$|) true))))
-(let ((@x41 (monotonicity @x38 (= (not (= (and |p$| true) |p$|)) (not true)))))
-(let ((@x45 (trans @x41 (rewrite (= (not true) false)) (= (not (= (and |p$| true) |p$|)) false))))
-(mp (asserted (not (= (and |p$| true) |p$|))) @x45 false)))))))
+(let ((@x30 (rewrite (= (not true) false))))
+(mp (asserted (not true)) @x30 false))))
 
-c2e74b12f4c731d0ea3ac811d94ac5a723029e93 13 0
+85938d4e39bdd250fc7d6d1310c58a831798d91d 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x36 (monotonicity (rewrite (= (or p$ (not p$)) true)) (= (not (or p$ (not p$))) (not true)))))
+(let ((@x40 (trans @x36 (rewrite (= (not true) false)) (= (not (or p$ (not p$))) false))))
+(mp (asserted (not (or p$ (not p$)))) @x40 false)))))
+
+11b5ff41fb5050714ac35f86f3cf14c21ab6bd0f 23 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x8 (not |p$|)))
-(let (($x7 (or |p$| |q$|)))
-(let (($x9 (and $x7 $x8)))
-(let ((@x39 (monotonicity (rewrite (= (=> $x9 |q$|) (or (not $x9) |q$|))) (= (not (=> $x9 |q$|)) (not (or (not $x9) |q$|))))))
-(let ((@x40 (|not-or-elim| (mp (asserted (not (=> $x9 |q$|))) @x39 (not (or (not $x9) |q$|))) $x9)))
-(let ((@x43 (|and-elim| @x40 $x8)))
-(let ((@x45 (|not-or-elim| (mp (asserted (not (=> $x9 |q$|))) @x39 (not (or (not $x9) |q$|))) (not |q$|))))
-(let ((@x41 (|and-elim| @x40 $x7)))
-(|unit-resolution| @x41 @x45 @x43 false)))))))))))
+(let (($x33 (and p1$ p3$)))
+(let (($x32 (and p3$ p2$)))
+(let (($x34 (or $x32 $x33)))
+(let (($x35 (=> p1$ $x34)))
+(let (($x36 (or $x35 p1$)))
+(let (($x29 (and p1$ p2$)))
+(let (($x31 (or $x29 p3$)))
+(let (($x37 (=> $x31 $x36)))
+(let (($x38 (not $x37)))
+(let (($x40 (not p1$)))
+(let (($x41 (or $x40 $x34)))
+(let (($x44 (or $x41 p1$)))
+(let (($x50 (not $x31)))
+(let (($x51 (or $x50 $x44)))
+(let (($x56 (not $x51)))
+(let ((@x67 (trans (monotonicity (rewrite (= $x51 true)) (= $x56 (not true))) (rewrite (= (not true) false)) (= $x56 false))))
+(let ((@x49 (monotonicity (monotonicity (rewrite (= $x35 $x41)) (= $x36 $x44)) (= $x37 (=> $x31 $x44)))))
+(let ((@x58 (monotonicity (trans @x49 (rewrite (= (=> $x31 $x44) $x51)) (= $x37 $x51)) (= $x38 $x56))))
+(mp (asserted $x38) (trans @x58 @x67 (= $x38 false)) false)))))))))))))))))))))
 
-800409db22b453674c1b66520bda2d5bafbf81b4 11 0
+09401881a11dd403572091d4efe07f044e1df713 13 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x10 (and |c$| |d$|)))
-(let (($x7 (and |a$| |b$|)))
-(let (($x11 (or $x7 $x10)))
-(let (($x12 (=> $x11 $x11)))
-(let (($x13 (not $x12)))
-(let ((@x43 (trans (monotonicity (rewrite (= $x12 true)) (= $x13 (not true))) (rewrite (= (not true) false)) (= $x13 false))))
-(mp (asserted $x13) @x43 false)))))))))
+(let (($x33 (not (=> (and (or p$ q$) (not p$)) q$))))
+(let (($x37 (= (=> (and (or p$ q$) (not p$)) q$) (or (not (and (or p$ q$) (not p$))) q$))))
+(let ((@x41 (monotonicity (rewrite $x37) (= $x33 (not (or (not (and (or p$ q$) (not p$))) q$))))))
+(let ((@x44 (mp (asserted $x33) @x41 (not (or (not (and (or p$ q$) (not p$))) q$)))))
+(let ((@x45 (and-elim (not-or-elim @x44 (and (or p$ q$) (not p$))) (not p$))))
+(let ((@x54 (monotonicity (iff-false @x45 (= p$ false)) (iff-false (not-or-elim @x44 (not q$)) (= q$ false)) (= (or p$ q$) (or false false)))))
+(let ((@x58 (trans @x54 (rewrite (= (or false false) false)) (= (or p$ q$) false))))
+(let (($x29 (or p$ q$)))
+(mp (and-elim (not-or-elim @x44 (and $x29 (not p$))) $x29) @x58 false)))))))))))
 
-8ba22a36afac456bfdc7db71e8b371143686dc86 23 0
+a4d516e1422eb475560be574681f28b06985be50 11 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x11 (and |p1$| |p3$|)))
-(let (($x10 (and |p3$| |p2$|)))
-(let (($x12 (or $x10 $x11)))
-(let (($x13 (=> |p1$| $x12)))
-(let (($x14 (or $x13 |p1$|)))
-(let (($x7 (and |p1$| |p2$|)))
-(let (($x9 (or $x7 |p3$|)))
-(let (($x15 (=> $x9 $x14)))
-(let (($x16 (not $x15)))
-(let (($x38 (not |p1$|)))
-(let (($x39 (or $x38 $x12)))
-(let (($x42 (or $x39 |p1$|)))
-(let (($x48 (not $x9)))
-(let (($x49 (or $x48 $x42)))
-(let (($x54 (not $x49)))
-(let ((@x65 (trans (monotonicity (rewrite (= $x49 true)) (= $x54 (not true))) (rewrite (= (not true) false)) (= $x54 false))))
-(let ((@x47 (monotonicity (monotonicity (rewrite (= $x13 $x39)) (= $x14 $x42)) (= $x15 (=> $x9 $x42)))))
-(let ((@x56 (monotonicity (trans @x47 (rewrite (= (=> $x9 $x42) $x49)) (= $x15 $x49)) (= $x16 $x54))))
-(mp (asserted $x16) (trans @x56 @x65 (= $x16 false)) false)))))))))))))))))))))
+(let (($x32 (and c$ d$)))
+(let (($x29 (and a$ b$)))
+(let (($x33 (or $x29 $x32)))
+(let (($x34 (=> $x33 $x33)))
+(let (($x35 (not $x34)))
+(let ((@x45 (trans (monotonicity (rewrite (= $x34 true)) (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
+(mp (asserted $x35) @x45 false)))))))))
 
-9d0d2643780c0052a3bf06c1fd96112084da5890 24 0
+f900e7bf7b793a5fde805469aaa724607533e84e 24 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x6 (= |p$| |p$|)))
-(let (($x7 (= $x6 |p$|)))
-(let (($x8 (= $x7 |p$|)))
-(let (($x9 (= $x8 |p$|)))
-(let (($x10 (= $x9 |p$|)))
-(let (($x11 (= $x10 |p$|)))
-(let (($x12 (= $x11 |p$|)))
-(let (($x13 (= $x12 |p$|)))
-(let (($x14 (= $x13 |p$|)))
-(let (($x15 (not $x14)))
-(let ((@x38 (rewrite (= $x6 true))))
-(let ((@x43 (rewrite (= (= true |p$|) |p$|))))
-(let ((@x45 (trans (monotonicity @x38 (= $x7 (= true |p$|))) @x43 (= $x7 |p$|))))
-(let ((@x51 (monotonicity (trans (monotonicity @x45 (= $x8 $x6)) @x38 (= $x8 true)) (= $x9 (= true |p$|)))))
-(let ((@x57 (trans (monotonicity (trans @x51 @x43 (= $x9 |p$|)) (= $x10 $x6)) @x38 (= $x10 true))))
-(let ((@x61 (trans (monotonicity @x57 (= $x11 (= true |p$|))) @x43 (= $x11 |p$|))))
-(let ((@x67 (monotonicity (trans (monotonicity @x61 (= $x12 $x6)) @x38 (= $x12 true)) (= $x13 (= true |p$|)))))
-(let ((@x73 (trans (monotonicity (trans @x67 @x43 (= $x13 |p$|)) (= $x14 $x6)) @x38 (= $x14 true))))
-(let ((@x80 (trans (monotonicity @x73 (= $x15 (not true))) (rewrite (= (not true) false)) (= $x15 false))))
-(mp (asserted $x15) @x80 false))))))))))))))))))))))
+(let (($x28 (= p$ p$)))
+(let (($x29 (= $x28 p$)))
+(let (($x30 (= $x29 p$)))
+(let (($x31 (= $x30 p$)))
+(let (($x32 (= $x31 p$)))
+(let (($x33 (= $x32 p$)))
+(let (($x34 (= $x33 p$)))
+(let (($x35 (= $x34 p$)))
+(let (($x36 (= $x35 p$)))
+(let (($x37 (not $x36)))
+(let ((@x40 (rewrite (= $x28 true))))
+(let ((@x45 (rewrite (= (= true p$) p$))))
+(let ((@x47 (trans (monotonicity @x40 (= $x29 (= true p$))) @x45 (= $x29 p$))))
+(let ((@x53 (monotonicity (trans (monotonicity @x47 (= $x30 $x28)) @x40 (= $x30 true)) (= $x31 (= true p$)))))
+(let ((@x59 (trans (monotonicity (trans @x53 @x45 (= $x31 p$)) (= $x32 $x28)) @x40 (= $x32 true))))
+(let ((@x63 (trans (monotonicity @x59 (= $x33 (= true p$))) @x45 (= $x33 p$))))
+(let ((@x69 (monotonicity (trans (monotonicity @x63 (= $x34 $x28)) @x40 (= $x34 true)) (= $x35 (= true p$)))))
+(let ((@x75 (trans (monotonicity (trans @x69 @x45 (= $x35 p$)) (= $x36 $x28)) @x40 (= $x36 true))))
+(let ((@x82 (trans (monotonicity @x75 (= $x37 (not true))) (rewrite (= (not true) false)) (= $x37 false))))
+(mp (asserted $x37) @x82 false))))))))))))))))))))))
 
-63439e1fd6656fc5a2376d7e5f00d0dd92c536a2 34 0
+c6e2ff75bf3674f3670b76a57974bcdbe3b2e34a 39 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x98 (not |b$|)))
-(let (($x17 (not |c$|)))
-(let (($x36 (or |p$| (and |q$| (not |q$|)))))
-(let (($x37 (and (not |p$|) $x36)))
-(let (($x38 (or |c$| $x37)))
-(let (($x39 (not $x38)))
-(let ((@x120 (monotonicity (rewrite (= (and |q$| (not |q$|)) false)) (= $x36 (or |p$| false)))))
-(let ((@x127 (monotonicity (trans @x120 (rewrite (= (or |p$| false) |p$|)) (= $x36 |p$|)) (= $x37 (and (not |p$|) |p$|)))))
-(let ((@x131 (trans @x127 (rewrite (= (and (not |p$|) |p$|) false)) (= $x37 false))))
-(let ((@x138 (trans (monotonicity @x131 (= $x38 (or |c$| false))) (rewrite (= (or |c$| false) |c$|)) (= $x38 |c$|))))
-(let ((@x143 (mp (asserted $x39) (monotonicity @x138 (= $x39 $x17)) $x17)))
-(let (($x101 (or $x98 |c$|)))
-(let ((@x93 (monotonicity (rewrite (= (or |x$| (not |x$|)) true)) (= (and |b$| (or |x$| (not |x$|))) (and |b$| true)))))
-(let ((@x97 (trans @x93 (rewrite (= (and |b$| true) |b$|)) (= (and |b$| (or |x$| (not |x$|))) |b$|))))
-(let ((@x103 (monotonicity (monotonicity @x97 (= (not (and |b$| (or |x$| (not |x$|)))) $x98)) (= (or (not (and |b$| (or |x$| (not |x$|)))) |c$|) $x101))))
-(let ((@x106 (mp (asserted (or (not (and |b$| (or |x$| (not |x$|)))) |c$|)) @x103 $x101)))
-(let (($x108 (not |d$|)))
-(let (($x111 (or $x108 |c$|)))
-(let ((@x110 (monotonicity (rewrite (= (or |d$| false) |d$|)) (= (not (or |d$| false)) $x108))))
-(let ((@x116 (mp (asserted (or (not (or |d$| false)) |c$|)) (monotonicity @x110 (= (or (not (or |d$| false)) |c$|) $x111)) $x111)))
-(let (($x64 (or |a$| |b$| |c$| |d$|)))
-(let ((@x67 (mp (asserted (or |a$| (or |b$| (or |c$| |d$|)))) (rewrite (= (or |a$| (or |b$| (or |c$| |d$|))) $x64)) $x64)))
-(let ((@x160 (|unit-resolution| @x67 (|unit-resolution| @x106 @x143 $x98) @x143 (|unit-resolution| @x116 @x143 $x108) |a$|)))
-(let (($x81 (not |a$|)))
-(let (($x84 (or $x81 |b$|)))
-(let ((@x76 (monotonicity (rewrite (= (and |c$| $x17) false)) (= (or |a$| (and |c$| $x17)) (or |a$| false)))))
-(let ((@x80 (trans @x76 (rewrite (= (or |a$| false) |a$|)) (= (or |a$| (and |c$| $x17)) |a$|))))
-(let ((@x86 (monotonicity (monotonicity @x80 (= (not (or |a$| (and |c$| $x17))) $x81)) (= (or (not (or |a$| (and |c$| $x17))) |b$|) $x84))))
-(let ((@x89 (mp (asserted (or (not (or |a$| (and |c$| $x17))) |b$|)) @x86 $x84)))
-(|unit-resolution| @x89 @x160 (|unit-resolution| @x106 @x143 $x98) false))))))))))))))))))))))))))))))))
+(let (($x100 (not d$)))
+(let (($x45 (not c$)))
+(let (($x112 (or p$ (and q$ (not q$)))))
+(let (($x113 (and (not p$) $x112)))
+(let (($x114 (or c$ $x113)))
+(let (($x115 (not $x114)))
+(let ((@x121 (monotonicity (rewrite (= (and q$ (not q$)) false)) (= $x112 (or p$ false)))))
+(let ((@x128 (monotonicity (trans @x121 (rewrite (= (or p$ false) p$)) (= $x112 p$)) (= $x113 (and (not p$) p$)))))
+(let ((@x132 (trans @x128 (rewrite (= (and (not p$) p$) false)) (= $x113 false))))
+(let ((@x139 (trans (monotonicity @x132 (= $x114 (or c$ false))) (rewrite (= (or c$ false) c$)) (= $x114 c$))))
+(let ((@x153 (iff-false (mp (asserted $x115) (monotonicity @x139 (= $x115 $x45)) $x45) (= c$ false))))
+(let ((@x147 (trans (monotonicity @x153 (= (or $x100 c$) (or $x100 false))) (rewrite (= (or $x100 false) $x100)) (= (or $x100 c$) $x100))))
+(let (($x103 (or $x100 c$)))
+(let ((@x102 (monotonicity (rewrite (= (or d$ false) d$)) (= (not (or d$ false)) $x100))))
+(let ((@x108 (mp (asserted (or (not (or d$ false)) c$)) (monotonicity @x102 (= (or (not (or d$ false)) c$) $x103)) $x103)))
+(let (($x87 (not b$)))
+(let ((@x164 (trans (monotonicity @x153 (= (or $x87 c$) (or $x87 false))) (rewrite (= (or $x87 false) $x87)) (= (or $x87 c$) $x87))))
+(let (($x90 (or $x87 c$)))
+(let ((@x82 (monotonicity (rewrite (= (or x$ (not x$)) true)) (= (and b$ (or x$ (not x$))) (and b$ true)))))
+(let ((@x86 (trans @x82 (rewrite (= (and b$ true) b$)) (= (and b$ (or x$ (not x$))) b$))))
+(let ((@x92 (monotonicity (monotonicity @x86 (= (not (and b$ (or x$ (not x$)))) $x87)) (= (or (not (and b$ (or x$ (not x$)))) c$) $x90))))
+(let ((@x95 (mp (asserted (or (not (and b$ (or x$ (not x$)))) c$)) @x92 $x90)))
+(let (($x64 (not a$)))
+(let ((@x170 (monotonicity (iff-false (mp @x95 @x164 $x87) (= b$ false)) (= (or $x64 b$) (or $x64 false)))))
+(let ((@x174 (trans @x170 (rewrite (= (or $x64 false) $x64)) (= (or $x64 b$) $x64))))
+(let (($x67 (or $x64 b$)))
+(let ((@x59 (monotonicity (rewrite (= (and c$ $x45) false)) (= (or a$ (and c$ $x45)) (or a$ false)))))
+(let ((@x63 (trans @x59 (rewrite (= (or a$ false) a$)) (= (or a$ (and c$ $x45)) a$))))
+(let ((@x69 (monotonicity (monotonicity @x63 (= (not (or a$ (and c$ $x45))) $x64)) (= (or (not (or a$ (and c$ $x45))) b$) $x67))))
+(let ((@x175 (mp (mp (asserted (or (not (or a$ (and c$ $x45))) b$)) @x69 $x67) @x174 $x64)))
+(let ((@x198 (monotonicity (iff-false @x175 (= a$ false)) (iff-false (mp @x95 @x164 $x87) (= b$ false)) @x153 (iff-false (mp @x108 @x147 $x100) (= d$ false)) (= (or a$ b$ c$ d$) (or false false false false)))))
+(let ((@x202 (trans @x198 (rewrite (= (or false false false false) false)) (= (or a$ b$ c$ d$) false))))
+(let (($x37 (or a$ b$ c$ d$)))
+(let ((@x40 (mp (asserted (or a$ (or b$ (or c$ d$)))) (rewrite (= (or a$ (or b$ (or c$ d$))) $x37)) $x37)))
+(mp @x40 @x202 false)))))))))))))))))))))))))))))))))))))
 
-c1a1d5a3f58100ecdaa72705a063eeccc5044c46 27 0
+37c8cbfd0b65b6e0dbafd0d63335000db1e88a45 27 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x15 (|symm_f$| |b$| |a$|)))
-(let ((?x14 (|symm_f$| |a$| |b$|)))
-(let (($x16 (= ?x14 ?x15)))
-(let (($x50 (not $x16)))
-(let ((@x45 (monotonicity (rewrite (= (= |a$| |a$|) true)) (= (and (= |a$| |a$|) $x16) (and true $x16)))))
-(let ((@x49 (trans @x45 (rewrite (= (and true $x16) $x16)) (= (and (= |a$| |a$|) $x16) $x16))))
-(let ((@x55 (mp (asserted (not (and (= |a$| |a$|) $x16))) (monotonicity @x49 (= (not (and (= |a$| |a$|) $x16)) $x50)) $x50)))
-(let (($x59 (forall ((?v0 |A$|) (?v1 |A$|) )(!(let ((?x8 (|symm_f$| ?v1 ?v0)))
-(let ((?x7 (|symm_f$| ?v0 ?v1)))
-(= ?x7 ?x8))) :pattern ( (|symm_f$| ?v0 ?v1) ) :pattern ( (|symm_f$| ?v1 ?v0) )))
-))
-(let (($x10 (forall ((?v0 |A$|) (?v1 |A$|) )(let ((?x8 (|symm_f$| ?v1 ?v0)))
-(let ((?x7 (|symm_f$| ?v0 ?v1)))
-(= ?x7 ?x8))))
-))
-(let ((?x8 (|symm_f$| ?0 ?1)))
-(let ((?x7 (|symm_f$| ?1 ?0)))
-(let (($x9 (= ?x7 ?x8)))
-(let ((@x58 (|mp~| (asserted $x10) (|nnf-pos| (refl (|~| $x9 $x9)) (|~| $x10 $x10)) $x10)))
-(let ((@x66 (mp @x58 (|quant-intro| (refl (= $x9 $x9)) (= $x10 $x59)) $x59)))
-(let (($x70 (or (not $x59) $x16)))
-(let ((@x71 ((_ |quant-inst| |a$| |b$|) $x70)))
-(|unit-resolution| @x71 @x66 @x55 false)))))))))))))))))))
+(let ((?x38 (symm_f$ b$ a$)))
+(let ((?x37 (symm_f$ a$ b$)))
+(let (($x39 (= ?x37 ?x38)))
+(let (($x52 (not $x39)))
+(let ((@x47 (monotonicity (rewrite (= (= a$ a$) true)) (= (and (= a$ a$) $x39) (and true $x39)))))
+(let ((@x51 (trans @x47 (rewrite (= (and true $x39) $x39)) (= (and (= a$ a$) $x39) $x39))))
+(let ((@x57 (mp (asserted (not (and (= a$ a$) $x39))) (monotonicity @x51 (= (not (and (= a$ a$) $x39)) $x52)) $x52)))
+(let (($x480 (forall ((?v0 A$) (?v1 A$) )(!(let ((?x30 (symm_f$ ?v1 ?v0)))
+(let ((?x29 (symm_f$ ?v0 ?v1)))
+(= ?x29 ?x30))) :pattern ( (symm_f$ ?v0 ?v1) ) :pattern ( (symm_f$ ?v1 ?v0) )))
+))
+(let (($x32 (forall ((?v0 A$) (?v1 A$) )(let ((?x30 (symm_f$ ?v1 ?v0)))
+(let ((?x29 (symm_f$ ?v0 ?v1)))
+(= ?x29 ?x30))))
+))
+(let ((?x30 (symm_f$ ?0 ?1)))
+(let ((?x29 (symm_f$ ?1 ?0)))
+(let (($x31 (= ?x29 ?x30)))
+(let ((@x60 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32)))
+(let ((@x485 (mp @x60 (quant-intro (refl (= $x31 $x31)) (= $x32 $x480)) $x480)))
+(let (($x149 (or (not $x480) $x39)))
+(let ((@x61 ((_ quant-inst a$ b$) $x149)))
+(unit-resolution @x61 @x485 @x57 false)))))))))))))))))))
 
-d1ba851b4b433507a4e12ae0555630bd23204076 38 0
+c107a75e14d611a8e5d82479c10abfc46dd5c755 38 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v0!0 () Int)
 (declare-fun ?v1!1 () Int)
 (proof
-(let (($x46 (|p$| ?v0!0)))
-(let (($x48 (not $x46)))
-(let (($x61 (not (or $x46 (|p$| ?v1!1)))))
-(let ((@x77 (monotonicity (rewrite (= (not $x48) $x46)) (= (and (not $x48) $x61) (and $x46 $x61)))))
-(let (($x55 (not $x48)))
-(let (($x65 (and $x55 $x61)))
-(let (($x39 (forall ((?v0 Int) )(let (($x10 (forall ((?v1 Int) )(let (($x6 (|p$| ?v1)))
-(or (|p$| ?v0) $x6)))
-))
-(or (not (|p$| ?v0)) $x10)))
-))
-(let (($x42 (not $x39)))
-(let (($x50 (forall ((?v1 Int) )(let (($x6 (|p$| ?v1)))
-(let (($x46 (|p$| ?v0!0)))
-(or $x46 $x6))))
-))
-(let ((@x67 (|nnf-neg| (refl (|~| $x55 $x55)) (sk (|~| (not $x50) $x61)) (|~| (not (or $x48 $x50)) $x65))))
-(let (($x12 (forall ((?v0 Int) )(let (($x10 (forall ((?v1 Int) )(let (($x6 (|p$| ?v1)))
-(or (|p$| ?v0) $x6)))
-))
-(let (($x6 (|p$| ?v0)))
-(=> $x6 $x10))))
-))
-(let (($x13 (not $x12)))
-(let (($x10 (forall ((?v1 Int) )(let (($x6 (|p$| ?v1)))
-(or (|p$| ?0) $x6)))
-))
-(let ((@x41 (|quant-intro| (rewrite (= (=> (|p$| ?0) $x10) (or (not (|p$| ?0)) $x10))) (= $x12 $x39))))
-(let ((@x70 (|mp~| (mp (asserted $x13) (monotonicity @x41 (= $x13 $x42)) $x42) (trans (sk (|~| $x42 (not (or $x48 $x50)))) @x67 (|~| $x42 $x65)) $x65)))
-(let ((@x79 (|not-or-elim| (|and-elim| (mp @x70 @x77 (and $x46 $x61)) $x61) $x48)))
-(let ((@x72 (|and-elim| (mp @x70 @x77 (and $x46 $x61)) $x46)))
-(|unit-resolution| @x72 @x79 false))))))))))))))))))))
-
-19f6b54cdb476573f91d167cec6fca10e0e66fc7 27 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let (($x72 (forall ((?v0 |A$|) )(!(let (($x8 (|p$| ?v0)))
-(not $x8)) :pattern ( (|p$| ?v0) )))
-))
-(let (($x6 (|p$| |x$|)))
-(let ((@x46 (monotonicity (rewrite (= (=> $x6 (|p$| |y$|)) (or (not $x6) (|p$| |y$|)))) (= (not (=> $x6 (|p$| |y$|))) (not (or (not $x6) (|p$| |y$|)))))))
-(let ((@x49 (mp (asserted (not (=> $x6 (|p$| |y$|)))) @x46 (not (or (not $x6) (|p$| |y$|))))))
-(let ((@x47 (|not-or-elim| @x49 $x6)))
-(let (($x40 (not $x6)))
-(let (($x75 (or $x40 $x72)))
-(let (($x12 (forall ((?v0 |A$|) )(let (($x8 (|p$| ?v0)))
-(not $x8)))
-))
-(let (($x62 (or $x40 $x12)))
-(let ((@x74 (|quant-intro| (refl (= (not (|p$| ?0)) (not (|p$| ?0)))) (= $x12 $x72))))
-(let (($x9 (exists ((?v0 |A$|) )(|p$| ?v0))
-))
-(let (($x13 (ite $x6 (not $x9) $x12)))
-(let ((@x58 (|nnf-neg| (refl (|~| (not (|p$| ?0)) (not (|p$| ?0)))) (|~| (not $x9) $x12))))
-(let ((@x65 (|nnf-pos| (refl (|~| $x6 $x6)) (refl (|~| $x40 $x40)) @x58 (|nnf-pos| (refl (|~| (not (|p$| ?0)) (not (|p$| ?0)))) (|~| $x12 $x12)) (|~| $x13 (and $x62 (or $x6 $x12))))))
-(let ((@x78 (mp (|and-elim| (|mp~| (asserted $x13) @x65 (and $x62 (or $x6 $x12))) $x62) (monotonicity @x74 (= $x62 $x75)) $x75)))
-(let (($x86 (or (not $x72) $x40)))
-(let ((@x87 ((_ |quant-inst| |x$|) $x86)))
-(|unit-resolution| @x87 @x47 (|unit-resolution| @x78 @x47 $x72) false))))))))))))))))))))
-
-e86ca8427589ec8e24e5a85d218331bfb59ff385 7 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((@x33 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true)))))
-(let ((@x37 (trans @x33 (rewrite (= (not true) false)) (= (not (= 3 3)) false))))
-(mp (asserted (not (= 3 3))) @x37 false)))))
-
-77108fa1aa6a8a356ebdd1a376316f26d90399cb 7 0
-unsat
-((set-logic AUFLIRA)
-(proof
-(let ((@x33 (monotonicity (rewrite (= (= 3.0 3.0) true)) (= (not (= 3.0 3.0)) (not true)))))
-(let ((@x37 (trans @x33 (rewrite (= (not true) false)) (= (not (= 3.0 3.0)) false))))
-(mp (asserted (not (= 3.0 3.0))) @x37 false)))))
-
-98abe835b7d13273c58720c5dadf713cd8637495 9 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((@x35 (monotonicity (rewrite (= (+ 3 1) 4)) (= (= (+ 3 1) 4) (= 4 4)))))
-(let ((@x39 (trans @x35 (rewrite (= (= 4 4) true)) (= (= (+ 3 1) 4) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (+ 3 1) 4)) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (+ 3 1) 4)) false))))
-(mp (asserted (not (= (+ 3 1) 4))) @x46 false)))))))
-
-0382c7d04a37d9ca60cac3282bc80f6b329ab12f 16 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((?x10 (+ |z$| |x$|)))
-(let ((?x11 (+ |y$| ?x10)))
-(let ((?x8 (+ |y$| |z$|)))
-(let ((?x9 (+ |x$| ?x8)))
-(let (($x12 (= ?x9 ?x11)))
-(let (($x13 (not $x12)))
-(let ((@x43 (monotonicity (rewrite (= ?x10 (+ |x$| |z$|))) (= ?x11 (+ |y$| (+ |x$| |z$|))))))
-(let ((@x47 (trans @x43 (rewrite (= (+ |y$| (+ |x$| |z$|)) (+ |x$| |y$| |z$|))) (= ?x11 (+ |x$| |y$| |z$|)))))
-(let ((@x50 (monotonicity (rewrite (= ?x9 (+ |x$| |y$| |z$|))) @x47 (= $x12 (= (+ |x$| |y$| |z$|) (+ |x$| |y$| |z$|))))))
-(let ((@x54 (trans @x50 (rewrite (= (= (+ |x$| |y$| |z$|) (+ |x$| |y$| |z$|)) true)) (= $x12 true))))
-(let ((@x61 (trans (monotonicity @x54 (= $x13 (not true))) (rewrite (= (not true) false)) (= $x13 false))))
-(mp (asserted $x13) @x61 false))))))))))))))
+(let (($x48 (p$ ?v0!0)))
+(let (($x50 (not $x48)))
+(let (($x64 (not (or $x48 (p$ ?v1!1)))))
+(let ((@x77 (monotonicity (rewrite (= (not $x50) $x48)) (= (and (not $x50) $x64) (and $x48 $x64)))))
+(let (($x57 (not $x50)))
+(let (($x67 (and $x57 $x64)))
+(let (($x41 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
+(or (p$ ?v0) $x28)))
+))
+(or (not (p$ ?v0)) $x32)))
+))
+(let (($x44 (not $x41)))
+(let (($x52 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
+(let (($x48 (p$ ?v0!0)))
+(or $x48 $x28))))
+))
+(let ((@x69 (nnf-neg (refl (~ $x57 $x57)) (sk (~ (not $x52) $x64)) (~ (not (or $x50 $x52)) $x67))))
+(let (($x34 (forall ((?v0 Int) )(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
+(or (p$ ?v0) $x28)))
+))
+(let (($x28 (p$ ?v0)))
+(=> $x28 $x32))))
+))
+(let (($x35 (not $x34)))
+(let (($x32 (forall ((?v1 Int) )(let (($x28 (p$ ?v1)))
+(or (p$ ?0) $x28)))
+))
+(let ((@x43 (quant-intro (rewrite (= (=> (p$ ?0) $x32) (or (not (p$ ?0)) $x32))) (= $x34 $x41))))
+(let ((@x72 (mp~ (mp (asserted $x35) (monotonicity @x43 (= $x35 $x44)) $x44) (trans (sk (~ $x44 (not (or $x50 $x52)))) @x69 (~ $x44 $x67)) $x67)))
+(let ((@x81 (not-or-elim (and-elim (mp @x72 @x77 (and $x48 $x64)) $x64) $x50)))
+(let ((@x79 (and-elim (mp @x72 @x77 (and $x48 $x64)) $x48)))
+(unit-resolution @x79 @x81 false))))))))))))))))))))
 
-c608fc7154ce1246a30c68f4d20c1d35cedba663 11 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((@x39 (monotonicity (rewrite (= (<= 3 8) true)) (= (ite (<= 3 8) 8 3) (ite true 8 3)))))
-(let ((@x43 (trans @x39 (rewrite (= (ite true 8 3) 8)) (= (ite (<= 3 8) 8 3) 8))))
-(let ((@x46 (monotonicity @x43 (= (< 5 (ite (<= 3 8) 8 3)) (< 5 8)))))
-(let ((@x50 (trans @x46 (rewrite (= (< 5 8) true)) (= (< 5 (ite (<= 3 8) 8 3)) true))))
-(let ((@x53 (monotonicity @x50 (= (not (< 5 (ite (<= 3 8) 8 3))) (not true)))))
-(let ((@x57 (trans @x53 (rewrite (= (not true) false)) (= (not (< 5 (ite (<= 3 8) 8 3))) false))))
-(mp (asserted (not (< 5 (ite (<= 3 8) 8 3)))) @x57 false)))))))))
-
-4bdd1f2f245666e5db75e9d320ea9e892060d851 88 0
-unsat
-((set-logic AUFLIRA)
-(proof
-(let ((?x42 (* (~ 1.0) |x$|)))
-(let (($x81 (>= |x$| 0.0)))
-(let ((?x88 (ite $x81 |x$| ?x42)))
-(let ((?x111 (* (~ 1.0) ?x88)))
-(let ((?x146 (+ |x$| ?x111)))
-(let (($x147 (<= ?x146 0.0)))
-(let (($x131 (= |x$| ?x88)))
-(let ((?x43 (* (~ 1.0) |y$|)))
-(let ((?x44 (+ ?x42 ?x43)))
-(let ((?x7 (+ |x$| |y$|)))
-(let (($x69 (>= ?x7 0.0)))
-(let ((?x76 (ite $x69 ?x7 ?x44)))
-(let ((?x149 (* (~ 1.0) ?x76)))
-(let ((?x177 (+ ?x44 ?x149)))
-(let (($x179 (>= ?x177 0.0)))
-(let (($x128 (= ?x44 ?x76)))
-(let (($x70 (not $x69)))
-(let (($x93 (>= |y$| 0.0)))
-(let (($x94 (not $x93)))
-(let (($x152 (>= (+ ?x7 ?x149) 0.0)))
-(let (($x127 (= ?x7 ?x76)))
-(let (($x188 (not $x179)))
-(let ((@x159 (hypothesis $x93)))
-(let ((?x100 (ite $x93 |y$| ?x43)))
-(let ((?x112 (* (~ 1.0) ?x100)))
-(let ((?x113 (+ ?x76 ?x111 ?x112)))
-(let (($x114 (<= ?x113 0.0)))
-(let (($x119 (not $x114)))
-(let ((?x18 (+ (ite (< |x$| 0.0) (- |x$|) |x$|) (ite (< |y$| 0.0) (- |y$|) |y$|))))
-(let (($x20 (not (<= (ite (< ?x7 0.0) (- ?x7) ?x7) ?x18))))
-(let (($x15 (< |y$| 0.0)))
-(let ((?x57 (ite $x15 ?x43 |y$|)))
-(let (($x12 (< |x$| 0.0)))
-(let ((?x52 (ite $x12 ?x42 |x$|)))
-(let ((?x60 (+ ?x52 ?x57)))
-(let (($x9 (< ?x7 0.0)))
-(let ((?x47 (ite $x9 ?x44 ?x7)))
-(let (($x63 (<= ?x47 ?x60)))
-(let ((@x104 (trans (monotonicity (rewrite (= $x15 $x94)) (= ?x57 (ite $x94 ?x43 |y$|))) (rewrite (= (ite $x94 ?x43 |y$|) ?x100)) (= ?x57 ?x100))))
-(let ((@x87 (monotonicity (rewrite (= $x12 (not $x81))) (= ?x52 (ite (not $x81) ?x42 |x$|)))))
-(let ((@x92 (trans @x87 (rewrite (= (ite (not $x81) ?x42 |x$|) ?x88)) (= ?x52 ?x88))))
-(let ((@x80 (trans (monotonicity (rewrite (= $x9 $x70)) (= ?x47 (ite $x70 ?x44 ?x7))) (rewrite (= (ite $x70 ?x44 ?x7) ?x76)) (= ?x47 ?x76))))
-(let ((@x110 (monotonicity @x80 (monotonicity @x92 @x104 (= ?x60 (+ ?x88 ?x100))) (= $x63 (<= ?x76 (+ ?x88 ?x100))))))
-(let ((@x118 (trans @x110 (rewrite (= (<= ?x76 (+ ?x88 ?x100)) $x114)) (= $x63 $x114))))
-(let ((@x59 (monotonicity (rewrite (= (- |y$|) ?x43)) (= (ite $x15 (- |y$|) |y$|) ?x57))))
-(let ((@x54 (monotonicity (rewrite (= (- |x$|) ?x42)) (= (ite $x12 (- |x$|) |x$|) ?x52))))
-(let ((@x49 (monotonicity (rewrite (= (- ?x7) ?x44)) (= (ite $x9 (- ?x7) ?x7) ?x47))))
-(let ((@x65 (monotonicity @x49 (monotonicity @x54 @x59 (= ?x18 ?x60)) (= (<= (ite $x9 (- ?x7) ?x7) ?x18) $x63))))
-(let ((@x123 (trans (monotonicity @x65 (= $x20 (not $x63))) (monotonicity @x118 (= (not $x63) $x119)) (= $x20 $x119))))
-(let ((@x124 (mp (asserted $x20) @x123 $x119)))
-(let (($x137 (= |y$| ?x100)))
-(let ((@x172 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x137) (<= (+ |y$| ?x112) 0.0))) (|unit-resolution| (|def-axiom| (or $x94 $x137)) @x159 $x137) (<= (+ |y$| ?x112) 0.0))))
-(let ((?x148 (+ ?x42 ?x111)))
-(let (($x151 (<= ?x148 0.0)))
-(let (($x132 (= ?x42 ?x88)))
-(let (($x82 (not $x81)))
-(let ((@x157 ((_ |th-lemma| arith triangle-eq) (or (not $x131) $x147))))
-(let ((@x158 (|unit-resolution| @x157 (|unit-resolution| (|def-axiom| (or $x82 $x131)) (hypothesis $x81) $x131) $x147)))
-(let ((@x162 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1) (or $x69 $x82 $x94)) (hypothesis $x81) @x159 $x69)))
-(let ((@x126 (|def-axiom| (or $x70 $x127))))
-(let ((@x166 ((_ |th-lemma| arith triangle-eq) (or (not $x127) $x152))))
-(let ((@x173 ((_ |th-lemma| arith farkas 1 -1 -1 1) @x172 (|unit-resolution| @x166 (|unit-resolution| @x126 @x162 $x127) $x152) @x124 @x158 false)))
-(let ((@x136 (|def-axiom| (or $x81 $x132))))
-(let ((@x182 (|unit-resolution| @x136 (|unit-resolution| (lemma @x173 (or $x82 $x94)) @x159 $x82) $x132)))
-(let ((@x187 ((_ |th-lemma| arith farkas 2 -1 -1 1 1) @x159 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x132) $x151)) @x182 $x151) @x172 @x124 (hypothesis $x179) false)))
-(let ((@x196 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x128) $x179)) (hypothesis $x128) (hypothesis $x188) false)))
-(let ((@x197 (lemma @x196 (or (not $x128) $x179))))
-(let ((@x199 (|unit-resolution| @x197 (|unit-resolution| (lemma @x187 (or $x188 $x94)) @x159 $x188) (not $x128))))
-(let ((@x130 (|def-axiom| (or $x69 $x128))))
-(let ((@x202 (|unit-resolution| @x166 (|unit-resolution| @x126 (|unit-resolution| @x130 @x199 $x69) $x127) $x152)))
-(let ((@x203 ((_ |th-lemma| arith farkas 2 1 1 1 1) (|unit-resolution| (lemma @x173 (or $x82 $x94)) @x159 $x82) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x132) $x151)) @x182 $x151) @x172 @x124 @x202 false)))
-(let ((@x204 (lemma @x203 $x94)))
-(let ((@x210 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x81 $x93 $x70)) (hypothesis $x69) @x204 $x81)))
-(let ((@x134 (|def-axiom| (or $x82 $x131))))
-(let ((@x214 (|unit-resolution| @x166 (|unit-resolution| @x126 (hypothesis $x69) $x127) $x152)))
-(let ((?x145 (+ ?x43 ?x112)))
-(let (($x176 (<= ?x145 0.0)))
-(let (($x138 (= ?x43 ?x100)))
-(let ((@x219 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x138) $x176)) (|unit-resolution| (|def-axiom| (or $x93 $x138)) @x204 $x138) $x176)))
-(let ((@x220 ((_ |th-lemma| arith farkas 2 1 1 1 1) @x204 @x219 @x124 @x214 (|unit-resolution| @x157 (|unit-resolution| @x134 @x210 $x131) $x147) false)))
-(let ((@x224 (|unit-resolution| @x197 (|unit-resolution| @x130 (lemma @x220 $x70) $x128) $x179)))
-(let ((@x229 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x132) $x151)) (hypothesis $x132) (lemma ((_ |th-lemma| arith farkas 1 -1 -1 1) @x219 @x124 @x224 (hypothesis $x151) false) (not $x151)) false)))
-(let ((@x232 (|unit-resolution| @x134 (|unit-resolution| @x136 (lemma @x229 (not $x132)) $x81) $x131)))
-((_ |th-lemma| arith farkas -2 1 -1 -1 1) (|unit-resolution| @x136 (lemma @x229 (not $x132)) $x81) @x219 @x124 @x224 (|unit-resolution| @x157 @x232 $x147) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
-
-f8d266138153a7b5a745c746bbb489254a734ae0 16 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let ((?x10 (|p$| true)))
-(let (($x7 (< 2 3)))
-(let (($x8 (ite $x7 true false)))
-(let ((?x9 (|p$| $x8)))
-(let (($x11 (= ?x9 ?x10)))
-(let (($x12 (not $x11)))
-(let ((@x50 (monotonicity (monotonicity (rewrite (= $x7 true)) (= (|p$| $x7) ?x10)) (= (= (|p$| $x7) ?x10) (= ?x10 ?x10)))))
-(let ((@x54 (trans @x50 (rewrite (= (= ?x10 ?x10) true)) (= (= (|p$| $x7) ?x10) true))))
-(let ((@x61 (trans (monotonicity @x54 (= (not (= (|p$| $x7) ?x10)) (not true))) (rewrite (= (not true) false)) (= (not (= (|p$| $x7) ?x10)) false))))
-(let ((@x41 (monotonicity (monotonicity (rewrite (= $x8 $x7)) (= ?x9 (|p$| $x7))) (= $x11 (= (|p$| $x7) ?x10)))))
-(let ((@x44 (monotonicity @x41 (= $x12 (not (= (|p$| $x7) ?x10))))))
-(mp (asserted $x12) (trans @x44 @x61 (= $x12 false)) false))))))))))))))
-
-81a816463ea508b010daafde9e601b0b985afe71 16 0
+ea70394857a4c8c662289548e2d7f9f3803b42bb 637 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x11 (< |x$| 1)))
-(let ((?x35 (+ 3 |x$|)))
-(let (($x38 (<= 4 ?x35)))
-(let (($x41 (or $x38 $x11)))
-(let (($x44 (not $x41)))
-(let ((@x55 (monotonicity (rewrite (= $x38 (>= |x$| 1))) (rewrite (= $x11 (not (>= |x$| 1)))) (= $x41 (or (>= |x$| 1) (not (>= |x$| 1)))))))
-(let ((@x59 (trans @x55 (rewrite (= (or (>= |x$| 1) (not (>= |x$| 1))) true)) (= $x41 true))))
-(let ((@x66 (trans (monotonicity @x59 (= $x44 (not true))) (rewrite (= (not true) false)) (= $x44 false))))
-(let ((@x40 (monotonicity (rewrite (= (+ |x$| 3) ?x35)) (= (<= 4 (+ |x$| 3)) $x38))))
-(let ((@x46 (monotonicity (monotonicity @x40 (= (or (<= 4 (+ |x$| 3)) $x11) $x41)) (= (not (or (<= 4 (+ |x$| 3)) $x11)) $x44))))
-(let ((@x68 (trans @x46 @x66 (= (not (or (<= 4 (+ |x$| 3)) $x11)) false))))
-(mp (asserted (not (or (<= 4 (+ |x$| 3)) $x11))) @x68 false))))))))))))))
+(let (($x397 (not x38$)))
+(let (($x553 (not x51$)))
+(let (($x657 (not x25$)))
+(let (($x610 (not x56$)))
+(let (($x538 (not x17$)))
+(let ((@x897 (hypothesis $x538)))
+(let (($x482 (not x45$)))
+(let (($x609 (not x22$)))
+(let (($x453 (not x11$)))
+(let ((@x815 (hypothesis $x453)))
+(let (($x667 (not x27$)))
+(let (($x638 (not x58$)))
+(let (($x567 (not x52$)))
+(let ((@x756 (hypothesis $x567)))
+(let (($x509 (not x47$)))
+(let (($x637 (not x24$)))
+(let (($x566 (not x19$)))
+(let (($x294 (or x24$ x53$)))
+(let ((@x774 (monotonicity (iff-false (asserted (not x59$)) (= x59$ false)) (= (or x59$ x24$ x53$) (or false x24$ x53$)))))
+(let ((@x778 (trans @x774 (rewrite (= (or false x24$ x53$) $x294)) (= (or x59$ x24$ x53$) $x294))))
+(let (($x303 (or x59$ x24$ x53$)))
+(let ((@x306 (mp (asserted (or x59$ $x294)) (rewrite (= (or x59$ $x294) $x303)) $x303)))
+(let ((@x779 (mp @x306 @x778 $x294)))
+(let ((@x1181 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x638)) (hypothesis x58$) $x637) x53$)))
+(let (($x580 (not x53$)))
+(let (($x581 (or $x580 $x566)))
+(let ((@x582 (asserted $x581)))
+(let ((@x1182 (unit-resolution @x582 @x1181 $x566)))
+(let (($x496 (not x46$)))
+(let (($x583 (or $x580 $x509)))
+(let ((@x584 (asserted $x583)))
+(let ((@x1183 (unit-resolution @x584 @x1181 $x509)))
+(let (($x438 (not x41$)))
+(let (($x363 (not x4$)))
+(let (($x347 (not x2$)))
+(let (($x336 (not x31$)))
+(let (($x623 (not x23$)))
+(let (($x645 (or $x638 $x623)))
+(let ((@x646 (asserted $x645)))
+(let ((@x974 (hypothesis $x509)))
+(let ((@x757 (hypothesis $x566)))
+(let ((@x853 (hypothesis $x397)))
+(let (($x410 (not x8$)))
+(let (($x355 (not x3$)))
+(let (($x467 (not x12$)))
+(let ((@x882 (hypothesis $x467)))
+(let ((@x845 (hypothesis $x347)))
+(let (($x356 (not x33$)))
+(let (($x481 (not x13$)))
+(let (($x424 (not x9$)))
+(let ((@x728 (hypothesis x41$)))
+(let (($x439 (or $x438 $x424)))
+(let ((@x440 (asserted $x439)))
+(let ((@x922 (unit-resolution @x440 @x728 $x424)))
+(let (($x364 (not x34$)))
+(let (($x72 (or x35$ x4$)))
+(let ((@x77 (asserted $x72)))
+(let ((@x994 (unit-resolution @x77 (unit-resolution (asserted (or $x438 (not x35$))) @x728 (not x35$)) x4$)))
+(let (($x365 (or $x363 $x364)))
+(let ((@x366 (asserted $x365)))
+(let ((@x999 (unit-resolution @x366 @x994 $x364)))
+(let (($x396 (not x7$)))
+(let (($x414 (or $x410 $x396)))
+(let ((@x415 (asserted $x414)))
+(let (($x348 (not x32$)))
+(let ((@x942 (hypothesis $x355)))
+(let (($x64 (or x3$ x33$ x2$)))
+(let ((@x67 (mp (asserted (or x3$ (or x33$ x2$))) (rewrite (= (or x3$ (or x33$ x2$)) $x64)) $x64)))
+(let ((@x1048 (unit-resolution @x67 (unit-resolution (asserted (or $x410 $x356)) (hypothesis x8$) $x356) @x942 x2$)))
+(let (($x349 (or $x347 $x348)))
+(let ((@x350 (asserted $x349)))
+(let (($x105 (or x7$ x38$ x6$ x32$)))
+(let ((@x108 (mp (asserted (or x7$ (or x38$ (or x6$ x32$)))) (rewrite (= (or x7$ (or x38$ (or x6$ x32$))) $x105)) $x105)))
+(let ((@x842 (unit-resolution @x108 (unit-resolution @x350 @x1048 $x348) (unit-resolution @x415 (hypothesis x8$) $x396) @x853 x6$)))
+(let (($x701 (or x1$ x31$)))
+(let ((@x700 (monotonicity (iff-false (asserted (not x0$)) (= x0$ false)) (= (or x1$ x31$ x0$) (or x1$ x31$ false)))))
+(let ((@x705 (trans @x700 (rewrite (= (or x1$ x31$ false) $x701)) (= (or x1$ x31$ x0$) $x701))))
+(let (($x46 (or x1$ x31$ x0$)))
+(let ((@x49 (mp (asserted (or x1$ (or x31$ x0$))) (rewrite (= (or x1$ (or x31$ x0$)) $x46)) $x46)))
+(let ((@x706 (mp @x49 @x705 $x701)))
+(let ((@x1002 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1048 (not x1$)) x31$)))
+(let (($x382 (not x6$)))
+(let (($x388 (or $x382 $x336)))
+(let ((@x389 (asserted $x388)))
+(let ((@x1011 (lemma (unit-resolution @x389 @x1002 @x842 false) (or $x410 x38$ x3$))))
+(let ((@x952 (unit-resolution @x1011 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x853 $x410)))
+(let (($x125 (or x9$ x40$ x8$ x34$)))
+(let ((@x128 (mp (asserted (or x9$ (or x40$ (or x8$ x34$)))) (rewrite (= (or x9$ (or x40$ (or x8$ x34$))) $x125)) $x125)))
+(let (($x425 (not x40$)))
+(let (($x505 (or $x496 $x425)))
+(let ((@x506 (asserted $x505)))
+(let ((@x868 (unit-resolution @x506 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x496)))
+(let (($x239 (or x19$ x52$ x18$ x46$)))
+(let ((@x242 (mp (asserted (or x19$ (or x52$ (or x18$ x46$)))) (rewrite (= (or x19$ (or x52$ (or x18$ x46$))) $x239)) $x239)))
+(let (($x411 (not x39$)))
+(let ((@x992 (unit-resolution @x67 (unit-resolution (asserted (or $x363 $x355)) @x994 $x355) @x845 x33$)))
+(let (($x420 (or $x411 $x356)))
+(let ((@x421 (asserted $x420)))
+(let (($x507 (or $x481 $x425)))
+(let ((@x508 (asserted $x507)))
+(let ((@x1036 (unit-resolution @x508 (unit-resolution @x128 @x952 @x999 @x922 x40$) $x481)))
+(let (($x172 (or x13$ x45$ x12$ x39$)))
+(let ((@x175 (mp (asserted (or x13$ (or x45$ (or x12$ x39$)))) (rewrite (= (or x13$ (or x45$ (or x12$ x39$))) $x172)) $x172)))
+(let ((@x1037 (unit-resolution @x175 @x1036 @x882 (unit-resolution @x421 @x992 $x411) x45$)))
+(let (($x552 (not x18$)))
+(let (($x558 (or $x552 $x482)))
+(let ((@x559 (asserted $x558)))
+(let ((@x1080 (unit-resolution @x559 @x1037 (unit-resolution @x242 @x868 @x757 @x756 x18$) false)))
+(let ((@x1051 (unit-resolution (lemma @x1080 (or $x438 x12$ x19$ x52$ x2$ x38$)) @x845 @x757 @x756 @x882 @x853 $x438)))
+(let (($x190 (or x47$ x14$ x41$)))
+(let ((@x193 (mp (asserted (or x47$ (or x14$ x41$))) (rewrite (= (or x47$ (or x14$ x41$)) $x190)) $x190)))
+(let ((@x732 (unit-resolution @x193 @x1051 @x974 x14$)))
+(let (($x495 (not x14$)))
+(let (($x499 (or $x495 $x481)))
+(let ((@x500 (asserted $x499)))
+(let ((@x941 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) @x732 $x496) @x757 @x756 x18$)))
+(let ((@x991 (unit-resolution @x175 (unit-resolution @x559 @x941 $x482) @x882 (unit-resolution @x500 @x732 $x481) x39$)))
+(let (($x367 (or $x363 $x355)))
+(let ((@x368 (asserted $x367)))
+(let ((@x980 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x363)))
+(let (($x369 (or $x364 $x355)))
+(let ((@x370 (asserted $x369)))
+(let ((@x878 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x991 $x356) @x845 x3$) $x364)))
+(let ((@x879 (unit-resolution @x128 @x878 (unit-resolution (asserted (or $x495 $x425)) @x732 $x425) (unit-resolution (asserted (or $x410 $x411)) @x991 $x410) x9$)))
+(let (($x371 (not x35$)))
+(let (($x443 (or $x424 $x371)))
+(let ((@x444 (asserted $x443)))
+(let ((@x912 (lemma (unit-resolution @x444 @x879 (unit-resolution @x77 @x980 x35$) false) (or x2$ x12$ x19$ x52$ x47$ x38$))))
+(let ((@x1091 (unit-resolution @x912 @x882 @x757 @x756 @x974 @x853 x2$)))
+(let (($x359 (or $x355 $x347)))
+(let ((@x360 (asserted $x359)))
+(let ((@x784 (unit-resolution @x706 (unit-resolution (asserted (or $x347 (not x1$))) @x1091 (not x1$)) x31$)))
+(let ((@x808 (unit-resolution @x108 (unit-resolution @x389 @x784 $x382) (unit-resolution @x350 @x1091 $x348) @x853 x7$)))
+(let (($x418 (or $x411 $x396)))
+(let ((@x419 (asserted $x418)))
+(let ((@x913 (hypothesis $x410)))
+(let ((@x931 (unit-resolution @x193 (unit-resolution @x500 (hypothesis x13$) $x495) @x974 x41$)))
+(let ((@x867 (unit-resolution @x128 (unit-resolution @x440 @x931 $x424) (unit-resolution @x508 (hypothesis x13$) $x425) @x913 x34$)))
+(let ((@x917 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x931 $x371) x4$)))
+(let ((@x1090 (lemma (unit-resolution @x366 @x917 @x867 false) (or $x481 x8$ x47$))))
+(let ((@x1056 (unit-resolution @x1090 (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) @x974 $x481)))
+(let ((@x1057 (unit-resolution @x175 @x1056 @x882 (unit-resolution @x419 @x808 $x411) x45$)))
+(let ((@x937 (unit-resolution @x242 (unit-resolution @x559 @x1057 $x552) @x757 @x756 x46$)))
+(let ((@x884 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x937 $x495) @x974 x41$)))
+(let ((@x800 (unit-resolution @x128 (unit-resolution @x440 @x884 $x424) (unit-resolution @x506 @x937 $x425) (unit-resolution @x1011 (unit-resolution @x360 @x1091 $x355) @x853 $x410) x34$)))
+(let ((@x864 (unit-resolution @x77 (unit-resolution (asserted (or $x438 $x371)) @x884 $x371) x4$)))
+(let ((@x1089 (lemma (unit-resolution @x366 @x864 @x800 false) (or x12$ x47$ x19$ x52$ x38$))))
+(let ((@x1116 (unit-resolution @x1089 @x853 @x757 @x756 @x974 x12$)))
+(let (($x489 (or $x482 $x467)))
+(let ((@x490 (asserted $x489)))
+(let (($x539 (not x50$)))
+(let (($x619 (or $x610 $x539)))
+(let ((@x620 (asserted $x619)))
+(let ((@x1058 (unit-resolution @x620 (hypothesis x56$) $x539)))
+(let (($x524 (not x16$)))
+(let (($x587 (not x20$)))
+(let ((@x896 (hypothesis $x539)))
+(let (($x517 (not x48$)))
+(let ((@x841 (hypothesis $x517)))
+(let ((@x989 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x46$) $x495) @x974 x41$)))
+(let (($x441 (or $x438 $x371)))
+(let ((@x442 (asserted $x441)))
+(let ((@x838 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x355)))
+(let ((@x1053 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x989 $x371) x4$) $x364)))
+(let ((@x862 (unit-resolution @x128 @x1053 (unit-resolution @x440 @x989 $x424) (unit-resolution @x506 (hypothesis x46$) $x425) x8$)))
+(let (($x416 (or $x410 $x356)))
+(let ((@x417 (asserted $x416)))
+(let ((@x987 (unit-resolution @x350 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x348)))
+(let (($x335 (not x1$)))
+(let (($x351 (or $x347 $x335)))
+(let ((@x352 (asserted $x351)))
+(let ((@x935 (unit-resolution @x352 (unit-resolution @x67 (unit-resolution @x417 @x862 $x356) @x838 x2$) $x335)))
+(let ((@x746 (unit-resolution @x706 @x935 x31$)))
+(let ((@x1060 (unit-resolution @x108 (unit-resolution @x389 @x746 $x382) (unit-resolution @x415 @x862 $x396) @x987 x38$)))
+(let (($x479 (or $x453 $x397)))
+(let ((@x480 (asserted $x479)))
+(let (($x445 (not x10$)))
+(let (($x720 (or x5$ x36$)))
+(let ((@x719 (monotonicity (iff-false (asserted (not x30$)) (= x30$ false)) (= (or x5$ x36$ x30$) (or x5$ x36$ false)))))
+(let ((@x724 (trans @x719 (rewrite (= (or x5$ x36$ false) $x720)) (= (or x5$ x36$ x30$) $x720))))
+(let (($x85 (or x5$ x36$ x30$)))
+(let ((@x88 (mp (asserted (or x5$ (or x36$ x30$))) (rewrite (= (or x5$ (or x36$ x30$)) $x85)) $x85)))
+(let ((@x725 (mp @x88 @x724 $x720)))
+(let ((@x810 (unit-resolution @x725 (unit-resolution (asserted (or (not x5$) $x336)) @x746 (not x5$)) x36$)))
+(let (($x375 (not x36$)))
+(let (($x449 (or $x445 $x375)))
+(let ((@x450 (asserted $x449)))
+(let (($x152 (or x11$ x43$ x10$ x37$)))
+(let ((@x155 (mp (asserted (or x11$ (or x43$ (or x10$ x37$)))) (rewrite (= (or x11$ (or x43$ (or x10$ x37$))) $x152)) $x152)))
+(let ((@x840 (unit-resolution @x155 (unit-resolution @x450 @x810 $x445) (unit-resolution (asserted (or (not x37$) $x336)) @x746 (not x37$)) (unit-resolution @x480 @x1060 $x453) x43$)))
+(let (($x199 (or x15$ x48$ x42$)))
+(let ((@x202 (mp (asserted (or x15$ (or x48$ x42$))) (rewrite (= (or x15$ (or x48$ x42$)) $x199)) $x199)))
+(let ((@x712 (unit-resolution @x202 (unit-resolution (asserted (or (not x42$) $x375)) @x810 (not x42$)) @x841 x15$)))
+(let (($x454 (not x43$)))
+(let (($x516 (not x15$)))
+(let (($x536 (or $x516 $x454)))
+(let ((@x537 (asserted $x536)))
+(let ((@x844 (lemma (unit-resolution @x537 @x712 @x840 false) (or $x496 x48$ x47$))))
+(let ((@x893 (unit-resolution @x242 (unit-resolution @x844 @x841 @x974 $x496) @x757 @x756 x18$)))
+(let (($x556 (or $x552 $x538)))
+(let ((@x557 (asserted $x556)))
+(let (($x446 (not x42$)))
+(let ((@x1023 (unit-resolution @x559 @x893 $x482)))
+(let (($x468 (not x44$)))
+(let ((@x738 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) (hypothesis x42$) $x375) x5$)))
+(let (($x374 (not x5$)))
+(let (($x394 (or $x374 $x336)))
+(let ((@x395 (asserted $x394)))
+(let (($x353 (or $x348 $x335)))
+(let ((@x354 (asserted $x353)))
+(let ((@x1005 (unit-resolution @x354 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x348)))
+(let ((@x983 (unit-resolution @x352 (unit-resolution @x706 (unit-resolution @x395 @x738 $x336) x1$) $x347)))
+(let ((@x998 (hypothesis $x482)))
+(let ((@x932 (unit-resolution @x128 (unit-resolution @x417 @x992 $x410) @x922 @x999 x40$)))
+(let ((@x1030 (hypothesis $x348)))
+(let ((@x1031 (hypothesis $x382)))
+(let ((@x1039 (unit-resolution @x108 (unit-resolution (asserted (or $x396 $x356)) @x992 $x396) @x1031 @x1030 x38$)))
+(let (($x473 (or $x467 $x397)))
+(let ((@x474 (asserted $x473)))
+(let ((@x971 (unit-resolution @x175 (unit-resolution @x474 @x1039 $x467) (unit-resolution @x508 @x932 $x481) @x998 (unit-resolution @x421 @x992 $x411) false)))
+(let ((@x1013 (lemma @x971 (or $x438 x45$ x6$ x32$ x2$))))
+(let ((@x1040 (unit-resolution @x1013 (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x998 @x1005 @x983 $x438)))
+(let (($x447 (or $x445 $x446)))
+(let ((@x448 (asserted $x447)))
+(let ((@x830 (unit-resolution @x448 (hypothesis x42$) $x445)))
+(let ((@x1020 (hypothesis x12$)))
+(let (($x469 (or $x467 $x468)))
+(let ((@x470 (asserted $x469)))
+(let ((@x1021 (unit-resolution @x470 @x1020 $x468)))
+(let (($x219 (or x17$ x50$ x16$ x44$)))
+(let ((@x222 (mp (asserted (or x17$ (or x50$ (or x16$ x44$)))) (rewrite (= (or x17$ (or x50$ (or x16$ x44$))) $x219)) $x219)))
+(let (($x471 (or $x467 $x453)))
+(let ((@x472 (asserted $x471)))
+(let ((@x889 (unit-resolution @x472 @x1020 $x453)))
+(let ((@x924 (unit-resolution @x155 @x889 (hypothesis $x445) (hypothesis (not x37$)) x43$)))
+(let (($x530 (or $x524 $x454)))
+(let ((@x531 (asserted $x530)))
+(let ((@x925 (unit-resolution @x531 @x924 (unit-resolution @x222 @x1021 @x897 @x896 x16$) false)))
+(let ((@x1075 (lemma @x925 (or $x467 x10$ x37$ x17$ x50$))))
+(let ((@x831 (unit-resolution @x1075 @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) @x897 @x896 $x467)))
+(let ((@x856 (unit-resolution @x175 @x831 @x998 (unit-resolution @x500 (unit-resolution @x193 @x1040 @x974 x14$) $x481) x39$)))
+(let ((@x715 (unit-resolution @x108 (unit-resolution @x419 @x856 $x396) (unit-resolution (asserted (or $x382 $x374)) @x738 $x382) @x1005 x38$)))
+(let (($x477 (or $x468 $x397)))
+(let ((@x478 (asserted $x477)))
+(let ((@x850 (unit-resolution @x222 (unit-resolution @x478 @x715 $x468) @x897 @x896 x16$)))
+(let ((@x828 (unit-resolution @x155 (unit-resolution @x480 @x715 $x453) @x830 (unit-resolution (asserted (or (not x37$) $x374)) @x738 (not x37$)) x43$)))
+(let ((@x1001 (lemma (unit-resolution @x531 @x828 @x850 false) (or $x446 x17$ x50$ x45$ x47$))))
+(let ((@x762 (unit-resolution @x1001 (unit-resolution @x557 @x893 $x538) @x896 @x1023 @x974 $x446)))
+(let (($x528 (or $x524 $x516)))
+(let ((@x529 (asserted $x528)))
+(let ((@x1017 (unit-resolution @x222 (unit-resolution @x529 (unit-resolution @x202 @x762 @x841 x15$) $x524) (unit-resolution @x557 @x893 $x538) @x896 x44$)))
+(let ((@x901 (unit-resolution @x706 (unit-resolution @x395 (hypothesis x5$) $x336) x1$)))
+(let ((@x823 (unit-resolution @x108 (unit-resolution @x354 @x901 $x348) @x853 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) x7$)))
+(let ((@x740 (unit-resolution @x1013 (unit-resolution @x354 @x901 $x348) @x998 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x5$) $x382) (unit-resolution @x352 @x901 $x347) $x438)))
+(let ((@x835 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x740 @x974 x14$) $x481) (unit-resolution @x419 @x823 $x411) @x998 @x882 false)))
+(let ((@x769 (lemma @x835 (or $x374 x45$ x12$ x47$ x38$))))
+(let ((@x898 (unit-resolution @x769 @x1023 (unit-resolution @x470 @x1017 $x467) @x974 (unit-resolution @x478 @x1017 $x397) $x374)))
+(let ((@x735 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x898 x36$) $x445) (unit-resolution @x537 (unit-resolution @x202 @x762 @x841 x15$) $x454) (unit-resolution (asserted (or $x468 $x453)) @x1017 $x453) x37$)))
+(let (($x383 (not x37$)))
+(let (($x384 (or $x382 $x383)))
+(let ((@x385 (asserted $x384)))
+(let ((@x946 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x735 $x336) x1$)))
+(let ((@x836 (unit-resolution @x108 (unit-resolution @x354 @x946 $x348) (unit-resolution @x478 @x1017 $x397) (unit-resolution @x385 @x735 $x382) x7$)))
+(let ((@x1025 (unit-resolution @x1013 (unit-resolution @x354 @x946 $x348) @x1023 (unit-resolution @x385 @x735 $x382) (unit-resolution @x352 @x946 $x347) $x438)))
+(let ((@x886 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1025 @x974 x14$) $x481) (unit-resolution @x419 @x836 $x411) @x1023 (unit-resolution @x470 @x1017 $x467) false)))
+(let ((@x1059 (unit-resolution (lemma @x886 (or x48$ x47$ x50$ x19$ x52$)) @x1058 @x974 @x757 @x756 x48$)))
+(let (($x591 (or $x587 $x517)))
+(let ((@x592 (asserted $x591)))
+(let (($x595 (not x21$)))
+(let (($x617 (or $x610 $x595)))
+(let ((@x618 (asserted $x617)))
+(let (($x596 (not x55$)))
+(let (($x302 (or x25$ x54$)))
+(let ((@x307 (asserted $x302)))
+(let ((@x855 (unit-resolution @x307 (unit-resolution (asserted (or (not x54$) $x517)) @x1059 (not x54$)) x25$)))
+(let (($x665 (or $x657 $x596)))
+(let ((@x666 (asserted $x665)))
+(let (($x266 (or x21$ x55$ x20$ x49$)))
+(let ((@x269 (mp (asserted (or x21$ (or x55$ (or x20$ x49$)))) (rewrite (= (or x21$ (or x55$ (or x20$ x49$))) $x266)) $x266)))
+(let ((@x911 (unit-resolution @x269 (unit-resolution @x666 @x855 $x596) (unit-resolution @x618 (hypothesis x56$) $x595) (unit-resolution @x592 @x1059 $x587) x49$)))
+(let (($x525 (not x49$)))
+(let (($x526 (or $x524 $x525)))
+(let ((@x527 (asserted $x526)))
+(let ((@x1006 (unit-resolution @x242 (unit-resolution @x557 (hypothesis x17$) $x552) @x757 @x756 x46$)))
+(let (($x503 (or $x496 $x481)))
+(let ((@x504 (asserted $x503)))
+(let ((@x752 (unit-resolution @x175 (unit-resolution @x504 @x1006 $x481) (unit-resolution (asserted (or $x538 $x482)) (hypothesis x17$) $x482) @x882 x39$)))
+(let (($x412 (or $x410 $x411)))
+(let ((@x413 (asserted $x412)))
+(let ((@x806 (unit-resolution @x193 (unit-resolution (asserted (or $x495 $x496)) @x1006 $x495) @x974 x41$)))
+(let ((@x954 (unit-resolution @x128 (unit-resolution @x440 @x806 $x424) (unit-resolution @x506 @x1006 $x425) (unit-resolution @x413 @x752 $x410) x34$)))
+(let ((@x745 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x806 $x371) x4$) @x954 false)))
+(let ((@x771 (lemma @x745 (or $x538 x12$ x47$ x19$ x52$))))
+(let ((@x928 (unit-resolution @x222 (unit-resolution @x771 @x882 @x974 @x757 @x756 $x538) (hypothesis $x524) @x896 x44$)))
+(let ((@x929 (unit-resolution @x478 @x928 $x397)))
+(let ((@x832 (hypothesis $x454)))
+(let ((@x859 (unit-resolution @x242 (unit-resolution (asserted (or $x495 $x496)) (hypothesis x14$) $x496) @x757 @x756 x18$)))
+(let ((@x951 (unit-resolution @x175 (unit-resolution @x559 @x859 $x482) (unit-resolution @x500 (hypothesis x14$) $x481) @x882 x39$)))
+(let ((@x833 (unit-resolution @x769 (unit-resolution @x559 @x859 $x482) @x882 @x974 @x853 $x374)))
+(let ((@x1076 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x833 x36$) $x445) @x832 @x815 x37$)))
+(let ((@x872 (unit-resolution @x108 (unit-resolution @x385 @x1076 $x382) (unit-resolution @x419 @x951 $x396) @x853 x32$)))
+(let ((@x962 (unit-resolution @x706 (unit-resolution (asserted (or $x383 $x336)) @x1076 $x336) x1$)))
+(let ((@x861 (lemma (unit-resolution @x354 @x962 @x872 false) (or $x495 x38$ x43$ x11$ x12$ x47$ x19$ x52$))))
+(let ((@x1079 (unit-resolution @x861 @x929 @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) @x882 @x974 @x757 @x756 $x495)))
+(let ((@x709 (unit-resolution @x77 (unit-resolution @x442 (unit-resolution @x193 @x1079 @x974 x41$) $x371) x4$)))
+(let ((@x939 (unit-resolution @x128 (unit-resolution @x1011 @x929 (unit-resolution @x368 @x709 $x355) $x410) (unit-resolution @x440 (unit-resolution @x193 @x1079 @x974 x41$) $x424) (unit-resolution @x366 @x709 $x364) x40$)))
+(let ((@x754 (unit-resolution @x242 (unit-resolution @x506 @x939 $x496) @x757 @x756 x18$)))
+(let ((@x904 (unit-resolution @x175 (unit-resolution @x559 @x754 $x482) (unit-resolution @x508 @x939 $x481) @x882 x39$)))
+(let ((@x877 (unit-resolution @x67 (unit-resolution @x421 @x904 $x356) (unit-resolution @x368 @x709 $x355) x2$)))
+(let ((@x927 (unit-resolution @x769 (unit-resolution @x559 @x754 $x482) @x882 @x974 @x929 $x374)))
+(let ((@x880 (unit-resolution @x155 (unit-resolution @x450 (unit-resolution @x725 @x927 x36$) $x445) @x832 (unit-resolution (asserted (or $x468 $x453)) @x928 $x453) x37$)))
+(let ((@x812 (unit-resolution @x108 (unit-resolution @x385 @x880 $x382) (unit-resolution @x350 @x877 $x348) (unit-resolution @x419 @x904 $x396) @x929 false)))
+(let ((@x713 (unit-resolution (lemma @x812 (or x12$ x43$ x47$ x19$ x52$ x16$ x50$)) (unit-resolution (asserted (or $x525 $x454)) @x911 $x454) @x974 @x757 @x756 (unit-resolution @x527 @x911 $x524) @x1058 x12$)))
+(let ((@x817 (unit-resolution @x222 (unit-resolution @x470 @x713 $x468) (unit-resolution @x527 @x911 $x524) @x1058 x17$)))
+(let ((@x903 (unit-resolution @x242 (unit-resolution @x557 @x817 $x552) @x757 @x756 x46$)))
+(let (($x497 (or $x495 $x496)))
+(let ((@x498 (asserted $x497)))
+(let ((@x748 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x371)))
+(let ((@x1027 (unit-resolution @x440 (unit-resolution @x193 (unit-resolution @x498 @x903 $x495) @x974 x41$) $x424)))
+(let ((@x890 (unit-resolution @x128 (unit-resolution @x366 (unit-resolution @x77 @x748 x4$) $x364) (unit-resolution @x506 @x903 $x425) @x1027 x8$)))
+(let ((@x891 (unit-resolution @x1011 @x890 (unit-resolution @x368 (unit-resolution @x77 @x748 x4$) $x355) (unit-resolution @x474 @x713 $x397) false)))
+(let ((@x1118 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 @x757 @x756 $x610)))
+(let ((@x802 (hypothesis $x623)))
+(let ((@x914 (hypothesis $x610)))
+(let (($x392 (or $x383 $x336)))
+(let ((@x393 (asserted $x392)))
+(let ((@x969 (unit-resolution @x393 (hypothesis x31$) $x383)))
+(let ((@x1047 (unit-resolution @x725 (unit-resolution @x395 (hypothesis x31$) $x374) x36$)))
+(let ((@x966 (unit-resolution @x450 @x1047 $x445)))
+(let (($x615 (or $x609 $x539)))
+(let ((@x616 (asserted $x615)))
+(let ((@x730 (unit-resolution @x616 (unit-resolution @x1075 @x966 @x1020 @x897 @x969 x50$) $x609)))
+(let (($x286 (or x23$ x57$ x22$ x51$)))
+(let ((@x289 (mp (asserted (or x23$ (or x57$ (or x22$ x51$)))) (rewrite (= (or x23$ (or x57$ (or x22$ x51$))) $x286)) $x286)))
+(let (($x624 (not x57$)))
+(let (($x679 (or $x667 $x624)))
+(let ((@x680 (asserted $x679)))
+(let ((@x948 (unit-resolution @x680 (unit-resolution @x289 @x730 @x802 (hypothesis $x553) x57$) $x667)))
+(let (($x322 (or x27$ x26$ x56$)))
+(let ((@x325 (mp (asserted (or x27$ (or x26$ x56$))) (rewrite (= (or x27$ (or x26$ x56$)) $x322)) $x322)))
+(let (($x588 (not x54$)))
+(let ((@x798 (unit-resolution @x537 (unit-resolution @x155 @x966 @x889 @x969 x43$) $x516)))
+(let ((@x799 (unit-resolution @x202 @x798 (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
+(let (($x593 (or $x588 $x517)))
+(let ((@x594 (asserted $x593)))
+(let (($x660 (not x26$)))
+(let (($x661 (or $x660 $x657)))
+(let ((@x662 (asserted $x661)))
+(let ((@x1094 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x799 $x588) x25$) (unit-resolution @x325 @x948 @x914 x26$) false)))
+(let ((@x1096 (lemma @x1094 (or $x336 x56$ x23$ x51$ $x467 x17$))))
+(let ((@x1099 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x336)))
+(let ((@x804 (unit-resolution @x725 (unit-resolution (asserted (or $x382 $x374)) (hypothesis x6$) $x374) x36$)))
+(let ((@x1008 (unit-resolution @x1075 (unit-resolution @x450 @x804 $x445) @x1020 @x897 (unit-resolution @x385 (hypothesis x6$) $x383) x50$)))
+(let ((@x874 (unit-resolution @x289 (unit-resolution @x616 @x1008 $x609) @x802 (hypothesis $x553) x57$)))
+(let ((@x766 (unit-resolution @x155 (unit-resolution @x450 @x804 $x445) @x889 (unit-resolution @x385 (hypothesis x6$) $x383) x43$)))
+(let ((@x818 (unit-resolution @x202 (unit-resolution @x537 @x766 $x516) (unit-resolution (asserted (or $x446 $x375)) @x804 $x446) x48$)))
+(let ((@x783 (unit-resolution @x662 (unit-resolution @x307 (unit-resolution @x594 @x818 $x588) x25$) (unit-resolution @x325 (unit-resolution @x680 @x874 $x667) @x914 x26$) false)))
+(let ((@x737 (lemma @x783 (or $x382 x56$ x23$ x51$ $x467 x17$))))
+(let ((@x1102 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x859 $x553) @x802 @x914 @x1020 (unit-resolution @x557 @x859 $x538) $x382)))
+(let ((@x1104 (unit-resolution @x108 (unit-resolution @x354 (unit-resolution @x706 @x1099 x1$) $x348) @x1102 @x853 x7$)))
+(let (($x422 (or $x396 $x356)))
+(let ((@x423 (asserted $x422)))
+(let ((@x1106 (unit-resolution @x67 (unit-resolution @x423 @x1104 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1099 x1$) $x347) x3$)))
+(let ((@x1112 (unit-resolution @x128 (unit-resolution @x370 @x1106 $x364) (unit-resolution (asserted (or $x495 $x425)) (hypothesis x14$) $x425) (unit-resolution @x415 @x1104 $x410) x9$)))
+(let ((@x1113 (unit-resolution @x444 @x1112 (unit-resolution @x77 (unit-resolution @x368 @x1106 $x363) x35$) false)))
+(let ((@x1119 (unit-resolution (lemma @x1113 (or $x495 x38$ x23$ x56$ $x467 x19$ x52$)) @x853 @x802 @x1118 @x1116 @x757 @x756 $x495)))
+(let ((@x1120 (unit-resolution @x193 @x1119 @x974 x41$)))
+(let ((@x1123 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x364)))
+(let ((@x1125 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1120 $x371) x4$) $x355)))
+(let ((@x1127 (unit-resolution @x128 (unit-resolution @x1011 @x1125 @x853 $x410) (unit-resolution @x440 @x1120 $x424) @x1123 x40$)))
+(let ((@x1129 (unit-resolution @x242 (unit-resolution @x506 @x1127 $x496) @x757 @x756 x18$)))
+(let ((@x1132 (unit-resolution @x737 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x382)))
+(let ((@x1133 (unit-resolution @x1096 (unit-resolution (asserted (or $x552 $x553)) @x1129 $x553) @x802 @x1118 @x1116 (unit-resolution @x557 @x1129 $x538) $x336)))
+(let ((@x1137 (unit-resolution @x1013 (unit-resolution @x354 (unit-resolution @x706 @x1133 x1$) $x348) (unit-resolution @x352 (unit-resolution @x706 @x1133 x1$) $x347) @x1120 @x1132 (unit-resolution @x490 @x1116 $x482) false)))
+(let ((@x1185 (unit-resolution (lemma @x1137 (or x38$ x23$ x19$ x52$ x47$)) (unit-resolution @x646 (hypothesis x58$) $x623) @x1182 @x756 @x1183 x38$)))
+(let ((@x1188 (unit-resolution @x474 @x1185 $x467)))
+(let ((@x1140 (unit-resolution @x155 @x966 @x815 @x969 x43$)))
+(let (($x534 (or $x525 $x454)))
+(let ((@x535 (asserted $x534)))
+(let ((@x1142 (hypothesis $x468)))
+(let ((@x1144 (unit-resolution @x222 (unit-resolution @x531 @x1140 $x524) @x897 @x1142 x50$)))
+(let (($x621 (or $x595 $x539)))
+(let ((@x622 (asserted $x621)))
+(let ((@x1147 (unit-resolution @x202 (unit-resolution @x537 @x1140 $x516) (unit-resolution (asserted (or $x446 $x375)) @x1047 $x446) x48$)))
+(let ((@x1149 (unit-resolution @x269 (unit-resolution @x592 @x1147 $x587) (unit-resolution @x622 @x1144 $x595) (unit-resolution @x535 @x1140 $x525) x55$)))
+(let ((@x1152 (unit-resolution @x666 (unit-resolution @x307 (unit-resolution @x594 @x1147 $x588) x25$) @x1149 false)))
+(let ((@x1154 (lemma @x1152 (or $x336 x17$ x44$ x11$))))
+(let ((@x1190 (unit-resolution @x1154 (unit-resolution @x771 @x1188 @x1183 @x1182 @x756 $x538) (unit-resolution @x478 @x1185 $x468) (unit-resolution @x480 @x1185 $x453) $x336)))
+(let ((@x1156 (unit-resolution @x559 (unit-resolution @x1013 @x728 @x1030 @x1031 @x845 x45$) $x552)))
+(let ((@x1159 (unit-resolution @x506 (unit-resolution @x128 @x999 @x913 @x922 x40$) (unit-resolution @x242 @x1156 @x757 @x756 x46$) false)))
+(let ((@x1163 (unit-resolution (lemma @x1159 (or $x438 x8$ x19$ x52$ x32$ x6$ x2$)) @x913 @x757 @x756 @x1030 @x1031 @x845 $x438)))
+(let ((@x1166 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1163 @x974 x14$) $x496) @x757 @x756 x18$)))
+(let ((@x1168 (unit-resolution @x175 (unit-resolution @x559 @x1166 $x482) @x882 (unit-resolution @x1090 @x913 @x974 $x481) x39$)))
+(let ((@x1171 (unit-resolution @x368 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x363)))
+(let (($x501 (or $x495 $x425)))
+(let ((@x502 (asserted $x501)))
+(let ((@x1174 (unit-resolution @x370 (unit-resolution @x67 (unit-resolution @x421 @x1168 $x356) @x845 x3$) $x364)))
+(let ((@x1175 (unit-resolution @x128 @x1174 @x913 (unit-resolution @x502 (unit-resolution @x193 @x1163 @x974 x14$) $x425) x9$)))
+(let ((@x1178 (lemma (unit-resolution @x444 @x1175 (unit-resolution @x77 @x1171 x35$) false) (or x8$ x2$ x12$ x19$ x52$ x47$ x32$ x6$))))
+(let ((@x1195 (unit-resolution @x1178 (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) @x1188 @x1182 @x756 @x1183 (unit-resolution (asserted (or $x397 $x348)) @x1185 $x348) (unit-resolution (asserted (or $x397 $x382)) @x1185 $x382) x8$)))
+(let ((@x1197 (unit-resolution @x67 (unit-resolution @x417 @x1195 $x356) (unit-resolution @x352 (unit-resolution @x706 @x1190 x1$) $x347) x3$)))
+(let ((@x1200 (unit-resolution @x442 (unit-resolution @x77 (unit-resolution @x368 @x1197 $x363) x35$) $x438)))
+(let ((@x1203 (unit-resolution @x242 (unit-resolution @x498 (unit-resolution @x193 @x1200 @x1183 x14$) $x496) @x1182 @x756 x18$)))
+(let ((@x1206 (unit-resolution @x175 (unit-resolution @x500 (unit-resolution @x193 @x1200 @x1183 x14$) $x481) @x1188 (unit-resolution @x413 @x1195 $x411) x45$)))
+(let ((@x1215 (unit-resolution (lemma (unit-resolution @x559 @x1206 @x1203 false) (or $x638 x52$)) @x756 $x638)))
+(let (($x328 (or x28$ x58$)))
+(let ((@x792 (monotonicity (iff-false (asserted (not x29$)) (= x29$ false)) (= (or x29$ x28$ x58$) (or false x28$ x58$)))))
+(let ((@x796 (trans @x792 (rewrite (= (or false x28$ x58$) $x328)) (= (or x29$ x28$ x58$) $x328))))
+(let (($x337 (or x29$ x28$ x58$)))
+(let ((@x340 (mp (asserted (or x29$ $x328)) (rewrite (= (or x29$ $x328) $x337)) $x337)))
+(let ((@x797 (mp @x340 @x796 $x328)))
+(let (($x674 (not x28$)))
+(let (($x675 (or $x674 $x667)))
+(let ((@x676 (asserted $x675)))
+(let ((@x1224 (unit-resolution @x676 (unit-resolution @x797 @x1215 x28$) $x667)))
+(let ((@x1285 (hypothesis $x438)))
+(let ((@x708 (hypothesis $x411)))
+(let ((@x1210 (hypothesis $x496)))
+(let ((@x1213 (unit-resolution @x242 (unit-resolution (asserted (or $x566 $x509)) (hypothesis x47$) $x566) @x1210 @x756 x18$)))
+(let (($x554 (or $x552 $x553)))
+(let ((@x555 (asserted $x554)))
+(let (($x677 (or $x674 $x624)))
+(let ((@x678 (asserted $x677)))
+(let ((@x1217 (unit-resolution @x678 (unit-resolution @x797 @x1215 x28$) $x624)))
+(let ((@x1219 (unit-resolution @x779 (unit-resolution @x584 (hypothesis x47$) $x580) x24$)))
+(let (($x641 (or $x637 $x623)))
+(let ((@x642 (asserted $x641)))
+(let ((@x1221 (unit-resolution @x289 (unit-resolution @x642 @x1219 $x623) @x1217 (unit-resolution @x555 @x1213 $x553) x22$)))
+(let ((@x1226 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1221 $x610) @x1224 x26$)))
+(let (($x663 (or $x660 $x596)))
+(let ((@x664 (asserted $x663)))
+(let (($x589 (or $x587 $x588)))
+(let ((@x590 (asserted $x589)))
+(let ((@x1231 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x587)))
+(let ((@x1232 (unit-resolution @x269 @x1231 (unit-resolution (asserted (or $x609 $x595)) @x1221 $x595) (unit-resolution @x664 @x1226 $x596) x49$)))
+(let ((@x1234 (unit-resolution @x222 (unit-resolution @x527 @x1232 $x524) (unit-resolution @x557 @x1213 $x538) (unit-resolution @x616 @x1221 $x539) x44$)))
+(let (($x475 (or $x468 $x453)))
+(let ((@x476 (asserted $x475)))
+(let ((@x1237 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1226 $x657) x54$) $x517)))
+(let ((@x1239 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1232 $x516) @x1237 x42$)))
+(let ((@x1241 (unit-resolution @x155 (unit-resolution @x448 @x1239 $x445) (unit-resolution @x535 @x1232 $x454) (unit-resolution @x476 @x1234 $x453) x37$)))
+(let ((@x1243 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1239 $x375) x5$)))
+(let (($x390 (or $x383 $x374)))
+(let ((@x391 (asserted $x390)))
+(let ((@x1246 (lemma (unit-resolution @x391 @x1243 @x1241 false) (or $x509 x46$ x52$))))
+(let ((@x1247 (unit-resolution @x1246 @x1210 @x756 $x509)))
+(let ((@x1249 (unit-resolution @x175 (unit-resolution @x1090 @x1247 @x913 $x481) @x882 @x708 x45$)))
+(let (($x562 (or $x553 $x482)))
+(let ((@x563 (asserted $x562)))
+(let ((@x1252 (unit-resolution @x242 (unit-resolution @x559 @x1249 $x552) @x1210 @x756 x19$)))
+(let ((@x1255 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1252 $x580) x24$) $x623)))
+(let ((@x1256 (unit-resolution @x289 @x1255 @x1217 (unit-resolution @x563 @x1249 $x553) x22$)))
+(let ((@x1260 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1256 $x610) @x1224 x26$)))
+(let ((@x1265 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x587)))
+(let ((@x1266 (unit-resolution @x269 @x1265 (unit-resolution (asserted (or $x609 $x595)) @x1256 $x595) (unit-resolution @x664 @x1260 $x596) x49$)))
+(let ((@x1268 (unit-resolution @x222 (unit-resolution @x527 @x1266 $x524) (unit-resolution (asserted (or $x538 $x482)) @x1249 $x538) (unit-resolution @x616 @x1256 $x539) x44$)))
+(let ((@x1271 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1260 $x657) x54$) $x517)))
+(let ((@x1273 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1266 $x516) @x1271 x42$)))
+(let ((@x1275 (unit-resolution @x155 (unit-resolution @x448 @x1273 $x445) (unit-resolution @x535 @x1266 $x454) (unit-resolution @x476 @x1268 $x453) x37$)))
+(let ((@x1277 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1273 $x375) x5$)))
+(let ((@x1280 (lemma (unit-resolution @x391 @x1277 @x1275 false) (or x46$ x52$ x12$ x39$ x8$))))
+(let ((@x1282 (unit-resolution @x504 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x481)))
+(let ((@x1284 (unit-resolution @x563 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x553)))
+(let ((@x1286 (unit-resolution @x498 (unit-resolution @x1280 @x708 @x882 @x756 @x913 x46$) $x495)))
+(let ((@x1289 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x193 @x1286 @x1285 x47$) $x580) x24$)))
+(let ((@x1291 (unit-resolution @x289 (unit-resolution @x642 @x1289 $x623) @x1217 @x1284 x22$)))
+(let (($x564 (or $x538 $x482)))
+(let ((@x565 (asserted $x564)))
+(let ((@x1293 (unit-resolution @x565 (unit-resolution @x175 @x1282 @x882 @x708 x45$) $x538)))
+(let ((@x1295 (unit-resolution @x325 (unit-resolution (asserted (or $x609 $x610)) @x1291 $x610) @x1224 x26$)))
+(let ((@x1300 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x587)))
+(let ((@x1301 (unit-resolution @x269 @x1300 (unit-resolution (asserted (or $x609 $x595)) @x1291 $x595) (unit-resolution @x664 @x1295 $x596) x49$)))
+(let ((@x1303 (unit-resolution @x222 (unit-resolution @x527 @x1301 $x524) @x1293 (unit-resolution @x616 @x1291 $x539) x44$)))
+(let ((@x1306 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1295 $x657) x54$) $x517)))
+(let ((@x1308 (unit-resolution @x202 (unit-resolution (asserted (or $x525 $x516)) @x1301 $x516) @x1306 x42$)))
+(let ((@x1310 (unit-resolution @x155 (unit-resolution @x448 @x1308 $x445) (unit-resolution @x535 @x1301 $x454) (unit-resolution @x476 @x1303 $x453) x37$)))
+(let ((@x1312 (unit-resolution @x725 (unit-resolution (asserted (or $x446 $x375)) @x1308 $x375) x5$)))
+(let ((@x1315 (lemma (unit-resolution @x391 @x1312 @x1310 false) (or x39$ x12$ x41$ x52$ x8$))))
+(let ((@x1317 (unit-resolution @x421 (unit-resolution @x1315 @x1285 @x882 @x756 @x913 x39$) $x356)))
+(let ((@x1321 (unit-resolution @x77 (unit-resolution @x368 (unit-resolution @x67 @x1317 @x845 x3$) $x363) x35$)))
+(let ((@x1323 (unit-resolution @x128 (unit-resolution @x444 @x1321 $x424) @x913 (unit-resolution @x370 (unit-resolution @x67 @x1317 @x845 x3$) $x364) x40$)))
+(let ((@x1327 (unit-resolution @x1246 (unit-resolution @x193 (unit-resolution @x502 @x1323 $x495) @x1285 x47$) (unit-resolution @x506 @x1323 $x496) @x756 false)))
+(let ((@x1330 (unit-resolution (lemma @x1327 (or x41$ x52$ x8$ x2$ x12$)) @x845 @x913 @x756 @x882 x41$)))
+(let ((@x1334 (unit-resolution @x366 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x364)))
+(let ((@x1335 (unit-resolution @x128 @x1334 @x913 (unit-resolution @x440 @x1330 $x424) x40$)))
+(let ((@x1337 (unit-resolution @x368 (unit-resolution @x77 (unit-resolution @x442 @x1330 $x371) x4$) $x355)))
+(let ((@x1340 (unit-resolution @x1280 (unit-resolution @x421 (unit-resolution @x67 @x1337 @x845 x33$) $x411) (unit-resolution @x506 @x1335 $x496) @x882 @x756 @x913 false)))
+(let ((@x1343 (unit-resolution (lemma @x1340 (or x2$ x12$ x52$ x8$)) @x913 @x756 @x882 x2$)))
+(let ((@x1345 (unit-resolution @x706 (unit-resolution @x352 @x1343 $x335) x31$)))
+(let (($x451 (or $x446 $x375)))
+(let ((@x452 (asserted $x451)))
+(let ((@x1348 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x446)))
+(let ((@x1349 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1345 $x374) x36$) $x445)))
+(let ((@x1354 (unit-resolution @x419 (unit-resolution @x1280 @x1210 @x882 @x756 @x913 x39$) $x396)))
+(let ((@x1355 (unit-resolution @x108 @x1354 (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
+(let ((@x1357 (unit-resolution @x155 (unit-resolution @x480 @x1355 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
+(let ((@x1360 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1357 $x516) @x1348 x48$) $x588)))
+(let ((@x1364 (unit-resolution @x1154 (unit-resolution @x478 @x1355 $x468) @x1345 (unit-resolution @x480 @x1355 $x453) x17$)))
+(let (($x560 (or $x553 $x538)))
+(let ((@x561 (asserted $x560)))
+(let ((@x1367 (unit-resolution @x582 (unit-resolution @x771 @x1364 @x882 @x1247 @x756 x19$) $x580)))
+(let ((@x1370 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1367 x24$) $x623) @x1217 (unit-resolution @x561 @x1364 $x553) x22$)))
+(let (($x611 (or $x609 $x610)))
+(let ((@x612 (asserted $x611)))
+(let ((@x1372 (unit-resolution @x325 (unit-resolution @x612 @x1370 $x610) (unit-resolution @x662 (unit-resolution @x307 @x1360 x25$) $x660) @x1224 false)))
+(let ((@x1384 (unit-resolution (lemma @x1372 (or x46$ x12$ x52$ x8$)) @x913 @x756 @x882 x46$)))
+(let ((@x1376 (unit-resolution (lemma @x891 (or $x610 x47$ x19$ x52$)) @x974 (unit-resolution (asserted (or $x566 $x496)) (hypothesis x46$) $x566) @x756 $x610)))
+(let ((@x1379 (unit-resolution @x594 (unit-resolution @x844 @x974 (hypothesis x46$) x48$) $x588)))
+(let ((@x1381 (unit-resolution @x662 (unit-resolution @x307 @x1379 x25$) (unit-resolution @x325 @x1376 @x1224 x26$) false)))
+(let ((@x1383 (lemma @x1381 (or x47$ x52$ $x496))))
+(let (($x512 (or $x509 $x438)))
+(let ((@x513 (asserted $x512)))
+(let ((@x1387 (unit-resolution @x1315 (unit-resolution @x513 (unit-resolution @x1383 @x1384 @x756 x47$) $x438) @x882 @x756 @x913 x39$)))
+(let ((@x1389 (unit-resolution @x108 (unit-resolution @x419 @x1387 $x396) (unit-resolution @x350 @x1343 $x348) (unit-resolution @x389 @x1345 $x382) x38$)))
+(let ((@x1391 (unit-resolution @x155 (unit-resolution @x480 @x1389 $x453) (unit-resolution @x393 @x1345 $x383) @x1349 x43$)))
+(let ((@x1394 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1391 $x516) @x1348 x48$) $x588)))
+(let ((@x1397 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1384 @x756 x47$) $x580) x24$)))
+(let ((@x1400 (unit-resolution @x1154 (unit-resolution @x480 @x1389 $x453) @x1345 (unit-resolution @x478 @x1389 $x468) x17$)))
+(let ((@x1402 (unit-resolution @x289 (unit-resolution @x561 @x1400 $x553) @x1217 (unit-resolution @x642 @x1397 $x623) x22$)))
+(let ((@x1405 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1402 $x610) @x1224 x26$) (unit-resolution @x307 @x1394 x25$) false)))
+(let ((@x1440 (unit-resolution (lemma @x1405 (or x8$ x12$ x52$)) @x882 @x756 x8$)))
+(let ((@x1411 (unit-resolution @x242 (unit-resolution @x559 (hypothesis x45$) $x552) @x1210 @x756 x19$)))
+(let ((@x1414 (unit-resolution @x642 (unit-resolution @x779 (unit-resolution @x582 @x1411 $x580) x24$) $x623)))
+(let ((@x1415 (unit-resolution @x289 @x1414 @x1217 (unit-resolution @x563 (hypothesis x45$) $x553) x22$)))
+(let ((@x1418 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x657)))
+(let ((@x1421 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1415 $x610) @x1224 x26$) $x596)))
+(let ((@x1424 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1418 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1415 $x595) @x1421 x49$)))
+(let (($x532 (or $x525 $x516)))
+(let ((@x533 (asserted $x532)))
+(let ((@x1426 (unit-resolution @x202 (unit-resolution @x533 @x1424 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1418 x54$) $x517) x42$)))
+(let ((@x1432 (unit-resolution @x222 (unit-resolution @x527 @x1424 $x524) (unit-resolution @x565 (hypothesis x45$) $x538) (unit-resolution @x616 @x1415 $x539) x44$)))
+(let ((@x1434 (unit-resolution @x155 (unit-resolution @x476 @x1432 $x453) (unit-resolution @x535 @x1424 $x454) (unit-resolution @x448 @x1426 $x445) x37$)))
+(let ((@x1437 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1426 $x375) x5$) @x1434 false)))
+(let ((@x1444 (unit-resolution @x175 (unit-resolution (lemma @x1437 (or $x482 x46$ x52$)) @x1210 @x756 $x482) @x882 (unit-resolution @x413 @x1440 $x411) x13$)))
+(let ((@x1447 (unit-resolution @x442 (unit-resolution @x193 (unit-resolution @x500 @x1444 $x495) @x1247 x41$) $x371)))
+(let ((@x1450 (unit-resolution @x67 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) (unit-resolution @x417 @x1440 $x356) x2$)))
+(let ((@x1452 (unit-resolution @x706 (unit-resolution @x352 @x1450 $x335) x31$)))
+(let ((@x1455 (unit-resolution @x452 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x446)))
+(let ((@x1457 (unit-resolution @x1011 (unit-resolution @x368 (unit-resolution @x77 @x1447 x4$) $x355) @x1440 x38$)))
+(let ((@x1459 (unit-resolution @x450 (unit-resolution @x725 (unit-resolution @x395 @x1452 $x374) x36$) $x445)))
+(let ((@x1460 (unit-resolution @x155 @x1459 (unit-resolution @x480 @x1457 $x453) (unit-resolution @x393 @x1452 $x383) x43$)))
+(let ((@x1463 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x537 @x1460 $x516) @x1455 x48$) $x588)))
+(let ((@x1466 (unit-resolution @x1154 @x1452 (unit-resolution @x478 @x1457 $x468) (unit-resolution @x480 @x1457 $x453) x17$)))
+(let ((@x1469 (unit-resolution @x582 (unit-resolution @x771 @x1466 @x882 @x1247 @x756 x19$) $x580)))
+(let ((@x1472 (unit-resolution @x289 (unit-resolution @x642 (unit-resolution @x779 @x1469 x24$) $x623) @x1217 (unit-resolution @x561 @x1466 $x553) x22$)))
+(let ((@x1475 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1472 $x610) @x1224 x26$) (unit-resolution @x307 @x1463 x25$) false)))
+(let ((@x1478 (unit-resolution (lemma @x1475 (or x46$ x12$ x52$)) @x882 @x756 x46$)))
+(let ((@x1480 (unit-resolution @x175 (unit-resolution @x504 @x1478 $x481) @x882 (unit-resolution @x413 @x1440 $x411) x45$)))
+(let ((@x1484 (unit-resolution @x779 (unit-resolution @x584 (unit-resolution @x1383 @x1478 @x756 x47$) $x580) x24$)))
+(let ((@x1486 (unit-resolution @x289 (unit-resolution @x642 @x1484 $x623) @x1217 (unit-resolution @x563 @x1480 $x553) x22$)))
+(let ((@x1491 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x596)))
+(let ((@x1493 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x612 @x1486 $x610) @x1224 x26$) $x657)))
+(let ((@x1496 (unit-resolution @x269 (unit-resolution @x590 (unit-resolution @x307 @x1493 x54$) $x587) (unit-resolution (asserted (or $x609 $x595)) @x1486 $x595) @x1491 x49$)))
+(let ((@x1498 (unit-resolution @x222 (unit-resolution @x527 @x1496 $x524) (unit-resolution @x565 @x1480 $x538) (unit-resolution @x616 @x1486 $x539) x44$)))
+(let ((@x1503 (unit-resolution @x202 (unit-resolution @x533 @x1496 $x516) (unit-resolution @x594 (unit-resolution @x307 @x1493 x54$) $x517) x42$)))
+(let ((@x1505 (unit-resolution @x155 (unit-resolution @x448 @x1503 $x445) (unit-resolution @x535 @x1496 $x454) (unit-resolution @x476 @x1498 $x453) x37$)))
+(let ((@x1508 (unit-resolution @x391 (unit-resolution @x725 (unit-resolution @x452 @x1503 $x375) x5$) @x1505 false)))
+(let ((@x1576 (unit-resolution @x472 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) $x453)))
+(let ((@x1547 (hypothesis $x667)))
+(let ((@x1557 (unit-resolution @x325 (unit-resolution @x612 (hypothesis x22$) $x610) @x1547 x26$)))
+(let ((@x1561 (unit-resolution @x590 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x587)))
+(let ((@x1562 (unit-resolution @x269 @x1561 (unit-resolution @x664 @x1557 $x596) (unit-resolution (asserted (or $x609 $x595)) (hypothesis x22$) $x595) x49$)))
+(let ((@x1564 (unit-resolution @x594 (unit-resolution @x307 (unit-resolution @x662 @x1557 $x657) x54$) $x517)))
+(let ((@x1512 (unit-resolution @x391 @x738 (unit-resolution @x155 @x830 @x832 @x815 x37$) false)))
+(let ((@x1514 (lemma @x1512 (or $x446 x43$ x11$))))
+(let ((@x1567 (unit-resolution @x1514 (unit-resolution @x202 (unit-resolution @x533 @x1562 $x516) @x1564 x42$) (unit-resolution @x535 @x1562 $x454) @x815 false)))
+(let ((@x1569 (lemma @x1567 (or $x609 x11$ x27$))))
+(let ((@x1584 (hypothesis $x446)))
+(let ((@x1587 (unit-resolution @x307 (unit-resolution @x662 (hypothesis x26$) $x657) x54$)))
+(let ((@x1590 (unit-resolution @x529 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x524)))
+(let ((@x1594 (unit-resolution @x533 (unit-resolution @x202 (unit-resolution @x594 @x1587 $x517) @x1584 x15$) $x525)))
+(let ((@x1595 (unit-resolution @x269 @x1594 (unit-resolution @x664 (hypothesis x26$) $x596) (unit-resolution @x590 @x1587 $x587) x21$)))
+(let ((@x1596 (unit-resolution @x622 @x1595 (unit-resolution @x222 @x1590 @x1142 @x897 x50$) false)))
+(let ((@x1599 (unit-resolution (lemma @x1596 (or $x660 x44$ x17$ x42$)) @x1584 @x897 @x1142 $x660)))
+(let ((@x1602 (unit-resolution @x222 (unit-resolution @x620 (unit-resolution @x325 @x1599 @x1547 x56$) $x539) @x1142 @x897 x16$)))
+(let ((@x1607 (unit-resolution @x592 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x587)))
+(let ((@x1608 (unit-resolution @x269 @x1607 (unit-resolution @x618 (unit-resolution @x325 @x1599 @x1547 x56$) $x595) (unit-resolution @x527 @x1602 $x525) x55$)))
+(let ((@x1609 (unit-resolution @x594 (unit-resolution @x202 (unit-resolution @x529 @x1602 $x516) @x1584 x48$) $x588)))
+(let ((@x1613 (lemma (unit-resolution @x666 (unit-resolution @x307 @x1609 x25$) @x1608 false) (or x42$ x44$ x17$ x27$))))
+(let ((@x1615 (unit-resolution @x448 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) $x445)))
+(let ((@x1616 (unit-resolution @x1514 (unit-resolution @x1613 @x897 @x1021 @x1547 x42$) @x889 x43$)))
+(let (($x463 (or $x454 $x383)))
+(let ((@x464 (asserted $x463)))
+(let ((@x1618 (unit-resolution @x1075 (unit-resolution @x464 @x1616 $x383) @x1020 @x897 @x1615 x50$)))
+(let ((@x1621 (unit-resolution @x662 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x657)))
+(let ((@x1625 (unit-resolution @x664 (unit-resolution @x325 (unit-resolution @x620 @x1618 $x610) @x1547 x26$) $x596)))
+(let ((@x1626 (unit-resolution @x269 @x1625 (unit-resolution @x622 @x1618 $x595) (unit-resolution @x535 @x1616 $x525) x20$)))
+(let ((@x1629 (lemma (unit-resolution @x590 @x1626 (unit-resolution @x307 @x1621 x54$) false) (or x17$ x27$ $x467))))
+(let ((@x1630 (unit-resolution @x1629 @x1224 (unit-resolution (lemma @x1508 (or x12$ x52$)) @x756 x12$) x17$)))
+(let ((@x1632 (unit-resolution @x289 (unit-resolution @x561 @x1630 $x553) @x1217 (unit-resolution @x1569 @x1576 @x1224 $x609) x23$)))
+(let ((@x1635 (unit-resolution @x584 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x509)))
+(let ((@x1637 (unit-resolution @x582 (unit-resolution @x779 (unit-resolution @x642 @x1632 $x637) x53$) $x566)))
+(let ((@x1638 (unit-resolution @x242 @x1637 (unit-resolution @x557 @x1630 $x552) @x756 x46$)))
+(let ((@x1640 (lemma (unit-resolution @x1383 @x1638 @x1635 @x756 false) x52$)))
+(let (($x647 (or $x638 $x567)))
+(let ((@x648 (asserted $x647)))
+(let ((@x1665 (unit-resolution @x676 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x667)))
+(let ((@x1668 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) @x815 $x609)))
+(let ((@x1669 (unit-resolution @x678 (unit-resolution @x797 (unit-resolution @x648 @x1640 $x638) x28$) $x624)))
+(let ((@x1671 (unit-resolution @x289 (unit-resolution (asserted (or $x623 $x567)) @x1640 $x623) @x1669 (or x22$ x51$))))
+(let ((@x1673 (unit-resolution @x563 (unit-resolution @x1671 @x1668 x51$) $x482)))
+(let ((@x1676 (unit-resolution (unit-resolution @x1629 @x1665 (or x17$ $x467)) @x897 $x467)))
+(let ((@x1650 (unit-resolution @x77 (unit-resolution @x368 (hypothesis x3$) $x363) x35$)))
+(let ((@x1579 (unit-resolution @x779 (unit-resolution (asserted (or $x637 $x567)) @x1640 $x637) x53$)))
+(let ((@x1580 (unit-resolution @x584 @x1579 $x509)))
+(let ((@x1653 (unit-resolution (unit-resolution @x193 @x1580 (or x14$ x41$)) (unit-resolution @x442 @x1650 $x438) x14$)))
+(let ((@x1655 (unit-resolution @x175 (unit-resolution @x500 @x1653 $x481) @x882 @x998 x39$)))
+(let ((@x1659 (unit-resolution @x128 (unit-resolution @x502 @x1653 $x425) (unit-resolution @x444 @x1650 $x424) (unit-resolution @x370 (hypothesis x3$) $x364) x8$)))
+(let ((@x1662 (lemma (unit-resolution @x413 @x1659 @x1655 false) (or $x355 x12$ x45$))))
+(let ((@x1574 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x1011 @x942 @x853 $x410) $x481)))
+(let ((@x1581 (unit-resolution @x419 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x396)))
+(let ((@x1582 (unit-resolution @x421 (unit-resolution @x175 @x1574 @x882 @x998 x39$) $x356)))
+(let ((@x1642 (unit-resolution @x108 (unit-resolution @x350 (unit-resolution @x67 @x1582 @x942 x2$) $x348) @x1581 @x853 x6$)))
+(let ((@x1644 (unit-resolution @x706 (unit-resolution @x352 (unit-resolution @x67 @x1582 @x942 x2$) $x335) x31$)))
+(let ((@x1647 (lemma (unit-resolution @x389 @x1644 @x1642 false) (or x3$ x38$ x12$ x45$))))
+(let ((@x1678 (unit-resolution @x1647 (unit-resolution @x1662 @x1673 @x1676 $x355) @x1676 @x1673 x38$)))
+(let ((@x1681 (unit-resolution @x706 (unit-resolution @x1154 (unit-resolution @x478 @x1678 $x468) @x897 @x815 $x336) x1$)))
+(let ((@x1683 (unit-resolution @x67 (unit-resolution @x352 @x1681 $x347) (unit-resolution @x1662 @x1673 @x1676 $x355) x33$)))
+(let ((@x1686 (unit-resolution (unit-resolution @x1090 @x1580 (or $x481 x8$)) (unit-resolution @x417 @x1683 $x410) $x481)))
+(let ((@x1687 (unit-resolution @x175 @x1686 (unit-resolution @x421 @x1683 $x411) @x1676 @x1673 false)))
+(let ((@x1691 (unit-resolution @x480 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x397)))
+(let ((@x1692 (unit-resolution @x476 (unit-resolution (lemma @x1687 (or x11$ x17$)) @x897 x11$) $x468)))
+(let ((@x1695 (unit-resolution (unit-resolution @x1613 @x1665 (or x42$ x44$ x17$)) @x1692 @x897 x42$)))
+(let ((@x1700 (unit-resolution (unit-resolution @x769 @x1580 (or $x374 x45$ x12$ x38$)) (unit-resolution @x725 (unit-resolution @x452 @x1695 $x375) x5$) @x1676 @x1691 x45$)))
+(let ((@x1702 (unit-resolution @x1671 (unit-resolution @x563 @x1700 $x553) x22$)))
+(let ((@x1705 (unit-resolution (unit-resolution @x325 @x1665 (or x26$ x56$)) (unit-resolution @x612 @x1702 $x610) x26$)))
+(let ((@x1709 (unit-resolution @x222 (unit-resolution @x616 @x1702 $x539) @x897 @x1692 x16$)))
+(let ((@x1713 (unit-resolution @x269 (unit-resolution @x664 @x1705 $x596) (unit-resolution (asserted (or $x609 $x595)) @x1702 $x595) (unit-resolution @x527 @x1709 $x525) x20$)))
+(let ((@x1714 (unit-resolution @x590 @x1713 (unit-resolution @x307 (unit-resolution @x662 @x1705 $x657) x54$) false)))
+(let ((@x1715 (lemma @x1714 x17$)))
+(let ((@x1718 (unit-resolution (unit-resolution @x1569 @x1665 (or $x609 x11$)) (unit-resolution @x1671 (unit-resolution @x561 @x1715 $x553) x22$) x11$)))
+(let ((@x1722 (unit-resolution @x1662 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) $x355)))
+(unit-resolution @x1647 @x1722 (unit-resolution @x472 @x1718 $x467) (unit-resolution @x565 @x1715 $x482) (unit-resolution @x480 @x1718 $x397) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-3da41aa632fdaf484d160ab8b5a2c83b931d3de7 18 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let (($x52 (= (+ |x$| (* (~ 1) |y$|)) (~ 4))))
-(let ((@x46 (monotonicity (rewrite (= (+ |x$| 4) (+ 4 |x$|))) (= (= |y$| (+ |x$| 4)) (= |y$| (+ 4 |x$|))))))
-(let ((@x55 (trans @x46 (rewrite (= (= |y$| (+ 4 |x$|)) $x52)) (= (= |y$| (+ |x$| 4)) $x52))))
-(let ((@x84 (monotonicity (mp (asserted (= |y$| (+ |x$| 4))) @x55 $x52) (= (>= (+ |x$| (* (~ 1) |y$|)) 0) (>= (~ 4) 0)))))
-(let ((@x88 (trans @x84 (rewrite (= (>= (~ 4) 0) false)) (= (>= (+ |x$| (* (~ 1) |y$|)) 0) false))))
-(let (($x68 (>= (+ |x$| (* (~ 1) |y$|)) 0)))
-(let ((@x74 (monotonicity (rewrite (= (< 0 (+ (* (~ 1) |x$|) |y$|)) (not $x68))) (= (not (< 0 (+ (* (~ 1) |x$|) |y$|))) (not (not $x68))))))
-(let ((@x78 (trans @x74 (rewrite (= (not (not $x68)) $x68)) (= (not (< 0 (+ (* (~ 1) |x$|) |y$|))) $x68))))
-(let (($x62 (< 0 (+ (* (~ 1) |x$|) |y$|))))
-(let (($x65 (not $x62)))
-(let (($x15 (not (< 0 (- |y$| |x$|)))))
-(let ((@x64 (monotonicity (rewrite (= (- |y$| |x$|) (+ (* (~ 1) |x$|) |y$|))) (= (< 0 (- |y$| |x$|)) $x62))))
-(let ((@x81 (mp (asserted $x15) (trans (monotonicity @x64 (= $x15 $x65)) @x78 (= $x15 $x68)) $x68)))
-(mp @x81 @x88 false))))))))))))))))
-
-e43b05132d28d45640c9d0131930806093dbb0e2 11 0
+eeecd6c9779ef5d70c86f61cca0282e6f6b227b5 53 0
 unsat
 ((set-logic AUFLIA)
-(proof
-(let ((@x37 (monotonicity (rewrite (= (+ 2 2) 4)) (= (= (+ 2 2) 5) (= 4 5)))))
-(let ((@x41 (trans @x37 (rewrite (= (= 4 5) false)) (= (= (+ 2 2) 5) false))))
-(let ((@x44 (monotonicity @x41 (= (not (= (+ 2 2) 5)) (not false)))))
-(let ((@x48 (trans @x44 (rewrite (= (not false) true)) (= (not (= (+ 2 2) 5)) true))))
-(let ((@x51 (monotonicity @x48 (= (not (not (= (+ 2 2) 5))) (not true)))))
-(let ((@x55 (trans @x51 (rewrite (= (not true) false)) (= (not (not (= (+ 2 2) 5))) false))))
-(mp (asserted (not (not (= (+ 2 2) 5)))) @x55 false)))))))))
-
-135df42816691c806246099ddf6fc7f6b81a2f42 19 0
-unsat
-((set-logic AUFLIRA)
+(declare-fun ?v0!0 () A$)
 (proof
-(let ((?x10 (* 7.0 |a$|)))
-(let ((?x7 (* 3.0 |x$|)))
-(let ((?x11 (+ ?x7 ?x10)))
-(let (($x46 (>= ?x11 4.0)))
-(let (($x44 (not $x46)))
-(let ((@x43 (mp (asserted (< ?x11 4.0)) (rewrite (= (< ?x11 4.0) $x44)) $x44)))
-(let ((?x15 (* 2.0 |x$|)))
-(let (($x48 (<= ?x15 3.0)))
-(let (($x49 (not $x48)))
-(let ((@x52 (mp (asserted (< 3.0 ?x15)) (rewrite (= (< 3.0 ?x15) $x49)) $x49)))
-(let (($x56 (>= |a$| 0.0)))
-(let ((@x60 (monotonicity (rewrite (= (< |a$| 0.0) (not $x56))) (= (not (< |a$| 0.0)) (not (not $x56))))))
-(let ((@x64 (trans @x60 (rewrite (= (not (not $x56)) $x56)) (= (not (< |a$| 0.0)) $x56))))
-(let ((@x65 (mp (asserted (not (< |a$| 0.0))) @x64 $x56)))
-((_ |th-lemma| arith farkas 7 3/2 1) @x65 @x52 @x43 false)))))))))))))))))
+(let (($x517 (forall ((?v0 A$) )(!(let (($x40 (p$ x$ ?v0)))
+(not $x40)) :pattern ( (p$ x$ ?v0) )))
+))
+(let (($x44 (p$ x$ c$)))
+(let (($x91 (= $x44 x$)))
+(let (($x510 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) )))
+))
+(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)))
+))
+(let ((@x514 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x510))))
+(let ((@x64 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
+(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)))
+))
+(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
+(let ((@x515 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x64 $x36) @x514 $x510)))
+(let (($x170 (or (not $x510) $x91)))
+(let ((@x503 ((_ quant-inst x$ c$) $x170)))
+(let (($x73 (p$ x$ ?v0!0)))
+(let (($x179 (= $x73 x$)))
+(let (($x84 (or $x73 $x44)))
+(let (($x81 (not $x44)))
+(let (($x69 (forall ((?v0 A$) )(let (($x40 (p$ x$ ?v0)))
+(not $x40)))
+))
+(let (($x85 (or $x69 $x81)))
+(let (($x42 (exists ((?v0 A$) )(p$ x$ ?v0))
+))
+(let (($x54 (not $x42)))
+(let (($x55 (= $x54 $x44)))
+(let ((@x71 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x54 $x69))))
+(let ((@x88 (nnf-pos @x71 (nnf-neg (sk (~ $x42 $x73)) (~ (not $x54) $x73)) (refl (~ $x44 $x44)) (refl (~ $x81 $x81)) (~ $x55 (and $x84 $x85)))))
+(let ((@x53 (monotonicity (rewrite (= (= $x42 $x44) (= $x42 $x44))) (= (not (= $x42 $x44)) (not (= $x42 $x44))))))
+(let ((@x59 (trans @x53 (rewrite (= (not (= $x42 $x44)) $x55)) (= (not (= $x42 $x44)) $x55))))
+(let ((@x89 (mp~ (mp (asserted (not (= $x42 $x44))) @x59 $x55) @x88 (and $x84 $x85))))
+(let ((@x92 (and-elim @x89 $x84)))
+(let ((@x484 (unit-resolution (def-axiom (or (not $x179) (not $x73) x$)) (unit-resolution @x92 (hypothesis $x81) $x73) (or (not $x179) x$))))
+(let ((@x145 (unit-resolution @x484 (unit-resolution ((_ quant-inst x$ ?v0!0) (or (not $x510) $x179)) @x515 $x179) x$)))
+(let ((@x147 (unit-resolution (def-axiom (or (not $x91) $x44 (not x$))) (hypothesis $x81) (or (not $x91) (not x$)))))
+(let ((@x485 (lemma (unit-resolution @x147 @x145 (unit-resolution @x503 @x515 $x91) false) $x44)))
+(let (($x522 (or $x517 $x81)))
+(let ((@x521 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x69 $x517))))
+(let ((@x525 (mp (and-elim @x89 $x85) (monotonicity @x521 (= $x85 $x522)) $x522)))
+(let (($x160 (or (not $x517) $x81)))
+(let ((@x161 ((_ quant-inst c$) $x160)))
+(unit-resolution @x161 @x485 (unit-resolution @x525 @x485 $x517) false)))))))))))))))))))))))))))))))))))))))
 
-de926642fcc1657dfaa079f1656df9cc74f3caaf 22 0
+48e1796773de6c2c0546e34aa9ce5aa2097adf0a 53 0
 unsat
 ((set-logic AUFLIA)
+(declare-fun ?v0!3 () A$)
 (proof
-(let (($x17 (not false)))
-(let (($x13 (<= 0 |x$|)))
-(let (($x14 (not $x13)))
-(let (($x15 (or $x14 $x13)))
-(let ((?x8 (- 1)))
-(let ((?x10 (* ?x8 |x$|)))
-(let ((?x11 (+ |y$| ?x10)))
-(let (($x12 (<= 0 ?x11)))
-(let (($x16 (or $x12 $x15)))
-(let (($x18 (= $x16 $x17)))
-(let (($x19 (not $x18)))
-(let ((@x58 (rewrite (= (or (<= 0 (+ |y$| (* (~ 1) |x$|))) true) true))))
-(let ((@x48 (monotonicity (monotonicity (rewrite (= ?x8 (~ 1))) (= ?x10 (* (~ 1) |x$|))) (= ?x11 (+ |y$| (* (~ 1) |x$|))))))
-(let ((@x56 (monotonicity (monotonicity @x48 (= $x12 (<= 0 (+ |y$| (* (~ 1) |x$|))))) (rewrite (= $x15 true)) (= $x16 (or (<= 0 (+ |y$| (* (~ 1) |x$|))) true)))))
-(let ((@x65 (monotonicity (trans @x56 @x58 (= $x16 true)) (rewrite (= $x17 true)) (= $x18 (= true true)))))
-(let ((@x69 (trans @x65 (rewrite (= (= true true) true)) (= $x18 true))))
-(let ((@x76 (trans (monotonicity @x69 (= $x19 (not true))) (rewrite (= (not true) false)) (= $x19 false))))
-(mp (asserted $x19) @x76 false))))))))))))))))))))
+(let (($x584 (forall ((?v0 A$) )(!(let (($x52 (p$ x$ ?v0)))
+(not $x52)) :pattern ( (p$ x$ ?v0) )))
+))
+(let (($x55 (p$ x$ c$)))
+(let (($x230 (= $x55 x$)))
+(let (($x561 (forall ((?v0 Bool) (?v1 A$) )(!(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)) :pattern ( (p$ ?v0 ?v1) )))
+))
+(let (($x36 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)))
+))
+(let ((@x565 (quant-intro (refl (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x36 $x561))))
+(let ((@x75 (nnf-pos (refl (~ (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (~ $x36 $x36))))
+(let (($x31 (forall ((?v0 Bool) (?v1 A$) )(let (($x29 (p$ ?v0 ?v1)))
+(= $x29 ?v0)))
+))
+(let ((@x38 (quant-intro (rewrite (= (= (p$ ?1 ?0) ?1) (= (p$ ?1 ?0) ?1))) (= $x31 $x36))))
+(let ((@x566 (mp (mp~ (mp (asserted $x31) @x38 $x36) @x75 $x36) @x565 $x561)))
+(let (($x220 (or (not $x561) $x230)))
+(let ((@x221 ((_ quant-inst x$ c$) $x220)))
+(let (($x124 (p$ x$ ?v0!3)))
+(let (($x141 (= $x124 x$)))
+(let (($x135 (or $x124 $x55)))
+(let (($x132 (not $x55)))
+(let (($x120 (forall ((?v0 A$) )(let (($x52 (p$ x$ ?v0)))
+(not $x52)))
+))
+(let (($x136 (or $x120 $x132)))
+(let (($x54 (exists ((?v0 A$) )(p$ x$ ?v0))
+))
+(let (($x65 (not $x54)))
+(let (($x66 (= $x65 $x55)))
+(let ((@x122 (nnf-neg (refl (~ (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (~ $x65 $x120))))
+(let ((@x139 (nnf-pos @x122 (nnf-neg (sk (~ $x54 $x124)) (~ (not $x65) $x124)) (refl (~ $x55 $x55)) (refl (~ $x132 $x132)) (~ $x66 (and $x135 $x136)))))
+(let ((@x64 (monotonicity (rewrite (= (= $x54 $x55) (= $x54 $x55))) (= (not (= $x54 $x55)) (not (= $x54 $x55))))))
+(let ((@x70 (trans @x64 (rewrite (= (not (= $x54 $x55)) $x66)) (= (not (= $x54 $x55)) $x66))))
+(let ((@x140 (mp~ (mp (asserted (not (= $x54 $x55))) @x70 $x66) @x139 (and $x135 $x136))))
+(let ((@x143 (and-elim @x140 $x135)))
+(let ((@x193 (unit-resolution (def-axiom (or (not $x141) (not $x124) x$)) (unit-resolution @x143 (hypothesis $x132) $x124) (or (not $x141) x$))))
+(let ((@x535 (unit-resolution @x193 (unit-resolution ((_ quant-inst x$ ?v0!3) (or (not $x561) $x141)) @x566 $x141) x$)))
+(let ((@x197 (unit-resolution (def-axiom (or (not $x230) $x55 (not x$))) (hypothesis $x132) (or (not $x230) (not x$)))))
+(let ((@x199 (lemma (unit-resolution @x197 @x535 (unit-resolution @x221 @x566 $x230) false) $x55)))
+(let (($x589 (or $x584 $x132)))
+(let ((@x588 (quant-intro (refl (= (not (p$ x$ ?0)) (not (p$ x$ ?0)))) (= $x120 $x584))))
+(let ((@x592 (mp (and-elim @x140 $x136) (monotonicity @x588 (= $x136 $x589)) $x589)))
+(let (($x549 (or (not $x584) $x132)))
+(let ((@x211 ((_ quant-inst c$) $x549)))
+(unit-resolution @x211 @x199 (unit-resolution @x592 @x199 $x584) false)))))))))))))))))))))))))))))))))))))))
 
-c19a59241b121ac2665c4fbd7ba1fa2d48fef984 159 0
+2df8e4308f7ae8ea39388023f7bd76c530ffef8c 26 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x22 (= |m$| |n$|)))
-(let ((@x478 (symm (commutativity (= $x22 (= |n$| |m$|))) (= (= |n$| |m$|) $x22))))
-(let (($x18 (= |n$| |m$|)))
-(let ((?x100 (* (~ 1) |m$|)))
-(let ((?x101 (+ |n$| ?x100)))
-(let (($x116 (>= ?x101 0)))
-(let ((?x76 (* (~ 1) |n$a|)))
-(let ((?x94 (+ |m$| ?x76)))
-(let (($x125 (<= ?x94 0)))
-(let ((?x77 (+ |n$| ?x76)))
-(let (($x86 (>= ?x77 0)))
-(let (($x259 (or $x86 $x125)))
-(let ((@x265 (monotonicity (rewrite (= (and (not $x86) (not $x125)) (not $x259))) (= (not (and (not $x86) (not $x125))) (not (not $x259))))))
-(let ((@x269 (trans @x265 (rewrite (= (not (not $x259)) $x259)) (= (not (and (not $x86) (not $x125))) $x259))))
-(let (($x126 (not $x125)))
-(let (($x85 (not $x86)))
-(let (($x141 (and $x85 $x126)))
-(let (($x208 (not $x141)))
-(let (($x28 (= |n$a| |m$|)))
-(let (($x35 (and $x28 $x22)))
-(let (($x78 (<= ?x77 0)))
-(let (($x79 (not $x78)))
-(let (($x11 (= |m$| |n$a|)))
-(let (($x82 (and $x11 $x79)))
-(let (($x89 (and $x22 $x85)))
-(let (($x93 (>= ?x94 0)))
-(let (($x92 (not $x93)))
-(let (($x97 (and $x92 $x79)))
-(let (($x26 (= |n$a| |n$|)))
-(let (($x102 (<= ?x101 0)))
-(let (($x103 (not $x102)))
-(let (($x106 (and $x103 $x26)))
-(let (($x109 (and $x103 $x85)))
-(let (($x112 (and $x28 $x103)))
-(let (($x115 (not $x116)))
-(let (($x119 (and $x26 $x115)))
-(let (($x122 (and $x79 $x115)))
-(let (($x129 (and $x126 $x22)))
-(let (($x132 (and $x126 $x103)))
-(let (($x135 (and $x18 $x92)))
-(let (($x16 (= |n$| |n$a|)))
-(let (($x138 (and $x16 $x126)))
-(let (($x144 (and $x115 $x11)))
-(let (($x147 (and $x115 $x92)))
-(let (($x195 (or $x147 $x144 $x141 $x138 $x135 $x132 $x129 $x122 $x119 $x112 $x109 $x106 $x97 $x89 $x82 $x35)))
-(let (($x38 (or (and (< |m$| |n$a|) (< |n$a| |n$|)) (or (and $x22 (< |n$| |n$a|)) (or (and $x11 (< |n$a| |n$|)) $x35)))))
-(let (($x40 (or (and (< |m$| |n$|) (< |n$| |n$a|)) (or (and (< |m$| |n$|) $x26) $x38))))
-(let (($x43 (or (and (< |n$a| |n$|) (< |n$| |m$|)) (or (and $x26 (< |n$| |m$|)) (or (and $x28 (< |m$| |n$|)) $x40)))))
-(let (($x45 (or (and (< |n$a| |m$|) (< |m$| |n$|)) (or (and (< |n$a| |m$|) $x22) $x43))))
-(let (($x48 (or (and (< |n$| |n$a|) (< |n$a| |m$|)) (or (and $x16 (< |n$a| |m$|)) (or (and $x18 (< |m$| |n$a|)) $x45)))))
-(let (($x50 (or (and (< |n$| |m$|) (< |m$| |n$a|)) (or (and (< |n$| |m$|) $x11) $x48))))
-(let (($x51 (not $x50)))
-(let (($x168 (or $x119 (or $x112 (or $x109 (or $x106 (or $x97 (or $x89 (or $x82 $x35)))))))))
-(let (($x189 (or $x144 (or $x141 (or $x138 (or $x135 (or $x132 (or $x129 (or $x122 $x168)))))))))
-(let (($x187 (= $x48 (or $x141 (or $x138 (or $x135 (or $x132 (or $x129 (or $x122 $x168)))))))))
-(let (($x184 (= (or (and $x16 (< |n$a| |m$|)) (or (and $x18 (< |m$| |n$a|)) $x45)) (or $x138 (or $x135 (or $x132 (or $x129 (or $x122 $x168))))))))
-(let (($x181 (= (or (and $x18 (< |m$| |n$a|)) $x45) (or $x135 (or $x132 (or $x129 (or $x122 $x168)))))))
-(let (($x169 (= (or (and $x26 (< |n$| |m$|)) (or (and $x28 (< |m$| |n$|)) $x40)) $x168)))
-(let (($x166 (= (or (and $x28 (< |m$| |n$|)) $x40) (or $x112 (or $x109 (or $x106 (or $x97 (or $x89 (or $x82 $x35)))))))))
-(let (($x160 (= (or (and (< |m$| |n$|) $x26) $x38) (or $x106 (or $x97 (or $x89 (or $x82 $x35)))))))
-(let (($x154 (= (or (and $x22 (< |n$| |n$a|)) (or (and $x11 (< |n$a| |n$|)) $x35)) (or $x89 (or $x82 $x35)))))
-(let ((@x81 (rewrite (= (< |n$a| |n$|) $x79))))
-(let ((@x152 (monotonicity (monotonicity @x81 (= (and $x11 (< |n$a| |n$|)) $x82)) (= (or (and $x11 (< |n$a| |n$|)) $x35) (or $x82 $x35)))))
-(let ((@x88 (rewrite (= (< |n$| |n$a|) $x85))))
-(let ((@x155 (monotonicity (monotonicity @x88 (= (and $x22 (< |n$| |n$a|)) $x89)) @x152 $x154)))
-(let ((@x96 (rewrite (= (< |m$| |n$a|) $x92))))
-(let ((@x99 (monotonicity @x96 @x81 (= (and (< |m$| |n$a|) (< |n$a| |n$|)) $x97))))
-(let ((@x158 (monotonicity @x99 @x155 (= $x38 (or $x97 (or $x89 (or $x82 $x35)))))))
-(let ((@x105 (rewrite (= (< |m$| |n$|) $x103))))
-(let ((@x161 (monotonicity (monotonicity @x105 (= (and (< |m$| |n$|) $x26) $x106)) @x158 $x160)))
-(let ((@x111 (monotonicity @x105 @x88 (= (and (< |m$| |n$|) (< |n$| |n$a|)) $x109))))
-(let ((@x164 (monotonicity @x111 @x161 (= $x40 (or $x109 (or $x106 (or $x97 (or $x89 (or $x82 $x35)))))))))
-(let ((@x167 (monotonicity (monotonicity @x105 (= (and $x28 (< |m$| |n$|)) $x112)) @x164 $x166)))
-(let ((@x118 (rewrite (= (< |n$| |m$|) $x115))))
-(let ((@x170 (monotonicity (monotonicity @x118 (= (and $x26 (< |n$| |m$|)) $x119)) @x167 $x169)))
-(let ((@x124 (monotonicity @x81 @x118 (= (and (< |n$a| |n$|) (< |n$| |m$|)) $x122))))
-(let ((@x128 (rewrite (= (< |n$a| |m$|) $x126))))
-(let ((@x176 (monotonicity (monotonicity @x128 (= (and (< |n$a| |m$|) $x22) $x129)) (monotonicity @x124 @x170 (= $x43 (or $x122 $x168))) (= (or (and (< |n$a| |m$|) $x22) $x43) (or $x129 (or $x122 $x168))))))
-(let ((@x134 (monotonicity @x128 @x105 (= (and (< |n$a| |m$|) (< |m$| |n$|)) $x132))))
-(let ((@x179 (monotonicity @x134 @x176 (= $x45 (or $x132 (or $x129 (or $x122 $x168)))))))
-(let ((@x182 (monotonicity (monotonicity @x96 (= (and $x18 (< |m$| |n$a|)) $x135)) @x179 $x181)))
-(let ((@x185 (monotonicity (monotonicity @x128 (= (and $x16 (< |n$a| |m$|)) $x138)) @x182 $x184)))
-(let ((@x143 (monotonicity @x88 @x128 (= (and (< |n$| |n$a|) (< |n$a| |m$|)) $x141))))
-(let ((@x191 (monotonicity (monotonicity @x118 (= (and (< |n$| |m$|) $x11) $x144)) (monotonicity @x143 @x185 $x187) (= (or (and (< |n$| |m$|) $x11) $x48) $x189))))
-(let ((@x149 (monotonicity @x118 @x96 (= (and (< |n$| |m$|) (< |m$| |n$a|)) $x147))))
-(let ((@x199 (trans (monotonicity @x149 @x191 (= $x50 (or $x147 $x189))) (rewrite (= (or $x147 $x189) $x195)) (= $x50 $x195))))
-(let ((@x203 (mp (asserted $x51) (monotonicity @x199 (= $x51 (not $x195))) (not $x195))))
-(let ((@x270 (mp (|not-or-elim| @x203 $x208) @x269 $x259)))
-(let (($x271 (not $x16)))
-(let (($x272 (or $x271 $x125)))
-(let ((@x278 (monotonicity (rewrite (= $x138 (not $x272))) (= (not $x138) (not (not $x272))))))
-(let ((@x282 (trans @x278 (rewrite (= (not (not $x272)) $x272)) (= (not $x138) $x272))))
-(let ((@x283 (mp (|not-or-elim| @x203 (not $x138)) @x282 $x272)))
-(let (($x284 (not $x18)))
-(let (($x309 (not $x22)))
-(let ((@x432 (hypothesis $x79)))
-(let (($x384 (or $x93 $x78)))
-(let ((@x390 (monotonicity (rewrite (= $x97 (not $x384))) (= (not $x97) (not (not $x384))))))
-(let ((@x394 (trans @x390 (rewrite (= (not (not $x384)) $x384)) (= (not $x97) $x384))))
-(let ((@x395 (mp (|not-or-elim| @x203 (not $x97)) @x394 $x384)))
-(let (($x246 (not $x11)))
-(let (($x408 (or $x246 $x78)))
-(let ((@x414 (monotonicity (rewrite (= $x82 (not $x408))) (= (not $x82) (not (not $x408))))))
-(let ((@x418 (trans @x414 (rewrite (= (not (not $x408)) $x408)) (= (not $x82) $x408))))
-(let ((@x419 (mp (|not-or-elim| @x203 (not $x82)) @x418 $x408)))
-(let ((@x437 ((_ |th-lemma| arith triangle-eq) (or $x11 $x126 $x92))))
-(let ((@x438 (|unit-resolution| @x437 (|unit-resolution| @x419 @x432 $x246) (|unit-resolution| @x395 @x432 $x93) $x126)))
-(let (($x310 (or $x125 $x309)))
-(let ((@x316 (monotonicity (rewrite (= $x129 (not $x310))) (= (not $x129) (not (not $x310))))))
-(let ((@x320 (trans @x316 (rewrite (= (not (not $x310)) $x310)) (= (not $x129) $x310))))
-(let ((@x321 (mp (|not-or-elim| @x203 (not $x129)) @x320 $x310)))
-(let ((@x448 (mp (|unit-resolution| @x321 @x438 $x309) (monotonicity (commutativity (= $x22 $x18)) (= $x309 $x284)) $x284)))
-(let (($x322 (or $x78 $x116)))
-(let ((@x328 (monotonicity (rewrite (= $x122 (not $x322))) (= (not $x122) (not (not $x322))))))
-(let ((@x332 (trans @x328 (rewrite (= (not (not $x322)) $x322)) (= (not $x122) $x322))))
-(let ((@x333 (mp (|not-or-elim| @x203 (not $x122)) @x332 $x322)))
-(let (($x297 (or $x125 $x102)))
-(let ((@x303 (monotonicity (rewrite (= $x132 (not $x297))) (= (not $x132) (not (not $x297))))))
-(let ((@x307 (trans @x303 (rewrite (= (not (not $x297)) $x297)) (= (not $x132) $x297))))
-(let ((@x308 (mp (|not-or-elim| @x203 (not $x132)) @x307 $x297)))
-(let ((@x442 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 $x103 $x115)) (|unit-resolution| @x308 @x438 $x102) (|unit-resolution| @x333 @x432 $x116) $x18)))
-(let ((@x457 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x16 $x79 $x85)) (lemma (|unit-resolution| @x442 @x448 false) $x78) (or $x16 $x85))))
-(let ((@x458 (|unit-resolution| @x457 (|unit-resolution| @x283 (hypothesis $x126) $x271) (|unit-resolution| @x270 (hypothesis $x126) $x86) false)))
-(let ((@x459 (lemma @x458 $x125)))
-(let (($x73 (or $x116 $x93)))
-(let ((@x240 (monotonicity (rewrite (= $x147 (not $x73))) (= (not $x147) (not (not $x73))))))
-(let ((@x244 (trans @x240 (rewrite (= (not (not $x73)) $x73)) (= (not $x147) $x73))))
-(let ((@x245 (mp (|not-or-elim| @x203 (not $x147)) @x244 $x73)))
-(let (($x247 (or $x116 $x246)))
-(let ((@x253 (monotonicity (rewrite (= $x144 (not $x247))) (= (not $x144) (not (not $x247))))))
-(let ((@x257 (trans @x253 (rewrite (= (not (not $x247)) $x247)) (= (not $x144) $x247))))
-(let ((@x258 (mp (|not-or-elim| @x203 (not $x144)) @x257 $x247)))
-(let ((@x463 (|unit-resolution| @x437 (|unit-resolution| @x258 (hypothesis $x115) $x246) (|unit-resolution| @x245 (hypothesis $x115) $x93) @x459 false)))
-(let (($x334 (not $x26)))
-(let (($x372 (or $x102 $x334)))
-(let ((@x378 (monotonicity (rewrite (= $x106 (not $x372))) (= (not $x106) (not (not $x372))))))
-(let ((@x382 (trans @x378 (rewrite (= (not (not $x372)) $x372)) (= (not $x106) $x372))))
-(let ((@x383 (mp (|not-or-elim| @x203 (not $x106)) @x382 $x372)))
-(let ((@x473 (mp (|unit-resolution| @x383 (hypothesis $x103) $x334) (monotonicity (commutativity (= $x26 $x16)) (= $x334 $x271)) $x271)))
-(let (($x360 (or $x102 $x86)))
-(let ((@x366 (monotonicity (rewrite (= $x109 (not $x360))) (= (not $x109) (not (not $x360))))))
-(let ((@x370 (trans @x366 (rewrite (= (not (not $x360)) $x360)) (= (not $x109) $x360))))
-(let ((@x371 (mp (|not-or-elim| @x203 (not $x109)) @x370 $x360)))
-(let ((@x467 (|unit-resolution| @x457 (|unit-resolution| @x371 (hypothesis $x103) $x86) $x16)))
-(let ((@x476 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 $x103 $x115)) (lemma (|unit-resolution| @x467 @x473 false) $x102) (lemma @x463 $x116) $x18)))
-(let (($x285 (or $x284 $x93)))
-(let ((@x291 (monotonicity (rewrite (= $x135 (not $x285))) (= (not $x135) (not (not $x285))))))
-(let ((@x295 (trans @x291 (rewrite (= (not (not $x285)) $x285)) (= (not $x135) $x285))))
-(let ((@x296 (mp (|not-or-elim| @x203 (not $x135)) @x295 $x285)))
-(let ((@x486 (mp (|unit-resolution| @x437 (|unit-resolution| @x296 @x476 $x93) @x459 $x11) (symm (commutativity (= $x28 $x11)) (= $x11 $x28)) $x28)))
-(let (($x420 (or (not $x28) $x309)))
-(let ((@x426 (monotonicity (rewrite (= $x35 (not $x420))) (= (not $x35) (not (not $x420))))))
-(let ((@x430 (trans @x426 (rewrite (= (not (not $x420)) $x420)) (= (not $x35) $x420))))
-(let ((@x431 (mp (|not-or-elim| @x203 (not $x35)) @x430 $x420)))
-(|unit-resolution| @x431 @x486 (mp @x476 @x478 $x22) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let (($x28 (p$ x$)))
+(let ((@x48 (monotonicity (rewrite (= (=> $x28 (p$ y$)) (or (not $x28) (p$ y$)))) (= (not (=> $x28 (p$ y$))) (not (or (not $x28) (p$ y$)))))))
+(let ((@x51 (mp (asserted (not (=> $x28 (p$ y$)))) @x48 (not (or (not $x28) (p$ y$))))))
+(let ((@x49 (not-or-elim @x51 $x28)))
+(let (($x486 (forall ((?v0 A$) )(!(let (($x30 (p$ ?v0)))
+(not $x30)) :pattern ( (p$ ?v0) )))
+))
+(let (($x34 (forall ((?v0 A$) )(let (($x30 (p$ ?v0)))
+(not $x30)))
+))
+(let ((@x490 (quant-intro (refl (= (not (p$ ?0)) (not (p$ ?0)))) (= $x34 $x486))))
+(let (($x31 (exists ((?v0 A$) )(p$ ?v0))
+))
+(let (($x32 (not $x31)))
+(let ((@x59 (monotonicity (iff-true @x49 (= $x28 true)) (= (ite $x28 $x32 $x34) (ite true $x32 $x34)))))
+(let ((@x63 (trans @x59 (rewrite (= (ite true $x32 $x34) $x32)) (= (ite $x28 $x32 $x34) $x32))))
+(let ((@x67 (mp~ (mp (asserted (ite $x28 $x32 $x34)) @x63 $x32) (nnf-neg (refl (~ (not (p$ ?0)) (not (p$ ?0)))) (~ $x32 $x34)) $x34)))
+(let ((@x491 (mp @x67 @x490 $x486)))
+(let (($x42 (not $x28)))
+(let (($x156 (or (not $x486) $x42)))
+(let ((@x70 ((_ quant-inst x$) $x156)))
+(unit-resolution @x70 @x491 @x49 false)))))))))))))))))))
+
+80de60849dcf0651c1aedd7f781a8e7ca39f83d7 7 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x35 (monotonicity (rewrite (= (= 3 3) true)) (= (not (= 3 3)) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3 3)) false))))
+(mp (asserted (not (= 3 3))) @x39 false)))))
+
+e65839fa5c1f3589cfc5db6ea43029f8639a17fe 7 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((@x35 (monotonicity (rewrite (= (= 3.0 3.0) true)) (= (not (= 3.0 3.0)) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= 3.0 3.0)) false))))
+(mp (asserted (not (= 3.0 3.0))) @x39 false)))))
+
+e571eb0660d494fd6aa308bebdd9b517a21af759 9 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (+ 3 1) 4)) (= (= (+ 3 1) 4) (= 4 4)))))
+(let ((@x41 (trans @x37 (rewrite (= (= 4 4) true)) (= (= (+ 3 1) 4) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (+ 3 1) 4)) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (+ 3 1) 4)) false))))
+(mp (asserted (not (= (+ 3 1) 4))) @x48 false)))))))
+
+c7eed2f76baba4a0c01a800ee2da514b0162cac7 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x32 (+ z$ x$)))
+(let ((?x33 (+ y$ ?x32)))
+(let ((?x30 (+ y$ z$)))
+(let ((?x31 (+ x$ ?x30)))
+(let (($x34 (= ?x31 ?x33)))
+(let (($x35 (not $x34)))
+(let ((@x45 (monotonicity (rewrite (= ?x32 (+ x$ z$))) (= ?x33 (+ y$ (+ x$ z$))))))
+(let ((@x49 (trans @x45 (rewrite (= (+ y$ (+ x$ z$)) (+ x$ y$ z$))) (= ?x33 (+ x$ y$ z$)))))
+(let ((@x52 (monotonicity (rewrite (= ?x31 (+ x$ y$ z$))) @x49 (= $x34 (= (+ x$ y$ z$) (+ x$ y$ z$))))))
+(let ((@x56 (trans @x52 (rewrite (= (= (+ x$ y$ z$) (+ x$ y$ z$)) true)) (= $x34 true))))
+(let ((@x63 (trans (monotonicity @x56 (= $x35 (not true))) (rewrite (= (not true) false)) (= $x35 false))))
+(mp (asserted $x35) @x63 false))))))))))))))
+
+38b869bfd4118f2fcf9bed900c8fd8af524dcd76 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x41 (monotonicity (rewrite (= (<= 3 8) true)) (= (ite (<= 3 8) 8 3) (ite true 8 3)))))
+(let ((@x45 (trans @x41 (rewrite (= (ite true 8 3) 8)) (= (ite (<= 3 8) 8 3) 8))))
+(let ((@x48 (monotonicity @x45 (= (< 5 (ite (<= 3 8) 8 3)) (< 5 8)))))
+(let ((@x52 (trans @x48 (rewrite (= (< 5 8) true)) (= (< 5 (ite (<= 3 8) 8 3)) true))))
+(let ((@x55 (monotonicity @x52 (= (not (< 5 (ite (<= 3 8) 8 3))) (not true)))))
+(let ((@x59 (trans @x55 (rewrite (= (not true) false)) (= (not (< 5 (ite (<= 3 8) 8 3))) false))))
+(mp (asserted (not (< 5 (ite (<= 3 8) 8 3)))) @x59 false)))))))))
+
+eb4f0cbaa80520a62b72d8aba335f8d20fb56cb8 88 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x44 (* (- 1.0) x$)))
+(let (($x83 (>= x$ 0.0)))
+(let ((?x90 (ite $x83 x$ ?x44)))
+(let ((?x113 (* (- 1.0) ?x90)))
+(let ((?x148 (+ x$ ?x113)))
+(let (($x149 (<= ?x148 0.0)))
+(let (($x133 (= x$ ?x90)))
+(let ((?x45 (* (- 1.0) y$)))
+(let ((?x46 (+ ?x44 ?x45)))
+(let ((?x29 (+ x$ y$)))
+(let (($x71 (>= ?x29 0.0)))
+(let ((?x78 (ite $x71 ?x29 ?x46)))
+(let ((?x151 (* (- 1.0) ?x78)))
+(let ((?x179 (+ ?x46 ?x151)))
+(let (($x181 (>= ?x179 0.0)))
+(let (($x130 (= ?x46 ?x78)))
+(let (($x72 (not $x71)))
+(let (($x95 (>= y$ 0.0)))
+(let (($x96 (not $x95)))
+(let (($x154 (>= (+ ?x29 ?x151) 0.0)))
+(let (($x129 (= ?x29 ?x78)))
+(let (($x190 (not $x181)))
+(let ((@x155 (hypothesis $x95)))
+(let ((?x102 (ite $x95 y$ ?x45)))
+(let ((?x114 (* (- 1.0) ?x102)))
+(let ((?x115 (+ ?x78 ?x113 ?x114)))
+(let (($x116 (<= ?x115 0.0)))
+(let (($x121 (not $x116)))
+(let ((?x39 (+ (ite (< x$ 0.0) (- x$) x$) (ite (< y$ 0.0) (- y$) y$))))
+(let (($x41 (not (<= (ite (< ?x29 0.0) (- ?x29) ?x29) ?x39))))
+(let (($x36 (< y$ 0.0)))
+(let ((?x59 (ite $x36 ?x45 y$)))
+(let (($x33 (< x$ 0.0)))
+(let ((?x54 (ite $x33 ?x44 x$)))
+(let ((?x62 (+ ?x54 ?x59)))
+(let (($x30 (< ?x29 0.0)))
+(let ((?x49 (ite $x30 ?x46 ?x29)))
+(let (($x65 (<= ?x49 ?x62)))
+(let ((@x106 (trans (monotonicity (rewrite (= $x36 $x96)) (= ?x59 (ite $x96 ?x45 y$))) (rewrite (= (ite $x96 ?x45 y$) ?x102)) (= ?x59 ?x102))))
+(let ((@x89 (monotonicity (rewrite (= $x33 (not $x83))) (= ?x54 (ite (not $x83) ?x44 x$)))))
+(let ((@x94 (trans @x89 (rewrite (= (ite (not $x83) ?x44 x$) ?x90)) (= ?x54 ?x90))))
+(let ((@x82 (trans (monotonicity (rewrite (= $x30 $x72)) (= ?x49 (ite $x72 ?x46 ?x29))) (rewrite (= (ite $x72 ?x46 ?x29) ?x78)) (= ?x49 ?x78))))
+(let ((@x112 (monotonicity @x82 (monotonicity @x94 @x106 (= ?x62 (+ ?x90 ?x102))) (= $x65 (<= ?x78 (+ ?x90 ?x102))))))
+(let ((@x120 (trans @x112 (rewrite (= (<= ?x78 (+ ?x90 ?x102)) $x116)) (= $x65 $x116))))
+(let ((@x61 (monotonicity (rewrite (= (- y$) ?x45)) (= (ite $x36 (- y$) y$) ?x59))))
+(let ((@x56 (monotonicity (rewrite (= (- x$) ?x44)) (= (ite $x33 (- x$) x$) ?x54))))
+(let ((@x51 (monotonicity (rewrite (= (- ?x29) ?x46)) (= (ite $x30 (- ?x29) ?x29) ?x49))))
+(let ((@x67 (monotonicity @x51 (monotonicity @x56 @x61 (= ?x39 ?x62)) (= (<= (ite $x30 (- ?x29) ?x29) ?x39) $x65))))
+(let ((@x125 (trans (monotonicity @x67 (= $x41 (not $x65))) (monotonicity @x120 (= (not $x65) $x121)) (= $x41 $x121))))
+(let ((@x126 (mp (asserted $x41) @x125 $x121)))
+(let (($x139 (= y$ ?x102)))
+(let ((@x169 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x139) (<= (+ y$ ?x114) 0.0))) (unit-resolution (def-axiom (or $x96 $x139)) @x155 $x139) (<= (+ y$ ?x114) 0.0))))
+(let ((?x150 (+ ?x44 ?x113)))
+(let (($x153 (<= ?x150 0.0)))
+(let (($x134 (= ?x44 ?x90)))
+(let (($x84 (not $x83)))
+(let ((@x159 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1) (or $x71 $x84 $x96)) (hypothesis $x83) @x155 $x71)))
+(let ((@x128 (def-axiom (or $x72 $x129))))
+(let ((@x163 ((_ th-lemma arith triangle-eq) (or (not $x129) $x154))))
+(let ((@x173 ((_ th-lemma arith triangle-eq) (or (not $x133) $x149))))
+(let ((@x174 (unit-resolution @x173 (unit-resolution (def-axiom (or $x84 $x133)) (hypothesis $x83) $x133) $x149)))
+(let ((@x175 ((_ th-lemma arith farkas -1 -1 1 1) @x174 @x169 @x126 (unit-resolution @x163 (unit-resolution @x128 @x159 $x129) $x154) false)))
+(let ((@x138 (def-axiom (or $x83 $x134))))
+(let ((@x184 (unit-resolution @x138 (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) $x134)))
+(let ((@x189 ((_ th-lemma arith farkas 2 -1 -1 1 1) @x155 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 (hypothesis $x181) false)))
+(let ((@x198 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x130) $x181)) (hypothesis $x130) (hypothesis $x190) false)))
+(let ((@x199 (lemma @x198 (or (not $x130) $x181))))
+(let ((@x201 (unit-resolution @x199 (unit-resolution (lemma @x189 (or $x190 $x96)) @x155 $x190) (not $x130))))
+(let ((@x132 (def-axiom (or $x71 $x130))))
+(let ((@x204 (unit-resolution @x163 (unit-resolution @x128 (unit-resolution @x132 @x201 $x71) $x129) $x154)))
+(let ((@x205 ((_ th-lemma arith farkas 2 1 1 1 1) (unit-resolution (lemma @x175 (or $x84 $x96)) @x155 $x84) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) @x184 $x153) @x169 @x126 @x204 false)))
+(let ((@x206 (lemma @x205 $x96)))
+(let ((@x212 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x83 $x95 $x72)) (hypothesis $x71) @x206 $x83)))
+(let ((@x136 (def-axiom (or $x84 $x133))))
+(let ((@x216 (unit-resolution @x163 (unit-resolution @x128 (hypothesis $x71) $x129) $x154)))
+(let ((?x147 (+ ?x45 ?x114)))
+(let (($x178 (<= ?x147 0.0)))
+(let (($x140 (= ?x45 ?x102)))
+(let ((@x221 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x140) $x178)) (unit-resolution (def-axiom (or $x95 $x140)) @x206 $x140) $x178)))
+(let ((@x222 ((_ th-lemma arith farkas 2 1 1 1 1) @x206 @x221 @x126 @x216 (unit-resolution @x173 (unit-resolution @x136 @x212 $x133) $x149) false)))
+(let ((@x226 (unit-resolution @x199 (unit-resolution @x132 (lemma @x222 $x72) $x130) $x181)))
+(let ((@x231 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x134) $x153)) (hypothesis $x134) (lemma ((_ th-lemma arith farkas 1 -1 -1 1) @x221 @x126 @x226 (hypothesis $x153) false) (not $x153)) false)))
+(let ((@x234 (unit-resolution @x136 (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) $x133)))
+((_ th-lemma arith farkas -2 1 -1 -1 1) (unit-resolution @x138 (lemma @x231 (not $x134)) $x83) @x221 @x126 @x226 (unit-resolution @x173 @x234 $x149) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+b033145c396900caefe8b7b0bb0eb6f18ba1b976 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x32 (p$ true)))
+(let (($x29 (< 2 3)))
+(let (($x30 (ite $x29 true false)))
+(let ((?x31 (p$ $x30)))
+(let (($x33 (= ?x31 ?x32)))
+(let (($x34 (not $x33)))
+(let ((@x52 (monotonicity (monotonicity (rewrite (= $x29 true)) (= (p$ $x29) ?x32)) (= (= (p$ $x29) ?x32) (= ?x32 ?x32)))))
+(let ((@x56 (trans @x52 (rewrite (= (= ?x32 ?x32) true)) (= (= (p$ $x29) ?x32) true))))
+(let ((@x63 (trans (monotonicity @x56 (= (not (= (p$ $x29) ?x32)) (not true))) (rewrite (= (not true) false)) (= (not (= (p$ $x29) ?x32)) false))))
+(let ((@x43 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= ?x31 (p$ $x29))) (= $x33 (= (p$ $x29) ?x32)))))
+(let ((@x46 (monotonicity @x43 (= $x34 (not (= (p$ $x29) ?x32))))))
+(mp (asserted $x34) (trans @x46 @x63 (= $x34 false)) false))))))))))))))
+
+8b9e890789d51395030c5121155b5df222b5edc3 16 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x33 (< x$ 1)))
+(let ((?x37 (+ 3 x$)))
+(let (($x40 (<= 4 ?x37)))
+(let (($x43 (or $x40 $x33)))
+(let (($x46 (not $x43)))
+(let ((@x57 (monotonicity (rewrite (= $x40 (>= x$ 1))) (rewrite (= $x33 (not (>= x$ 1)))) (= $x43 (or (>= x$ 1) (not (>= x$ 1)))))))
+(let ((@x61 (trans @x57 (rewrite (= (or (>= x$ 1) (not (>= x$ 1))) true)) (= $x43 true))))
+(let ((@x68 (trans (monotonicity @x61 (= $x46 (not true))) (rewrite (= (not true) false)) (= $x46 false))))
+(let ((@x42 (monotonicity (rewrite (= (+ x$ 3) ?x37)) (= (<= 4 (+ x$ 3)) $x40))))
+(let ((@x48 (monotonicity (monotonicity @x42 (= (or (<= 4 (+ x$ 3)) $x33) $x43)) (= (not (or (<= 4 (+ x$ 3)) $x33)) $x46))))
+(let ((@x70 (trans @x48 @x68 (= (not (or (<= 4 (+ x$ 3)) $x33)) false))))
+(mp (asserted (not (or (<= 4 (+ x$ 3)) $x33))) @x70 false))))))))))))))
+
+154bdf1c6ef792cc3795d45472fcc25a640e2843 18 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x51 (= (+ x$ (* (- 1) y$)) (- 4))))
+(let ((@x45 (monotonicity (rewrite (= (+ x$ 4) (+ 4 x$))) (= (= y$ (+ x$ 4)) (= y$ (+ 4 x$))))))
+(let ((@x54 (trans @x45 (rewrite (= (= y$ (+ 4 x$)) $x51)) (= (= y$ (+ x$ 4)) $x51))))
+(let ((@x88 (monotonicity (mp (asserted (= y$ (+ x$ 4))) @x54 $x51) (= (>= (+ x$ (* (- 1) y$)) 0) (>= (- 4) 0)))))
+(let ((@x90 (trans @x88 (rewrite (= (>= (- 4) 0) false)) (= (>= (+ x$ (* (- 1) y$)) 0) false))))
+(let (($x70 (>= (+ x$ (* (- 1) y$)) 0)))
+(let ((@x76 (monotonicity (rewrite (= (< 0 (+ (* (- 1) x$) y$)) (not $x70))) (= (not (< 0 (+ (* (- 1) x$) y$))) (not (not $x70))))))
+(let ((@x80 (trans @x76 (rewrite (= (not (not $x70)) $x70)) (= (not (< 0 (+ (* (- 1) x$) y$))) $x70))))
+(let (($x64 (< 0 (+ (* (- 1) x$) y$))))
+(let (($x67 (not $x64)))
+(let (($x58 (not (< 0 (- y$ x$)))))
+(let ((@x66 (monotonicity (rewrite (= (- y$ x$) (+ (* (- 1) x$) y$))) (= (< 0 (- y$ x$)) $x64))))
+(let ((@x83 (mp (asserted $x58) (trans (monotonicity @x66 (= $x58 $x67)) @x80 (= $x58 $x70)) $x70)))
+(mp @x83 @x90 false))))))))))))))))
 
-ad69b5703e25623b7fccdbcfa3db5949b2899f42 927 0
+a3d554bfa10b48cb1a494a10bb1e501be6292b39 11 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((@x39 (monotonicity (rewrite (= (+ 2 2) 4)) (= (= (+ 2 2) 5) (= 4 5)))))
+(let ((@x43 (trans @x39 (rewrite (= (= 4 5) false)) (= (= (+ 2 2) 5) false))))
+(let ((@x46 (monotonicity @x43 (= (not (= (+ 2 2) 5)) (not false)))))
+(let ((@x50 (trans @x46 (rewrite (= (not false) true)) (= (not (= (+ 2 2) 5)) true))))
+(let ((@x53 (monotonicity @x50 (= (not (not (= (+ 2 2) 5))) (not true)))))
+(let ((@x57 (trans @x53 (rewrite (= (not true) false)) (= (not (not (= (+ 2 2) 5))) false))))
+(mp (asserted (not (not (= (+ 2 2) 5)))) @x57 false)))))))))
+
+574989c0cc54480cb40b21b6e42362819c4a33e8 22 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x38 (not false)))
+(let (($x34 (<= 0 x$)))
+(let (($x35 (not $x34)))
+(let (($x36 (or $x35 $x34)))
+(let ((?x29 (- 1)))
+(let ((?x31 (* ?x29 x$)))
+(let ((?x32 (+ y$ ?x31)))
+(let (($x33 (<= 0 ?x32)))
+(let (($x37 (or $x33 $x36)))
+(let (($x39 (= $x37 $x38)))
+(let (($x40 (not $x39)))
+(let ((@x60 (rewrite (= (or (<= 0 (+ y$ (* (- 1) x$))) true) true))))
+(let ((@x50 (monotonicity (monotonicity (rewrite (= ?x29 (- 1))) (= ?x31 (* (- 1) x$))) (= ?x32 (+ y$ (* (- 1) x$))))))
+(let ((@x58 (monotonicity (monotonicity @x50 (= $x33 (<= 0 (+ y$ (* (- 1) x$))))) (rewrite (= $x36 true)) (= $x37 (or (<= 0 (+ y$ (* (- 1) x$))) true)))))
+(let ((@x67 (monotonicity (trans @x58 @x60 (= $x37 true)) (rewrite (= $x38 true)) (= $x39 (= true true)))))
+(let ((@x71 (trans @x67 (rewrite (= (= true true) true)) (= $x39 true))))
+(let ((@x78 (trans (monotonicity @x71 (= $x40 (not true))) (rewrite (= (not true) false)) (= $x40 false))))
+(mp (asserted $x40) @x78 false))))))))))))))))))))
+
+e52dc26c77bd7d10a72f38a2499294aa0ff205b3 19 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x32 (* 7.0 a$)))
+(let ((?x29 (* 3.0 x$)))
+(let ((?x33 (+ ?x29 ?x32)))
+(let (($x43 (>= ?x33 4.0)))
+(let (($x41 (not $x43)))
+(let ((@x40 (mp (asserted (< ?x33 4.0)) (rewrite (= (< ?x33 4.0) $x41)) $x41)))
+(let ((?x38 (* 2.0 x$)))
+(let (($x48 (<= ?x38 3.0)))
+(let (($x49 (not $x48)))
+(let ((@x52 (mp (asserted (< 3.0 ?x38)) (rewrite (= (< 3.0 ?x38) $x49)) $x49)))
+(let (($x58 (>= a$ 0.0)))
+(let ((@x62 (monotonicity (rewrite (= (< a$ 0.0) (not $x58))) (= (not (< a$ 0.0)) (not (not $x58))))))
+(let ((@x66 (trans @x62 (rewrite (= (not (not $x58)) $x58)) (= (not (< a$ 0.0)) $x58))))
+(let ((@x67 (mp (asserted (not (< a$ 0.0))) @x66 $x58)))
+((_ th-lemma arith farkas 7 3/2 1) @x67 @x52 @x40 false)))))))))))))))))
+
+c39f49e54187d0a817f3e4a791616e6b5ccf322c 159 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x44 (= m$ n$)))
+(let ((@x480 (symm (commutativity (= $x44 (= n$ m$))) (= (= n$ m$) $x44))))
+(let (($x40 (= n$ m$)))
+(let ((?x102 (* (- 1) m$)))
+(let ((?x103 (+ n$ ?x102)))
+(let (($x118 (>= ?x103 0)))
+(let ((?x78 (* (- 1) n$a)))
+(let ((?x96 (+ m$ ?x78)))
+(let (($x127 (<= ?x96 0)))
+(let ((?x79 (+ n$ ?x78)))
+(let (($x88 (>= ?x79 0)))
+(let (($x239 (or $x88 $x127)))
+(let ((@x251 (monotonicity (rewrite (= (and (not $x88) (not $x127)) (not $x239))) (= (not (and (not $x88) (not $x127))) (not (not $x239))))))
+(let ((@x271 (trans @x251 (rewrite (= (not (not $x239)) $x239)) (= (not (and (not $x88) (not $x127))) $x239))))
+(let (($x128 (not $x127)))
+(let (($x87 (not $x88)))
+(let (($x143 (and $x87 $x128)))
+(let (($x210 (not $x143)))
+(let (($x50 (= n$a m$)))
+(let (($x57 (and $x50 $x44)))
+(let (($x80 (<= ?x79 0)))
+(let (($x81 (not $x80)))
+(let (($x33 (= m$ n$a)))
+(let (($x84 (and $x33 $x81)))
+(let (($x91 (and $x44 $x87)))
+(let (($x95 (>= ?x96 0)))
+(let (($x94 (not $x95)))
+(let (($x99 (and $x94 $x81)))
+(let (($x48 (= n$a n$)))
+(let (($x104 (<= ?x103 0)))
+(let (($x105 (not $x104)))
+(let (($x108 (and $x105 $x48)))
+(let (($x111 (and $x105 $x87)))
+(let (($x114 (and $x50 $x105)))
+(let (($x117 (not $x118)))
+(let (($x121 (and $x48 $x117)))
+(let (($x124 (and $x81 $x117)))
+(let (($x131 (and $x128 $x44)))
+(let (($x134 (and $x128 $x105)))
+(let (($x137 (and $x40 $x94)))
+(let (($x38 (= n$ n$a)))
+(let (($x140 (and $x38 $x128)))
+(let (($x146 (and $x117 $x33)))
+(let (($x149 (and $x117 $x94)))
+(let (($x197 (or $x149 $x146 $x143 $x140 $x137 $x134 $x131 $x124 $x121 $x114 $x111 $x108 $x99 $x91 $x84 $x57)))
+(let (($x60 (or (and (< m$ n$a) (< n$a n$)) (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)))))
+(let (($x62 (or (and (< m$ n$) (< n$ n$a)) (or (and (< m$ n$) $x48) $x60))))
+(let (($x65 (or (and (< n$a n$) (< n$ m$)) (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)))))
+(let (($x67 (or (and (< n$a m$) (< m$ n$)) (or (and (< n$a m$) $x44) $x65))))
+(let (($x70 (or (and (< n$ n$a) (< n$a m$)) (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)))))
+(let (($x72 (or (and (< n$ m$) (< m$ n$a)) (or (and (< n$ m$) $x33) $x70))))
+(let (($x73 (not $x72)))
+(let (($x170 (or $x121 (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let (($x191 (or $x146 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
+(let (($x189 (= $x70 (or $x143 (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))))
+(let (($x186 (= (or (and $x38 (< n$a m$)) (or (and $x40 (< m$ n$a)) $x67)) (or $x140 (or $x137 (or $x134 (or $x131 (or $x124 $x170))))))))
+(let (($x183 (= (or (and $x40 (< m$ n$a)) $x67) (or $x137 (or $x134 (or $x131 (or $x124 $x170)))))))
+(let (($x171 (= (or (and $x48 (< n$ m$)) (or (and $x50 (< m$ n$)) $x62)) $x170)))
+(let (($x168 (= (or (and $x50 (< m$ n$)) $x62) (or $x114 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let (($x162 (= (or (and (< m$ n$) $x48) $x60) (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))
+(let (($x156 (= (or (and $x44 (< n$ n$a)) (or (and $x33 (< n$a n$)) $x57)) (or $x91 (or $x84 $x57)))))
+(let ((@x83 (rewrite (= (< n$a n$) $x81))))
+(let ((@x154 (monotonicity (monotonicity @x83 (= (and $x33 (< n$a n$)) $x84)) (= (or (and $x33 (< n$a n$)) $x57) (or $x84 $x57)))))
+(let ((@x90 (rewrite (= (< n$ n$a) $x87))))
+(let ((@x157 (monotonicity (monotonicity @x90 (= (and $x44 (< n$ n$a)) $x91)) @x154 $x156)))
+(let ((@x98 (rewrite (= (< m$ n$a) $x94))))
+(let ((@x101 (monotonicity @x98 @x83 (= (and (< m$ n$a) (< n$a n$)) $x99))))
+(let ((@x160 (monotonicity @x101 @x157 (= $x60 (or $x99 (or $x91 (or $x84 $x57)))))))
+(let ((@x107 (rewrite (= (< m$ n$) $x105))))
+(let ((@x163 (monotonicity (monotonicity @x107 (= (and (< m$ n$) $x48) $x108)) @x160 $x162)))
+(let ((@x113 (monotonicity @x107 @x90 (= (and (< m$ n$) (< n$ n$a)) $x111))))
+(let ((@x166 (monotonicity @x113 @x163 (= $x62 (or $x111 (or $x108 (or $x99 (or $x91 (or $x84 $x57)))))))))
+(let ((@x169 (monotonicity (monotonicity @x107 (= (and $x50 (< m$ n$)) $x114)) @x166 $x168)))
+(let ((@x120 (rewrite (= (< n$ m$) $x117))))
+(let ((@x172 (monotonicity (monotonicity @x120 (= (and $x48 (< n$ m$)) $x121)) @x169 $x171)))
+(let ((@x126 (monotonicity @x83 @x120 (= (and (< n$a n$) (< n$ m$)) $x124))))
+(let ((@x130 (rewrite (= (< n$a m$) $x128))))
+(let ((@x178 (monotonicity (monotonicity @x130 (= (and (< n$a m$) $x44) $x131)) (monotonicity @x126 @x172 (= $x65 (or $x124 $x170))) (= (or (and (< n$a m$) $x44) $x65) (or $x131 (or $x124 $x170))))))
+(let ((@x136 (monotonicity @x130 @x107 (= (and (< n$a m$) (< m$ n$)) $x134))))
+(let ((@x181 (monotonicity @x136 @x178 (= $x67 (or $x134 (or $x131 (or $x124 $x170)))))))
+(let ((@x184 (monotonicity (monotonicity @x98 (= (and $x40 (< m$ n$a)) $x137)) @x181 $x183)))
+(let ((@x187 (monotonicity (monotonicity @x130 (= (and $x38 (< n$a m$)) $x140)) @x184 $x186)))
+(let ((@x145 (monotonicity @x90 @x130 (= (and (< n$ n$a) (< n$a m$)) $x143))))
+(let ((@x193 (monotonicity (monotonicity @x120 (= (and (< n$ m$) $x33) $x146)) (monotonicity @x145 @x187 $x189) (= (or (and (< n$ m$) $x33) $x70) $x191))))
+(let ((@x151 (monotonicity @x120 @x98 (= (and (< n$ m$) (< m$ n$a)) $x149))))
+(let ((@x201 (trans (monotonicity @x151 @x193 (= $x72 (or $x149 $x191))) (rewrite (= (or $x149 $x191) $x197)) (= $x72 $x197))))
+(let ((@x205 (mp (asserted $x73) (monotonicity @x201 (= $x73 (not $x197))) (not $x197))))
+(let ((@x272 (mp (not-or-elim @x205 $x210) @x271 $x239)))
+(let (($x273 (not $x38)))
+(let (($x274 (or $x273 $x127)))
+(let ((@x280 (monotonicity (rewrite (= $x140 (not $x274))) (= (not $x140) (not (not $x274))))))
+(let ((@x284 (trans @x280 (rewrite (= (not (not $x274)) $x274)) (= (not $x140) $x274))))
+(let ((@x285 (mp (not-or-elim @x205 (not $x140)) @x284 $x274)))
+(let (($x286 (not $x40)))
+(let (($x311 (not $x44)))
+(let ((@x434 (hypothesis $x81)))
+(let (($x386 (or $x95 $x80)))
+(let ((@x392 (monotonicity (rewrite (= $x99 (not $x386))) (= (not $x99) (not (not $x386))))))
+(let ((@x396 (trans @x392 (rewrite (= (not (not $x386)) $x386)) (= (not $x99) $x386))))
+(let ((@x397 (mp (not-or-elim @x205 (not $x99)) @x396 $x386)))
+(let (($x246 (not $x33)))
+(let (($x410 (or $x246 $x80)))
+(let ((@x416 (monotonicity (rewrite (= $x84 (not $x410))) (= (not $x84) (not (not $x410))))))
+(let ((@x420 (trans @x416 (rewrite (= (not (not $x410)) $x410)) (= (not $x84) $x410))))
+(let ((@x421 (mp (not-or-elim @x205 (not $x84)) @x420 $x410)))
+(let ((@x439 ((_ th-lemma arith triangle-eq) (or $x33 $x128 $x94))))
+(let ((@x440 (unit-resolution @x439 (unit-resolution @x421 @x434 $x246) (unit-resolution @x397 @x434 $x95) $x128)))
+(let (($x312 (or $x127 $x311)))
+(let ((@x318 (monotonicity (rewrite (= $x131 (not $x312))) (= (not $x131) (not (not $x312))))))
+(let ((@x322 (trans @x318 (rewrite (= (not (not $x312)) $x312)) (= (not $x131) $x312))))
+(let ((@x323 (mp (not-or-elim @x205 (not $x131)) @x322 $x312)))
+(let ((@x450 (mp (unit-resolution @x323 @x440 $x311) (monotonicity (commutativity (= $x44 $x40)) (= $x311 $x286)) $x286)))
+(let (($x324 (or $x80 $x118)))
+(let ((@x330 (monotonicity (rewrite (= $x124 (not $x324))) (= (not $x124) (not (not $x324))))))
+(let ((@x334 (trans @x330 (rewrite (= (not (not $x324)) $x324)) (= (not $x124) $x324))))
+(let ((@x335 (mp (not-or-elim @x205 (not $x124)) @x334 $x324)))
+(let (($x299 (or $x127 $x104)))
+(let ((@x305 (monotonicity (rewrite (= $x134 (not $x299))) (= (not $x134) (not (not $x299))))))
+(let ((@x309 (trans @x305 (rewrite (= (not (not $x299)) $x299)) (= (not $x134) $x299))))
+(let ((@x310 (mp (not-or-elim @x205 (not $x134)) @x309 $x299)))
+(let ((@x444 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (unit-resolution @x310 @x440 $x104) (unit-resolution @x335 @x434 $x118) $x40)))
+(let ((@x459 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x38 $x81 $x87)) (lemma (unit-resolution @x444 @x450 false) $x80) (or $x38 $x87))))
+(let ((@x460 (unit-resolution @x459 (unit-resolution @x285 (hypothesis $x128) $x273) (unit-resolution @x272 (hypothesis $x128) $x88) false)))
+(let ((@x461 (lemma @x460 $x127)))
+(let (($x254 (or $x118 $x95)))
+(let ((@x262 (monotonicity (rewrite (= $x149 (not $x254))) (= (not $x149) (not (not $x254))))))
+(let ((@x256 (trans @x262 (rewrite (= (not (not $x254)) $x254)) (= (not $x149) $x254))))
+(let ((@x257 (mp (not-or-elim @x205 (not $x149)) @x256 $x254)))
+(let (($x247 (or $x118 $x246)))
+(let ((@x259 (monotonicity (rewrite (= $x146 (not $x247))) (= (not $x146) (not (not $x247))))))
+(let ((@x245 (trans @x259 (rewrite (= (not (not $x247)) $x247)) (= (not $x146) $x247))))
+(let ((@x238 (mp (not-or-elim @x205 (not $x146)) @x245 $x247)))
+(let ((@x465 (unit-resolution @x439 (unit-resolution @x238 (hypothesis $x117) $x246) (unit-resolution @x257 (hypothesis $x117) $x95) @x461 false)))
+(let (($x336 (not $x48)))
+(let (($x374 (or $x104 $x336)))
+(let ((@x380 (monotonicity (rewrite (= $x108 (not $x374))) (= (not $x108) (not (not $x374))))))
+(let ((@x384 (trans @x380 (rewrite (= (not (not $x374)) $x374)) (= (not $x108) $x374))))
+(let ((@x385 (mp (not-or-elim @x205 (not $x108)) @x384 $x374)))
+(let ((@x475 (mp (unit-resolution @x385 (hypothesis $x105) $x336) (monotonicity (commutativity (= $x48 $x38)) (= $x336 $x273)) $x273)))
+(let (($x362 (or $x104 $x88)))
+(let ((@x368 (monotonicity (rewrite (= $x111 (not $x362))) (= (not $x111) (not (not $x362))))))
+(let ((@x372 (trans @x368 (rewrite (= (not (not $x362)) $x362)) (= (not $x111) $x362))))
+(let ((@x373 (mp (not-or-elim @x205 (not $x111)) @x372 $x362)))
+(let ((@x469 (unit-resolution @x459 (unit-resolution @x373 (hypothesis $x105) $x88) $x38)))
+(let ((@x478 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x40 $x105 $x117)) (lemma (unit-resolution @x469 @x475 false) $x104) (lemma @x465 $x118) $x40)))
+(let (($x287 (or $x286 $x95)))
+(let ((@x293 (monotonicity (rewrite (= $x137 (not $x287))) (= (not $x137) (not (not $x287))))))
+(let ((@x297 (trans @x293 (rewrite (= (not (not $x287)) $x287)) (= (not $x137) $x287))))
+(let ((@x298 (mp (not-or-elim @x205 (not $x137)) @x297 $x287)))
+(let ((@x488 (mp (unit-resolution @x439 (unit-resolution @x298 @x478 $x95) @x461 $x33) (symm (commutativity (= $x50 $x33)) (= $x33 $x50)) $x50)))
+(let (($x422 (or (not $x50) $x311)))
+(let ((@x428 (monotonicity (rewrite (= $x57 (not $x422))) (= (not $x57) (not (not $x422))))))
+(let ((@x432 (trans @x428 (rewrite (= (not (not $x422)) $x422)) (= (not $x57) $x422))))
+(let ((@x433 (mp (not-or-elim @x205 (not $x57)) @x432 $x422)))
+(unit-resolution @x433 @x488 (mp @x478 @x480 $x44) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+08815a713893cf2f2359b61906c2360b4a2a841e 20 0
+unsat
+((set-logic AUFLIRA)
+(proof
+(let ((?x30 (* 2.0 x$)))
+(let ((?x32 (+ ?x30 1.0)))
+(let ((?x28 (+ x$ x$)))
+(let (($x33 (< ?x28 ?x32)))
+(let (($x34 (or false $x33)))
+(let (($x35 (or $x33 $x34)))
+(let (($x36 (not $x35)))
+(let ((@x67 (monotonicity (rewrite (= (< ?x30 (+ 1.0 ?x30)) true)) (= (not (< ?x30 (+ 1.0 ?x30))) (not true)))))
+(let ((@x71 (trans @x67 (rewrite (= (not true) false)) (= (not (< ?x30 (+ 1.0 ?x30))) false))))
+(let ((?x40 (+ 1.0 ?x30)))
+(let (($x43 (< ?x30 ?x40)))
+(let ((@x45 (monotonicity (rewrite (= ?x28 ?x30)) (rewrite (= ?x32 ?x40)) (= $x33 $x43))))
+(let ((@x52 (trans (monotonicity @x45 (= $x34 (or false $x43))) (rewrite (= (or false $x43) $x43)) (= $x34 $x43))))
+(let ((@x59 (trans (monotonicity @x45 @x52 (= $x35 (or $x43 $x43))) (rewrite (= (or $x43 $x43) $x43)) (= $x35 $x43))))
+(let ((@x62 (monotonicity @x59 (= $x36 (not $x43)))))
+(mp (asserted $x36) (trans @x62 @x71 (= $x36 false)) false))))))))))))))))))
+
+65e2c3423bd20786a741d330830050f8c51df180 933 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x131 (* (~ 1) |x4$|)))
-(let (($x436 (>= |x4$| 0)))
-(let ((?x443 (ite $x436 |x4$| ?x131)))
-(let ((?x454 (* (~ 1) ?x443)))
-(let ((?x675 (+ |x4$| ?x454)))
-(let (($x676 (<= ?x675 0)))
-(let (($x782 (not $x676)))
-(let ((?x672 (+ ?x131 ?x454)))
-(let (($x673 (<= ?x672 0)))
-(let (($x743 (not $x673)))
-(let ((?x653 (* (~ 1) |x11$|)))
-(let ((?x654 (+ |x2$| ?x653)))
-(let (($x656 (>= ?x654 0)))
-(let (($x708 (not $x656)))
-(let (($x71 (= |x2$| |x11$|)))
-(let ((@x1263 (hypothesis $x656)))
-(let (($x655 (<= ?x654 0)))
-(let ((?x165 (* (~ 1) |x6$|)))
-(let (($x386 (>= |x6$| 0)))
-(let ((?x393 (ite $x386 |x6$| ?x165)))
-(let ((?x404 (* (~ 1) ?x393)))
-(let ((?x669 (+ |x6$| ?x404)))
-(let (($x934 (<= ?x669 0)))
-(let (($x610 (= |x6$| ?x393)))
-(let (($x411 (>= |x5$| 0)))
-(let (($x286 (>= |x9$| 0)))
-(let (($x671 (>= ?x669 0)))
-(let (($x287 (not $x286)))
-(let ((@x1426 (hypothesis $x287)))
-(let ((?x233 (* (~ 1) |x10$|)))
-(let (($x311 (>= |x10$| 0)))
-(let ((?x318 (ite $x311 |x10$| ?x233)))
-(let ((?x329 (* (~ 1) ?x318)))
-(let ((?x660 (+ |x10$| ?x329)))
-(let (($x1369 (<= ?x660 0)))
-(let (($x642 (= |x10$| ?x318)))
-(let (($x643 (= ?x233 ?x318)))
-(let (($x1119 (not $x643)))
-(let ((?x1101 (+ ?x233 ?x329)))
-(let (($x1247 (<= ?x1101 0)))
-(let (($x1259 (not $x1247)))
-(let ((?x216 (* (~ 1) |x9$|)))
-(let ((?x293 (ite $x286 |x9$| ?x216)))
-(let ((?x304 (* (~ 1) ?x293)))
-(let ((?x1498 (+ ?x216 ?x304)))
-(let (($x1543 (>= ?x1498 0)))
-(let (($x635 (= ?x216 ?x293)))
-(let ((@x639 (|def-axiom| (or $x286 $x635))))
-(let ((@x1553 (|unit-resolution| @x639 @x1426 $x635)))
-(let ((@x1572 ((_ |th-lemma| arith triangle-eq) (or (not $x635) $x1543))))
-(let ((@x1573 (|unit-resolution| @x1572 @x1553 $x1543)))
-(let ((?x182 (* (~ 1) |x7$|)))
-(let (($x361 (>= |x7$| 0)))
-(let ((?x368 (ite $x361 |x7$| ?x182)))
-(let ((?x379 (* (~ 1) ?x368)))
-(let ((?x666 (+ |x7$| ?x379)))
-(let (($x838 (<= ?x666 0)))
-(let (($x618 (= |x7$| ?x368)))
-(let (($x412 (not $x411)))
-(let ((@x842 (hypothesis $x412)))
-(let ((?x775 (+ ?x165 ?x404)))
-(let (($x778 (<= ?x775 0)))
-(let (($x611 (= ?x165 ?x393)))
-(let (($x387 (not $x386)))
-(let (($x362 (not $x361)))
-(let ((@x1025 (hypothesis $x362)))
-(let ((@x1024 (hypothesis $x386)))
-(let ((?x405 (+ |x5$| |x7$| ?x404)))
-(let (($x617 (>= ?x405 0)))
-(let (($x406 (= ?x405 0)))
-(let ((?x330 (+ |x9$| |x11$| ?x329)))
-(let (($x331 (= ?x330 0)))
-(let ((?x305 (+ |x8$| |x10$| ?x304)))
-(let (($x306 (= ?x305 0)))
-(let ((?x199 (* (~ 1) |x8$|)))
-(let (($x336 (>= |x8$| 0)))
-(let ((?x343 (ite $x336 |x8$| ?x199)))
-(let ((?x354 (* (~ 1) ?x343)))
-(let ((?x355 (+ |x7$| |x9$| ?x354)))
-(let (($x356 (= ?x355 0)))
-(let ((?x380 (+ |x6$| |x8$| ?x379)))
-(let (($x381 (= ?x380 0)))
-(let ((?x148 (* (~ 1) |x5$|)))
-(let ((?x418 (ite $x411 |x5$| ?x148)))
-(let ((?x429 (* (~ 1) ?x418)))
-(let ((?x430 (+ |x4$| |x6$| ?x429)))
-(let (($x431 (= ?x430 0)))
-(let ((?x455 (+ |x3$| |x5$| ?x454)))
-(let (($x456 (= ?x455 0)))
-(let ((?x114 (* (~ 1) |x3$|)))
-(let (($x461 (>= |x3$| 0)))
-(let ((?x468 (ite $x461 |x3$| ?x114)))
-(let ((?x479 (* (~ 1) ?x468)))
-(let ((?x480 (+ |x2$| |x4$| ?x479)))
-(let (($x481 (= ?x480 0)))
-(let ((?x96 (* (~ 1) |x2$|)))
-(let (($x486 (>= |x2$| 0)))
-(let ((?x493 (ite $x486 |x2$| ?x96)))
-(let ((?x504 (* (~ 1) ?x493)))
-(let ((?x505 (+ |x3$| |x1$| ?x504)))
-(let (($x506 (= ?x505 0)))
-(let (($x535 (and $x506 $x481 $x456 $x431 $x406 $x381 $x356 $x306 $x331)))
-(let (($x546 (not (or (not $x535) (and (= |x1$| |x10$|) $x71)))))
-(let (($x70 (= |x1$| |x10$|)))
-(let (($x72 (and $x70 $x71)))
-(let (($x62 (and (= |x10$| (- (ite (< |x9$| 0) (- |x9$|) |x9$|) |x8$|)) (= |x11$| (- (ite (< |x10$| 0) (- |x10$|) |x10$|) |x9$|)))))
-(let (($x64 (and (= |x8$| (- (ite (< |x7$| 0) (- |x7$|) |x7$|) |x6$|)) (and (= |x9$| (- (ite (< |x8$| 0) (- |x8$|) |x8$|) |x7$|)) $x62))))
-(let (($x66 (and (= |x6$| (- (ite (< |x5$| 0) (- |x5$|) |x5$|) |x4$|)) (and (= |x7$| (- (ite (< |x6$| 0) (- |x6$|) |x6$|) |x5$|)) $x64))))
-(let (($x68 (and (= |x4$| (- (ite (< |x3$| 0) (- |x3$|) |x3$|) |x2$|)) (and (= |x5$| (- (ite (< |x4$| 0) (- |x4$|) |x4$|) |x3$|)) $x66))))
-(let (($x73 (=> (and (= |x3$| (- (ite (< |x2$| 0) (- |x2$|) |x2$|) |x1$|)) $x68) $x72)))
-(let (($x74 (not $x73)))
-(let (($x57 (< |x10$| 0)))
-(let ((?x236 (ite $x57 ?x233 |x10$|)))
-(let ((?x242 (+ ?x216 ?x236)))
-(let (($x247 (= |x11$| ?x242)))
-(let (($x51 (< |x9$| 0)))
-(let ((?x219 (ite $x51 ?x216 |x9$|)))
-(let ((?x225 (+ ?x199 ?x219)))
-(let (($x230 (= |x10$| ?x225)))
-(let (($x250 (and $x230 $x247)))
-(let (($x45 (< |x8$| 0)))
-(let ((?x202 (ite $x45 ?x199 |x8$|)))
-(let ((?x208 (+ ?x182 ?x202)))
-(let (($x213 (= |x9$| ?x208)))
-(let (($x253 (and $x213 $x250)))
-(let (($x39 (< |x7$| 0)))
-(let ((?x185 (ite $x39 ?x182 |x7$|)))
-(let ((?x191 (+ ?x165 ?x185)))
-(let (($x196 (= |x8$| ?x191)))
-(let (($x256 (and $x196 $x253)))
-(let (($x33 (< |x6$| 0)))
-(let ((?x168 (ite $x33 ?x165 |x6$|)))
-(let ((?x174 (+ ?x148 ?x168)))
-(let (($x179 (= |x7$| ?x174)))
-(let (($x259 (and $x179 $x256)))
-(let (($x27 (< |x5$| 0)))
-(let ((?x151 (ite $x27 ?x148 |x5$|)))
-(let ((?x157 (+ ?x131 ?x151)))
-(let (($x162 (= |x6$| ?x157)))
-(let (($x262 (and $x162 $x259)))
-(let (($x21 (< |x4$| 0)))
-(let ((?x134 (ite $x21 ?x131 |x4$|)))
-(let ((?x140 (+ ?x114 ?x134)))
-(let (($x145 (= |x5$| ?x140)))
-(let (($x265 (and $x145 $x262)))
-(let (($x15 (< |x3$| 0)))
-(let ((?x117 (ite $x15 ?x114 |x3$|)))
-(let ((?x123 (+ ?x96 ?x117)))
-(let (($x128 (= |x4$| ?x123)))
-(let (($x268 (and $x128 $x265)))
-(let (($x8 (< |x2$| 0)))
-(let ((?x99 (ite $x8 ?x96 |x2$|)))
-(let ((?x106 (+ (* (~ 1) |x1$|) ?x99)))
-(let (($x111 (= |x3$| ?x106)))
-(let (($x271 (and $x111 $x268)))
-(let (($x278 (or (not $x271) $x72)))
-(let (($x526 (and $x456 (and $x431 (and $x406 (and $x381 (and $x356 (and $x306 $x331))))))))
-(let (($x524 (= $x262 (and $x431 (and $x406 (and $x381 (and $x356 (and $x306 $x331))))))))
-(let ((@x317 (monotonicity (rewrite (= $x57 (not $x311))) (= ?x236 (ite (not $x311) ?x233 |x10$|)))))
-(let ((@x322 (trans @x317 (rewrite (= (ite (not $x311) ?x233 |x10$|) ?x318)) (= ?x236 ?x318))))
-(let ((@x328 (monotonicity (monotonicity @x322 (= ?x242 (+ ?x216 ?x318))) (= $x247 (= |x11$| (+ ?x216 ?x318))))))
-(let ((@x335 (trans @x328 (rewrite (= (= |x11$| (+ ?x216 ?x318)) $x331)) (= $x247 $x331))))
-(let ((@x292 (monotonicity (rewrite (= $x51 $x287)) (= ?x219 (ite $x287 ?x216 |x9$|)))))
-(let ((@x300 (monotonicity (trans @x292 (rewrite (= (ite $x287 ?x216 |x9$|) ?x293)) (= ?x219 ?x293)) (= ?x225 (+ ?x199 ?x293)))))
-(let ((@x310 (trans (monotonicity @x300 (= $x230 (= |x10$| (+ ?x199 ?x293)))) (rewrite (= (= |x10$| (+ ?x199 ?x293)) $x306)) (= $x230 $x306))))
-(let ((@x342 (monotonicity (rewrite (= $x45 (not $x336))) (= ?x202 (ite (not $x336) ?x199 |x8$|)))))
-(let ((@x347 (trans @x342 (rewrite (= (ite (not $x336) ?x199 |x8$|) ?x343)) (= ?x202 ?x343))))
-(let ((@x353 (monotonicity (monotonicity @x347 (= ?x208 (+ ?x182 ?x343))) (= $x213 (= |x9$| (+ ?x182 ?x343))))))
-(let ((@x360 (trans @x353 (rewrite (= (= |x9$| (+ ?x182 ?x343)) $x356)) (= $x213 $x356))))
-(let ((@x516 (monotonicity @x360 (monotonicity @x310 @x335 (= $x250 (and $x306 $x331))) (= $x253 (and $x356 (and $x306 $x331))))))
-(let ((@x367 (monotonicity (rewrite (= $x39 $x362)) (= ?x185 (ite $x362 ?x182 |x7$|)))))
-(let ((@x375 (monotonicity (trans @x367 (rewrite (= (ite $x362 ?x182 |x7$|) ?x368)) (= ?x185 ?x368)) (= ?x191 (+ ?x165 ?x368)))))
-(let ((@x385 (trans (monotonicity @x375 (= $x196 (= |x8$| (+ ?x165 ?x368)))) (rewrite (= (= |x8$| (+ ?x165 ?x368)) $x381)) (= $x196 $x381))))
-(let ((@x519 (monotonicity @x385 @x516 (= $x256 (and $x381 (and $x356 (and $x306 $x331)))))))
-(let ((@x392 (monotonicity (rewrite (= $x33 $x387)) (= ?x168 (ite $x387 ?x165 |x6$|)))))
-(let ((@x400 (monotonicity (trans @x392 (rewrite (= (ite $x387 ?x165 |x6$|) ?x393)) (= ?x168 ?x393)) (= ?x174 (+ ?x148 ?x393)))))
-(let ((@x410 (trans (monotonicity @x400 (= $x179 (= |x7$| (+ ?x148 ?x393)))) (rewrite (= (= |x7$| (+ ?x148 ?x393)) $x406)) (= $x179 $x406))))
-(let ((@x522 (monotonicity @x410 @x519 (= $x259 (and $x406 (and $x381 (and $x356 (and $x306 $x331))))))))
-(let ((@x417 (monotonicity (rewrite (= $x27 $x412)) (= ?x151 (ite $x412 ?x148 |x5$|)))))
-(let ((@x425 (monotonicity (trans @x417 (rewrite (= (ite $x412 ?x148 |x5$|) ?x418)) (= ?x151 ?x418)) (= ?x157 (+ ?x131 ?x418)))))
-(let ((@x435 (trans (monotonicity @x425 (= $x162 (= |x6$| (+ ?x131 ?x418)))) (rewrite (= (= |x6$| (+ ?x131 ?x418)) $x431)) (= $x162 $x431))))
-(let ((@x442 (monotonicity (rewrite (= $x21 (not $x436))) (= ?x134 (ite (not $x436) ?x131 |x4$|)))))
-(let ((@x447 (trans @x442 (rewrite (= (ite (not $x436) ?x131 |x4$|) ?x443)) (= ?x134 ?x443))))
-(let ((@x453 (monotonicity (monotonicity @x447 (= ?x140 (+ ?x114 ?x443))) (= $x145 (= |x5$| (+ ?x114 ?x443))))))
-(let ((@x460 (trans @x453 (rewrite (= (= |x5$| (+ ?x114 ?x443)) $x456)) (= $x145 $x456))))
-(let ((@x467 (monotonicity (rewrite (= $x15 (not $x461))) (= ?x117 (ite (not $x461) ?x114 |x3$|)))))
-(let ((@x472 (trans @x467 (rewrite (= (ite (not $x461) ?x114 |x3$|) ?x468)) (= ?x117 ?x468))))
-(let ((@x478 (monotonicity (monotonicity @x472 (= ?x123 (+ ?x96 ?x468))) (= $x128 (= |x4$| (+ ?x96 ?x468))))))
-(let ((@x485 (trans @x478 (rewrite (= (= |x4$| (+ ?x96 ?x468)) $x481)) (= $x128 $x481))))
-(let ((@x531 (monotonicity @x485 (monotonicity @x460 (monotonicity @x435 @x522 $x524) (= $x265 $x526)) (= $x268 (and $x481 $x526)))))
-(let ((@x492 (monotonicity (rewrite (= $x8 (not $x486))) (= ?x99 (ite (not $x486) ?x96 |x2$|)))))
-(let ((@x497 (trans @x492 (rewrite (= (ite (not $x486) ?x96 |x2$|) ?x493)) (= ?x99 ?x493))))
-(let ((@x503 (monotonicity (monotonicity @x497 (= ?x106 (+ (* (~ 1) |x1$|) ?x493))) (= $x111 (= |x3$| (+ (* (~ 1) |x1$|) ?x493))))))
-(let ((@x510 (trans @x503 (rewrite (= (= |x3$| (+ (* (~ 1) |x1$|) ?x493)) $x506)) (= $x111 $x506))))
-(let ((@x539 (trans (monotonicity @x510 @x531 (= $x271 (and $x506 (and $x481 $x526)))) (rewrite (= (and $x506 (and $x481 $x526)) $x535)) (= $x271 $x535))))
-(let ((@x545 (monotonicity (monotonicity @x539 (= (not $x271) (not $x535))) (= $x278 (or (not $x535) $x72)))))
-(let ((@x238 (monotonicity (rewrite (= (- |x10$|) ?x233)) (= (ite $x57 (- |x10$|) |x10$|) ?x236))))
-(let ((@x241 (monotonicity @x238 (= (- (ite $x57 (- |x10$|) |x10$|) |x9$|) (- ?x236 |x9$|)))))
-(let ((@x246 (trans @x241 (rewrite (= (- ?x236 |x9$|) ?x242)) (= (- (ite $x57 (- |x10$|) |x10$|) |x9$|) ?x242))))
-(let ((@x249 (monotonicity @x246 (= (= |x11$| (- (ite $x57 (- |x10$|) |x10$|) |x9$|)) $x247))))
-(let ((@x221 (monotonicity (rewrite (= (- |x9$|) ?x216)) (= (ite $x51 (- |x9$|) |x9$|) ?x219))))
-(let ((@x224 (monotonicity @x221 (= (- (ite $x51 (- |x9$|) |x9$|) |x8$|) (- ?x219 |x8$|)))))
-(let ((@x229 (trans @x224 (rewrite (= (- ?x219 |x8$|) ?x225)) (= (- (ite $x51 (- |x9$|) |x9$|) |x8$|) ?x225))))
-(let ((@x232 (monotonicity @x229 (= (= |x10$| (- (ite $x51 (- |x9$|) |x9$|) |x8$|)) $x230))))
-(let ((@x204 (monotonicity (rewrite (= (- |x8$|) ?x199)) (= (ite $x45 (- |x8$|) |x8$|) ?x202))))
-(let ((@x207 (monotonicity @x204 (= (- (ite $x45 (- |x8$|) |x8$|) |x7$|) (- ?x202 |x7$|)))))
-(let ((@x212 (trans @x207 (rewrite (= (- ?x202 |x7$|) ?x208)) (= (- (ite $x45 (- |x8$|) |x8$|) |x7$|) ?x208))))
-(let ((@x215 (monotonicity @x212 (= (= |x9$| (- (ite $x45 (- |x8$|) |x8$|) |x7$|)) $x213))))
-(let ((@x255 (monotonicity @x215 (monotonicity @x232 @x249 (= $x62 $x250)) (= (and (= |x9$| (- (ite $x45 (- |x8$|) |x8$|) |x7$|)) $x62) $x253))))
-(let ((@x187 (monotonicity (rewrite (= (- |x7$|) ?x182)) (= (ite $x39 (- |x7$|) |x7$|) ?x185))))
-(let ((@x190 (monotonicity @x187 (= (- (ite $x39 (- |x7$|) |x7$|) |x6$|) (- ?x185 |x6$|)))))
-(let ((@x195 (trans @x190 (rewrite (= (- ?x185 |x6$|) ?x191)) (= (- (ite $x39 (- |x7$|) |x7$|) |x6$|) ?x191))))
-(let ((@x198 (monotonicity @x195 (= (= |x8$| (- (ite $x39 (- |x7$|) |x7$|) |x6$|)) $x196))))
-(let ((@x170 (monotonicity (rewrite (= (- |x6$|) ?x165)) (= (ite $x33 (- |x6$|) |x6$|) ?x168))))
-(let ((@x173 (monotonicity @x170 (= (- (ite $x33 (- |x6$|) |x6$|) |x5$|) (- ?x168 |x5$|)))))
-(let ((@x178 (trans @x173 (rewrite (= (- ?x168 |x5$|) ?x174)) (= (- (ite $x33 (- |x6$|) |x6$|) |x5$|) ?x174))))
-(let ((@x181 (monotonicity @x178 (= (= |x7$| (- (ite $x33 (- |x6$|) |x6$|) |x5$|)) $x179))))
-(let ((@x261 (monotonicity @x181 (monotonicity @x198 @x255 (= $x64 $x256)) (= (and (= |x7$| (- (ite $x33 (- |x6$|) |x6$|) |x5$|)) $x64) $x259))))
-(let ((@x153 (monotonicity (rewrite (= (- |x5$|) ?x148)) (= (ite $x27 (- |x5$|) |x5$|) ?x151))))
-(let ((@x156 (monotonicity @x153 (= (- (ite $x27 (- |x5$|) |x5$|) |x4$|) (- ?x151 |x4$|)))))
-(let ((@x161 (trans @x156 (rewrite (= (- ?x151 |x4$|) ?x157)) (= (- (ite $x27 (- |x5$|) |x5$|) |x4$|) ?x157))))
-(let ((@x164 (monotonicity @x161 (= (= |x6$| (- (ite $x27 (- |x5$|) |x5$|) |x4$|)) $x162))))
-(let ((@x136 (monotonicity (rewrite (= (- |x4$|) ?x131)) (= (ite $x21 (- |x4$|) |x4$|) ?x134))))
-(let ((@x139 (monotonicity @x136 (= (- (ite $x21 (- |x4$|) |x4$|) |x3$|) (- ?x134 |x3$|)))))
-(let ((@x144 (trans @x139 (rewrite (= (- ?x134 |x3$|) ?x140)) (= (- (ite $x21 (- |x4$|) |x4$|) |x3$|) ?x140))))
-(let ((@x147 (monotonicity @x144 (= (= |x5$| (- (ite $x21 (- |x4$|) |x4$|) |x3$|)) $x145))))
-(let ((@x267 (monotonicity @x147 (monotonicity @x164 @x261 (= $x66 $x262)) (= (and (= |x5$| (- (ite $x21 (- |x4$|) |x4$|) |x3$|)) $x66) $x265))))
-(let ((@x119 (monotonicity (rewrite (= (- |x3$|) ?x114)) (= (ite $x15 (- |x3$|) |x3$|) ?x117))))
-(let ((@x122 (monotonicity @x119 (= (- (ite $x15 (- |x3$|) |x3$|) |x2$|) (- ?x117 |x2$|)))))
-(let ((@x127 (trans @x122 (rewrite (= (- ?x117 |x2$|) ?x123)) (= (- (ite $x15 (- |x3$|) |x3$|) |x2$|) ?x123))))
-(let ((@x130 (monotonicity @x127 (= (= |x4$| (- (ite $x15 (- |x3$|) |x3$|) |x2$|)) $x128))))
-(let ((@x101 (monotonicity (rewrite (= (- |x2$|) ?x96)) (= (ite $x8 (- |x2$|) |x2$|) ?x99))))
-(let ((@x104 (monotonicity @x101 (= (- (ite $x8 (- |x2$|) |x2$|) |x1$|) (- ?x99 |x1$|)))))
-(let ((@x110 (trans @x104 (rewrite (= (- ?x99 |x1$|) ?x106)) (= (- (ite $x8 (- |x2$|) |x2$|) |x1$|) ?x106))))
-(let ((@x113 (monotonicity @x110 (= (= |x3$| (- (ite $x8 (- |x2$|) |x2$|) |x1$|)) $x111))))
-(let ((@x273 (monotonicity @x113 (monotonicity @x130 @x267 (= $x68 $x268)) (= (and (= |x3$| (- (ite $x8 (- |x2$|) |x2$|) |x1$|)) $x68) $x271))))
-(let ((@x282 (trans (monotonicity @x273 (= $x73 (=> $x271 $x72))) (rewrite (= (=> $x271 $x72) $x278)) (= $x73 $x278))))
-(let ((@x550 (trans (monotonicity @x282 (= $x74 (not $x278))) (monotonicity @x545 (= (not $x278) $x546)) (= $x74 $x546))))
-(let ((@x552 (|not-or-elim| (mp (asserted $x74) @x550 $x546) $x535)))
-(let ((@x557 (|and-elim| @x552 $x406)))
-(let ((@x851 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x406) $x617)) @x557 $x617)))
-(let ((@x948 ((_ |th-lemma| arith triangle-eq) (or (not $x610) $x934))))
-(let ((@x1027 (|unit-resolution| @x948 (|unit-resolution| (|def-axiom| (or $x387 $x610)) @x1024 $x610) $x934)))
-(let ((@x1030 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1027 @x851 @x1025 @x842 @x1024 false) (or $x361 $x411 $x387))))
-(let ((@x615 (|def-axiom| (or $x386 $x611))))
-(let ((@x1061 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x611) $x778)) (|unit-resolution| @x615 (|unit-resolution| @x1030 @x1025 @x842 $x387) $x611) $x778)))
-(let ((@x1062 ((_ |th-lemma| arith farkas 1 1 1 1 1) (|unit-resolution| @x1030 @x1025 @x842 $x387) @x1025 @x851 @x842 @x1061 false)))
-(let ((@x1064 (lemma @x1062 (or $x361 $x411))))
-(let ((@x621 (|def-axiom| (or $x362 $x618))))
-(let ((@x863 ((_ |th-lemma| arith triangle-eq) (or (not $x618) $x838))))
-(let ((@x1087 (|unit-resolution| @x863 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x842 $x361) $x618) $x838)))
-(let ((?x663 (+ |x8$| ?x354)))
-(let (($x661 (<= ?x663 0)))
-(let (($x626 (= |x8$| ?x343)))
-(let (($x665 (>= ?x663 0)))
-(let ((@x1538 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x661 $x665)) (hypothesis (not $x661)) $x665)))
-(let (($x627 (= ?x199 ?x343)))
-(let (($x337 (not $x336)))
-(let ((@x1527 (hypothesis $x337)))
-(let ((@x631 (|def-axiom| (or $x336 $x627))))
-(let ((@x1528 (|unit-resolution| @x631 @x1527 $x627)))
-(let ((?x664 (+ ?x199 ?x354)))
-(let (($x873 (<= ?x664 0)))
-(let (($x1510 (not $x873)))
-(let ((@x856 (hypothesis $x665)))
-(let ((@x1516 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x627) $x873)) (hypothesis $x627) (hypothesis $x1510) false)))
-(let ((@x1517 (lemma @x1516 (or (not $x627) $x873))))
-(let ((@x1532 (|unit-resolution| @x1517 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or (not $x665) $x336 $x1510)) @x1527 @x856 $x1510) @x1528 false)))
-(let ((@x629 (|def-axiom| (or $x337 $x626))))
-(let ((@x1540 (|unit-resolution| @x629 (|unit-resolution| (lemma @x1532 (or $x336 (not $x665))) @x1538 $x336) $x626)))
-(let ((@x1127 ((_ |th-lemma| arith triangle-eq) (or (not $x626) $x661))))
-(let ((@x1542 (lemma (|unit-resolution| @x1127 @x1540 (hypothesis (not $x661)) false) $x661)))
-(let ((@x1206 (hypothesis $x838)))
-(let ((@x1211 (hypothesis $x661)))
-(let ((@x843 (hypothesis $x387)))
-(let (($x625 (>= ?x380 0)))
-(let ((@x558 (|and-elim| @x552 $x381)))
-(let ((@x833 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x381) $x625)) @x558 $x625)))
-(let (($x633 (>= ?x355 0)))
-(let ((@x559 (|and-elim| @x552 $x356)))
-(let ((@x1125 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x356) $x633)) @x559 $x633)))
-(let ((@x1429 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1 1) @x1125 @x1426 @x833 @x843 @x1211 @x1206 false) (or $x286 $x386 (not $x661) (not $x838)))))
-(let ((@x1915 (|unit-resolution| (|unit-resolution| @x1429 @x1542 (or $x286 $x386 (not $x838))) @x1087 @x1426 $x386)))
-(let ((@x613 (|def-axiom| (or $x387 $x610))))
-(let ((@x1917 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1915 $x610) $x934)))
-(let ((?x678 (+ |x3$| ?x479)))
-(let (($x670 (>= ?x678 0)))
-(let (($x586 (= |x3$| ?x468)))
-(let ((?x929 (+ ?x148 ?x429)))
-(let (($x1022 (>= ?x929 0)))
-(let (($x603 (= ?x148 ?x418)))
-(let ((@x607 (|def-axiom| (or $x411 $x603))))
-(let ((@x994 (|unit-resolution| @x607 @x842 $x603)))
-(let ((@x1037 ((_ |th-lemma| arith triangle-eq) (or (not $x603) $x1022))))
-(let ((@x1038 (|unit-resolution| @x1037 @x994 $x1022)))
-(let (($x462 (not $x461)))
-(let ((@x686 (hypothesis $x462)))
-(let (($x601 (>= ?x455 0)))
-(let ((@x555 (|and-elim| @x552 $x456)))
-(let ((@x685 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x456) $x601)) @x555 $x601)))
-(let (($x608 (<= ?x430 0)))
-(let ((@x556 (|and-elim| @x552 $x431)))
-(let ((@x810 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x431) $x608)) @x556 $x608)))
-(let ((?x755 (+ |x5$| ?x429)))
-(let (($x773 (<= ?x755 0)))
-(let (($x931 (<= ?x929 0)))
-(let ((@x997 ((_ |th-lemma| arith triangle-eq) (or (not $x603) $x931))))
-(let ((@x998 (|unit-resolution| @x997 @x994 $x931)))
-(let ((@x1067 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x773 (not $x931) $x411)) @x998 @x842 $x773)))
-(let (($x609 (>= ?x430 0)))
-(let ((@x797 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x431) $x609)) @x556 $x609)))
-(let ((@x801 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x386 (not $x773) (not $x601) $x461 $x782 (not $x609)))))
-(let (($x594 (= |x4$| ?x443)))
-(let ((@x1070 ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x436 (not $x931) $x411 (not $x609) $x386))))
-(let ((@x597 (|def-axiom| (or (not $x436) $x594))))
-(let ((@x1072 (|unit-resolution| @x597 (|unit-resolution| @x1070 @x843 @x797 @x842 @x998 $x436) $x594)))
-(let ((@x691 ((_ |th-lemma| arith triangle-eq) (or (not $x594) $x676))))
-(let ((@x1073 (|unit-resolution| @x691 @x1072 (|unit-resolution| @x801 @x843 @x797 @x1067 @x686 @x685 $x782) false)))
-(let ((@x1081 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 1 -1) (or $x743 (not $x601) $x461 (not $x1022) (not $x608) $x387)) (|unit-resolution| (lemma @x1073 (or $x386 $x461 $x411)) @x686 @x842 $x386) @x810 @x685 @x686 @x1038 $x743)))
-(let (($x595 (= ?x131 ?x443)))
-(let (($x437 (not $x436)))
-(let ((@x1082 (|unit-resolution| @x613 (|unit-resolution| (lemma @x1073 (or $x386 $x461 $x411)) @x686 @x842 $x386) $x610)))
-(let ((@x806 ((_ |th-lemma| arith triangle-eq) (or (not $x610) $x671))))
-(let (($x668 (>= ?x666 0)))
-(let ((@x924 ((_ |th-lemma| arith triangle-eq) (or (not $x618) $x668))))
-(let ((@x1086 (|unit-resolution| @x924 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x842 $x361) $x618) $x668)))
-(let ((@x1092 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x336 (not $x625) (not $x838) (not $x934) (not $x617) $x411))))
-(let ((@x1093 (|unit-resolution| @x1092 (|unit-resolution| @x948 @x1082 $x934) @x833 @x842 @x851 @x1087 $x336)))
-(let ((@x681 (hypothesis $x668)))
-(let ((@x692 (|unit-resolution| @x691 (|unit-resolution| @x597 (hypothesis $x436) $x594) $x676)))
-(let ((@x687 (hypothesis $x436)))
-(let (($x616 (<= ?x405 0)))
-(let ((@x696 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x406) $x616)) @x557 $x616)))
-(let ((@x697 (hypothesis $x671)))
-(let (($x624 (<= ?x380 0)))
-(let ((@x701 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x381) $x624)) @x558 $x624)))
-(let ((@x702 (hypothesis $x336)))
-(let ((@x707 (lemma ((_ |th-lemma| arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x702 @x701 @x697 @x696 @x687 @x692 @x686 @x685 @x681 false) (or $x461 $x337 (not $x671) $x437 (not $x668)))))
-(let ((@x1094 (|unit-resolution| @x707 @x1093 @x1086 @x686 (|unit-resolution| @x806 @x1082 $x671) $x437)))
-(let ((@x599 (|def-axiom| (or $x436 $x595))))
-(let ((@x738 ((_ |th-lemma| arith triangle-eq) (or (not $x595) $x673))))
-(let ((@x1098 (lemma (|unit-resolution| @x738 (|unit-resolution| @x599 @x1094 $x595) @x1081 false) (or $x461 $x411))))
-(let ((@x589 (|def-axiom| (or $x462 $x586))))
-(let ((@x1268 ((_ |th-lemma| arith triangle-eq) (or (not $x586) $x670))))
-(let ((@x1269 (|unit-resolution| @x1268 (|unit-resolution| @x589 (|unit-resolution| @x1098 @x842 $x461) $x586) $x670)))
-(let (($x667 (>= ?x675 0)))
-(let (($x1499 (<= ?x1498 0)))
-(let ((@x1556 ((_ |th-lemma| arith triangle-eq) (or (not $x635) $x1499))))
-(let ((@x1557 (|unit-resolution| @x1556 @x1553 $x1499)))
-(let (($x930 (>= ?x672 0)))
-(let ((@x964 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x595) $x930)) (|unit-resolution| @x599 (hypothesis $x437) $x595) $x930)))
-(let ((@x939 (|unit-resolution| @x738 (|unit-resolution| @x599 (hypothesis $x437) $x595) $x673)))
-(let ((@x1185 (hypothesis $x411)))
-(let (($x1090 (not $x838)))
-(let (($x837 (>= ?x775 0)))
-(let ((@x890 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x611) $x837)) (hypothesis $x611) (hypothesis (not $x837)) false)))
-(let ((@x891 (lemma @x890 (or (not $x611) $x837))))
-(let ((@x1133 (|unit-resolution| @x891 (|unit-resolution| @x615 @x843 $x611) $x837)))
-(let ((?x776 (+ ?x182 ?x379)))
-(let (($x777 (<= ?x776 0)))
-(let (($x900 (not $x777)))
-(let ((@x904 (hypothesis $x900)))
-(let (($x619 (= ?x182 ?x368)))
-(let (($x821 (not $x619)))
-(let ((@x823 ((_ |th-lemma| arith triangle-eq) (or $x821 $x777))))
-(let ((@x907 (lemma (|unit-resolution| @x823 (hypothesis $x619) @x904 false) (or $x821 $x777))))
-(let ((@x623 (|def-axiom| (or $x361 $x619))))
-(let ((@x1363 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x777 $x362 $x1090)) (|unit-resolution| @x623 (|unit-resolution| @x907 @x904 $x821) $x361) @x904 $x1090)))
-(let ((@x1364 (|unit-resolution| @x621 (|unit-resolution| @x623 (|unit-resolution| @x907 @x904 $x821) $x361) $x618)))
-(let ((@x1366 (lemma (|unit-resolution| @x863 @x1364 @x1363 false) $x777)))
-(let ((@x1447 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 1 -1) (or $x900 (not $x625) $x336 (not $x837) (not $x616) $x412)) @x833 @x1366 @x696 (or $x336 (not $x837) $x412))))
-(let ((@x1476 (|unit-resolution| @x1127 (|unit-resolution| @x629 (|unit-resolution| @x1447 @x1133 @x1185 $x336) $x626) $x661)))
-(let ((?x1358 (+ ?x96 ?x504)))
-(let (($x1367 (<= ?x1358 0)))
-(let (($x579 (= ?x96 ?x493)))
-(let (($x487 (not $x486)))
-(let (($x602 (= |x5$| ?x418)))
-(let ((@x605 (|def-axiom| (or $x412 $x602))))
-(let ((@x792 ((_ |th-lemma| arith triangle-eq) (or (not $x602) $x773))))
-(let ((@x1187 (|unit-resolution| @x792 (|unit-resolution| @x605 @x1185 $x602) $x773)))
-(let ((@x761 (hypothesis $x437)))
-(let ((@x1357 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1185 @x797 @x761 @x843 @x1187 false) (or $x436 $x412 $x386))))
-(let ((@x826 ((_ |th-lemma| arith triangle-eq) (or (not $x594) $x667))))
-(let ((@x1468 (|unit-resolution| @x826 (|unit-resolution| @x597 (|unit-resolution| @x1357 @x843 @x1185 $x436) $x594) $x667)))
-(let ((@x1115 ((_ |th-lemma| arith triangle-eq) (or (not $x626) $x665))))
-(let ((@x1471 (|unit-resolution| @x1115 (|unit-resolution| @x629 (|unit-resolution| @x1447 @x1133 @x1185 $x336) $x626) $x665)))
-(let ((@x1472 (|unit-resolution| @x691 (|unit-resolution| @x597 (|unit-resolution| @x1357 @x843 @x1185 $x436) $x594) $x676)))
-(let ((@x1473 (|unit-resolution| (|unit-resolution| @x801 @x797 @x685 (or $x386 (not $x773) $x461 $x782)) @x1472 @x1187 @x843 $x461)))
-(let ((@x1475 (|unit-resolution| @x1268 (|unit-resolution| @x589 @x1473 $x586) $x670)))
-(let ((@x848 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x611) $x778)) (|unit-resolution| @x615 @x843 $x611) $x778)))
-(let ((?x657 (+ |x9$| ?x304)))
-(let (($x659 (>= ?x657 0)))
-(let (($x634 (= |x9$| ?x293)))
-(let (($x774 (>= ?x755 0)))
-(let ((@x789 ((_ |th-lemma| arith triangle-eq) (or (not $x602) $x774))))
-(let ((@x1477 (|unit-resolution| @x789 (|unit-resolution| @x605 @x1185 $x602) $x774)))
-(let (($x858 (not $x665)))
-(let (($x901 (not $x667)))
-(let (($x815 (not $x774)))
-(let (($x1196 (not $x661)))
-(let (($x798 (not $x773)))
-(let (($x564 (not $x70)))
-(let (($x658 (<= ?x657 0)))
-(let ((@x1379 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1 1 1 1 1) (or $x286 $x361 (not $x633) $x900 (not $x625) $x386 $x1196)) @x1025 @x833 @x1125 @x843 @x1366 @x1211 $x286)))
-(let ((@x637 (|def-axiom| (or $x287 $x634))))
-(let ((@x1149 ((_ |th-lemma| arith triangle-eq) (or (not $x634) $x658))))
-(let (($x1354 (>= ?x776 0)))
-(let ((@x1385 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x821 $x1354)) (|unit-resolution| @x623 @x1025 $x619) $x1354)))
-(let ((@x1207 (hypothesis $x773)))
-(let ((@x866 (hypothesis $x676)))
-(let ((@x1388 (|unit-resolution| (|unit-resolution| @x801 @x797 @x685 (or $x386 $x798 $x461 $x782)) @x866 @x1207 @x843 $x461)))
-(let ((@x1390 (|unit-resolution| @x1268 (|unit-resolution| @x589 @x1388 $x586) $x670)))
-(let ((@x898 (hypothesis $x667)))
-(let (($x641 (>= ?x305 0)))
-(let ((@x560 (|and-elim| @x552 $x306)))
-(let ((@x1136 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x306) $x641)) @x560 $x641)))
-(let ((@x1199 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x361 $x311 $x1196 (not $x633) (not $x658) (not $x641)))))
-(let ((@x1393 (|unit-resolution| (|unit-resolution| @x1199 @x1136 @x1125 (or $x361 $x311 $x1196 (not $x658))) (|unit-resolution| @x1149 (|unit-resolution| @x637 @x1379 $x634) $x658) @x1211 @x1025 $x311)))
-(let ((@x645 (|def-axiom| (or (not $x311) $x642))))
-(let ((@x1396 ((_ |th-lemma| arith triangle-eq) (or (not $x642) $x1369))))
-(let (($x1139 (not $x658)))
-(let (($x1374 (not $x1354)))
-(let (($x1260 (not $x670)))
-(let (($x1104 (not $x778)))
-(let (($x1373 (not $x1369)))
-(let ((@x1137 (hypothesis $x658)))
-(let ((@x1370 (hypothesis $x1354)))
-(let (($x592 (<= ?x480 0)))
-(let ((@x554 (|and-elim| @x552 $x481)))
-(let ((@x1252 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x481) $x592)) @x554 $x592)))
-(let (($x600 (<= ?x455 0)))
-(let ((@x830 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x456) $x600)) @x555 $x600)))
-(let ((@x1249 (hypothesis $x670)))
-(let ((@x1248 (hypothesis $x778)))
-(let (($x764 (not $x655)))
-(let ((@x1253 (hypothesis $x764)))
-(let (($x649 (>= ?x330 0)))
-(let ((@x561 (|and-elim| @x552 $x331)))
-(let ((@x1256 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x331) $x649)) @x561 $x649)))
-(let ((@x1371 (hypothesis $x1369)))
-(let ((@x1372 ((_ |th-lemma| arith farkas -1 1 -1 -1 1 -1 -1 -1 1 1 -1 1 1) @x1136 @x1371 @x1256 @x1253 @x1248 @x851 @x898 @x1249 @x830 @x1252 @x1370 @x701 @x1137 false)))
-(let ((@x1376 (lemma @x1372 (or $x655 $x1373 $x1104 $x901 $x1260 $x1374 $x1139))))
-(let ((@x1398 (|unit-resolution| @x1376 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1393 $x642) $x1369) @x848 @x898 @x1390 @x1385 (|unit-resolution| @x1149 (|unit-resolution| @x637 @x1379 $x634) $x658) $x655)))
-(let ((@x1277 ((_ |th-lemma| arith triangle-eq) (or $x71 $x764 $x708))))
-(let (($x565 (not $x71)))
-(let (($x566 (or $x564 $x565)))
-(let ((@x572 (monotonicity (rewrite (= $x72 (not $x566))) (= (not $x72) (not (not $x566))))))
-(let ((@x576 (trans @x572 (rewrite (= (not (not $x566)) $x566)) (= (not $x72) $x566))))
-(let ((@x577 (mp (|not-or-elim| (mp (asserted $x74) @x550 $x546) (not $x72)) @x576 $x566)))
-(let ((?x650 (+ |x1$| ?x233)))
-(let (($x652 (>= ?x650 0)))
-(let (($x632 (<= ?x355 0)))
-(let ((@x855 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x356) $x632)) @x559 $x632)))
-(let ((@x897 (hypothesis $x774)))
-(let (($x585 (>= ?x505 0)))
-(let ((@x553 (|and-elim| @x552 $x506)))
-(let ((@x1284 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x506) $x585)) @x553 $x585)))
-(let ((@x1404 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x487 $x1260 (not $x592) (not $x600) $x901 $x361 (not $x617) $x386 $x1104))))
-(let ((@x1406 (|unit-resolution| @x1404 @x830 @x851 @x1252 (or $x487 $x1260 $x901 $x361 $x386 $x1104))))
-(let ((@x583 (|def-axiom| (or $x486 $x579))))
-(let ((@x1408 (|unit-resolution| @x583 (|unit-resolution| @x1406 @x1025 @x843 @x848 @x898 @x1390 $x487) $x579)))
-(let ((@x1411 ((_ |th-lemma| arith triangle-eq) (or (not $x579) $x1367))))
-(let ((@x1413 ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -3 3 2 -2 -2 2 1 -1 -1 1 -1 1 -1) (|unit-resolution| @x1411 @x1408 $x1367) @x1284 @x897 @x810 @x898 @x830 @x848 @x851 @x1390 @x1252 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1393 $x642) $x1369) @x1256 @x1263 @x855 @x1385 @x701 @x856 $x652)))
-(let (($x651 (<= ?x650 0)))
-(let (($x648 (<= ?x330 0)))
-(let ((@x713 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x331) $x648)) @x561 $x648)))
-(let (($x662 (>= ?x660 0)))
-(let ((@x1165 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x642) $x662)) (hypothesis $x642) (hypothesis (not $x662)) false)))
-(let ((@x1166 (lemma @x1165 (or (not $x642) $x662))))
-(let (($x593 (>= ?x480 0)))
-(let ((@x718 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x481) $x593)) @x554 $x593)))
-(let (($x679 (<= ?x678 0)))
-(let ((@x723 ((_ |th-lemma| arith triangle-eq) (or (not $x586) $x679))))
-(let (($x584 (<= ?x505 0)))
-(let ((@x1296 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x506) $x584)) @x553 $x584)))
-(let (($x1368 (>= ?x1358 0)))
-(let ((@x1419 ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 -3 3 2 -2 -2 2 1 -1 -1 1 -1 1 -1) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x579) $x1368)) @x1408 $x1368) @x1296 @x1207 @x797 @x866 @x685 @x1133 @x696 (|unit-resolution| @x723 (|unit-resolution| @x589 @x1388 $x586) $x679) @x718 (|unit-resolution| @x1166 (|unit-resolution| @x645 @x1393 $x642) $x662) @x713 @x1398 @x1125 @x1366 @x833 @x1211 $x651)))
-(let ((@x1304 ((_ |th-lemma| arith triangle-eq) (or $x70 (not $x651) (not $x652)))))
-(let ((@x1420 (|unit-resolution| @x1304 @x1419 @x1413 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1398 @x1263 $x71) $x564) false)))
-(let ((@x1478 (|unit-resolution| (lemma @x1420 (or $x361 $x798 $x782 $x1196 $x815 $x901 $x708 $x858 $x386)) @x1263 @x1472 @x1476 @x1477 @x1468 @x1187 @x1471 @x843 $x361)))
-(let ((@x1481 (|unit-resolution| @x1429 (|unit-resolution| @x863 (|unit-resolution| @x621 @x1478 $x618) $x838) @x1476 @x843 $x286)))
-(let ((@x1144 ((_ |th-lemma| arith triangle-eq) (or (not $x634) $x659))))
-(let ((@x1483 (|unit-resolution| @x1144 (|unit-resolution| @x637 @x1481 $x634) $x659)))
-(let (($x1302 (not $x652)))
-(let ((@x729 (hypothesis $x659)))
-(let (($x640 (<= ?x305 0)))
-(let ((@x728 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x306) $x640)) @x560 $x640)))
-(let ((@x1258 ((_ |th-lemma| arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x681 @x855 @x701 (hypothesis $x1247) @x1256 @x1253 @x1252 @x1249 @x830 @x729 @x728 @x898 @x1248 @x851 @x856 false)))
-(let ((@x1262 (lemma @x1258 (or $x655 (not $x668) $x1259 $x1260 (not $x659) $x901 $x1104 $x858))))
-(let ((@x1309 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1119 $x1247)) (hypothesis $x643) (hypothesis $x1259) false)))
-(let ((@x1310 (lemma @x1309 (or $x1119 $x1247))))
-(let ((@x1424 (|unit-resolution| @x1310 (|unit-resolution| @x1262 @x1253 @x856 @x1249 @x681 @x898 @x1248 @x729 $x1259) $x1119)))
-(let ((@x647 (|def-axiom| (or $x311 $x643))))
-(let ((@x1431 (|unit-resolution| @x1396 (|unit-resolution| @x645 (|unit-resolution| @x647 @x1424 $x311) $x642) $x1369)))
-(let ((@x1432 ((_ |th-lemma| arith farkas -2 -1 2 1 -1 2 -1 1 1 -1 1 1 1 -1 -1 1) @x855 @x701 @x856 @x729 @x728 (|unit-resolution| @x647 @x1424 $x311) @x1431 @x1256 @x1253 @x1248 @x851 @x898 @x1249 @x830 @x1252 @x681 false)))
-(let ((@x1485 (|unit-resolution| (lemma @x1432 (or $x655 $x858 (not $x659) $x1104 $x901 $x1260 (not $x668))) @x1483 @x1471 @x848 @x1468 @x1475 (|unit-resolution| @x924 (|unit-resolution| @x621 @x1478 $x618) $x668) $x655)))
-(let ((@x1449 (|unit-resolution| @x629 (|unit-resolution| @x1447 (hypothesis $x837) @x1185 $x336) $x626)))
-(let ((@x865 (hypothesis $x837)))
-(let (($x1301 (not $x651)))
-(let ((@x1318 (hypothesis $x1301)))
-(let ((?x1142 (+ |x2$| ?x504)))
-(let (($x1237 (>= ?x1142 0)))
-(let (($x578 (= |x2$| ?x493)))
-(let (($x1409 (not $x579)))
-(let (($x1437 (not $x1368)))
-(let ((@x867 (hypothesis $x679)))
-(let ((@x1436 ((_ |th-lemma| arith farkas -1 1 1 -1 -2 -1 2 1 1 -1 -1 1 -1 1 1) @x1137 @x1136 @x865 @x696 @x866 @x867 @x685 @x718 @x1125 @x1211 @x1296 @x1318 @x1207 @x797 (hypothesis $x1368) false)))
-(let ((@x1439 (lemma @x1436 (or $x1437 $x1139 (not $x837) $x782 (not $x679) $x1196 $x651 $x798))))
-(let ((@x1451 (|unit-resolution| @x1439 @x1318 @x865 @x866 @x867 (|unit-resolution| @x1127 @x1449 $x661) @x1137 @x1187 $x1437)))
-(let ((@x1441 (hypothesis $x579)))
-(let ((@x1442 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1409 $x1368)) @x1441 (hypothesis $x1437) false)))
-(let ((@x1443 (lemma @x1442 (or $x1409 $x1368))))
-(let ((@x581 (|def-axiom| (or $x487 $x578))))
-(let ((@x1454 (|unit-resolution| @x581 (|unit-resolution| @x583 (|unit-resolution| @x1443 @x1451 $x1409) $x486) $x578)))
-(let ((@x1298 ((_ |th-lemma| arith triangle-eq) (or (not $x578) $x1237))))
-(let ((@x1456 ((_ |th-lemma| arith farkas 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 -1/2 1) @x1249 @x1252 (|unit-resolution| @x1298 @x1454 $x1237) @x1296 @x1318 @x1187 @x797 @x1137 @x1136 @x865 @x696 @x1125 (|unit-resolution| @x1127 @x1449 $x661) @x1185 false)))
-(let ((@x1490 (|unit-resolution| (lemma @x1456 (or $x651 $x1260 $x1139 (not $x837) $x412 $x782 (not $x679))) (|unit-resolution| @x1149 (|unit-resolution| @x637 @x1481 $x634) $x658) @x1475 @x1133 @x1185 @x1472 (|unit-resolution| @x723 (|unit-resolution| @x589 @x1473 $x586) $x679) $x651)))
-(let ((@x1491 (|unit-resolution| @x1304 @x1490 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1485 @x1263 $x71) $x564) $x1302)))
-(let (($x1236 (<= ?x1142 0)))
-(let ((@x1291 ((_ |th-lemma| arith triangle-eq) (or (not $x578) $x1236))))
-(let ((@x1461 (|unit-resolution| @x1291 (|unit-resolution| @x581 (hypothesis $x486) $x578) $x1236)))
-(let ((@x1463 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -2 -2 2 1) @x1284 (hypothesis $x1302) @x897 @x810 @x729 @x728 @x1248 @x851 @x1249 @x1252 @x855 @x856 (hypothesis $x486) @x898 @x830 @x1461 false)))
-(let ((@x1465 (lemma @x1463 (or $x487 $x652 $x815 (not $x659) $x1104 $x1260 $x858 $x901))))
-(let ((@x1493 (|unit-resolution| @x583 (|unit-resolution| @x1465 @x1491 @x1477 @x1483 @x848 @x1475 @x1471 @x1468 $x487) $x579)))
-(let ((@x1495 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -2 2 1) @x1284 @x1491 @x1477 @x810 @x1483 @x728 @x848 @x851 @x1475 @x1252 @x855 @x1471 @x1468 @x830 (|unit-resolution| @x1411 @x1493 $x1367) false)))
-(let (($x704 (not $x671)))
-(let ((@x1150 (|unit-resolution| @x1149 (|unit-resolution| @x637 (hypothesis $x286) $x634) $x658)))
-(let ((@x1076 (hypothesis $x286)))
-(let (($x312 (not $x311)))
-(let (($x1162 (not $x642)))
-(let (($x732 (not $x662)))
-(let ((@x1145 (|unit-resolution| @x1144 (|unit-resolution| @x637 @x1076 $x634) $x659)))
-(let ((@x709 (hypothesis $x708)))
-(let ((@x714 (hypothesis $x662)))
-(let (($x845 (not $x611)))
-(let (($x870 (not $x837)))
-(let ((?x674 (+ ?x114 ?x479)))
-(let (($x677 (<= ?x674 0)))
-(let (($x587 (= ?x114 ?x468)))
-(let ((@x591 (|def-axiom| (or $x461 $x587))))
-(let ((@x760 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x587) $x677)) (|unit-resolution| @x591 @x686 $x587) $x677)))
-(let ((@x942 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x676 $x436 $x743)) @x939 @x761 $x676)))
-(let ((@x864 (|unit-resolution| @x863 (|unit-resolution| @x621 (hypothesis $x361) $x618) $x838)))
-(let ((@x839 (hypothesis $x361)))
-(let ((@x868 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x833 @x867 @x729 @x728 @x718 @x714 @x713 @x709 @x685 @x866 @x696 @x865 @x839 @x864 false)))
-(let ((@x877 (|unit-resolution| (lemma @x868 (or $x362 (not $x679) (not $x659) $x732 $x656 $x782 $x870)) @x865 @x729 @x714 @x709 @x866 @x867 $x362)))
-(let ((@x880 ((_ |th-lemma| arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x833 @x867 @x729 @x728 @x718 @x714 @x713 @x709 @x685 @x866 @x696 @x865 (|unit-resolution| @x823 (|unit-resolution| @x623 @x877 $x619) $x777) false)))
-(let ((@x882 (lemma @x880 (or $x870 (not $x679) (not $x659) $x732 $x656 $x782))))
-(let ((@x943 (|unit-resolution| @x882 @x942 @x729 @x714 @x709 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x679 (not $x677) $x461)) @x760 @x686 $x679) $x870)))
-(let ((@x946 (|unit-resolution| @x613 (|unit-resolution| @x615 (|unit-resolution| @x891 @x943 $x845) $x386) $x610)))
-(let ((@x952 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x411 $x743 (not $x601) $x461 $x436)) @x761 @x685 @x686 @x939 $x411)))
-(let ((@x958 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x361 (not $x934) (not $x617) $x436 $x798 (not $x609)))))
-(let ((@x959 (|unit-resolution| @x958 @x761 @x851 @x797 (|unit-resolution| @x792 (|unit-resolution| @x605 @x952 $x602) $x773) (|unit-resolution| @x948 @x946 $x934) $x361)))
-(let ((@x965 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x833 @x729 @x728 @x760 @x718 @x714 @x713 @x709 (|unit-resolution| @x948 @x946 $x934) @x851 @x964 @x830 (|unit-resolution| @x863 (|unit-resolution| @x621 @x959 $x618) $x838) false)))
-(let ((@x972 (|unit-resolution| (lemma @x965 (or $x436 (not $x659) $x732 $x656 $x461)) @x686 @x714 @x709 @x729 $x436)))
-(let ((@x976 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x411 (not $x601) $x461 $x437 $x782)) (|unit-resolution| @x691 (|unit-resolution| @x597 @x972 $x594) $x676) @x685 @x686 @x972 $x411)))
-(let ((@x979 (|unit-resolution| @x882 (|unit-resolution| @x691 (|unit-resolution| @x597 @x972 $x594) $x676) @x729 @x714 @x709 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x679 (not $x677) $x461)) @x760 @x686 $x679) $x870)))
-(let ((@x982 (|unit-resolution| @x613 (|unit-resolution| @x615 (|unit-resolution| @x891 @x979 $x845) $x386) $x610)))
-(let ((@x933 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x833 @x729 @x728 (hypothesis $x677) @x718 @x714 @x713 @x709 @x697 @x696 @x897 @x810 @x898 @x830 (hypothesis $x777) false)))
-(let ((@x969 (lemma @x933 (or $x900 (not $x659) (not $x677) $x732 $x656 $x704 $x815 $x901))))
-(let ((@x984 (|unit-resolution| @x969 @x760 @x729 @x714 @x709 (|unit-resolution| @x806 @x982 $x671) (|unit-resolution| @x789 (|unit-resolution| @x605 @x976 $x602) $x774) (|unit-resolution| @x826 (|unit-resolution| @x597 @x972 $x594) $x667) $x900)))
-(let ((@x987 (|unit-resolution| @x621 (|unit-resolution| @x623 (|unit-resolution| @x907 @x984 $x821) $x361) $x618)))
-(let ((@x989 ((_ |th-lemma| arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x833 @x729 @x728 @x760 @x718 @x714 @x713 @x709 (|unit-resolution| @x806 @x982 $x671) @x696 (|unit-resolution| @x789 (|unit-resolution| @x605 @x976 $x602) $x774) @x810 (|unit-resolution| @x623 (|unit-resolution| @x907 @x984 $x821) $x361) (|unit-resolution| @x826 (|unit-resolution| @x597 @x972 $x594) $x667) @x830 (|unit-resolution| @x863 @x987 $x838) false)))
-(let ((@x970 (|unit-resolution| (lemma @x989 (or $x461 (not $x659) $x732 $x656)) @x714 @x729 @x709 $x461)))
-(let ((@x992 (|unit-resolution| @x723 (|unit-resolution| @x589 @x970 $x586) $x679)))
-(let ((@x1009 (|unit-resolution| @x891 (|unit-resolution| @x882 @x942 @x729 @x714 @x709 @x992 $x870) $x845)))
-(let ((@x1012 (|unit-resolution| @x948 (|unit-resolution| @x613 (|unit-resolution| @x615 @x1009 $x386) $x610) $x934)))
-(let ((@x751 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x656 $x655)) @x709 $x655)))
-(let ((@x999 (hypothesis $x934)))
-(let ((@x1002 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 2) (or $x361 (not $x934) (not $x617) $x436 (not $x609) (not $x931) $x411))))
-(let ((@x1004 (|unit-resolution| @x621 (|unit-resolution| @x1002 @x842 @x797 @x851 @x761 @x999 @x998 $x361) $x618)))
-(let ((@x762 (hypothesis $x655)))
-(let ((@x1006 ((_ |th-lemma| arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x833 @x999 @x851 @x842 @x729 @x728 @x718 @x714 @x713 @x762 @x685 @x939 @x867 @x761 (|unit-resolution| @x863 @x1004 $x838) false)))
-(let ((@x1008 (lemma @x1006 (or $x411 (not $x934) (not $x659) $x732 $x764 (not $x679) $x436))))
-(let ((@x1014 (|unit-resolution| @x605 (|unit-resolution| @x1008 @x1012 @x729 @x714 @x751 @x992 @x761 $x411) $x602)))
-(let ((@x1016 (|unit-resolution| @x958 (|unit-resolution| @x792 @x1014 $x773) @x851 @x761 @x1012 @x797 $x361)))
-(let ((@x1019 ((_ |th-lemma| arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x830 @x964 (|unit-resolution| @x863 (|unit-resolution| @x621 @x1016 $x618) $x838) @x833 @x1012 @x851 @x729 @x728 @x718 @x714 @x713 @x709 @x992 @x970 false)))
-(let ((@x1023 (|unit-resolution| (lemma @x1019 (or $x436 (not $x659) $x732 $x656)) @x714 @x729 @x709 $x436)))
-(let ((@x1033 (|unit-resolution| @x882 (|unit-resolution| @x691 (|unit-resolution| @x597 @x1023 $x594) $x676) @x729 @x714 @x709 @x992 $x870)))
-(let ((@x1035 (|unit-resolution| @x615 (|unit-resolution| @x891 @x1033 $x845) $x386)))
-(let ((@x1041 (|unit-resolution| @x863 (|unit-resolution| @x621 (|unit-resolution| @x1030 @x842 @x1035 $x361) $x618) $x838)))
-(let ((@x1044 ((_ |th-lemma| arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (|unit-resolution| @x948 (|unit-resolution| @x613 @x1035 $x610) $x934) @x851 @x1041 @x833 @x729 @x728 @x718 @x714 @x713 @x709 @x992 @x1038 @x810 @x970 @x1035 false)))
-(let ((@x1049 (|unit-resolution| (lemma @x1044 (or $x411 (not $x659) $x732 $x656)) @x714 @x729 @x709 $x411)))
-(let ((@x895 (|unit-resolution| @x723 (|unit-resolution| @x589 (hypothesis $x461) $x586) $x679)))
-(let ((@x899 ((_ |th-lemma| arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x830 @x898 @x897 @x810 (hypothesis $x777) @x833 @x895 @x729 @x728 @x718 @x714 @x713 @x709 @x696 @x697 (hypothesis $x461) false)))
-(let ((@x903 (lemma @x899 (or $x900 $x901 $x815 (not $x659) $x732 $x656 $x704 $x462))))
-(let ((@x1052 (|unit-resolution| @x903 (|unit-resolution| @x789 (|unit-resolution| @x605 @x1049 $x602) $x774) @x970 @x729 @x714 @x709 (|unit-resolution| @x826 (|unit-resolution| @x597 @x1023 $x594) $x667) (|unit-resolution| @x806 (|unit-resolution| @x613 @x1035 $x610) $x671) $x900)))
-(let ((@x1055 (|unit-resolution| @x621 (|unit-resolution| @x623 (|unit-resolution| @x907 @x1052 $x821) $x361) $x618)))
-(let ((@x1057 ((_ |th-lemma| arith farkas 1 -1 1/2 -1/2 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) (|unit-resolution| @x789 (|unit-resolution| @x605 @x1049 $x602) $x774) @x810 (|unit-resolution| @x826 (|unit-resolution| @x597 @x1023 $x594) $x667) @x830 (|unit-resolution| @x623 (|unit-resolution| @x907 @x1052 $x821) $x361) (|unit-resolution| @x806 (|unit-resolution| @x613 @x1035 $x610) $x671) @x696 (|unit-resolution| @x863 @x1055 $x838) @x833 @x729 @x728 @x718 @x714 @x713 @x709 @x992 @x970 false)))
-(let ((@x1167 (|unit-resolution| (lemma @x1057 (or $x732 (not $x659) $x656)) @x709 @x1145 $x732)))
-(let ((@x1169 (|unit-resolution| @x645 (|unit-resolution| @x1166 @x1167 $x1162) $x312)))
-(let ((@x1191 ((_ |th-lemma| arith assign-bounds 1 1 1 1) (or $x336 $x311 $x1139 (not $x641) $x287))))
-(let ((@x1216 (|unit-resolution| @x629 (|unit-resolution| @x1191 @x1169 @x1136 @x1076 @x1150 $x336) $x626)))
-(let ((@x1217 (|unit-resolution| @x1127 @x1216 $x661)))
-(let ((@x1131 (|unit-resolution| @x723 (|unit-resolution| @x589 (|unit-resolution| @x1098 @x842 $x461) $x586) $x679)))
-(let (($x1103 (>= ?x1101 0)))
-(let ((@x1158 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1119 $x1103)) (hypothesis $x643) (hypothesis (not $x1103)) false)))
-(let ((@x1159 (lemma @x1158 (or $x1119 $x1103))))
-(let ((@x1110 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x934 $x671)) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x704 $x1104 $x386)) @x848 @x843 $x704) $x934)))
-(let ((@x1112 (|unit-resolution| @x629 (|unit-resolution| @x1092 @x1110 @x833 @x851 @x842 @x1087 $x336) $x626)))
-(let ((@x841 (hypothesis $x311)))
-(let ((@x860 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1 1 1 1 1) @x856 @x855 @x851 @x843 @x729 @x728 @x848 @x842 @x841 false) (or $x411 $x858 $x386 (not $x659) $x312))))
-(let ((@x1117 (|unit-resolution| @x860 (|unit-resolution| @x1115 @x1112 $x665) @x842 @x729 @x843 $x312)))
-(let ((@x1122 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1119 $x1103)) (|unit-resolution| @x647 @x1117 $x643) $x1103)))
-(let ((@x1138 ((_ |th-lemma| arith farkas 1 -1 1 -1 -1 1 -1 -1 1 -1 1 -1 -2 2 1) @x833 @x1137 @x1136 @x1087 @x696 @x1133 @x713 @x709 @x718 (|unit-resolution| @x691 @x1072 $x676) @x685 @x1131 (|unit-resolution| @x1127 @x1112 $x661) @x1125 @x1122 false)))
-(let ((@x1172 (|unit-resolution| (lemma @x1138 (or $x386 $x1139 $x656 $x411 (not $x659))) @x842 @x709 @x1150 @x1145 $x386)))
-(let ((@x1152 ((_ |th-lemma| arith farkas -1/2 1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x701 @x681 @x697 @x696 (hypothesis $x1103) @x1150 @x1136 @x713 @x709 @x718 @x866 @x685 @x867 @x1076 false)))
-(let ((@x1155 (lemma @x1152 (or (not $x1103) (not $x668) $x704 $x656 $x782 (not $x679) $x287))))
-(let ((@x1175 (|unit-resolution| @x1155 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1172 $x610) $x671) (|unit-resolution| @x1159 (|unit-resolution| @x647 @x1169 $x643) $x1103) @x709 @x1131 @x1086 @x1076 $x782)))
-(let ((@x1177 (|unit-resolution| @x1092 @x1087 @x833 @x842 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1172 $x610) $x934) @x851 $x336)))
-(let ((@x1102 (lemma ((_ |th-lemma| arith farkas 1 1 1 1 1 1 1 1 1) @x856 @x701 @x1086 @x855 @x761 @x998 @x842 @x797 @x1076 false) (or $x436 $x858 $x411 $x287))))
-(let ((@x1180 (|unit-resolution| @x1102 (|unit-resolution| @x1115 (|unit-resolution| @x629 @x1177 $x626) $x665) @x842 @x1076 $x436)))
-(let ((@x1184 (lemma (|unit-resolution| @x691 (|unit-resolution| @x597 @x1180 $x594) @x1175 false) (or $x411 $x287 $x656))))
-(let ((@x1220 (|unit-resolution| @x789 (|unit-resolution| @x605 (|unit-resolution| @x1184 @x709 @x1076 $x411) $x602) $x774)))
-(let ((@x1193 (|unit-resolution| @x629 (|unit-resolution| @x1191 (hypothesis $x312) @x1136 @x1076 @x1150 $x336) $x626)))
-(let ((@x1188 (hypothesis $x312)))
-(let ((@x1200 (|unit-resolution| @x1199 (|unit-resolution| @x1127 @x1193 $x661) @x1136 @x1188 @x1150 @x1125 $x361)))
-(let ((@x1203 ((_ |th-lemma| arith farkas -1 1 -1 -1 -1 1 1 -1 1) @x1185 @x701 (|unit-resolution| @x924 (|unit-resolution| @x621 @x1200 $x618) $x668) @x1076 (|unit-resolution| @x1115 @x1193 $x665) @x855 @x761 @x797 @x1187 false)))
-(let ((@x1205 (lemma @x1203 (or $x436 $x412 $x287 $x311))))
-(let ((@x1221 (|unit-resolution| @x1205 (|unit-resolution| @x1184 @x709 @x1076 $x411) @x1076 @x1169 $x436)))
-(let (($x816 (not $x608)))
-(let (($x1197 (not $x633)))
-(let (($x1189 (not $x641)))
-(let (($x741 (not $x616)))
-(let ((@x1224 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x704 $x741 $x311 $x1139 $x1189 $x815 $x1196 $x1197 $x437 $x816)) @x1169 @x696 @x1125 @x1136 @x810 @x1150 @x1221 @x1220 @x1217 $x704)))
-(let ((@x1225 (|unit-resolution| @x792 (|unit-resolution| @x605 (|unit-resolution| @x1184 @x709 @x1076 $x411) $x602) $x773)))
-(let ((@x1229 (|unit-resolution| @x621 (|unit-resolution| @x1199 @x1217 @x1136 @x1169 @x1150 @x1125 $x361) $x618)))
-(let ((@x1209 (|unit-resolution| @x589 (|unit-resolution| @x801 @x843 @x797 @x1207 @x866 @x685 $x461) $x586)))
-(let ((@x1212 ((_ |th-lemma| arith farkas -1 -2 2 -1 1 1 -1 -1 1 -1 1 -1 -1 1 1) @x696 @x1211 @x1125 @x1137 @x1136 (hypothesis $x1103) @x713 @x709 @x718 (|unit-resolution| @x723 @x1209 $x679) @x833 @x1206 @x866 @x685 @x1133 false)))
-(let ((@x1231 (|unit-resolution| (lemma @x1212 (or $x386 $x1196 $x1139 (not $x1103) $x656 $x1090 $x782 $x798)) @x1217 @x1150 (|unit-resolution| @x1159 (|unit-resolution| @x647 @x1169 $x643) $x1103) @x709 (|unit-resolution| @x863 @x1229 $x838) (|unit-resolution| @x691 (|unit-resolution| @x597 @x1221 $x594) $x676) @x1225 $x386)))
-(let ((@x1235 (lemma (|unit-resolution| @x806 (|unit-resolution| @x613 @x1231 $x610) @x1224 false) (or $x656 $x287))))
-(let ((@x1502 (|unit-resolution| @x1235 (|unit-resolution| (lemma @x1495 (or $x708 $x412 $x386)) @x843 @x1185 $x708) $x287)))
-(let ((@x1504 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1 1 1 1 1) (or $x286 $x361 $x1197 $x900 (not $x625) $x386 $x1196)) @x1502 @x833 @x1125 @x843 @x1366 @x1476 $x361)))
-(let ((@x1506 (|unit-resolution| @x863 (|unit-resolution| @x621 @x1504 $x618) (|unit-resolution| @x1429 @x1502 @x1476 @x843 $x1090) false)))
-(let ((@x1508 (lemma @x1506 (or $x386 $x412))))
-(let ((@x1815 (|unit-resolution| @x1508 @x1185 $x386)))
-(let (($x1513 (not $x627)))
-(let ((@x1519 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1) (or $x1510 $x1197 $x387 $x1374 (not $x624) $x286)) @x1385 @x1125 @x1426 @x1024 @x701 $x1510)))
-(let ((@x1522 (|unit-resolution| @x629 (|unit-resolution| @x631 (|unit-resolution| @x1517 @x1519 $x1513) $x336) $x626)))
-(let ((@x1524 ((_ |th-lemma| arith farkas 1 1 1 1 1) @x1426 @x1125 (|unit-resolution| @x1127 @x1522 $x661) @x1025 (|unit-resolution| @x631 (|unit-resolution| @x1517 @x1519 $x1513) $x336) false)))
-(let ((@x1526 (lemma @x1524 (or $x361 $x286 $x387))))
-(let ((@x1826 (|unit-resolution| @x924 (|unit-resolution| @x621 (|unit-resolution| @x1526 @x1815 @x1426 $x361) $x618) $x668)))
-(let (($x705 (not $x668)))
-(let ((@x1734 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1024 $x610) $x671)))
-(let ((@x1670 (|unit-resolution| @x924 (|unit-resolution| @x621 @x839 $x618) $x668)))
-(let (($x1500 (>= ?x664 0)))
-(let ((@x1546 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1513 $x1500)) @x1528 $x1500)))
-(let ((@x1547 (|unit-resolution| @x1517 @x1528 $x873)))
-(let ((@x1550 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x437 $x815 $x816 $x704 $x741 $x1510 $x1197 $x286 $x336)) @x1426 @x696 @x1527 @x1125 @x810 @x697 @x1477 @x1547 $x437)))
-(let ((@x1552 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x595) $x930)) (|unit-resolution| @x599 @x1550 $x595) $x930)))
-(let ((@x1558 (|unit-resolution| @x738 (|unit-resolution| @x599 @x1550 $x595) $x673)))
-(let (($x740 (not $x624)))
-(let (($x742 (not $x601)))
-(let ((@x1560 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1 1 2 2) (or $x461 $x815 $x816 $x742 $x705 $x740 $x1510 $x1197 $x286 $x743 $x704 $x741))))
-(let ((@x1561 (|unit-resolution| @x1560 @x1426 @x810 @x696 @x701 @x1125 @x685 @x697 @x681 @x1558 @x1477 @x1547 $x461)))
-(let ((@x1566 ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x311 (not $x1499) $x1189 $x286 $x705 $x412 $x704 $x741 $x740))))
-(let ((@x1568 (|unit-resolution| @x645 (|unit-resolution| @x1566 @x1557 @x701 @x1185 @x1136 @x1426 @x697 @x681 @x696 $x311) $x642)))
-(let ((@x1570 ((_ |th-lemma| arith assign-bounds -1 1 1 -1 -1 -1 -3 3 1 -1 1 1 -2 2 2 -2) (|unit-resolution| @x1396 @x1568 $x1369) @x1256 (|unit-resolution| @x1268 (|unit-resolution| @x589 @x1561 $x586) $x670) @x1252 @x830 @x1206 @x999 @x851 @x833 @x1557 @x1136 @x1552 @x1187 @x797 @x1546 @x855 $x655)))
-(let ((@x1574 (|unit-resolution| @x723 (|unit-resolution| @x589 @x1561 $x586) $x679)))
-(let ((@x1576 ((_ |th-lemma| arith assign-bounds -1 1 1 -1 -1 -1 -3 3 1 -1 1 1 -2 2 2 -2) (|unit-resolution| @x1166 @x1568 $x662) @x713 @x1574 @x718 @x685 @x681 @x697 @x696 @x701 @x1573 @x728 @x1558 @x1477 @x810 @x1547 @x1125 $x656)))
-(let (($x813 (not $x593)))
-(let (($x869 (not $x679)))
-(let (($x1579 (or $x486 $x286 $x336 $x869 $x813 $x742 $x705 $x704 $x741 $x740 $x743 $x815 $x816 $x1510 $x1197)))
-(let ((@x1581 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1 1 1 1 1 3 3 1 1 2 2 2 2) $x1579) @x1426 @x685 @x810 @x696 @x701 @x1527 @x1125 @x718 @x697 @x681 @x1558 @x1477 @x1574 @x1547 $x486)))
-(let (($x812 (not $x640)))
-(let (($x1586 (not $x1543)))
-(let (($x1585 (not $x585)))
-(let (($x1584 (not $x1236)))
-(let (($x1587 (or $x652 $x1584 $x1585 $x815 $x816 $x1510 $x1197 $x704 $x741 $x869 $x813 $x1586 $x812)))
-(let ((@x1589 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) $x1587) @x1574 @x810 @x696 @x1125 @x728 @x1284 @x697 @x1477 @x718 @x1547 @x1573 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1581 $x578) $x1236) $x652)))
-(let (($x1564 (not $x1499)))
-(let (($x1401 (not $x592)))
-(let (($x956 (not $x617)))
-(let (($x955 (not $x934)))
-(let (($x1593 (not $x632)))
-(let (($x1592 (not $x1500)))
-(let (($x799 (not $x609)))
-(let (($x1591 (not $x584)))
-(let (($x1321 (not $x1237)))
-(let (($x1594 (or $x651 $x1321 $x1591 $x798 $x799 $x1592 $x1593 $x955 $x956 $x1260 $x1401 $x1564 $x1189)))
-(let ((@x1596 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) $x1594) (|unit-resolution| @x1268 (|unit-resolution| @x589 @x1561 $x586) $x670) @x797 @x851 @x855 @x1136 @x1296 @x1187 @x1252 @x999 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1581 $x578) $x1237) @x1557 @x1546 $x651)))
-(let ((@x1597 (|unit-resolution| @x1304 @x1596 @x1589 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1576 @x1570 $x71) $x564) false)))
-(let ((@x1671 (|unit-resolution| (lemma @x1597 (or $x286 $x955 $x704 $x336 $x705 $x1090 $x412)) @x1670 @x697 @x1527 @x999 @x864 @x1185 $x286)))
-(let ((@x1673 (|unit-resolution| @x1149 (|unit-resolution| @x637 @x1671 $x634) $x658)))
-(let ((@x1676 (|unit-resolution| (|unit-resolution| @x1191 @x1136 (or $x336 $x311 $x1139 $x287)) @x1673 @x1671 @x1527 $x311)))
-(let ((@x1677 (|unit-resolution| @x1235 @x1671 $x656)))
-(let (($x1654 (or $x655 $x705 $x704 $x1139 $x1104 $x815 $x1564 $x798 $x955 $x1592 $x1090 $x708 $x312)))
-(let ((@x1602 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x841 $x642) $x1369)))
-(let ((@x1600 (hypothesis $x1500)))
-(let ((@x1623 (hypothesis $x1499)))
-(let ((@x1604 ((_ |th-lemma| arith farkas 2 2 2 2 1 1 1 1 1 1 1 1 1 1) (hypothesis $x487) @x1602 @x1256 @x1263 @x1136 @x761 @x1207 @x797 @x999 @x851 @x1600 @x855 @x841 @x1137 false)))
-(let ((@x1620 (|unit-resolution| (lemma @x1604 (or $x486 $x708 $x436 $x798 $x955 $x1592 $x312 $x1139)) @x761 @x1263 @x1207 @x999 @x1600 @x841 @x1137 $x486)))
-(let (($x1626 (not $x930)))
-(let (($x1089 (not $x625)))
-(let (($x1402 (not $x600)))
-(let (($x1625 (not $x649)))
-(let (($x1627 (or $x1301 $x1584 $x1585 $x798 $x799 $x1592 $x1593 $x955 $x956 $x1373 $x1625 $x655 $x1402 $x1090 $x1089 $x1626)))
-(let ((@x1629 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 -1 1 2 -2 1 -1 -1 1 1 -1 -1) $x1627) @x964 @x797 @x851 @x833 @x855 @x1256 @x1284 @x1253 @x1207 @x999 @x830 @x1206 @x1602 @x1600 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1620 $x578) $x1236) $x1301)))
-(let ((@x1630 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) $x1594) @x1629 @x797 @x851 @x855 @x1136 @x1623 @x1207 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1620 $x578) $x1237) @x999 @x1252 @x1296 @x1600 $x1260)))
-(let (($x757 (not $x587)))
-(let (($x1607 (>= ?x674 0)))
-(let (($x1611 (not $x1607)))
-(let ((@x1609 (hypothesis $x673)))
-(let ((@x1610 ((_ |th-lemma| arith farkas 1 1 -1 1 -1 -1 -1 -1 1 1 -1 1 1) @x685 @x697 @x696 @x681 @x701 @x1609 @x1252 @x1371 @x1256 @x1253 @x1137 @x1136 (hypothesis $x1607) false)))
-(let ((@x1613 (lemma @x1610 (or $x1611 $x704 $x705 $x743 $x1373 $x655 $x1139))))
-(let ((@x1618 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x757 $x1607)) (hypothesis $x587) (hypothesis $x1611) false)))
-(let ((@x1619 (lemma @x1618 (or $x757 $x1607))))
-(let ((@x1632 (|unit-resolution| @x1619 (|unit-resolution| @x1613 @x939 @x681 @x697 @x1602 @x1253 @x1137 $x1611) $x757)))
-(let ((@x1635 (|unit-resolution| @x1268 (|unit-resolution| @x589 (|unit-resolution| @x591 @x1632 $x461) $x586) @x1630 false)))
-(let ((@x1637 (lemma @x1635 (or $x436 $x705 $x704 $x655 $x1139 $x1564 $x798 $x955 $x1592 $x1090 $x708 $x312))))
-(let ((@x1638 (|unit-resolution| @x1637 @x1253 @x697 @x681 @x1137 @x1623 @x1207 @x999 @x1600 @x1206 @x1263 @x841 $x436)))
-(let ((@x1641 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 -2 2 -2 2) (or $x1354 $x705 $x437 $x815 $x816 $x704 $x741)) @x1638 @x696 @x697 @x681 @x897 @x810 $x1354)))
-(let ((@x1644 (|unit-resolution| @x1376 (|unit-resolution| @x826 (|unit-resolution| @x597 @x1638 $x594) $x667) @x1248 @x1137 @x1253 @x1641 @x1602 $x1260)))
-(let ((@x1648 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x673 $x437 $x782)) (|unit-resolution| @x691 (|unit-resolution| @x597 @x1638 $x594) $x676) @x1638 $x673)))
-(let ((@x1650 (|unit-resolution| @x1619 (|unit-resolution| @x1613 @x1648 @x681 @x697 @x1602 @x1253 @x1137 $x1611) $x757)))
-(let ((@x1653 (|unit-resolution| @x1268 (|unit-resolution| @x589 (|unit-resolution| @x591 @x1650 $x461) $x586) @x1644 false)))
-(let ((@x1681 (|unit-resolution| (lemma @x1653 $x1654) @x1670 @x697 @x1673 @x1248 @x1477 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x1499 $x1139 $x287)) @x1673 @x1671 $x1499) @x1187 @x999 @x1546 @x864 @x1677 @x1676 $x655)))
-(let (($x1665 (or $x436 $x815 $x1510 $x704 $x764 $x705 $x708 $x798 $x955 $x1090 $x1592 $x312 $x1139)))
-(let (($x1658 (or $x652 $x1584 $x1585 $x798 $x799 $x1592 $x1593 $x955 $x956 $x1373 $x1625 $x708 $x1402 $x1090 $x1089 $x1626)))
-(let ((@x1660 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 2 2 1 1 1 1 1 -1 -1) $x1658) (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1620 $x578) $x1236) @x797 @x851 @x833 @x855 @x1256 @x964 @x1263 @x1207 @x999 @x830 @x1206 @x1602 @x1600 @x1284 $x652)))
-(let ((@x1661 (|unit-resolution| @x1304 @x1660 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x762 @x1263 $x71) $x564) $x1301)))
-(let ((@x1664 ((_ |th-lemma| arith farkas 1 -1 1 -1 -1 1 2 -2 1 -1 -1 1 1 -1 -1 1) (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1620 $x578) $x1237) @x1296 @x897 @x810 (hypothesis $x873) @x1125 @x697 @x696 (|unit-resolution| @x1166 (|unit-resolution| @x645 @x841 $x642) $x662) @x713 @x762 @x685 @x681 @x701 @x939 @x1661 false)))
-(let ((@x1682 (|unit-resolution| (lemma @x1664 $x1665) @x1681 @x1547 @x697 @x1477 @x1670 @x1677 @x1187 @x999 @x864 @x1546 @x1676 @x1673 $x436)))
-(let ((@x1694 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -2 2 -2 -2 2 -1) (or $x930 $x815 $x816 $x704 $x362 $x741 $x901)) @x696 @x810 (or $x930 $x815 $x704 $x362 $x901))))
-(let ((@x1695 (|unit-resolution| @x1694 (|unit-resolution| @x826 (|unit-resolution| @x597 @x1682 $x594) $x667) @x697 @x839 @x1477 $x930)))
-(let ((@x1667 ((_ |th-lemma| arith farkas 1 -1 1 -1 -1 -1 1 1 -1 1 1) @x681 @x701 @x697 @x696 (hypothesis $x487) @x1371 @x1256 @x1263 @x1137 @x1136 @x1185 false)))
-(let ((@x1669 (lemma @x1667 (or $x486 $x705 $x704 $x1373 $x708 $x1139 $x412))))
-(let ((@x1696 (|unit-resolution| @x1669 @x1670 @x697 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1676 $x642) $x1369) @x1677 @x1673 @x1185 $x486)))
-(let ((@x1699 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 2 2 1 1 1 1 1 -1 -1) $x1658) (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1696 $x578) $x1236) @x797 @x851 @x833 @x855 @x1256 @x1695 @x1677 @x1187 @x999 @x830 @x864 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1676 $x642) $x1369) @x1546 @x1284 $x652)))
-(let ((@x1700 (|unit-resolution| @x1304 @x1699 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1681 @x1677 $x71) $x564) $x1301)))
-(let ((@x1702 ((_ |th-lemma| arith farkas -2 -1 1 -1 -1 1 1 -1 -2 2 -1 1 1 -1 -1 1 1) @x1682 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1696 $x578) $x1237) @x1296 @x1700 @x1477 @x810 @x1547 @x1125 @x697 @x696 (|unit-resolution| @x1166 (|unit-resolution| @x645 @x1676 $x642) $x662) @x713 @x1681 @x685 @x1670 @x701 (|unit-resolution| @x691 (|unit-resolution| @x597 @x1682 $x594) $x676) false)))
-(let ((@x1736 (|unit-resolution| (lemma @x1702 (or $x362 $x704 $x955 $x412 $x1104 $x336)) @x1527 @x1027 @x1185 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x778 $x387 $x955)) @x1027 @x1024 $x778) @x1734 $x362)))
-(let ((@x1737 (|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x705 $x361 $x900)) @x1366 (or $x705 $x361)) @x1736 $x705)))
-(let ((@x1741 (|unit-resolution| @x1149 (|unit-resolution| @x637 (|unit-resolution| @x1526 @x1736 @x1024 $x286) $x634) $x658)))
-(let ((@x1743 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x821 $x1354)) (|unit-resolution| @x623 @x1736 $x619) $x1354)))
-(let ((@x1744 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 2 1 2 2 2) (or $x1374 $x1139 $x1189 $x1090 $x1197 $x1196 $x311)) @x1743 @x1542 @x1741 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x838 $x668)) @x1737 $x838) @x1136 @x1125 $x311)))
-(let ((@x1747 (|unit-resolution| @x1235 (|unit-resolution| @x1526 @x1736 @x1024 $x286) $x656)))
-(let ((@x1750 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1) (or $x486 $x336 $x1373 $x1625 $x708 $x1139 $x1189)) @x1527 @x1136 @x1256 @x1747 @x1741 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1744 $x642) $x1369) $x486)))
-(let ((@x1719 (|unit-resolution| @x958 @x851 @x797 (or $x361 $x955 $x436 $x798))))
-(let ((@x1755 (|unit-resolution| @x826 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1736 @x1027 @x1187 $x436) $x594) $x667)))
-(let (($x1756 (or $x652 $x901 $x1584 $x1585 $x815 $x816 $x1592 $x1593 $x1373 $x1625 $x708 $x1402 $x1089 $x900)))
-(let ((@x1758 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1) $x1756) @x1747 @x810 @x833 @x855 @x1256 @x1284 @x830 @x1477 @x1755 @x1366 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1744 $x642) $x1369) @x1546 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1750 $x578) $x1236) $x652)))
-(let ((@x1709 (|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x705 $x361 $x900)) @x1366 (or $x705 $x361)) @x1025 $x705)))
-(let ((@x1715 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 2 1 2 2 2) (or $x1374 $x1139 $x1189 $x1090 $x1197 $x1196 $x311)) @x1385 @x1542 @x1137 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x838 $x668)) @x1709 $x838) @x1136 @x1125 $x311)))
-(let ((@x1722 (|unit-resolution| @x691 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1025 @x999 @x1207 $x436) $x594) $x676)))
-(let (($x1723 (or $x1611 $x955 $x956 $x1401 $x1373 $x1625 $x655 $x1139 $x1189 $x798 $x799 $x782 $x742 $x740 $x1374)))
-(let ((@x1725 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 -1 1 1 -1 1 -2 2 -1 1 -1 1) $x1723) @x1253 @x797 @x851 @x701 @x1136 @x1256 @x685 @x1137 @x1722 @x1207 @x999 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1715 $x642) $x1369) @x1385 @x1252 $x1611)))
-(let ((@x1726 (|unit-resolution| @x826 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1025 @x999 @x1207 $x436) $x594) $x667)))
-(let ((@x1729 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1 1 1 1) (or $x462 $x361 $x901 $x815 $x816 $x1402 $x1089 $x900 $x336)) @x1025 @x810 @x830 @x833 @x1527 @x897 @x1726 @x1366 $x462)))
-(let ((@x1733 (lemma (|unit-resolution| @x1619 (|unit-resolution| @x591 @x1729 $x587) @x1725 false) (or $x655 $x1139 $x798 $x955 $x361 $x336 $x815))))
-(let ((@x1760 (|unit-resolution| @x1277 (|unit-resolution| @x1733 @x1741 @x1187 @x1027 @x1736 @x1527 @x1477 $x655) @x1747 $x71)))
-(let ((@x1765 (|unit-resolution| @x691 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1736 @x1027 @x1187 $x436) $x594) $x676)))
-(let ((@x1766 ((_ |th-lemma| arith farkas -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1 1) @x1765 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1750 $x578) $x1237) @x1296 @x1187 @x797 @x1547 @x1125 (|unit-resolution| @x1166 (|unit-resolution| @x645 @x1744 $x642) $x662) @x713 (|unit-resolution| @x1733 @x1741 @x1187 @x1027 @x1736 @x1527 @x1477 $x655) @x685 @x701 @x1743 (|unit-resolution| @x1304 (|unit-resolution| @x577 @x1760 $x564) @x1758 $x1301) false)))
-(let ((@x1768 (lemma @x1766 (or $x336 $x387 $x412))))
-(let ((@x1829 (|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x873 $x1196 $x337)) @x1542 (or $x873 $x337)) (|unit-resolution| @x1768 @x1185 @x1815 $x336) $x873)))
-(let ((@x1820 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1815 $x610) $x671)))
-(let ((@x1805 (hypothesis $x1139)))
-(let ((@x1807 (|unit-resolution| @x1556 @x1553 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x658 $x286 $x1564)) @x1426 @x1805 $x1564) false)))
-(let ((@x1811 (|unit-resolution| @x637 (|unit-resolution| (lemma @x1807 (or $x286 $x658)) @x1805 $x286) $x634)))
-(let ((@x1813 (lemma (|unit-resolution| @x1149 @x1811 @x1805 false) $x658)))
-(let (($x1791 (or $x1586 $x815 $x816 $x704 $x741 $x1510 $x1197 $x1139 $x461 $x742 $x705 $x740 $x743)))
-(let ((@x1831 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 2 4 4 2 2 1 2 2 2 2 2) $x1791) @x810 @x696 @x701 @x1125 @x1813 @x685 (or $x1586 $x815 $x704 $x1510 $x461 $x705 $x743))))
-(let ((@x1833 (|unit-resolution| @x589 (|unit-resolution| @x1831 @x1820 @x1573 @x1826 @x1609 @x1477 @x1829 $x461) $x586)))
-(let ((@x1836 (|unit-resolution| @x1566 @x701 @x1136 @x696 (or $x311 $x1564 $x286 $x705 $x412 $x704))))
-(let ((@x1838 (|unit-resolution| @x645 (|unit-resolution| @x1836 @x1820 @x1557 @x1426 @x1185 @x1826 $x311) $x642)))
-(let ((@x1842 (|unit-resolution| (|unit-resolution| @x1669 @x1813 (or $x486 $x705 $x704 $x1373 $x708 $x412)) (|unit-resolution| @x1396 @x1838 $x1369) @x1263 @x1826 @x1820 @x1185 $x486)))
-(let ((@x1846 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) $x1587) @x810 @x696 @x1125 @x728 @x718 @x1284 (or $x652 $x1584 $x815 $x1510 $x704 $x869 $x1586))))
-(let ((@x1847 (|unit-resolution| @x1846 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1842 $x578) $x1236) @x1573 @x1820 @x1477 (|unit-resolution| @x723 @x1833 $x679) @x1829 $x652)))
-(let ((@x1818 (|unit-resolution| @x1115 (|unit-resolution| @x629 (|unit-resolution| @x1768 @x1185 @x1815 $x336) $x626) $x665)))
-(let ((@x1821 ((_ |th-lemma| arith farkas -1 1/3 -1/3 4/3 1/3 -1/3 -1/3 1/3 1/3 -1/3 1/3 -2/3 2/3 2/3 -2/3 1/3 -1/3 1) @x701 @x1820 @x696 @x1185 @x1249 @x1252 @x1371 @x1256 @x1253 @x1623 @x1136 @x1187 @x797 @x1818 @x855 (hypothesis $x930) @x830 @x681 false)))
-(let ((@x1849 (|unit-resolution| (lemma @x1821 (or $x655 $x412 $x1260 $x1373 $x1564 $x1626 $x705)) @x1185 (|unit-resolution| @x1268 @x1833 $x670) (|unit-resolution| @x1396 @x1838 $x1369) @x1557 (hypothesis $x930) @x1826 $x655)))
-(let ((@x1852 (|unit-resolution| @x1304 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1849 @x1263 $x71) $x564) @x1847 $x1301)))
-(let ((@x1855 ((_ |th-lemma| arith farkas 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1) @x701 @x1820 @x696 (|unit-resolution| @x1268 @x1833 $x670) @x1252 (|unit-resolution| @x1166 @x1838 $x662) @x713 @x1849 @x1557 @x1136 @x1609 @x685 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1842 $x578) $x1237) @x1296 @x1852 @x1826 false)))
-(let ((@x1858 (|unit-resolution| (lemma @x1855 (or $x412 $x743 $x708 $x1626 $x286)) @x939 @x1263 @x964 @x1426 $x412)))
-(let ((@x1860 (|unit-resolution| @x997 (|unit-resolution| @x607 @x1858 $x603) $x931)))
-(let ((@x1861 (|unit-resolution| @x1037 (|unit-resolution| @x607 @x1858 $x603) $x1022)))
-(let ((@x1865 (|unit-resolution| @x863 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x1858 $x361) $x618) $x838)))
-(let ((@x1868 (|unit-resolution| (|unit-resolution| @x1070 @x797 (or $x436 (not $x931) $x411 $x386)) @x1860 @x761 @x1858 $x386)))
-(let ((@x1874 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2 2 2 2 2) (or (not $x1022) $x798 $x336 $x1090 $x955 $x956 $x1089)) @x833 @x851 (or (not $x1022) $x798 $x336 $x1090 $x955))))
-(let ((@x1875 (|unit-resolution| @x1874 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1868 $x610) $x934) @x1865 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x773 (not $x931) $x411)) @x1860 @x1858 $x773) @x1861 $x336)))
-(let ((@x1877 (|unit-resolution| @x1115 (|unit-resolution| @x629 @x1875 $x626) $x665)))
-(let ((@x1878 (|unit-resolution| @x924 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x1858 $x361) $x618) $x668)))
-(let ((@x1879 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1868 $x610) $x671)))
-(let (($x1000 (not $x931)))
-(let ((@x1881 ((_ |th-lemma| arith assign-bounds 2 2 1 1 1 1 1 1 1 1 1) (or $x311 $x705 $x740 $x704 $x741 $x1564 $x1189 $x436 $x799 $x858 $x1593 $x1000))))
-(let ((@x1882 (|unit-resolution| @x1881 @x761 @x696 @x701 @x855 @x1136 @x797 @x1879 @x1878 @x1877 @x1860 @x1557 $x311)))
-(let ((@x1887 (|unit-resolution| @x1268 (|unit-resolution| @x589 (|unit-resolution| @x1098 @x1858 $x461) $x586) $x670)))
-(let ((@x1888 (|unit-resolution| @x723 (|unit-resolution| @x589 (|unit-resolution| @x1098 @x1858 $x461) $x586) $x679)))
-(let ((@x1892 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2 2 2 2 2) (or (not $x1022) $x798 $x486 $x782 $x869 $x742 $x813)) @x685 @x718 (or (not $x1022) $x798 $x486 $x782 $x869))))
-(let ((@x1893 (|unit-resolution| @x1892 @x1861 @x942 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x773 $x1000 $x411)) @x1860 @x1858 $x773) @x1888 $x486)))
-(let (($x1078 (not $x1022)))
-(let (($x1896 (or $x652 $x1090 $x1089 $x955 $x956 $x869 $x813 $x1586 $x812 $x1584 $x1585 $x816 $x1196 $x1197 $x1078)))
-(let ((@x1898 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -2 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1) $x1896) @x1888 @x810 @x851 @x833 @x1125 @x728 @x1284 @x718 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1868 $x610) $x934) @x1865 @x1861 @x1542 @x1573 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1893 $x578) $x1236) $x652)))
-(let (($x1900 (or $x651 $x705 $x740 $x704 $x741 $x1260 $x1401 $x1564 $x1189 $x1321 $x1591 $x799 $x858 $x1593 $x1000)))
-(let ((@x1902 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -2 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1) $x1900) @x1879 @x797 @x696 @x701 @x855 @x1136 @x1296 @x1252 @x1878 @x1877 @x1887 @x1860 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1893 $x578) $x1237) @x1557 $x651)))
-(let ((@x1905 (|unit-resolution| @x1277 (|unit-resolution| @x577 (|unit-resolution| @x1304 @x1902 @x1898 $x70) $x565) @x1263 $x764)))
-(let ((@x1906 ((_ |th-lemma| arith farkas -1 -1 -1 1 -3 3 -1 1 -1 1 1 -1 -2 -2 2 2 1) @x1256 @x1905 @x964 @x830 @x1878 @x701 @x1879 @x696 @x1887 @x1252 @x1557 @x1136 @x797 @x1877 @x855 @x1860 (|unit-resolution| @x1396 (|unit-resolution| @x645 @x1882 $x642) $x1369) false)))
-(let ((@x1919 (|unit-resolution| @x597 (|unit-resolution| (lemma @x1906 (or $x436 $x708 $x286)) @x1426 @x1263 $x436) $x594)))
-(let ((@x1922 (|unit-resolution| @x1892 @x1038 (|unit-resolution| @x691 @x1919 $x676) @x1067 @x1131 $x486)))
-(let ((@x1925 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -2 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1) $x1896) @x1917 @x810 @x851 @x833 @x1125 @x728 @x1284 @x718 @x1131 @x1087 @x1038 @x1542 @x1573 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1922 $x578) $x1236) $x652)))
-(let ((@x1929 (|unit-resolution| @x629 (|unit-resolution| @x1874 @x1917 @x1087 @x1067 @x1038 $x336) $x626)))
-(let ((@x1931 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -2 1 -1 1 -1 -1 1 1 -1 1 1 -1 -1) $x1900) (|unit-resolution| @x1115 @x1929 $x665) @x797 @x696 @x701 @x855 @x1136 @x1296 @x1252 @x1086 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1915 $x610) $x671) @x1269 @x998 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1922 $x578) $x1237) @x1557 $x651)))
-(let ((@x1934 (|unit-resolution| @x1277 (|unit-resolution| @x577 (|unit-resolution| @x1304 @x1931 @x1925 $x70) $x565) @x1263 $x764)))
-(let ((@x1910 ((_ |th-lemma| arith farkas -1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1) @x1256 @x1253 @x898 @x830 @x1249 @x1252 @x1206 @x833 @x999 @x851 (hypothesis $x1543) @x728 (hypothesis $x1247) false)))
-(let ((@x1935 (|unit-resolution| (lemma @x1910 (or $x1259 $x655 $x901 $x1260 $x1090 $x955 $x1586)) @x1934 (|unit-resolution| @x826 @x1919 $x667) @x1269 @x1087 @x1917 @x1573 $x1259)))
-(let ((@x1938 (|unit-resolution| @x645 (|unit-resolution| @x647 (|unit-resolution| @x1310 @x1935 $x1119) $x311) $x642)))
-(let ((@x1940 ((_ |th-lemma| arith farkas -1 -1 -2 -1 1 -1 1 1 -1 1 -1 -1 1 1) @x1256 @x1934 (|unit-resolution| @x647 (|unit-resolution| @x1310 @x1935 $x1119) $x311) (|unit-resolution| @x826 @x1919 $x667) @x830 @x1269 @x1252 @x1087 @x833 @x1917 @x851 @x1573 @x728 (|unit-resolution| @x1396 @x1938 $x1369) false)))
-(let ((@x1943 (|unit-resolution| (lemma @x1940 (or $x411 $x708 $x286)) @x1426 @x1263 $x411)))
-(let ((@x1944 (|unit-resolution| @x1508 @x1943 $x386)))
-(let ((@x1948 (|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x873 $x1196 $x337)) @x1542 (or $x873 $x337)) (|unit-resolution| @x1768 @x1943 @x1944 $x336) $x873)))
-(let ((@x1950 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1) (or $x1510 $x1197 $x387 $x1374 $x740 $x286)) @x1125 @x701 (or $x1510 $x387 $x1374 $x286))))
-(let ((@x1956 (|unit-resolution| @x924 (|unit-resolution| @x621 (|unit-resolution| @x1526 @x1944 @x1426 $x361) $x618) $x668)))
-(let ((@x1958 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 -2 2 -2 2) (or $x1354 $x705 $x437 $x815 $x816 $x704 $x741)) @x696 @x810 (or $x1354 $x705 $x437 $x815 $x704))))
-(let ((@x1959 (|unit-resolution| @x1958 @x1956 (|unit-resolution| @x789 (|unit-resolution| @x605 @x1943 $x602) $x774) (|unit-resolution| (lemma @x1906 (or $x436 $x708 $x286)) @x1426 @x1263 $x436) (|unit-resolution| @x1950 @x1948 @x1426 @x1944 $x1374) (|unit-resolution| @x806 (|unit-resolution| @x613 @x1944 $x610) $x671) false)))
-(let ((@x1992 (|unit-resolution| (lemma @x1959 (or $x286 $x708)) @x1263 $x286)))
-(let ((@x1240 (|unit-resolution| @x613 (|unit-resolution| @x1070 @x761 @x797 @x998 @x842 $x386) $x610)))
-(let ((@x1242 (|unit-resolution| @x1092 (|unit-resolution| @x948 @x1240 $x934) @x833 @x842 @x1087 @x851 $x336)))
-(let ((@x1244 (|unit-resolution| @x1115 (|unit-resolution| @x629 @x1242 $x626) (|unit-resolution| @x1102 @x761 @x842 @x1076 $x858) false)))
-(let ((@x1325 (|unit-resolution| @x597 (|unit-resolution| (lemma @x1244 (or $x436 $x411 $x287)) @x842 @x1076 $x436) $x594)))
-(let ((@x1265 (|unit-resolution| @x629 (|unit-resolution| @x1092 @x1110 @x833 @x842 @x1087 @x851 $x336) $x626)))
-(let ((@x1270 (|unit-resolution| @x860 (|unit-resolution| @x1115 @x1265 $x665) @x842 @x729 @x843 $x312)))
-(let ((@x1274 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x1119 $x1247)) (|unit-resolution| @x647 @x1270 $x643) $x1247)))
-(let ((@x1275 (|unit-resolution| @x1262 @x1274 @x1086 @x1269 @x729 @x898 @x848 (|unit-resolution| @x1115 @x1265 $x665) $x655)))
-(let ((@x1287 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x486 $x813 $x411 $x782 $x742 $x869)) @x866 @x685 @x842 @x1131 @x718 $x486)))
-(let ((@x1293 ((_ |th-lemma| arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1287 $x578) $x1236) @x718 @x1131 @x1284 @x1087 @x729 @x728 @x833 @x1038 @x810 @x848 @x851 (|unit-resolution| @x1159 (|unit-resolution| @x647 @x1270 $x643) $x1103) @x713 @x1275 @x685 @x866 $x652)))
-(let ((@x1300 ((_ |th-lemma| arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 -1/2 1/2) (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1287 $x578) $x1237) @x1252 @x1269 @x1296 @x1086 @x1137 @x1136 @x701 @x998 @x797 @x1133 @x696 @x1274 @x1256 @x1263 @x830 @x898 $x651)))
-(let ((@x1305 (|unit-resolution| @x1304 @x1300 @x1293 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1275 @x1263 $x71) $x564) false)))
-(let ((@x1329 (|unit-resolution| (lemma @x1305 (or $x386 $x1139 $x708 $x901 (not $x659) $x782 $x411)) (|unit-resolution| @x826 @x1325 $x667) (|unit-resolution| @x1235 @x1076 $x656) @x1150 @x1145 (|unit-resolution| @x691 @x1325 $x676) @x842 $x386)))
-(let ((@x1331 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1329 $x610) $x934)))
-(let ((@x1333 ((_ |th-lemma| arith assign-bounds 2 -1) (or $x778 $x387 $x955))))
-(let ((@x1336 (|unit-resolution| @x629 (|unit-resolution| @x1092 @x1331 @x833 @x842 @x1087 @x851 $x336) $x626)))
-(let ((@x1337 (|unit-resolution| @x1115 @x1336 $x665)))
-(let ((@x1313 (|unit-resolution| @x629 (|unit-resolution| @x1092 @x1027 @x833 @x842 @x1087 @x851 $x336) $x626)))
-(let ((@x1315 ((_ |th-lemma| arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1024 @x841 @x729 @x728 @x851 @x842 (|unit-resolution| @x1115 @x1313 $x665) @x855 @x1027 false)))
-(let ((@x1338 (|unit-resolution| (lemma @x1315 (or $x312 $x387 (not $x659) $x411)) @x1329 @x1145 @x842 $x312)))
-(let ((@x1341 (|unit-resolution| @x1262 (|unit-resolution| @x1310 (|unit-resolution| @x647 @x1338 $x643) $x1247) @x1337 @x1269 @x1145 (|unit-resolution| @x826 @x1325 $x667) (|unit-resolution| @x1333 @x1331 @x1329 $x778) @x1086 $x655)))
-(let ((@x1343 (|unit-resolution| @x577 (|unit-resolution| @x1277 @x1341 (|unit-resolution| @x1235 @x1076 $x656) $x71) $x564)))
-(let ((@x1344 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1 1 1 1) (or $x486 $x813 $x411 $x782 $x742 $x869)) (|unit-resolution| @x691 @x1325 $x676) @x685 @x842 @x1131 @x718 $x486)))
-(let ((@x1320 ((_ |th-lemma| arith farkas 1 -1 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1) @x681 @x701 @x856 @x855 @x697 @x1150 @x1136 @x696 (hypothesis $x1237) @x1252 @x1249 @x1296 @x1318 (hypothesis $x931) @x797 @x1076 false)))
-(let ((@x1323 (lemma @x1320 (or $x651 $x705 $x858 $x704 $x1321 $x1260 $x1000 $x287))))
-(let ((@x1348 (|unit-resolution| @x1323 @x1086 @x1337 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1329 $x610) $x671) (|unit-resolution| @x1298 (|unit-resolution| @x581 @x1344 $x578) $x1237) @x1269 @x998 @x1076 $x651)))
-(let ((@x1351 ((_ |th-lemma| arith farkas -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1331 @x1145 @x728 @x851 @x1337 @x855 (|unit-resolution| @x1291 (|unit-resolution| @x581 @x1344 $x578) $x1236) @x718 @x1131 @x1284 (|unit-resolution| @x1304 @x1348 @x1343 $x1302) @x1038 @x810 @x1329 false)))
-(let ((@x1353 (lemma @x1351 (or $x411 $x287))))
-(let ((@x1993 (|unit-resolution| @x1353 @x1992 $x411)))
-(let ((@x1994 (|unit-resolution| @x1508 @x1993 $x386)))
-(let ((@x1996 (|unit-resolution| @x948 (|unit-resolution| @x613 @x1994 $x610) $x934)))
-(let ((@x1998 (|unit-resolution| @x792 (|unit-resolution| @x605 @x1993 $x602) $x773)))
-(let ((@x1964 (|unit-resolution| @x613 (|unit-resolution| @x1508 (|unit-resolution| @x1353 @x1076 $x411) $x386) $x610)))
-(let ((@x1967 (|unit-resolution| @x789 (|unit-resolution| @x605 (|unit-resolution| @x1353 @x1076 $x411) $x602) $x774)))
-(let ((@x1970 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 -1 1 1 -1 1 1 -1) (or $x704 $x741 $x311 $x1139 $x1189 $x815 $x1196 $x1197 $x437 $x816)) @x696 @x1125 @x1136 @x810 (or $x704 $x311 $x1139 $x815 $x1196 $x437))))
-(let ((@x1973 (|unit-resolution| (|unit-resolution| @x1970 @x1542 @x1813 (or $x704 $x311 $x815 $x437)) (|unit-resolution| @x1205 @x1188 @x1076 (|unit-resolution| @x1353 @x1076 $x411) $x436) @x1188 @x1967 (|unit-resolution| @x806 @x1964 $x671) false)))
-(let ((@x2008 (|unit-resolution| @x1115 (|unit-resolution| @x629 (|unit-resolution| @x1768 @x1993 @x1994 $x336) $x626) $x665)))
-(let ((@x2012 (|unit-resolution| @x1144 (|unit-resolution| @x637 @x1992 $x634) $x659)))
-(let ((@x2049 (lemma ((_ |th-lemma| arith farkas 1 -1 1 -1 -1 -1 1 -1 1 1) @x729 @x728 @x856 @x855 @x1207 @x761 @x797 @x999 @x851 @x841 false) (or $x436 (not $x659) $x858 $x798 $x955 $x312))))
-(let ((@x2050 (|unit-resolution| @x2049 @x2012 @x2008 @x1998 @x1996 (|unit-resolution| (lemma @x1973 (or $x311 $x287)) @x1992 $x311) $x436)))
-(let ((@x2000 (|unit-resolution| @x645 (|unit-resolution| (lemma @x1973 (or $x311 $x287)) @x1992 $x311) $x642)))
-(let ((@x2001 (|unit-resolution| @x1396 @x2000 $x1369)))
-(let ((@x2002 (|unit-resolution| @x1333 @x1996 @x1994 $x778)))
-(let ((@x2053 (|unit-resolution| @x806 (|unit-resolution| @x613 @x1994 $x610) $x671)))
-(let ((@x2006 (|unit-resolution| @x1768 @x1993 @x1994 $x336)))
-(let ((@x2027 (|unit-resolution| @x691 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1025 @x1996 @x1998 $x436) $x594) $x676)))
-(let ((@x2028 (|unit-resolution| @x826 (|unit-resolution| @x597 (|unit-resolution| @x1719 @x1025 @x1996 @x1998 $x436) $x594) $x667)))
-(let ((@x1982 (|unit-resolution| (|unit-resolution| @x1376 @x1813 (or $x655 $x1373 $x1104 $x901 $x1260 $x1374)) @x1253 @x1370 @x898 @x1248 @x1371 $x1260)))
-(let ((@x1984 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 -1 1 1 -1 1 -2 2 -1 1 -1 1) $x1723) @x797 @x851 @x701 @x1136 @x1256 @x1813 @x685 @x1252 (or $x1611 $x955 $x1373 $x655 $x798 $x782 $x1374))))
-(let ((@x1986 (|unit-resolution| @x1619 (|unit-resolution| @x1984 @x1253 @x1370 @x866 @x1207 @x999 @x1371 $x1611) $x757)))
-(let ((@x1989 (|unit-resolution| @x1268 (|unit-resolution| @x589 (|unit-resolution| @x591 @x1986 $x461) $x586) @x1982 false)))
-(let ((@x1991 (lemma @x1989 (or $x655 $x1374 $x901 $x1104 $x1373 $x782 $x798 $x955))))
-(let ((@x2029 (|unit-resolution| @x1991 @x1385 @x2028 @x2002 @x2001 @x2027 @x1998 @x1996 $x655)))
-(let ((@x2009 (|unit-resolution| @x789 (|unit-resolution| @x605 @x1993 $x602) $x774)))
-(let ((@x2004 (|unit-resolution| @x1277 (|unit-resolution| @x1991 @x1370 @x898 @x2002 @x2001 @x866 @x1998 @x1996 $x655) @x1263 $x71)))
-(let ((@x2010 (|unit-resolution| @x1166 @x2000 $x662)))
-(let (($x731 (not $x659)))
-(let (($x814 (not $x648)))
-(let (($x2015 (or $x652 $x1585 $x732 $x814 $x764 $x901 $x1402 $x858 $x1593 $x815 $x816 $x900 $x1089 $x731 $x812 (not $x1367))))
-(let ((@x2017 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -2 2 1) $x2015) (|unit-resolution| @x1411 @x1441 $x1367) @x810 @x833 @x855 @x728 @x713 @x1284 (|unit-resolution| @x1991 @x1370 @x898 @x2002 @x2001 @x866 @x1998 @x1996 $x655) @x2012 @x2010 @x2009 @x2008 @x898 @x1366 @x830 $x652)))
-(let (($x2019 (or $x651 $x1591 $x1373 $x1625 $x708 $x782 $x742 $x1196 $x1197 $x798 $x799 $x1374 $x740 $x1139 $x1189 $x1437)))
-(let ((@x2021 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -1 1 1 -1 1 -1 1 -1 1 1 -1 -2 2 1) $x2019) (|unit-resolution| @x1443 @x1441 $x1368) @x797 @x701 @x1125 @x1136 @x1256 @x1296 @x1263 @x1813 @x866 @x1998 @x1542 @x2001 @x1370 @x685 $x651)))
-(let ((@x2022 (|unit-resolution| @x1304 @x2021 @x2017 (|unit-resolution| @x577 @x2004 $x564) false)))
-(let ((@x2032 (|unit-resolution| (lemma @x2022 (or $x1409 $x708 $x782 $x1374 $x901)) @x2027 @x1263 @x1385 @x2028 $x1409)))
-(let ((@x2035 (|unit-resolution| @x1291 (|unit-resolution| @x581 (|unit-resolution| @x583 @x2032 $x486) $x578) $x1236)))
-(let ((@x2038 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 -2 -2 2 2 -2 2) (or $x1500 $x858 $x487 $x732 $x814 $x764 $x731 $x812)) @x2029 @x713 @x728 @x2012 @x2010 @x2008 (|unit-resolution| @x583 @x2032 $x486) $x1500)))
-(let ((@x2040 (|unit-resolution| ((_ |th-lemma| arith assign-bounds -1 1 -1 -1 1 -1 1 1 -1 -1 1 -1 1) $x1756) @x810 @x833 @x855 @x1256 @x1366 @x830 @x1284 (or $x652 $x901 $x1584 $x815 $x1592 $x1373 $x708))))
-(let ((@x2042 (|unit-resolution| @x1304 (|unit-resolution| @x2040 @x2038 @x2035 @x1263 @x2009 @x2028 @x2001 $x652) (|unit-resolution| @x577 (|unit-resolution| @x1277 @x2029 @x1263 $x71) $x564) $x1301)))
-(let ((@x2043 (|unit-resolution| @x1298 (|unit-resolution| @x581 (|unit-resolution| @x583 @x2032 $x486) $x578) $x1237)))
-(let ((@x2044 ((_ |th-lemma| arith farkas 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1) @x2010 @x713 @x2029 @x2043 @x1296 @x2042 @x2027 @x685 @x1542 @x1125 @x1998 @x797 @x1385 @x701 @x2006 false)))
-(let ((@x2055 (|unit-resolution| @x621 (|unit-resolution| (lemma @x2044 (or $x361 $x708)) @x1263 $x361) $x618)))
-(let ((@x1979 (lemma (|unit-resolution| @x924 (hypothesis $x618) (hypothesis $x705) false) (or (not $x618) $x668))))
-(let ((@x2056 (|unit-resolution| @x1979 @x2055 $x668)))
-(let ((@x2059 (|unit-resolution| @x1991 (|unit-resolution| @x826 (|unit-resolution| @x597 @x2050 $x594) $x667) (|unit-resolution| @x1958 @x2050 @x2009 @x2056 @x2053 $x1354) @x2002 @x2001 (|unit-resolution| @x691 (|unit-resolution| @x597 @x2050 $x594) $x676) @x1998 @x1996 $x655)))
-(let ((@x2061 (|unit-resolution| (|unit-resolution| @x1669 @x1813 (or $x486 $x705 $x704 $x1373 $x708 $x412)) @x2056 @x1263 @x2001 @x2053 @x1993 $x486)))
-(let ((@x2063 (|unit-resolution| @x589 (|unit-resolution| @x707 @x2050 @x2053 @x2006 @x2056 $x461) $x586)))
-(let ((@x2065 (|unit-resolution| @x1465 (|unit-resolution| @x1268 @x2063 $x670) @x2009 @x2012 @x2002 @x2061 @x2008 (|unit-resolution| @x826 (|unit-resolution| @x597 @x2050 $x594) $x667) $x652)))
-(let ((@x2071 (|unit-resolution| @x1323 (|unit-resolution| @x1268 @x2063 $x670) @x1992 @x2008 @x2053 (|unit-resolution| @x1298 (|unit-resolution| @x581 @x2061 $x578) $x1237) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x931 $x412 $x798)) @x1998 @x1993 $x931) @x2056 $x651)))
-(let ((@x2073 (|unit-resolution| @x577 (|unit-resolution| @x1304 @x2071 @x2065 $x70) (|unit-resolution| @x1277 @x2059 @x1263 $x71) false)))
-(let ((@x2074 (lemma @x2073 $x708)))
-(let ((@x1771 (|unit-resolution| @x621 (|unit-resolution| @x1526 (|unit-resolution| @x1235 @x709 $x287) @x1024 $x361) $x618)))
-(let ((@x1772 (|unit-resolution| @x924 @x1771 $x668)))
-(let ((@x1773 (|unit-resolution| @x1768 @x1185 @x1024 $x336)))
-(let ((@x1769 (|unit-resolution| @x1235 @x709 $x287)))
-(let ((@x1776 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -1 1 -1 -1 1 -1 1) (or $x437 $x815 $x816 $x704 $x741 $x1196 $x337 $x286 $x1197)) @x1769 @x696 @x1773 @x1125 @x810 @x1734 @x1477 @x1542 $x437)))
-(let ((@x1782 (|unit-resolution| @x1566 (|unit-resolution| @x1556 (|unit-resolution| @x639 @x1769 $x635) $x1499) @x701 @x1185 @x1136 @x1769 @x1734 @x1772 @x696 $x311)))
-(let ((@x1790 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 1) (or $x658 $x286 $x1564)) (|unit-resolution| @x1556 (|unit-resolution| @x639 @x1769 $x635) $x1499) @x1769 $x658)))
-(let ((@x1793 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 2 4 4 2 2 1 2 2 2 2 2) $x1791) (|unit-resolution| @x738 (|unit-resolution| @x599 @x1776 $x595) $x673) @x810 @x696 @x701 @x1125 @x1790 @x1734 @x1772 (|unit-resolution| @x1572 (|unit-resolution| @x639 @x1769 $x635) $x1543) @x1477 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 -2) (or $x873 $x1196 $x337)) @x1773 @x1542 $x873) @x685 $x461)))
-(let ((@x1796 ((_ |th-lemma| arith farkas 4 -1 3 -3 -1 1 1 -1 -1 1 -1 2 -2 -2 2 -1 1 1) @x1773 @x701 @x1734 @x696 (|unit-resolution| @x723 (|unit-resolution| @x589 @x1793 $x586) $x679) @x718 (|unit-resolution| @x1166 (|unit-resolution| @x645 @x1782 $x642) $x662) @x713 @x709 (|unit-resolution| @x1572 (|unit-resolution| @x639 @x1769 $x635) $x1543) @x728 @x1477 @x810 @x1542 @x1125 (|unit-resolution| @x738 (|unit-resolution| @x599 @x1776 $x595) $x673) @x685 @x1772 false)))
-(let ((@x2081 (|unit-resolution| (lemma @x1796 (or $x656 $x412 $x387)) @x1815 @x1185 @x2074 false)))
-(let ((@x2082 (lemma @x2081 $x412)))
-(let ((@x2100 (|unit-resolution| @x863 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x2082 $x361) $x618) $x838)))
-(let ((@x2117 (|unit-resolution| @x1572 (|unit-resolution| @x639 (|unit-resolution| @x1235 @x2074 $x287) $x635) $x1543)))
-(let ((@x2101 (|unit-resolution| (|unit-resolution| @x1429 @x1542 (or $x286 $x386 $x1090)) @x2100 (|unit-resolution| @x1235 @x2074 $x287) $x386)))
-(let ((@x2090 (|unit-resolution| @x1556 (|unit-resolution| @x639 (|unit-resolution| @x1235 @x2074 $x287) $x635) $x1499)))
-(let ((@x2078 (|unit-resolution| @x997 @x994 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 2) (or $x815 $x1000 $x411)) @x842 @x897 $x1000) false)))
-(let ((@x2097 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x774 $x773)) (|unit-resolution| (lemma @x2078 (or $x411 $x815)) @x2082 $x815) $x773)))
-(let ((@x2104 (|unit-resolution| @x1874 (|unit-resolution| @x948 (|unit-resolution| @x613 @x2101 $x610) $x934) @x2100 @x2097 (|unit-resolution| @x1037 (|unit-resolution| @x607 @x2082 $x603) $x1022) $x336)))
-(let ((@x2107 (|unit-resolution| @x1979 (|unit-resolution| @x621 (|unit-resolution| @x1064 @x2082 $x361) $x618) $x668)))
-(let ((@x2109 (|unit-resolution| @x1881 @x1188 @x696 @x701 @x855 @x1136 @x797 (|unit-resolution| @x806 (|unit-resolution| @x613 @x2101 $x610) $x671) @x2107 (|unit-resolution| @x1115 (|unit-resolution| @x629 @x2104 $x626) $x665) (|unit-resolution| @x997 (|unit-resolution| @x607 @x2082 $x603) $x931) @x2090 $x436)))
-(let ((@x2114 (|unit-resolution| @x723 (|unit-resolution| @x589 (|unit-resolution| @x1098 @x2082 $x461) $x586) $x679)))
-(let ((@x2115 ((_ |th-lemma| arith farkas 1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 1) @x1136 (|unit-resolution| @x806 (|unit-resolution| @x613 @x2101 $x610) $x671) @x696 @x2090 @x2107 @x701 @x2114 @x718 @x713 @x2074 @x685 (|unit-resolution| @x691 (|unit-resolution| @x597 @x2109 $x594) $x676) (|unit-resolution| @x1159 (|unit-resolution| @x647 @x1188 $x643) $x1103) false)))
-(let ((@x2119 (|unit-resolution| @x1166 (|unit-resolution| @x645 (lemma @x2115 $x311) $x642) $x662)))
-(let ((@x2120 ((_ |th-lemma| arith farkas 1 -1 1 -1 1 1 -1 -1 3 -3 2 -2 2 -2 1 -1 1) @x2114 @x718 @x728 @x2119 @x713 (|unit-resolution| @x948 (|unit-resolution| @x613 @x2101 $x610) $x934) @x851 @x2117 @x2100 @x833 @x1542 @x1125 @x810 (|unit-resolution| @x1037 (|unit-resolution| @x607 @x2082 $x603) $x1022) @x1609 @x685 @x2074 false)))
-(let ((@x2121 (lemma @x2120 $x743)))
-(let (($x736 (not $x595)))
-(let ((@x2125 (|unit-resolution| @x599 (lemma (|unit-resolution| @x738 (hypothesis $x595) @x2121 false) $x736) $x436)))
-(|unit-resolution| @x691 (|unit-resolution| @x597 @x2125 $x594) (|unit-resolution| ((_ |th-lemma| arith assign-bounds 2 -1) (or $x673 $x437 $x782)) @x2125 @x2121 $x782) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let (($x91 (= x1$ x10$)))
+(let (($x582 (not $x91)))
+(let (($x92 (= x2$ x11$)))
+(let ((?x655 (* (- 1) x11$)))
+(let ((?x656 (+ x2$ ?x655)))
+(let (($x657 (<= ?x656 0)))
+(let ((?x235 (* (- 1) x10$)))
+(let (($x313 (>= x10$ 0)))
+(let ((?x320 (ite $x313 x10$ ?x235)))
+(let ((?x331 (* (- 1) ?x320)))
+(let ((?x662 (+ x10$ ?x331)))
+(let (($x1382 (<= ?x662 0)))
+(let (($x1530 (not $x1382)))
+(let ((?x116 (* (- 1) x3$)))
+(let (($x463 (>= x3$ 0)))
+(let ((?x470 (ite $x463 x3$ ?x116)))
+(let ((?x481 (* (- 1) ?x470)))
+(let ((?x680 (+ x3$ ?x481)))
+(let (($x672 (>= ?x680 0)))
+(let (($x588 (= x3$ ?x470)))
+(let (($x766 (not $x657)))
+(let ((@x1256 (hypothesis $x766)))
+(let ((?x676 (+ ?x116 ?x481)))
+(let (($x1697 (>= ?x676 0)))
+(let (($x589 (= ?x116 ?x470)))
+(let (($x464 (not $x463)))
+(let ((@x688 (hypothesis $x464)))
+(let ((@x593 (def-axiom (or $x463 $x589))))
+(let ((@x1779 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (hypothesis $x589) (hypothesis (not $x1697)) false)))
+(let ((@x1780 (lemma @x1779 (or (not $x589) $x1697))))
+(let ((?x133 (* (- 1) x4$)))
+(let (($x438 (>= x4$ 0)))
+(let ((?x445 (ite $x438 x4$ ?x133)))
+(let ((?x456 (* (- 1) ?x445)))
+(let ((?x674 (+ ?x133 ?x456)))
+(let (($x675 (<= ?x674 0)))
+(let ((?x677 (+ x4$ ?x456)))
+(let (($x678 (<= ?x677 0)))
+(let (($x784 (not $x678)))
+(let (($x745 (not $x675)))
+(let ((@x1834 (hypothesis $x745)))
+(let (($x597 (= ?x133 ?x445)))
+(let (($x738 (not $x597)))
+(let ((@x740 ((_ th-lemma arith triangle-eq) (or $x738 $x675))))
+(let ((@x1837 (lemma (unit-resolution @x740 (hypothesis $x597) @x1834 false) (or $x738 $x675))))
+(let ((@x601 (def-axiom (or $x438 $x597))))
+(let ((@x1840 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 (not $x438) $x784)) (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) @x1834 $x784)))
+(let (($x596 (= x4$ ?x445)))
+(let ((@x599 (def-axiom (or (not $x438) $x596))))
+(let ((@x1841 (unit-resolution @x599 (unit-resolution @x601 (unit-resolution @x1837 @x1834 $x738) $x438) $x596)))
+(let ((@x693 ((_ th-lemma arith triangle-eq) (or (not $x596) $x678))))
+(let ((@x1843 (lemma (unit-resolution @x693 @x1841 @x1840 false) $x675)))
+(let ((?x218 (* (- 1) x9$)))
+(let (($x288 (>= x9$ 0)))
+(let ((?x295 (ite $x288 x9$ ?x218)))
+(let ((?x306 (* (- 1) ?x295)))
+(let ((?x659 (+ x9$ ?x306)))
+(let (($x660 (<= ?x659 0)))
+(let (($x636 (= x9$ ?x295)))
+(let (($x338 (>= x8$ 0)))
+(let (($x339 (not $x338)))
+(let (($x661 (>= ?x659 0)))
+(let (($x733 (not $x661)))
+(let ((?x201 (* (- 1) x8$)))
+(let ((?x345 (ite $x338 x8$ ?x201)))
+(let ((?x356 (* (- 1) ?x345)))
+(let ((?x665 (+ x8$ ?x356)))
+(let (($x667 (>= ?x665 0)))
+(let (($x628 (= x8$ ?x345)))
+(let (($x439 (not $x438)))
+(let ((@x763 (hypothesis $x439)))
+(let ((@x1701 (hypothesis $x339)))
+(let (($x289 (not $x288)))
+(let ((@x1371 (hypothesis $x289)))
+(let ((?x666 (+ ?x201 ?x356)))
+(let (($x875 (<= ?x666 0)))
+(let (($x629 (= ?x201 ?x345)))
+(let ((@x633 (def-axiom (or $x338 $x629))))
+(let (($x1626 (not $x875)))
+(let ((@x1635 (hypothesis $x1626)))
+(let ((@x1640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x629) $x875)) (hypothesis $x629) @x1635 false)))
+(let ((@x1641 (lemma @x1640 (or (not $x629) $x875))))
+(let ((@x1738 (unit-resolution @x1641 (unit-resolution @x633 @x1701 $x629) $x875)))
+(let ((?x150 (* (- 1) x5$)))
+(let (($x413 (>= x5$ 0)))
+(let ((?x420 (ite $x413 x5$ ?x150)))
+(let ((?x431 (* (- 1) ?x420)))
+(let ((?x757 (+ x5$ ?x431)))
+(let (($x776 (>= ?x757 0)))
+(let (($x604 (= x5$ ?x420)))
+(let (($x644 (= x10$ ?x320)))
+(let (($x645 (= ?x235 ?x320)))
+(let (($x1136 (not $x645)))
+(let ((?x1104 (+ ?x235 ?x331)))
+(let (($x1250 (<= ?x1104 0)))
+(let (($x1262 (not $x1250)))
+(let ((?x1357 (+ ?x218 ?x306)))
+(let (($x1370 (>= ?x1357 0)))
+(let (($x637 (= ?x218 ?x295)))
+(let (($x414 (not $x413)))
+(let ((@x844 (hypothesis $x414)))
+(let ((?x167 (* (- 1) x6$)))
+(let (($x388 (>= x6$ 0)))
+(let ((?x395 (ite $x388 x6$ ?x167)))
+(let ((?x406 (* (- 1) ?x395)))
+(let ((?x671 (+ x6$ ?x406)))
+(let (($x673 (>= ?x671 0)))
+(let (($x612 (= x6$ ?x395)))
+(let ((@x1079 (hypothesis $x288)))
+(let (($x860 (not $x667)))
+(let ((?x931 (+ ?x150 ?x431)))
+(let (($x933 (<= ?x931 0)))
+(let (($x605 (= ?x150 ?x420)))
+(let ((@x1000 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x933)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x933)))
+(let ((?x432 (+ x4$ x6$ ?x431)))
+(let (($x611 (>= ?x432 0)))
+(let (($x433 (= ?x432 0)))
+(let ((?x332 (+ x9$ x11$ ?x331)))
+(let (($x333 (= ?x332 0)))
+(let ((?x307 (+ x8$ x10$ ?x306)))
+(let (($x308 (= ?x307 0)))
+(let ((?x357 (+ x7$ x9$ ?x356)))
+(let (($x358 (= ?x357 0)))
+(let ((?x184 (* (- 1) x7$)))
+(let (($x363 (>= x7$ 0)))
+(let ((?x370 (ite $x363 x7$ ?x184)))
+(let ((?x381 (* (- 1) ?x370)))
+(let ((?x382 (+ x6$ x8$ ?x381)))
+(let (($x383 (= ?x382 0)))
+(let ((?x407 (+ x5$ x7$ ?x406)))
+(let (($x408 (= ?x407 0)))
+(let ((?x457 (+ x3$ x5$ ?x456)))
+(let (($x458 (= ?x457 0)))
+(let ((?x482 (+ x2$ x4$ ?x481)))
+(let (($x483 (= ?x482 0)))
+(let ((?x98 (* (- 1) x2$)))
+(let (($x488 (>= x2$ 0)))
+(let ((?x495 (ite $x488 x2$ ?x98)))
+(let ((?x506 (* (- 1) ?x495)))
+(let ((?x507 (+ x3$ x1$ ?x506)))
+(let (($x508 (= ?x507 0)))
+(let (($x537 (and $x508 $x483 $x458 $x433 $x408 $x383 $x358 $x308 $x333)))
+(let (($x548 (not (or (not $x537) (and $x91 $x92)))))
+(let (($x93 (and $x91 $x92)))
+(let (($x83 (and (= x10$ (- (ite (< x9$ 0) (- x9$) x9$) x8$)) (= x11$ (- (ite (< x10$ 0) (- x10$) x10$) x9$)))))
+(let (($x85 (and (= x8$ (- (ite (< x7$ 0) (- x7$) x7$) x6$)) (and (= x9$ (- (ite (< x8$ 0) (- x8$) x8$) x7$)) $x83))))
+(let (($x87 (and (= x6$ (- (ite (< x5$ 0) (- x5$) x5$) x4$)) (and (= x7$ (- (ite (< x6$ 0) (- x6$) x6$) x5$)) $x85))))
+(let (($x89 (and (= x4$ (- (ite (< x3$ 0) (- x3$) x3$) x2$)) (and (= x5$ (- (ite (< x4$ 0) (- x4$) x4$) x3$)) $x87))))
+(let (($x94 (=> (and (= x3$ (- (ite (< x2$ 0) (- x2$) x2$) x1$)) $x89) $x93)))
+(let (($x95 (not $x94)))
+(let (($x78 (< x10$ 0)))
+(let ((?x238 (ite $x78 ?x235 x10$)))
+(let ((?x244 (+ ?x218 ?x238)))
+(let (($x249 (= x11$ ?x244)))
+(let (($x72 (< x9$ 0)))
+(let ((?x221 (ite $x72 ?x218 x9$)))
+(let ((?x227 (+ ?x201 ?x221)))
+(let (($x232 (= x10$ ?x227)))
+(let (($x252 (and $x232 $x249)))
+(let (($x66 (< x8$ 0)))
+(let ((?x204 (ite $x66 ?x201 x8$)))
+(let ((?x210 (+ ?x184 ?x204)))
+(let (($x215 (= x9$ ?x210)))
+(let (($x255 (and $x215 $x252)))
+(let (($x60 (< x7$ 0)))
+(let ((?x187 (ite $x60 ?x184 x7$)))
+(let ((?x193 (+ ?x167 ?x187)))
+(let (($x198 (= x8$ ?x193)))
+(let (($x258 (and $x198 $x255)))
+(let (($x54 (< x6$ 0)))
+(let ((?x170 (ite $x54 ?x167 x6$)))
+(let ((?x176 (+ ?x150 ?x170)))
+(let (($x181 (= x7$ ?x176)))
+(let (($x261 (and $x181 $x258)))
+(let (($x48 (< x5$ 0)))
+(let ((?x153 (ite $x48 ?x150 x5$)))
+(let ((?x159 (+ ?x133 ?x153)))
+(let (($x164 (= x6$ ?x159)))
+(let (($x264 (and $x164 $x261)))
+(let (($x42 (< x4$ 0)))
+(let ((?x136 (ite $x42 ?x133 x4$)))
+(let ((?x142 (+ ?x116 ?x136)))
+(let (($x147 (= x5$ ?x142)))
+(let (($x267 (and $x147 $x264)))
+(let (($x36 (< x3$ 0)))
+(let ((?x119 (ite $x36 ?x116 x3$)))
+(let ((?x125 (+ ?x98 ?x119)))
+(let (($x130 (= x4$ ?x125)))
+(let (($x270 (and $x130 $x267)))
+(let (($x29 (< x2$ 0)))
+(let ((?x101 (ite $x29 ?x98 x2$)))
+(let ((?x108 (+ (* (- 1) x1$) ?x101)))
+(let (($x113 (= x3$ ?x108)))
+(let (($x273 (and $x113 $x270)))
+(let (($x280 (or (not $x273) $x93)))
+(let (($x528 (and $x458 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let (($x526 (= $x264 (and $x433 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let ((@x319 (monotonicity (rewrite (= $x78 (not $x313))) (= ?x238 (ite (not $x313) ?x235 x10$)))))
+(let ((@x324 (trans @x319 (rewrite (= (ite (not $x313) ?x235 x10$) ?x320)) (= ?x238 ?x320))))
+(let ((@x330 (monotonicity (monotonicity @x324 (= ?x244 (+ ?x218 ?x320))) (= $x249 (= x11$ (+ ?x218 ?x320))))))
+(let ((@x337 (trans @x330 (rewrite (= (= x11$ (+ ?x218 ?x320)) $x333)) (= $x249 $x333))))
+(let ((@x294 (monotonicity (rewrite (= $x72 $x289)) (= ?x221 (ite $x289 ?x218 x9$)))))
+(let ((@x302 (monotonicity (trans @x294 (rewrite (= (ite $x289 ?x218 x9$) ?x295)) (= ?x221 ?x295)) (= ?x227 (+ ?x201 ?x295)))))
+(let ((@x312 (trans (monotonicity @x302 (= $x232 (= x10$ (+ ?x201 ?x295)))) (rewrite (= (= x10$ (+ ?x201 ?x295)) $x308)) (= $x232 $x308))))
+(let ((@x344 (monotonicity (rewrite (= $x66 $x339)) (= ?x204 (ite $x339 ?x201 x8$)))))
+(let ((@x352 (monotonicity (trans @x344 (rewrite (= (ite $x339 ?x201 x8$) ?x345)) (= ?x204 ?x345)) (= ?x210 (+ ?x184 ?x345)))))
+(let ((@x362 (trans (monotonicity @x352 (= $x215 (= x9$ (+ ?x184 ?x345)))) (rewrite (= (= x9$ (+ ?x184 ?x345)) $x358)) (= $x215 $x358))))
+(let ((@x518 (monotonicity @x362 (monotonicity @x312 @x337 (= $x252 (and $x308 $x333))) (= $x255 (and $x358 (and $x308 $x333))))))
+(let ((@x369 (monotonicity (rewrite (= $x60 (not $x363))) (= ?x187 (ite (not $x363) ?x184 x7$)))))
+(let ((@x374 (trans @x369 (rewrite (= (ite (not $x363) ?x184 x7$) ?x370)) (= ?x187 ?x370))))
+(let ((@x380 (monotonicity (monotonicity @x374 (= ?x193 (+ ?x167 ?x370))) (= $x198 (= x8$ (+ ?x167 ?x370))))))
+(let ((@x387 (trans @x380 (rewrite (= (= x8$ (+ ?x167 ?x370)) $x383)) (= $x198 $x383))))
+(let ((@x521 (monotonicity @x387 @x518 (= $x258 (and $x383 (and $x358 (and $x308 $x333)))))))
+(let ((@x394 (monotonicity (rewrite (= $x54 (not $x388))) (= ?x170 (ite (not $x388) ?x167 x6$)))))
+(let ((@x399 (trans @x394 (rewrite (= (ite (not $x388) ?x167 x6$) ?x395)) (= ?x170 ?x395))))
+(let ((@x405 (monotonicity (monotonicity @x399 (= ?x176 (+ ?x150 ?x395))) (= $x181 (= x7$ (+ ?x150 ?x395))))))
+(let ((@x412 (trans @x405 (rewrite (= (= x7$ (+ ?x150 ?x395)) $x408)) (= $x181 $x408))))
+(let ((@x524 (monotonicity @x412 @x521 (= $x261 (and $x408 (and $x383 (and $x358 (and $x308 $x333))))))))
+(let ((@x419 (monotonicity (rewrite (= $x48 $x414)) (= ?x153 (ite $x414 ?x150 x5$)))))
+(let ((@x427 (monotonicity (trans @x419 (rewrite (= (ite $x414 ?x150 x5$) ?x420)) (= ?x153 ?x420)) (= ?x159 (+ ?x133 ?x420)))))
+(let ((@x437 (trans (monotonicity @x427 (= $x164 (= x6$ (+ ?x133 ?x420)))) (rewrite (= (= x6$ (+ ?x133 ?x420)) $x433)) (= $x164 $x433))))
+(let ((@x444 (monotonicity (rewrite (= $x42 $x439)) (= ?x136 (ite $x439 ?x133 x4$)))))
+(let ((@x452 (monotonicity (trans @x444 (rewrite (= (ite $x439 ?x133 x4$) ?x445)) (= ?x136 ?x445)) (= ?x142 (+ ?x116 ?x445)))))
+(let ((@x462 (trans (monotonicity @x452 (= $x147 (= x5$ (+ ?x116 ?x445)))) (rewrite (= (= x5$ (+ ?x116 ?x445)) $x458)) (= $x147 $x458))))
+(let ((@x469 (monotonicity (rewrite (= $x36 $x464)) (= ?x119 (ite $x464 ?x116 x3$)))))
+(let ((@x477 (monotonicity (trans @x469 (rewrite (= (ite $x464 ?x116 x3$) ?x470)) (= ?x119 ?x470)) (= ?x125 (+ ?x98 ?x470)))))
+(let ((@x487 (trans (monotonicity @x477 (= $x130 (= x4$ (+ ?x98 ?x470)))) (rewrite (= (= x4$ (+ ?x98 ?x470)) $x483)) (= $x130 $x483))))
+(let ((@x533 (monotonicity @x487 (monotonicity @x462 (monotonicity @x437 @x524 $x526) (= $x267 $x528)) (= $x270 (and $x483 $x528)))))
+(let ((@x494 (monotonicity (rewrite (= $x29 (not $x488))) (= ?x101 (ite (not $x488) ?x98 x2$)))))
+(let ((@x499 (trans @x494 (rewrite (= (ite (not $x488) ?x98 x2$) ?x495)) (= ?x101 ?x495))))
+(let ((@x505 (monotonicity (monotonicity @x499 (= ?x108 (+ (* (- 1) x1$) ?x495))) (= $x113 (= x3$ (+ (* (- 1) x1$) ?x495))))))
+(let ((@x512 (trans @x505 (rewrite (= (= x3$ (+ (* (- 1) x1$) ?x495)) $x508)) (= $x113 $x508))))
+(let ((@x541 (trans (monotonicity @x512 @x533 (= $x273 (and $x508 (and $x483 $x528)))) (rewrite (= (and $x508 (and $x483 $x528)) $x537)) (= $x273 $x537))))
+(let ((@x547 (monotonicity (monotonicity @x541 (= (not $x273) (not $x537))) (= $x280 (or (not $x537) $x93)))))
+(let ((@x240 (monotonicity (rewrite (= (- x10$) ?x235)) (= (ite $x78 (- x10$) x10$) ?x238))))
+(let ((@x243 (monotonicity @x240 (= (- (ite $x78 (- x10$) x10$) x9$) (- ?x238 x9$)))))
+(let ((@x248 (trans @x243 (rewrite (= (- ?x238 x9$) ?x244)) (= (- (ite $x78 (- x10$) x10$) x9$) ?x244))))
+(let ((@x251 (monotonicity @x248 (= (= x11$ (- (ite $x78 (- x10$) x10$) x9$)) $x249))))
+(let ((@x223 (monotonicity (rewrite (= (- x9$) ?x218)) (= (ite $x72 (- x9$) x9$) ?x221))))
+(let ((@x226 (monotonicity @x223 (= (- (ite $x72 (- x9$) x9$) x8$) (- ?x221 x8$)))))
+(let ((@x231 (trans @x226 (rewrite (= (- ?x221 x8$) ?x227)) (= (- (ite $x72 (- x9$) x9$) x8$) ?x227))))
+(let ((@x234 (monotonicity @x231 (= (= x10$ (- (ite $x72 (- x9$) x9$) x8$)) $x232))))
+(let ((@x206 (monotonicity (rewrite (= (- x8$) ?x201)) (= (ite $x66 (- x8$) x8$) ?x204))))
+(let ((@x209 (monotonicity @x206 (= (- (ite $x66 (- x8$) x8$) x7$) (- ?x204 x7$)))))
+(let ((@x214 (trans @x209 (rewrite (= (- ?x204 x7$) ?x210)) (= (- (ite $x66 (- x8$) x8$) x7$) ?x210))))
+(let ((@x217 (monotonicity @x214 (= (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x215))))
+(let ((@x257 (monotonicity @x217 (monotonicity @x234 @x251 (= $x83 $x252)) (= (and (= x9$ (- (ite $x66 (- x8$) x8$) x7$)) $x83) $x255))))
+(let ((@x189 (monotonicity (rewrite (= (- x7$) ?x184)) (= (ite $x60 (- x7$) x7$) ?x187))))
+(let ((@x192 (monotonicity @x189 (= (- (ite $x60 (- x7$) x7$) x6$) (- ?x187 x6$)))))
+(let ((@x197 (trans @x192 (rewrite (= (- ?x187 x6$) ?x193)) (= (- (ite $x60 (- x7$) x7$) x6$) ?x193))))
+(let ((@x200 (monotonicity @x197 (= (= x8$ (- (ite $x60 (- x7$) x7$) x6$)) $x198))))
+(let ((@x172 (monotonicity (rewrite (= (- x6$) ?x167)) (= (ite $x54 (- x6$) x6$) ?x170))))
+(let ((@x175 (monotonicity @x172 (= (- (ite $x54 (- x6$) x6$) x5$) (- ?x170 x5$)))))
+(let ((@x180 (trans @x175 (rewrite (= (- ?x170 x5$) ?x176)) (= (- (ite $x54 (- x6$) x6$) x5$) ?x176))))
+(let ((@x183 (monotonicity @x180 (= (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x181))))
+(let ((@x263 (monotonicity @x183 (monotonicity @x200 @x257 (= $x85 $x258)) (= (and (= x7$ (- (ite $x54 (- x6$) x6$) x5$)) $x85) $x261))))
+(let ((@x155 (monotonicity (rewrite (= (- x5$) ?x150)) (= (ite $x48 (- x5$) x5$) ?x153))))
+(let ((@x158 (monotonicity @x155 (= (- (ite $x48 (- x5$) x5$) x4$) (- ?x153 x4$)))))
+(let ((@x163 (trans @x158 (rewrite (= (- ?x153 x4$) ?x159)) (= (- (ite $x48 (- x5$) x5$) x4$) ?x159))))
+(let ((@x166 (monotonicity @x163 (= (= x6$ (- (ite $x48 (- x5$) x5$) x4$)) $x164))))
+(let ((@x138 (monotonicity (rewrite (= (- x4$) ?x133)) (= (ite $x42 (- x4$) x4$) ?x136))))
+(let ((@x141 (monotonicity @x138 (= (- (ite $x42 (- x4$) x4$) x3$) (- ?x136 x3$)))))
+(let ((@x146 (trans @x141 (rewrite (= (- ?x136 x3$) ?x142)) (= (- (ite $x42 (- x4$) x4$) x3$) ?x142))))
+(let ((@x149 (monotonicity @x146 (= (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x147))))
+(let ((@x269 (monotonicity @x149 (monotonicity @x166 @x263 (= $x87 $x264)) (= (and (= x5$ (- (ite $x42 (- x4$) x4$) x3$)) $x87) $x267))))
+(let ((@x121 (monotonicity (rewrite (= (- x3$) ?x116)) (= (ite $x36 (- x3$) x3$) ?x119))))
+(let ((@x124 (monotonicity @x121 (= (- (ite $x36 (- x3$) x3$) x2$) (- ?x119 x2$)))))
+(let ((@x129 (trans @x124 (rewrite (= (- ?x119 x2$) ?x125)) (= (- (ite $x36 (- x3$) x3$) x2$) ?x125))))
+(let ((@x132 (monotonicity @x129 (= (= x4$ (- (ite $x36 (- x3$) x3$) x2$)) $x130))))
+(let ((@x103 (monotonicity (rewrite (= (- x2$) ?x98)) (= (ite $x29 (- x2$) x2$) ?x101))))
+(let ((@x106 (monotonicity @x103 (= (- (ite $x29 (- x2$) x2$) x1$) (- ?x101 x1$)))))
+(let ((@x112 (trans @x106 (rewrite (= (- ?x101 x1$) ?x108)) (= (- (ite $x29 (- x2$) x2$) x1$) ?x108))))
+(let ((@x115 (monotonicity @x112 (= (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x113))))
+(let ((@x275 (monotonicity @x115 (monotonicity @x132 @x269 (= $x89 $x270)) (= (and (= x3$ (- (ite $x29 (- x2$) x2$) x1$)) $x89) $x273))))
+(let ((@x284 (trans (monotonicity @x275 (= $x94 (=> $x273 $x93))) (rewrite (= (=> $x273 $x93) $x280)) (= $x94 $x280))))
+(let ((@x552 (trans (monotonicity @x284 (= $x95 (not $x280))) (monotonicity @x547 (= (not $x280) $x548)) (= $x95 $x548))))
+(let ((@x554 (not-or-elim (mp (asserted $x95) @x552 $x548) $x537)))
+(let ((@x558 (and-elim @x554 $x433)))
+(let ((@x799 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x611)) @x558 $x611)))
+(let (($x626 (<= ?x382 0)))
+(let ((@x560 (and-elim @x554 $x383)))
+(let ((@x703 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x626)) @x560 $x626)))
+(let ((?x668 (+ x7$ ?x381)))
+(let (($x670 (>= ?x668 0)))
+(let (($x620 (= x7$ ?x370)))
+(let ((?x777 (+ ?x167 ?x406)))
+(let (($x780 (<= ?x777 0)))
+(let (($x613 (= ?x167 ?x395)))
+(let (($x389 (not $x388)))
+(let (($x364 (not $x363)))
+(let ((@x1027 (hypothesis $x364)))
+(let ((@x1026 (hypothesis $x388)))
+(let (($x619 (>= ?x407 0)))
+(let ((@x559 (and-elim @x554 $x408)))
+(let ((@x853 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x619)) @x559 $x619)))
+(let (($x936 (<= ?x671 0)))
+(let ((@x950 ((_ th-lemma arith triangle-eq) (or (not $x612) $x936))))
+(let ((@x1029 (unit-resolution @x950 (unit-resolution (def-axiom (or $x389 $x612)) @x1026 $x612) $x936)))
+(let ((@x1032 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1029 @x853 @x1027 @x844 @x1026 false) (or $x363 $x413 $x389))))
+(let ((@x617 (def-axiom (or $x388 $x613))))
+(let ((@x1064 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x613) $x780)) (unit-resolution @x617 (unit-resolution @x1032 @x1027 @x844 $x389) $x613) $x780)))
+(let ((@x1065 ((_ th-lemma arith farkas 1 1 1 1 1) (unit-resolution @x1032 @x1027 @x844 $x389) @x853 @x1027 @x844 @x1064 false)))
+(let ((@x623 (def-axiom (or $x364 $x620))))
+(let ((@x1088 (unit-resolution @x623 (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x620)))
+(let ((@x926 ((_ th-lemma arith triangle-eq) (or (not $x620) $x670))))
+(let ((@x1089 (unit-resolution @x926 @x1088 $x670)))
+(let ((@x858 (hypothesis $x667)))
+(let (($x634 (<= ?x357 0)))
+(let ((@x561 (and-elim @x554 $x358)))
+(let ((@x857 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x634)) @x561 $x634)))
+(let ((@x1105 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x857 @x858 @x1089 @x703 @x763 @x799 @x1000 @x844 @x1079 false) (or $x438 $x860 $x413 $x289))))
+(let (($x840 (<= ?x668 0)))
+(let ((@x865 ((_ th-lemma arith triangle-eq) (or (not $x620) $x840))))
+(let ((@x1090 (unit-resolution @x865 @x1088 $x840)))
+(let (($x627 (>= ?x382 0)))
+(let ((@x835 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x383) $x627)) @x560 $x627)))
+(let ((@x1242 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x763 @x799 @x1000 @x844 $x388)))
+(let ((@x615 (def-axiom (or $x389 $x612))))
+(let ((@x1095 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x338 (not $x840) (not $x627) (not $x936) (not $x619) $x413))))
+(let ((@x1245 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1242 $x612) $x936) @x835 @x844 @x1090 @x853 $x338)))
+(let ((@x631 (def-axiom (or $x339 $x628))))
+(let ((@x1132 ((_ th-lemma arith triangle-eq) (or (not $x628) $x667))))
+(let ((@x1247 (unit-resolution @x1132 (unit-resolution @x631 @x1245 $x628) (unit-resolution @x1105 @x763 @x844 @x1079 $x860) false)))
+(let ((@x1328 (unit-resolution @x599 (unit-resolution (lemma @x1247 (or $x438 $x413 $x289)) @x844 @x1079 $x438) $x596)))
+(let ((@x1147 ((_ th-lemma arith triangle-eq) (or (not $x636) $x661))))
+(let ((@x1148 (unit-resolution @x1147 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x661)))
+(let ((@x1152 ((_ th-lemma arith triangle-eq) (or (not $x636) $x660))))
+(let ((@x1153 (unit-resolution @x1152 (unit-resolution (def-axiom (or $x289 $x636)) @x1079 $x636) $x660)))
+(let (($x658 (>= ?x656 0)))
+(let (($x706 (not $x673)))
+(let (($x663 (<= ?x665 0)))
+(let (($x643 (>= ?x307 0)))
+(let ((@x562 (and-elim @x554 $x308)))
+(let ((@x1126 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x643)) @x562 $x643)))
+(let (($x314 (not $x313)))
+(let (($x1165 (not $x644)))
+(let (($x664 (>= ?x662 0)))
+(let (($x734 (not $x664)))
+(let (($x710 (not $x658)))
+(let ((@x711 (hypothesis $x710)))
+(let ((@x731 (hypothesis $x661)))
+(let ((@x716 (hypothesis $x664)))
+(let (($x847 (not $x613)))
+(let (($x839 (>= ?x777 0)))
+(let (($x872 (not $x839)))
+(let (($x681 (<= ?x680 0)))
+(let (($x621 (= ?x184 ?x370)))
+(let (($x823 (not $x621)))
+(let ((?x778 (+ ?x184 ?x381)))
+(let (($x779 (<= ?x778 0)))
+(let (($x902 (not $x779)))
+(let (($x669 (>= ?x677 0)))
+(let (($x679 (<= ?x676 0)))
+(let ((@x762 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x679)) (unit-resolution @x593 @x688 $x589) $x679)))
+(let ((@x941 (unit-resolution @x740 (unit-resolution @x601 @x763 $x597) $x675)))
+(let ((@x869 (hypothesis $x681)))
+(let ((@x868 (hypothesis $x678)))
+(let ((@x867 (hypothesis $x839)))
+(let ((@x866 (unit-resolution @x865 (unit-resolution @x623 (hypothesis $x363) $x620) $x840)))
+(let ((@x841 (hypothesis $x363)))
+(let (($x618 (<= ?x407 0)))
+(let ((@x698 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x408) $x618)) @x559 $x618)))
+(let (($x603 (>= ?x457 0)))
+(let ((@x557 (and-elim @x554 $x458)))
+(let ((@x687 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x603)) @x557 $x603)))
+(let (($x650 (<= ?x332 0)))
+(let ((@x563 (and-elim @x554 $x333)))
+(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x650)) @x563 $x650)))
+(let (($x595 (>= ?x482 0)))
+(let ((@x556 (and-elim @x554 $x483)))
+(let ((@x720 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x595)) @x556 $x595)))
+(let (($x642 (<= ?x307 0)))
+(let ((@x730 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x308) $x642)) @x562 $x642)))
+(let ((@x870 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 -2 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 @x841 @x866 false)))
+(let ((@x879 (unit-resolution (lemma @x870 (or $x364 (not $x681) $x733 $x734 $x658 $x784 $x872)) @x867 @x731 @x716 @x711 @x868 @x869 $x364)))
+(let ((@x625 (def-axiom (or $x363 $x621))))
+(let ((@x825 ((_ th-lemma arith triangle-eq) (or $x823 $x779))))
+(let ((@x882 ((_ th-lemma arith farkas -1 1 -1 1 -1 -1 1 1 -1 1 1 -1 1) @x835 @x869 @x731 @x730 @x720 @x716 @x715 @x711 @x687 @x868 @x698 @x867 (unit-resolution @x825 (unit-resolution @x625 @x879 $x621) $x779) false)))
+(let ((@x884 (lemma @x882 (or $x872 (not $x681) $x733 $x734 $x658 $x784))))
+(let ((@x945 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
+(let ((@x892 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x839)) (hypothesis $x613) (hypothesis $x872) false)))
+(let ((@x893 (lemma @x892 (or $x847 $x839))))
+(let ((@x948 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x945 $x847) $x388) $x612)))
+(let (($x775 (<= ?x757 0)))
+(let ((@x954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 $x745 (not $x603) $x463 $x438)) @x763 @x687 @x688 @x941 $x413)))
+(let ((@x607 (def-axiom (or $x414 $x604))))
+(let ((@x794 ((_ th-lemma arith triangle-eq) (or (not $x604) $x775))))
+(let ((@x960 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 (not $x936) (not $x619) $x438 (not $x775) (not $x611)))))
+(let ((@x961 (unit-resolution @x960 @x763 @x853 @x799 (unit-resolution @x794 (unit-resolution @x607 @x954 $x604) $x775) (unit-resolution @x950 @x948 $x936) $x363)))
+(let (($x602 (<= ?x457 0)))
+(let ((@x832 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x458) $x602)) @x557 $x602)))
+(let (($x932 (>= ?x674 0)))
+(let ((@x966 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x763 $x597) $x932)))
+(let ((@x967 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 1 -1 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x950 @x948 $x936) @x853 @x966 @x832 (unit-resolution @x865 (unit-resolution @x623 @x961 $x620) $x840) false)))
+(let ((@x974 (unit-resolution (lemma @x967 (or $x438 $x733 $x734 $x658 $x463)) @x688 @x716 @x711 @x731 $x438)))
+(let ((@x828 ((_ th-lemma arith triangle-eq) (or (not $x596) $x669))))
+(let ((@x978 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x687 @x688 @x974 $x413)))
+(let ((@x791 ((_ th-lemma arith triangle-eq) (or (not $x604) $x776))))
+(let ((@x981 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x974 $x596) $x678) @x731 @x716 @x711 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x681 (not $x679) $x463)) @x762 @x688 $x681) $x872)))
+(let ((@x984 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x981 $x847) $x388) $x612)))
+(let ((@x808 ((_ th-lemma arith triangle-eq) (or (not $x612) $x673))))
+(let ((@x900 (hypothesis $x669)))
+(let (($x610 (<= ?x432 0)))
+(let ((@x812 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x433) $x610)) @x558 $x610)))
+(let ((@x699 (hypothesis $x673)))
+(let ((@x935 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -1 1 1) @x835 @x731 @x730 (hypothesis $x679) @x720 @x716 @x715 @x711 @x699 @x698 (hypothesis $x776) @x812 @x900 @x832 (hypothesis $x779) false)))
+(let ((@x971 (lemma @x935 (or $x902 $x733 (not $x679) $x734 $x658 $x706 (not $x776) (not $x669)))))
+(let ((@x986 (unit-resolution @x971 @x762 @x731 @x716 @x711 (unit-resolution @x808 @x984 $x673) (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) $x902)))
+(let ((@x909 (lemma (unit-resolution @x825 (hypothesis $x621) (hypothesis $x902) false) (or $x823 $x779))))
+(let ((@x989 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) $x620)))
+(let ((@x991 ((_ th-lemma arith farkas -1 -1 1 1 -1 -1 1 1 -1 1 -2 2 -2 -1 1 1) @x835 @x731 @x730 @x762 @x720 @x716 @x715 @x711 (unit-resolution @x808 @x984 $x673) @x698 (unit-resolution @x791 (unit-resolution @x607 @x978 $x604) $x776) @x812 (unit-resolution @x625 (unit-resolution @x909 @x986 $x823) $x363) (unit-resolution @x828 (unit-resolution @x599 @x974 $x596) $x669) @x832 (unit-resolution @x865 @x989 $x840) false)))
+(let ((@x972 (unit-resolution (lemma @x991 (or $x463 $x733 $x734 $x658)) @x716 @x731 @x711 $x463)))
+(let ((@x591 (def-axiom (or $x464 $x588))))
+(let ((@x725 ((_ th-lemma arith triangle-eq) (or (not $x588) $x681))))
+(let ((@x994 (unit-resolution @x725 (unit-resolution @x591 @x972 $x588) $x681)))
+(let ((@x995 (unit-resolution @x884 (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x678 $x438 $x745)) @x941 @x763 $x678) @x731 @x716 @x711 @x994 $x872)))
+(let ((@x1013 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x995 $x847) $x388) $x612)))
+(let ((@x1014 (unit-resolution @x950 @x1013 $x936)))
+(let ((@x753 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x658 $x657)) @x711 $x657)))
+(let ((@x1001 (hypothesis $x936)))
+(let ((@x1004 ((_ th-lemma arith assign-bounds 1 1 1 1 1 2) (or $x363 (not $x936) (not $x619) $x438 (not $x611) (not $x933) $x413))))
+(let ((@x1006 (unit-resolution @x623 (unit-resolution @x1004 @x844 @x799 @x853 @x763 @x1001 @x1000 $x363) $x620)))
+(let ((@x764 (hypothesis $x657)))
+(let ((@x1008 ((_ th-lemma arith farkas 1 1 1 2 1 1 1 1 1 1 1 1 1 2 1) @x835 @x1001 @x853 @x844 @x731 @x730 @x720 @x716 @x715 @x764 @x687 @x941 @x869 @x763 (unit-resolution @x865 @x1006 $x840) false)))
+(let ((@x1015 (unit-resolution (lemma @x1008 (or $x413 (not $x936) $x733 $x734 $x766 (not $x681) $x438)) @x1014 @x731 @x716 @x753 @x994 @x763 $x413)))
+(let ((@x1018 (unit-resolution @x960 (unit-resolution @x794 (unit-resolution @x607 @x1015 $x604) $x775) @x853 @x763 @x1014 @x799 $x363)))
+(let ((@x1021 ((_ th-lemma arith farkas -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1) @x832 @x966 (unit-resolution @x865 (unit-resolution @x623 @x1018 $x620) $x840) @x835 @x1014 @x853 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x972 false)))
+(let ((@x1025 (unit-resolution (lemma @x1021 (or $x438 $x733 $x734 $x658)) @x716 @x731 @x711 $x438)))
+(let ((@x1035 (unit-resolution @x884 (unit-resolution @x693 (unit-resolution @x599 @x1025 $x596) $x678) @x731 @x716 @x711 @x994 $x872)))
+(let ((@x1037 (unit-resolution @x617 (unit-resolution @x893 @x1035 $x847) $x388)))
+(let (($x1024 (>= ?x931 0)))
+(let ((@x1040 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x605) $x1024)) (unit-resolution (def-axiom (or $x413 $x605)) @x844 $x605) $x1024)))
+(let ((@x1043 (unit-resolution @x865 (unit-resolution @x623 (unit-resolution @x1032 @x844 @x1037 $x363) $x620) $x840)))
+(let ((@x1046 ((_ th-lemma arith farkas -1 1 -1 1 1 -1 1 1 -1 -1 -1 1 -1 1 1) (unit-resolution @x950 (unit-resolution @x615 @x1037 $x612) $x936) @x853 @x1043 @x835 @x731 @x730 @x720 @x716 @x715 @x711 @x994 @x1040 @x812 @x972 @x1037 false)))
+(let ((@x1049 (unit-resolution (lemma @x1046 (or $x413 $x733 $x734 $x658)) @x716 @x731 @x711 $x413)))
+(let ((@x895 (hypothesis $x463)))
+(let ((@x897 (unit-resolution @x725 (unit-resolution @x591 @x895 $x588) $x681)))
+(let ((@x901 ((_ th-lemma arith farkas -1/2 1/2 1 -1 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 1) @x832 @x900 (hypothesis $x776) @x812 (hypothesis $x779) @x835 @x897 @x731 @x730 @x720 @x716 @x715 @x711 @x698 @x699 @x895 false)))
+(let ((@x905 (lemma @x901 (or $x902 (not $x669) (not $x776) $x733 $x734 $x658 $x706 $x464))))
+(let ((@x1054 (unit-resolution @x905 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) @x972 @x731 @x716 @x711 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) (unit-resolution @x808 (unit-resolution @x615 @x1037 $x612) $x673) $x902)))
+(let ((@x1057 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) $x620)))
+(let (($x707 (not $x670)))
+(let ((@x704 (hypothesis $x338)))
+(let ((@x768 (lemma ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 @x688 @x762 false) (or $x463 $x733 $x339 $x734 $x766 $x438))))
+(let ((@x770 (unit-resolution @x591 (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) $x588)))
+(let ((@x772 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 1) (unit-resolution @x768 @x763 @x704 @x716 @x764 @x731 $x463) @x731 @x704 @x730 @x720 @x716 @x715 @x764 @x763 (unit-resolution @x725 @x770 $x681) false)))
+(let ((@x774 (lemma @x772 (or $x438 $x733 $x339 $x734 $x766))))
+(let ((@x782 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) $x596)))
+(let ((@x783 (unit-resolution @x693 @x782 $x678)))
+(let ((@x787 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x413 (not $x603) $x463 $x439 $x784)) @x688 @x687 (unit-resolution @x774 @x704 @x731 @x716 @x753 $x438) @x783 $x413)))
+(let ((@x803 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x388 (not $x775) (not $x603) $x463 $x784 (not $x611)))))
+(let ((@x804 (unit-resolution @x803 @x688 @x799 @x687 @x783 (unit-resolution @x794 (unit-resolution @x607 @x787 $x604) $x775) $x388)))
+(let (($x818 (not $x610)))
+(let (($x817 (not $x776)))
+(let (($x816 (not $x650)))
+(let (($x815 (not $x595)))
+(let (($x814 (not $x642)))
+(let (($x813 (not $x679)))
+(let (($x743 (not $x618)))
+(let (($x819 (or $x364 $x706 $x743 $x463 $x813 $x733 $x339 $x814 $x815 $x734 $x816 $x766 $x817 $x818)))
+(let ((@x821 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1 1 1 1 1 -1) $x819) @x688 @x812 @x698 @x720 @x704 @x730 @x715 @x753 @x731 @x716 (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x762 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) $x364)))
+(let ((@x836 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1 -2 2 -1 1 -1 1) (unit-resolution @x808 (unit-resolution @x615 @x804 $x612) $x673) @x698 @x762 @x731 @x730 @x720 @x716 @x715 @x711 (unit-resolution @x791 (unit-resolution @x607 @x787 $x604) $x776) @x812 @x835 @x832 (unit-resolution @x828 @x782 $x669) (unit-resolution @x825 (unit-resolution @x625 @x821 $x621) $x779) false)))
+(let ((@x894 (unit-resolution (lemma @x836 (or $x463 $x733 $x734 $x658 $x339)) @x704 @x716 @x711 @x731 $x463)))
+(let ((@x912 (unit-resolution @x884 (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x711 @x783 $x872)))
+(let ((@x915 (unit-resolution @x615 (unit-resolution @x617 (unit-resolution @x893 @x912 $x847) $x388) $x612)))
+(let ((@x683 (hypothesis $x670)))
+(let ((@x689 (hypothesis $x438)))
+(let ((@x694 (unit-resolution @x693 (unit-resolution @x599 @x689 $x596) $x678)))
+(let ((@x709 (lemma ((_ th-lemma arith farkas 1 -1 1 -1 1 -1 -1 1 1) @x704 @x703 @x699 @x698 @x689 @x694 @x688 @x687 @x683 false) (or $x463 $x339 $x706 $x439 $x707))))
+(let ((@x722 (unit-resolution @x591 (unit-resolution @x709 @x689 @x699 @x704 @x683 $x463) $x588)))
+(let ((@x732 ((_ th-lemma arith farkas 2 -1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1) @x704 @x703 @x699 @x698 @x694 @x687 @x731 @x730 (unit-resolution @x725 @x722 $x681) @x720 @x716 @x715 @x711 @x683 false)))
+(let ((@x682 (unit-resolution (lemma @x732 (or $x439 $x339 $x706 $x733 $x734 $x658 $x707)) @x699 @x704 @x731 @x716 @x711 @x683 $x439)))
+(let ((@x747 ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x463 $x707 $x339 (not $x626) $x706 $x743 (not $x603) $x745 $x438))))
+(let ((@x748 (unit-resolution @x747 @x682 @x687 @x698 @x703 @x704 @x683 @x699 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) $x463)))
+(let ((@x754 ((_ th-lemma arith farkas 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1) @x683 @x704 @x703 @x699 @x698 @x687 (unit-resolution @x740 (unit-resolution @x601 @x682 $x597) $x675) @x682 @x731 @x730 @x720 @x716 @x715 @x753 (unit-resolution @x725 (unit-resolution @x591 @x748 $x588) $x681) false)))
+(let ((@x917 (unit-resolution (lemma @x754 (or $x706 $x707 $x339 $x733 $x734 $x658)) (unit-resolution @x808 @x915 $x673) @x704 @x731 @x716 @x711 $x707)))
+(let ((@x887 (unit-resolution @x599 (unit-resolution @x774 @x704 @x731 @x716 @x764 $x438) $x596)))
+(let ((@x889 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1 -1 1) @x844 @x869 @x731 @x730 @x720 @x716 @x715 @x764 @x687 (unit-resolution @x693 @x887 $x678) @x704 false)))
+(let ((@x918 (unit-resolution (lemma @x889 (or $x413 (not $x681) $x733 $x734 $x766 $x339)) (unit-resolution @x725 (unit-resolution @x591 @x894 $x588) $x681) @x731 @x716 @x753 @x704 $x413)))
+(let ((@x921 (unit-resolution @x905 (unit-resolution @x828 @x782 $x669) (unit-resolution @x791 (unit-resolution @x607 @x918 $x604) $x776) @x731 @x716 @x711 (unit-resolution @x808 @x915 $x673) @x894 $x902)))
+(let ((@x924 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x921 $x823) $x363) $x620)))
+(let ((@x929 (lemma (unit-resolution @x926 @x924 @x917 false) (or $x339 $x733 $x734 $x658))))
+(let ((@x1060 ((_ th-lemma arith farkas -1 1 1 -1 1 -1 -1 1 1) @x812 @x972 (unit-resolution @x828 (unit-resolution @x599 @x1025 $x596) $x669) @x832 (unit-resolution @x625 (unit-resolution @x909 @x1054 $x823) $x363) (unit-resolution @x929 @x716 @x731 @x711 $x339) (unit-resolution @x865 @x1057 $x840) @x835 (unit-resolution @x791 (unit-resolution @x607 @x1049 $x604) $x776) false)))
+(let ((@x1164 (hypothesis $x644)))
+(let ((@x1168 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1165 $x664)) @x1164 (hypothesis $x734) false)))
+(let ((@x1169 (lemma @x1168 (or $x1165 $x664))))
+(let ((@x1171 (unit-resolution @x1169 (unit-resolution (lemma @x1060 (or $x734 $x733 $x658)) @x711 @x1148 $x734) $x1165)))
+(let ((@x647 (def-axiom (or $x314 $x644))))
+(let ((@x1172 (unit-resolution @x647 @x1171 $x314)))
+(let ((@x1194 ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x313 (not $x660) (not $x643) $x289))))
+(let ((@x1219 (unit-resolution @x631 (unit-resolution @x1194 @x1172 @x1126 @x1079 @x1153 $x338) $x628)))
+(let ((@x1118 ((_ th-lemma arith triangle-eq) (or (not $x628) $x663))))
+(let ((@x1220 (unit-resolution @x1118 @x1219 $x663)))
+(let ((@x845 (hypothesis $x389)))
+(let ((@x1071 (unit-resolution @x803 @x845 @x799 (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x775 (not $x933) $x413)) @x1000 @x844 $x775) @x688 @x687 $x784)))
+(let ((@x1074 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x438 (not $x611) $x388 (not $x933) $x413)) @x845 @x799 @x844 @x1000 $x438)))
+(let ((@x1078 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) @x1071 false) (or $x388 $x463 $x413))))
+(let ((@x1084 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1) (or $x745 $x818 $x389 $x463 (not $x603) (not $x1024))) (unit-resolution @x1078 @x688 @x844 $x388) @x812 @x687 @x688 @x1040 $x745)))
+(let ((@x1086 (unit-resolution @x808 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x673)))
+(let ((@x1091 (unit-resolution @x950 (unit-resolution @x615 (unit-resolution @x1078 @x688 @x844 $x388) $x612) $x936)))
+(let ((@x1097 (unit-resolution @x709 (unit-resolution @x1095 @x1091 @x835 @x844 @x853 @x1090 $x338) @x1089 @x688 @x1086 $x439)))
+(let ((@x1101 (lemma (unit-resolution @x740 (unit-resolution @x601 @x1097 $x597) @x1084 false) (or $x463 $x413))))
+(let ((@x1122 (unit-resolution @x725 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x681)))
+(let (($x1106 (>= ?x1104 0)))
+(let ((@x1161 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (hypothesis $x645) (hypothesis (not $x1106)) false)))
+(let ((@x1162 (lemma @x1161 (or $x1136 $x1106))))
+(let ((@x1174 (unit-resolution @x1162 (unit-resolution (def-axiom (or $x313 $x645)) @x1172 $x645) $x1106)))
+(let ((@x850 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x847 $x780)) (unit-resolution @x617 @x845 $x613) $x780)))
+(let ((@x1113 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x936 $x673)) (unit-resolution ((_ th-lemma arith assign-bounds 1 2) (or $x706 (not $x780) $x388)) @x850 @x845 $x706) $x936)))
+(let ((@x1115 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x853 @x844 @x1090 $x338) $x628)))
+(let ((@x1127 (hypothesis $x660)))
+(let (($x635 (>= ?x357 0)))
+(let ((@x1130 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x358) $x635)) @x561 $x635)))
+(let ((@x859 ((_ th-lemma arith farkas 1 1 1 1 1 1 1 1 1) @x858 @x857 @x853 @x845 @x731 @x730 @x850 @x844 (hypothesis $x313) false)))
+(let ((@x1134 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1115 $x667) @x844 @x731 @x845 $x314)))
+(let ((@x649 (def-axiom (or $x313 $x645))))
+(let ((@x1139 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1106)) (unit-resolution @x649 @x1134 $x645) $x1106)))
+(let ((@x1140 (unit-resolution @x893 (unit-resolution @x617 @x845 $x613) $x839)))
+(let ((@x1141 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 -1/2 -1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 1) @x1090 @x835 @x698 @x1140 @x1139 @x1130 @x1127 @x1126 @x720 @x715 @x711 (unit-resolution @x693 (unit-resolution @x599 @x1074 $x596) $x678) @x687 @x1122 (unit-resolution @x1118 @x1115 $x663) false)))
+(let ((@x1175 (unit-resolution (lemma @x1141 (or $x388 (not $x660) $x658 $x413 $x733)) @x844 @x711 @x1153 @x1148 $x388)))
+(let ((@x1154 (hypothesis $x1106)))
+(let ((@x1155 ((_ th-lemma arith farkas 1/2 -1/2 1/2 -1/2 1/2 -1/2 1/2 1/2 -1/2 -1/2 -1/2 1/2 -1/2 1) @x683 @x703 @x699 @x698 @x1154 @x1153 @x1126 @x720 @x715 @x711 @x868 @x687 @x869 @x1079 false)))
+(let ((@x1178 (unit-resolution (lemma @x1155 (or (not $x1106) $x707 $x706 $x658 $x784 (not $x681) $x289)) (unit-resolution @x808 (unit-resolution @x615 @x1175 $x612) $x673) @x1174 @x711 @x1122 @x1089 @x1079 $x784)))
+(let ((@x1180 (unit-resolution @x1095 @x1090 @x835 @x844 (unit-resolution @x950 (unit-resolution @x615 @x1175 $x612) $x936) @x853 $x338)))
+(let ((@x1183 (unit-resolution @x1105 (unit-resolution @x1132 (unit-resolution @x631 @x1180 $x628) $x667) @x844 @x1079 $x438)))
+(let ((@x1187 (lemma (unit-resolution @x693 (unit-resolution @x599 @x1183 $x596) @x1178 false) (or $x413 $x289 $x658))))
+(let ((@x1223 (unit-resolution @x791 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x776)))
+(let ((@x1190 (unit-resolution @x794 (unit-resolution @x607 (hypothesis $x413) $x604) $x775)))
+(let ((@x1196 (unit-resolution @x631 (unit-resolution @x1194 (hypothesis $x314) @x1126 @x1079 @x1153 $x338) $x628)))
+(let ((@x1191 (hypothesis $x314)))
+(let ((@x1202 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x363 $x313 (not $x635) (not $x663) (not $x660) (not $x643)))))
+(let ((@x1203 (unit-resolution @x1202 (unit-resolution @x1118 @x1196 $x663) @x1126 @x1191 @x1153 @x1130 $x363)))
+(let ((@x1188 (hypothesis $x413)))
+(let ((@x1206 ((_ th-lemma arith farkas -1 -1 -1 1 1 -1 1 -1 1) @x1188 @x1079 (unit-resolution @x926 (unit-resolution @x623 @x1203 $x620) $x670) @x703 @x857 (unit-resolution @x1132 @x1196 $x667) @x763 @x799 @x1190 false)))
+(let ((@x1208 (lemma @x1206 (or $x438 $x414 $x289 $x313))))
+(let ((@x1224 (unit-resolution @x1208 (unit-resolution @x1187 @x711 @x1079 $x413) @x1079 @x1172 $x438)))
+(let (($x1200 (not $x663)))
+(let (($x1199 (not $x635)))
+(let (($x1192 (not $x643)))
+(let (($x1142 (not $x660)))
+(let ((@x1227 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x1172 @x698 @x1130 @x1126 @x812 @x1153 @x1224 @x1223 @x1220 $x706)))
+(let ((@x1228 (unit-resolution @x794 (unit-resolution @x607 (unit-resolution @x1187 @x711 @x1079 $x413) $x604) $x775)))
+(let ((@x1232 (unit-resolution @x623 (unit-resolution @x1202 @x1220 @x1126 @x1172 @x1153 @x1130 $x363) $x620)))
+(let ((@x1209 (hypothesis $x840)))
+(let ((@x1212 (unit-resolution @x591 (unit-resolution @x803 @x845 @x799 (hypothesis $x775) @x868 @x687 $x463) $x588)))
+(let ((@x1214 (hypothesis $x663)))
+(let ((@x1215 ((_ th-lemma arith farkas -1 2 -2 -1 1 1 1 -1 -1 -1 -1 1 -1 1 1) @x698 @x1130 @x1214 @x1127 @x1126 @x1154 @x720 @x715 @x711 (unit-resolution @x725 @x1212 $x681) @x1209 @x835 @x868 @x687 @x1140 false)))
+(let ((@x1217 (lemma @x1215 (or $x388 $x1200 $x1142 (not $x1106) $x658 (not $x840) $x784 (not $x775)))))
+(let ((@x1234 (unit-resolution @x1217 @x1220 @x1153 @x1174 @x711 (unit-resolution @x865 @x1232 $x840) (unit-resolution @x693 (unit-resolution @x599 @x1224 $x596) $x678) @x1228 $x388)))
+(let ((@x1238 (lemma (unit-resolution @x808 (unit-resolution @x615 @x1234 $x612) @x1227 false) (or $x658 $x289))))
+(let ((@x1268 (unit-resolution @x631 (unit-resolution @x1095 @x1113 @x835 @x844 @x1090 @x853 $x338) $x628)))
+(let ((@x1271 ((_ th-lemma arith triangle-eq) (or (not $x588) $x672))))
+(let ((@x1272 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1101 @x844 $x463) $x588) $x672)))
+(let ((@x1273 (unit-resolution (lemma @x859 (or $x413 $x860 $x388 $x733 $x314)) (unit-resolution @x1132 @x1268 $x667) @x844 @x731 @x845 $x314)))
+(let ((@x1277 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (unit-resolution @x649 @x1273 $x645) $x1250)))
+(let ((@x1251 (hypothesis $x780)))
+(let ((@x1252 (hypothesis $x672)))
+(let (($x594 (<= ?x482 0)))
+(let ((@x1255 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x483) $x594)) @x556 $x594)))
+(let (($x651 (>= ?x332 0)))
+(let ((@x1259 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x333) $x651)) @x563 $x651)))
+(let ((@x1261 ((_ th-lemma arith farkas 1/2 -1 -1/2 -1/2 1/2 1/2 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 1) @x683 @x857 @x703 (hypothesis $x1250) @x1259 @x1256 @x731 @x730 @x900 @x832 @x1255 @x1252 @x1251 @x853 @x858 false)))
+(let ((@x1265 (lemma @x1261 (or $x657 $x707 $x1262 $x733 (not $x669) (not $x672) (not $x780) $x860))))
+(let ((@x1278 (unit-resolution @x1265 @x1277 @x1089 @x731 @x900 @x1272 @x850 (unit-resolution @x1132 @x1268 $x667) $x657)))
+(let ((@x1280 ((_ th-lemma arith triangle-eq) (or $x92 $x766 $x710))))
+(let (($x583 (not $x92)))
+(let (($x570 (or $x582 $x583)))
+(let ((@x578 (monotonicity (rewrite (= $x93 (not $x570))) (= (not $x93) (not (not $x570))))))
+(let ((@x568 (trans @x578 (rewrite (= (not (not $x570)) $x570)) (= (not $x93) $x570))))
+(let ((@x569 (mp (not-or-elim (mp (asserted $x95) @x552 $x548) (not $x93)) @x568 $x570)))
+(let ((@x1282 (unit-resolution @x569 (unit-resolution @x1280 @x1278 (hypothesis $x658) $x92) $x582)))
+(let ((?x652 (+ x1$ ?x235)))
+(let (($x654 (>= ?x652 0)))
+(let (($x587 (>= ?x507 0)))
+(let ((@x555 (and-elim @x554 $x508)))
+(let ((@x1287 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x587)) @x555 $x587)))
+(let ((?x1145 (+ x2$ ?x506)))
+(let (($x1239 (<= ?x1145 0)))
+(let (($x584 (= x2$ ?x495)))
+(let ((@x1289 ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x488 $x815 $x413 $x784 (not $x603) (not $x681)))))
+(let ((@x573 (def-axiom (or (not $x488) $x584))))
+(let ((@x1291 (unit-resolution @x573 (unit-resolution @x1289 @x868 @x687 @x844 @x1122 @x720 $x488) $x584)))
+(let ((@x1294 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1239))))
+(let ((@x1296 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1294 @x1291 $x1239) @x720 @x1122 @x1287 @x1090 @x731 @x730 @x835 @x1040 @x812 @x850 @x853 (unit-resolution @x1162 (unit-resolution @x649 @x1273 $x645) $x1106) @x715 @x1278 @x868 @x687 $x654)))
+(let (($x653 (<= ?x652 0)))
+(let (($x586 (<= ?x507 0)))
+(let ((@x1299 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x508) $x586)) @x555 $x586)))
+(let (($x1240 (>= ?x1145 0)))
+(let ((@x1301 ((_ th-lemma arith triangle-eq) (or (not $x584) $x1240))))
+(let ((@x1303 ((_ th-lemma arith assign-bounds 1 -3/2 3/2 -1 1/2 -1/2 1/2 -1/2 -1 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2) (unit-resolution @x1301 @x1291 $x1240) @x1255 @x1272 @x1299 @x1089 @x1127 @x1126 @x703 @x1000 @x799 @x1140 @x698 @x1277 @x1259 (hypothesis $x658) @x900 @x832 $x653)))
+(let ((@x1307 ((_ th-lemma arith triangle-eq) (or $x91 (not $x653) (not $x654)))))
+(let ((@x1310 (lemma (unit-resolution @x1307 @x1303 @x1296 @x1282 false) (or $x388 $x1142 $x710 (not $x669) $x733 $x784 $x413))))
+(let ((@x1332 (unit-resolution @x1310 (unit-resolution @x828 @x1328 $x669) (unit-resolution @x1238 @x1079 $x658) @x1153 @x1148 (unit-resolution @x693 @x1328 $x678) @x844 $x388)))
+(let (($x1304 (not $x653)))
+(let ((@x1338 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 (not $x936))) (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x1332 $x780)))
+(let ((@x1339 (unit-resolution @x1095 (unit-resolution @x950 (unit-resolution @x615 @x1332 $x612) $x936) @x835 @x844 @x1090 @x853 $x338)))
+(let ((@x1341 (unit-resolution @x1132 (unit-resolution @x631 @x1339 $x628) $x667)))
+(let ((@x1316 (unit-resolution @x631 (unit-resolution @x1095 @x1029 @x835 @x844 @x1090 @x853 $x338) $x628)))
+(let ((@x1318 ((_ th-lemma arith farkas -1 -1 -1 1 -1 1 -1 1 1) @x1026 (hypothesis $x313) @x731 @x730 @x853 @x844 (unit-resolution @x1132 @x1316 $x667) @x857 @x1029 false)))
+(let ((@x1342 (unit-resolution (lemma @x1318 (or $x314 $x389 $x733 $x413)) @x1332 @x1148 @x844 $x314)))
+(let ((@x1312 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1136 $x1250)) (hypothesis $x645) (hypothesis $x1262) false)))
+(let ((@x1313 (lemma @x1312 (or $x1136 $x1250))))
+(let ((@x1345 (unit-resolution @x1265 (unit-resolution @x1313 (unit-resolution @x649 @x1342 $x645) $x1250) @x1341 @x1148 (unit-resolution @x828 @x1328 $x669) @x1272 @x1338 @x1089 $x657)))
+(let ((@x1347 (unit-resolution @x569 (unit-resolution @x1280 @x1345 (unit-resolution @x1238 @x1079 $x658) $x92) $x582)))
+(let ((@x1348 (unit-resolution @x1289 (unit-resolution @x693 @x1328 $x678) @x687 @x844 @x1122 @x720 $x488)))
+(let ((@x1314 (hypothesis $x1024)))
+(let (($x1305 (not $x654)))
+(let ((@x1321 (hypothesis $x1305)))
+(let ((@x1322 (hypothesis $x1239)))
+(let ((@x1323 ((_ th-lemma arith farkas -2 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1) @x1026 @x731 @x730 @x853 @x858 @x857 @x1322 @x720 @x869 @x1287 @x1321 @x1314 @x812 @x1029 false)))
+(let ((@x1326 (lemma @x1323 (or $x654 $x389 $x733 $x860 (not $x1239) (not $x681) (not $x1024)))))
+(let ((@x1351 (unit-resolution @x1326 @x1332 @x1148 @x1341 (unit-resolution @x1294 (unit-resolution @x573 @x1348 $x584) $x1239) @x1122 @x1040 $x654)))
+(let ((@x1354 ((_ th-lemma arith farkas -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 2 2 -2 1) @x1153 @x1126 @x698 @x1341 @x857 (unit-resolution @x1301 (unit-resolution @x573 @x1348 $x584) $x1240) @x1255 @x1272 @x1299 (unit-resolution @x1307 @x1351 @x1347 $x1304) @x1000 @x799 @x1079 @x1089 @x703 (unit-resolution @x808 (unit-resolution @x615 @x1332 $x612) $x673) false)))
+(let ((@x641 (def-axiom (or $x288 $x637))))
+(let ((@x1435 (unit-resolution @x641 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) $x637)))
+(let ((@x1438 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1370))))
+(let ((@x1439 (unit-resolution @x1438 @x1435 $x1370)))
+(let ((@x1374 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1) (or $x1200 $x1199 $x288 (not $x840) $x388 (not $x627))) @x845 @x1130 @x1371 @x866 @x835 $x1200)))
+(let ((@x1377 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x338 $x364 (not $x840) $x388 (not $x627))) @x845 @x835 @x841 @x866 $x338)))
+(let ((@x1381 (lemma (unit-resolution @x1118 (unit-resolution @x631 @x1377 $x628) @x1374 false) (or $x388 $x288 $x364))))
+(let ((@x1440 (unit-resolution @x1381 (unit-resolution (lemma @x1354 (or $x413 $x289)) @x844 $x289) (unit-resolution (lemma @x1065 (or $x363 $x413)) @x844 $x363) $x388)))
+(let ((@x1442 (unit-resolution @x950 (unit-resolution @x615 @x1440 $x612) $x936)))
+(let ((@x1445 (unit-resolution (unit-resolution @x1095 @x835 @x853 (or $x338 (not $x840) (not $x936) $x413)) @x1442 @x844 @x1090 $x338)))
+(let ((@x1448 (unit-resolution @x808 (unit-resolution @x615 @x1440 $x612) $x673)))
+(let (($x1361 (<= ?x1357 0)))
+(let ((@x1450 ((_ th-lemma arith triangle-eq) (or (not $x637) $x1361))))
+(let ((@x1451 (unit-resolution @x1450 @x1435 $x1361)))
+(let ((@x1452 (unit-resolution @x1118 (unit-resolution @x631 @x1445 $x628) $x663)))
+(let (($x1403 (not $x1361)))
+(let (($x1002 (not $x933)))
+(let (($x957 (not $x936)))
+(let (($x1092 (not $x840)))
+(let (($x1392 (not $x1370)))
+(let (($x1081 (not $x1024)))
+(let ((@x1383 (hypothesis $x1370)))
+(let ((@x1387 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x815 $x464 (not $x681) $x438)) @x720 (or $x488 $x464 (not $x681) $x438))))
+(let ((@x1390 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1239)))
+(let (($x958 (not $x619)))
+(let (($x1093 (not $x627)))
+(let (($x871 (not $x681)))
+(let (($x1391 (not $x587)))
+(let (($x1324 (not $x1239)))
+(let (($x1393 (or $x654 $x1324 $x1391 $x871 $x815 $x1081 $x818 $x1392 $x814 $x1092 $x1093 $x957 $x958 $x1200 $x1199)))
+(let ((@x1395 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) @x1390 @x812 @x853 @x835 @x1130 @x730 @x1287 @x897 @x1001 @x1209 @x1314 @x1214 @x720 @x1383 $x654)))
+(let ((@x1396 (hypothesis $x1361)))
+(let ((@x1397 (hypothesis $x933)))
+(let ((@x1399 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1387 @x763 @x897 @x895 $x488) $x584) $x1240)))
+(let (($x1404 (not $x634)))
+(let (($x742 (not $x626)))
+(let (($x801 (not $x611)))
+(let (($x1402 (not $x594)))
+(let (($x1263 (not $x672)))
+(let (($x1401 (not $x586)))
+(let (($x1400 (not $x1240)))
+(let (($x1405 (or $x653 $x1400 $x1401 $x1263 $x1402 $x1002 $x801 $x1403 $x1192 $x707 $x742 $x706 $x743 $x860 $x1404)))
+(let ((@x1407 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) @x1399 @x799 @x698 @x703 @x857 @x1126 @x1299 @x699 @x683 @x858 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1397 @x1396 @x1255 $x653)))
+(let ((@x1411 ((_ th-lemma arith assign-bounds 1 1 2 2 1 1 1 1 1 1 1) (or $x313 $x1403 $x1192 $x707 $x742 $x706 $x743 $x1002 $x438 $x801 $x860 $x1404))))
+(let ((@x1412 (unit-resolution @x1411 @x763 @x698 @x703 @x857 @x1126 @x799 @x699 @x683 @x858 @x1397 @x1396 $x313)))
+(let ((@x1415 ((_ th-lemma arith triangle-eq) (or $x1165 $x1382))))
+(let ((@x1417 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1415 (unit-resolution @x647 @x1412 $x644) $x1382) @x1259 (unit-resolution @x1271 (unit-resolution @x591 @x895 $x588) $x672) @x1255 @x1397 @x799 @x1396 @x1126 @x683 @x703 @x699 @x698 @x858 @x857 @x966 @x832 $x657)))
+(let ((@x1419 ((_ th-lemma arith assign-bounds 1 -1 -1 1 2 -2 1 -1 -3 3 -1 1 -2 2 -1 1) (unit-resolution @x1169 (unit-resolution @x647 @x1412 $x644) $x664) @x715 @x897 @x720 @x1314 @x812 @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1214 @x1130 @x941 @x687 $x658)))
+(let ((@x1420 (unit-resolution @x1280 @x1419 @x1417 (unit-resolution @x569 (unit-resolution @x1307 @x1407 @x1395 $x91) $x583) false)))
+(let ((@x1422 (lemma @x1420 (or $x438 $x1081 $x1392 $x1092 $x957 $x1200 $x1002 $x1403 $x707 $x706 $x860 $x464))))
+(let ((@x1453 (unit-resolution @x1422 @x1040 @x1439 @x1090 @x1442 @x1452 @x1000 @x1451 @x1089 @x1448 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) (unit-resolution @x1101 @x844 $x463) $x438)))
+(let ((@x1459 (unit-resolution (unit-resolution @x1289 @x687 @x720 (or $x488 $x413 $x784 $x871)) (unit-resolution @x693 (unit-resolution @x599 @x1453 $x596) $x678) @x844 @x1122 $x488)))
+(let ((@x1462 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1393) (unit-resolution @x1294 (unit-resolution @x573 @x1459 $x584) $x1239) @x812 @x853 @x835 @x1130 @x730 @x720 @x1122 @x1442 @x1090 @x1040 @x1452 @x1287 @x1439 $x654)))
+(let ((@x1464 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 2 -2 1 -1 1 -1) $x1405) (unit-resolution @x1301 (unit-resolution @x573 @x1459 $x584) $x1240) @x799 @x698 @x703 @x857 @x1126 @x1255 @x1448 @x1089 (unit-resolution @x1132 (unit-resolution @x631 @x1445 $x628) $x667) @x1272 @x1000 @x1451 @x1299 $x653)))
+(let (($x1156 (not $x1106)))
+(let ((@x1423 ((_ th-lemma arith farkas -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x715 @x711 @x868 @x869 @x720 @x687 @x683 @x703 @x1396 @x1126 @x699 @x698 @x1154 false)))
+(let ((@x1426 (unit-resolution (lemma @x1423 (or $x1156 $x658 $x784 $x871 $x707 $x1403 $x706)) @x711 @x694 @x869 @x683 @x1396 @x699 $x1156)))
+(let ((@x1429 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1162 @x1426 $x1136) $x313) $x644)))
+(let ((@x1431 ((_ th-lemma arith farkas 1/2 -1/2 -3/2 3/2 -1/2 1/2 1 -1 -1 1 1/2 -1/2 -1/2 -1/2 -1/2 1/2 1/2 1) @x1383 @x730 @x1209 @x835 @x1001 @x853 @x1314 @x812 @x1214 @x1130 (unit-resolution @x1169 @x1429 $x664) @x715 @x711 @x694 @x869 @x720 @x687 @x689 false)))
+(let ((@x1433 (lemma @x1431 (or $x658 $x1392 $x1092 $x957 $x1081 $x1200 $x871 $x439 $x707 $x1403 $x706))))
+(let ((@x1467 (unit-resolution @x1433 @x1439 @x1090 @x1442 @x1040 @x1452 @x1122 @x1453 @x1089 @x1451 @x1448 $x658)))
+(let ((@x1468 (unit-resolution @x1280 @x1467 (unit-resolution @x569 (unit-resolution @x1307 @x1464 @x1462 $x91) $x583) $x766)))
+(let (($x1470 (not $x602)))
+(let (($x903 (not $x669)))
+(let (($x1469 (not $x651)))
+(let (($x1471 (or $x1262 $x1469 $x657 $x903 $x1263 $x1402 $x1470 $x1092 $x1093 $x1392 $x814 $x957 $x958)))
+(let ((@x1473 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 -1 1 1 1 -1 -1 1 1 -1) $x1471) @x1468 @x853 @x835 @x730 @x1259 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1442 @x1090 @x1255 @x1439 $x1262)))
+(let ((@x1476 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) $x644)))
+(let ((@x1478 ((_ th-lemma arith farkas -1 -1 -2 -1 -1 1 1 1 -1 -1 1 1 -1 1) @x1259 @x1468 (unit-resolution @x649 (unit-resolution @x1313 @x1473 $x1136) $x313) (unit-resolution @x828 (unit-resolution @x599 @x1453 $x596) $x669) @x1272 @x1255 @x832 @x1090 @x835 @x1439 @x730 @x1442 @x853 (unit-resolution @x1415 @x1476 $x1382) false)))
+(let ((@x1479 (lemma @x1478 $x413)))
+(let ((@x1536 (unit-resolution @x791 (unit-resolution @x607 @x1479 $x604) $x776)))
+(let ((@x1515 (unit-resolution @x794 (unit-resolution @x607 @x1479 $x604) $x775)))
+(let ((@x1360 (lemma ((_ th-lemma arith farkas 1 1 1 1 1) @x1188 @x763 @x799 @x845 @x1190 false) (or $x438 $x414 $x388))))
+(let ((@x1518 (unit-resolution @x693 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x678)))
+(let ((@x1521 (unit-resolution (unit-resolution @x803 @x799 @x687 (or $x388 (not $x775) $x463 $x784)) @x1518 @x1515 @x845 $x463)))
+(let ((@x1523 (unit-resolution @x1271 (unit-resolution @x591 @x1521 $x588) $x672)))
+(let ((@x1524 (unit-resolution @x828 (unit-resolution @x599 (unit-resolution @x1360 @x845 @x1479 $x438) $x596) $x669)))
+(let ((@x906 (hypothesis $x902)))
+(let ((@x1366 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x779 $x364 $x1092)) (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) @x906 $x1092)))
+(let ((@x1367 (unit-resolution @x623 (unit-resolution @x625 (unit-resolution @x909 @x906 $x823) $x363) $x620)))
+(let ((@x1369 (lemma (unit-resolution @x865 @x1367 @x1366 false) $x779)))
+(let ((@x1483 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1) (or $x902 $x338 $x1093 $x872 $x743 $x414)) @x835 @x1369 @x698 (or $x338 $x872 $x414))))
+(let ((@x1486 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x663)))
+(let ((@x1489 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1371 @x1130 @x835 @x1140 @x1113 @x1486 $x1092)))
+(let ((@x1495 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) (unit-resolution @x1381 @x1371 @x845 $x364) $x707)))
+(let ((@x1500 (lemma (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1495 @x1489 false) (or $x288 $x388))))
+(let ((@x639 (def-axiom (or $x289 $x636))))
+(let ((@x1508 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x660)))
+(let ((@x1535 (unit-resolution @x1132 (unit-resolution @x631 (unit-resolution @x1483 @x1140 @x1479 $x338) $x628) $x667)))
+(let ((@x1537 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x1500 @x845 $x288) $x636) $x661)))
+(let (($x585 (= ?x98 ?x495)))
+(let (($x1544 (not $x585)))
+(let ((?x1502 (+ ?x98 ?x506)))
+(let (($x1503 (<= ?x1502 0)))
+(let (($x1548 (not $x1503)))
+(let (($x1107 (not $x780)))
+(let (($x1549 (or $x654 $x1548 $x903 $x1263 $x1402 $x1470 $x1391 $x817 $x818 $x733 $x814 $x1107 $x860 $x1404 $x958)))
+(let ((@x1568 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) @x1321 @x832 @x812 @x853 @x857 @x730 @x1255 @x731 @x1536 @x858 @x1251 @x900 @x1252 @x1287 $x1548)))
+(let ((@x1566 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) (hypothesis $x585) (hypothesis $x1548) false)))
+(let ((@x1567 (lemma @x1566 (or $x1544 $x1503))))
+(let ((@x575 (def-axiom (or $x488 $x585))))
+(let ((@x1571 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) $x584)))
+(let ((@x1573 ((_ th-lemma arith farkas -1/2 1/2 1 1/2 -1/2 -1 1/2 -1/2 1/2 -1/2 -1/2 1/2 -1/2 1/2 -1/2 1) @x1251 @x853 @x900 @x1252 @x1255 @x832 @x731 @x730 @x858 @x857 (unit-resolution @x1294 @x1571 $x1239) @x1287 @x1321 @x1536 @x812 (unit-resolution @x575 (unit-resolution @x1567 @x1568 $x1544) $x488) false)))
+(let ((@x1575 (lemma @x1573 (or $x654 $x1107 $x903 $x1263 $x733 $x860))))
+(let ((@x1581 (unit-resolution @x1118 (unit-resolution @x631 (unit-resolution @x1483 @x867 @x1479 $x338) $x628) $x663)))
+(let (($x800 (not $x775)))
+(let (($x1583 (or $x1400 $x414 $x872 $x743 $x1142 $x1192 $x1200 $x1199 $x1401 $x653 $x1263 $x1402 $x800 $x801)))
+(let ((@x1585 (unit-resolution ((_ th-lemma arith assign-bounds 2 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1) $x1583) (hypothesis $x1304) @x1479 @x799 @x698 @x1130 @x1126 @x1255 @x1127 @x1515 @x867 @x1252 @x1581 @x1299 $x1400)))
+(let (($x1504 (>= ?x1502 0)))
+(let (($x1556 (not $x1504)))
+(let (($x744 (not $x603)))
+(let (($x1557 (or $x653 $x1556 $x784 $x871 $x815 $x744 $x1401 $x800 $x801 $x1142 $x1192 $x872 $x1200 $x1199 $x743)))
+(let ((@x1586 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (hypothesis $x1304) @x687 @x799 @x698 @x1130 @x1126 @x720 @x1127 @x868 @x1515 @x869 @x867 @x1581 @x1299 $x1556)))
+(let ((@x1577 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) (hypothesis $x585) (hypothesis $x1556) false)))
+(let ((@x1578 (lemma @x1577 (or $x1544 $x1504))))
+(let ((@x1589 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1586 $x1544) $x488) $x584)))
+(let ((@x1592 (lemma (unit-resolution @x1301 @x1589 @x1585 false) (or $x653 $x1142 $x872 $x1263 $x784 $x871))))
+(let ((@x1594 (unit-resolution @x1592 @x1508 @x1140 @x1523 @x1518 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) $x653)))
+(let ((@x1595 (unit-resolution @x1307 @x1594 (unit-resolution @x1575 @x850 @x1524 @x1523 @x1537 @x1535 $x654) $x91)))
+(let ((@x1597 (unit-resolution @x1280 (unit-resolution @x569 @x1595 $x583) (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x766)))
+(let ((@x1511 (unit-resolution (unit-resolution @x1202 @x1126 @x1130 (or $x363 $x313 $x1200 $x1142)) @x1027 @x1486 @x1508 $x313)))
+(let (($x1501 (>= ?x778 0)))
+(let ((@x1528 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x823 $x1501)) (unit-resolution @x625 @x1027 $x621) $x1501)))
+(let (($x1529 (not $x1501)))
+(let (($x1531 (or $x657 $x1529 $x742 $x1530 $x1469 $x1142 $x1192 $x1107 $x958 $x903 $x1263 $x1402 $x1470)))
+(let ((@x1532 ((_ th-lemma arith assign-bounds 1 -1 -1 1 -1 1 -1 1 1 1 -1 -1) $x1531)))
+(let ((@x1533 (unit-resolution @x1532 @x1528 @x853 @x703 @x1126 @x1259 @x1255 @x1508 @x850 @x1524 @x1523 @x832 (unit-resolution @x1415 (unit-resolution @x647 @x1511 $x644) $x1382) $x657)))
+(let ((@x1534 (unit-resolution @x1280 @x1533 (unit-resolution @x1238 (unit-resolution @x1500 @x845 $x288) $x658) $x92)))
+(let (($x489 (not $x488)))
+(let ((@x1541 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x489 $x1263 $x1402 $x1470 $x903 $x363 $x958 $x388 $x1107)) @x832 @x853 @x1255 (or $x489 $x1263 $x903 $x363 $x388 $x1107))))
+(let ((@x1543 (unit-resolution @x575 (unit-resolution @x1541 @x1027 @x845 @x850 @x1524 @x1523 $x489) $x585)))
+(let ((@x1551 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1549) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1503)) @x1543 $x1503) @x832 @x812 @x853 @x857 @x730 @x1287 @x1537 @x1536 @x1535 @x850 @x1524 @x1523 @x1255 $x654)))
+(let ((@x1559 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2 -1 1 2 -1 -1 1 -1 1 1 -1 1 -1) $x1557) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x1544 $x1504)) @x1543 $x1504) @x687 @x799 @x698 @x1130 @x1126 @x1299 @x1508 @x1518 @x1515 (unit-resolution @x725 (unit-resolution @x591 @x1521 $x588) $x681) @x1140 @x1486 @x720 $x653)))
+(let ((@x1561 (unit-resolution @x569 (unit-resolution @x1307 @x1559 @x1551 $x91) @x1534 false)))
+(let ((@x1599 (unit-resolution @x623 (unit-resolution (lemma @x1561 (or $x363 $x388)) @x845 $x363) $x620)))
+(let ((@x1601 (unit-resolution @x1265 @x1597 @x1535 @x1537 @x1524 @x1523 @x850 (unit-resolution @x926 @x1599 $x670) $x1262)))
+(let ((@x1604 (unit-resolution @x647 (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) $x644)))
+(let ((@x1608 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) (unit-resolution @x649 (unit-resolution @x1313 @x1601 $x1136) $x313) @x730 @x1537 (unit-resolution @x926 @x1599 $x670) @x1535 @x857 $x1501)))
+(let ((@x1609 (unit-resolution @x1532 @x1608 (unit-resolution @x1415 @x1604 $x1382) @x853 @x703 @x1126 @x1259 @x1597 @x1508 @x850 @x1524 @x1523 @x832 @x1255 false)))
+(let ((@x1610 (lemma @x1609 $x388)))
+(let ((@x1615 (unit-resolution @x808 (unit-resolution @x615 @x1610 $x612) $x673)))
+(let ((@x1808 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x439 $x706 $x817 $x818 $x743 $x1199 $x288 $x1626 $x338)) @x1371 @x698 @x1701 @x1130 @x812 @x1615 @x1536 @x1738 $x439)))
+(let ((@x1781 (unit-resolution (unit-resolution ((_ th-lemma arith assign-bounds 2 1) (or $x707 $x363 $x902)) @x1369 (or $x707 $x363)) @x1027 $x707)))
+(let (($x1637 (not $x629)))
+(let ((@x1667 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1528 @x1130 @x1371 @x1610 @x703 $x1626)))
+(let ((@x1670 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) $x628)))
+(let ((@x1672 ((_ th-lemma arith farkas 1 1 1 1 1) @x1027 (unit-resolution @x1118 @x1670 $x663) @x1130 @x1371 (unit-resolution @x633 (unit-resolution @x1641 @x1667 $x1637) $x338) false)))
+(let ((@x1711 (unit-resolution @x639 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x636)))
+(let ((@x1712 (unit-resolution @x1152 @x1711 $x660)))
+(let ((@x1618 (unit-resolution @x1438 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1370)))
+(let ((@x1619 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1238 @x711 $x289) $x637) $x1361)))
+(let ((@x1616 (unit-resolution @x1238 @x711 $x289)))
+(let ((@x1676 (unit-resolution @x623 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1616 $x363) $x620)))
+(let ((@x1677 (unit-resolution @x926 @x1676 $x670)))
+(let ((@x1611 (unit-resolution @x950 (unit-resolution @x615 @x1610 $x612) $x936)))
+(let ((@x1643 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x763 @x1611 @x1515 $x363)))
+(let ((@x1645 (unit-resolution @x926 (unit-resolution @x623 @x1643 $x620) $x670)))
+(let ((@x1612 (hypothesis $x875)))
+(let ((@x1613 (hypothesis $x675)))
+(let ((@x1622 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x683 @x703 @x1616 @x1126 @x1479 @x1615 @x698 @x1619 $x313)))
+(let ((@x1625 ((_ th-lemma arith assign-bounds -1 1 1 -1 -1 -1 1 1 -1 -3 3 1 2 -2 -2 2) (unit-resolution @x1169 (unit-resolution @x647 @x1622 $x644) $x664) @x715 @x711 @x720 @x687 @x683 @x703 @x730 @x1618 @x1615 @x698 @x1613 @x1612 @x1130 @x1536 @x812 $x871)))
+(let ((@x1628 ((_ th-lemma arith assign-bounds 1 1 1 1 2 2 1 1 1 1 1) (or $x463 $x744 $x745 $x707 $x742 $x706 $x743 $x1626 $x1199 $x817 $x818 $x288))))
+(let ((@x1629 (unit-resolution @x1628 @x1612 @x812 @x698 @x703 @x1130 @x1616 @x1615 @x683 @x1613 @x1536 @x687 $x463)))
+(let ((@x1633 (lemma (unit-resolution @x725 (unit-resolution @x591 @x1629 $x588) @x1625 false) (or $x1626 $x658 $x707 $x745))))
+(let ((@x1648 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1645 @x711 @x941 $x1626) $x1637) $x338)))
+(let ((@x1650 ((_ th-lemma arith assign-bounds -1 -2 -2 2 -2 2) (or $x1024 $x817 $x339 $x707 $x742 $x706 $x743))))
+(let ((@x1653 (unit-resolution @x747 @x687 @x698 @x703 (or $x463 $x707 $x339 $x706 $x745 $x438))))
+(let ((@x1662 (unit-resolution @x1422 (unit-resolution @x1132 (unit-resolution @x631 @x1648 $x628) $x667) (unit-resolution @x1118 (unit-resolution @x631 @x1648 $x628) $x663) @x1618 @x763 @x1611 (unit-resolution @x865 (unit-resolution @x623 @x1643 $x620) $x840) (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1619 @x1645 @x1615 (unit-resolution @x1653 @x1648 @x941 @x1645 @x1615 @x763 $x463) (unit-resolution @x1650 @x1648 @x703 @x1615 @x1645 @x1536 @x698 $x1024) false)))
+(let ((@x1678 (unit-resolution (lemma @x1662 (or $x438 $x658)) @x711 $x438)))
+(let ((@x1683 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x675 $x439 $x784)) (unit-resolution @x693 (unit-resolution @x599 @x1678 $x596) $x678) @x1678 $x675)))
+(let ((@x1686 (unit-resolution @x633 (unit-resolution @x1641 (unit-resolution @x1633 @x1677 @x711 @x1683 $x1626) $x1637) $x338)))
+(let ((@x1692 (unit-resolution @x591 (unit-resolution @x709 @x1686 @x1615 @x1678 @x1677 $x463) $x588)))
+(let ((@x1694 (unit-resolution @x1433 (unit-resolution @x725 @x1692 $x681) (unit-resolution @x1118 (unit-resolution @x631 @x1686 $x628) $x663) @x1615 @x1611 @x711 @x1678 (unit-resolution @x865 @x1676 $x840) (unit-resolution @x1650 @x1686 @x703 @x1615 @x1677 @x1536 @x698 $x1024) @x1677 @x1619 @x1618 false)))
+(let ((@x1695 (lemma @x1694 $x658)))
+(let ((@x1698 (unit-resolution (unit-resolution @x960 @x853 @x799 (or $x363 $x957 $x438 $x800)) @x1027 @x1611 @x1515 $x438)))
+(let ((@x1700 (unit-resolution @x828 (unit-resolution @x599 @x1698 $x596) $x669)))
+(let ((@x1704 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x464 $x1470 $x817 $x818 $x903 $x338 $x1093 $x363 $x902)) @x1701 @x812 @x1027 @x835 @x832 @x1536 @x1700 @x1369 $x464)))
+(let ((@x1708 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x589) $x1697)) (unit-resolution @x593 @x1704 $x589) $x1697)))
+(let ((@x1709 (unit-resolution @x693 (unit-resolution @x599 @x1698 $x596) $x678)))
+(let ((@x1714 (unit-resolution @x1194 @x1126 (or $x338 $x313 $x1142 $x289))))
+(let ((@x1715 (unit-resolution @x1714 @x1701 @x1712 (unit-resolution (lemma @x1672 (or $x363 $x288)) @x1027 $x288) $x313)))
+(let ((@x1717 (unit-resolution @x1415 (unit-resolution @x647 @x1715 $x644) $x1382)))
+(let (($x1718 (not $x1697)))
+(let (($x1719 (or $x657 $x1718 $x744 $x1530 $x1469 $x1402 $x957 $x958 $x784 $x800 $x801 $x742 $x1529 $x1142 $x1192)))
+(let ((@x1721 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1717 @x799 @x853 @x703 @x1126 @x1259 @x1255 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1708 $x657)))
+(let (($x1696 (>= ?x666 0)))
+(let ((@x1726 ((_ th-lemma arith triangle-eq) (or $x1637 $x1696))))
+(let ((@x1727 (unit-resolution @x1726 (unit-resolution @x633 @x1701 $x629) $x1696)))
+(let ((@x1730 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1701 @x1126 @x1259 @x1695 @x1712 @x1717 $x488)))
+(let (($x1733 (not $x1696)))
+(let (($x1734 (or $x654 $x1324 $x1391 $x1530 $x1469 $x710 $x1470 $x817 $x818 $x903 $x1093 $x902 $x1733 $x1404)))
+(let ((@x1736 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) (unit-resolution @x1294 (unit-resolution @x573 @x1730 $x584) $x1239) @x812 @x835 @x857 @x1259 @x1287 @x1695 @x1536 @x1700 @x1369 @x832 @x1717 @x1727 $x654)))
+(let (($x1740 (or $x653 $x1400 $x1401 $x734 $x816 $x766 $x744 $x800 $x801 $x784 $x742 $x1529 $x1626 $x1199)))
+(let ((@x1742 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1721 @x799 @x703 @x1130 @x715 @x1299 @x687 (unit-resolution @x1169 (unit-resolution @x647 @x1715 $x644) $x664) @x1709 @x1515 @x1738 (unit-resolution @x1301 (unit-resolution @x573 @x1730 $x584) $x1240) @x1528 $x653)))
+(let ((@x1743 (unit-resolution @x1307 @x1742 @x1736 (unit-resolution @x569 (unit-resolution @x1280 @x1721 @x1695 $x92) $x582) false)))
+(let ((@x1784 (unit-resolution @x631 (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) $x628)))
+(let ((@x1785 (unit-resolution @x1118 @x1784 $x663)))
+(let ((@x1788 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x1142 $x1192 $x1200 $x1199 $x313 $x1092)) @x1785 @x1528 @x1712 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x840 $x670)) @x1781 $x840) @x1126 @x1130 $x313)))
+(let ((@x1790 (unit-resolution @x1415 (unit-resolution @x647 @x1788 $x644) $x1382)))
+(let ((@x1791 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x780 $x389 $x957)) @x1611 @x1610 $x780)))
+(let ((@x1796 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution (lemma @x1743 (or $x338 $x363)) @x1027 $x338) @x1785 $x875)))
+(let ((@x1750 (hypothesis $x1382)))
+(let ((@x1747 ((_ th-lemma arith farkas 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2 1) @x832 @x1287 @x1321 @x716 @x715 @x764 @x1536 @x812 @x900 @x835 @x1369 @x857 @x858 @x731 @x730 (hypothesis $x1503) false)))
+(let ((@x1751 (unit-resolution (lemma @x1747 (or $x1548 $x654 $x734 $x766 $x903 $x860 $x733)) @x1321 @x716 @x764 @x900 @x858 @x731 $x1548)))
+(let ((@x1754 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) $x584)))
+(let ((@x1758 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2 2) (or $x1696 $x860 $x489 $x734 $x816 $x766 $x733 $x814)) (unit-resolution @x575 (unit-resolution @x1567 @x1751 $x1544) $x488) @x715 @x764 @x731 @x716 @x858 @x730 $x1696)))
+(let ((@x1759 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1734) @x1758 (unit-resolution @x1294 @x1754 $x1239) @x812 @x835 @x857 @x1259 @x1750 @x1695 @x1536 @x900 @x1369 @x1321 @x832 @x1287 false)))
+(let ((@x1765 (unit-resolution (lemma @x1759 (or $x654 $x1530 $x903 $x766 $x733 $x734 $x860)) @x764 @x900 @x1750 @x731 @x716 @x858 $x654)))
+(let ((@x1766 (unit-resolution @x1307 @x1765 (unit-resolution @x569 (unit-resolution @x1280 @x764 @x1695 $x92) $x582) $x1304)))
+(let ((@x1767 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 -1 1 -1 1 -1 -1 1 -1 1) $x1740) @x1766 @x799 @x703 @x1130 @x715 @x1299 @x687 @x716 @x868 @x1515 @x1612 @x764 (hypothesis $x1501) $x1400)))
+(let (($x1768 (or $x1556 $x744 $x1401 $x653 $x1530 $x1469 $x710 $x800 $x801 $x784 $x742 $x1529 $x1199 $x1200 $x1142 $x1192)))
+(let ((@x1770 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 -2 2) $x1768) @x1766 @x799 @x703 @x1130 @x1126 @x1259 @x687 @x1695 @x1127 @x868 @x1515 @x1214 (hypothesis $x1501) @x1750 @x1299 $x1556)))
+(let ((@x1773 (unit-resolution @x573 (unit-resolution @x575 (unit-resolution @x1578 @x1770 $x1544) $x488) $x584)))
+(let ((@x1776 (lemma (unit-resolution @x1301 @x1773 @x1767 false) (or $x766 $x1142 $x784 $x1200 $x1529 $x1530 $x734 $x1626 $x903 $x733 $x860))))
+(let ((@x1798 (unit-resolution @x1776 @x1712 @x1709 @x1785 @x1528 @x1790 (unit-resolution @x1169 (unit-resolution @x647 @x1788 $x644) $x664) @x1796 @x1700 (unit-resolution @x1147 @x1711 $x661) (unit-resolution @x1132 @x1784 $x667) $x766)))
+(let ((@x1799 (unit-resolution @x1532 @x1798 @x853 @x703 @x1126 @x1259 @x1528 @x1712 @x1791 @x1700 @x1790 @x832 @x1255 $x1263)))
+(let (($x759 (not $x589)))
+(let ((@x1800 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 -1 1 -1 -1 1 -1 -2 2 -1 1 -1 1) $x1719) @x1798 @x799 @x853 @x703 @x1126 @x1259 @x1790 @x1712 @x1709 @x1515 @x1611 @x1528 @x687 @x1255 $x1718)))
+(let ((@x1803 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1800 $x759) $x463) $x588)))
+(let ((@x1805 (lemma (unit-resolution @x1271 @x1803 @x1799 false) $x363)))
+(let ((@x1812 (unit-resolution @x926 (unit-resolution @x623 @x1805 $x620) $x670)))
+(let ((@x1814 (unit-resolution @x1628 @x812 @x698 @x703 @x1130 @x1615 @x1812 @x1536 @x687 (or $x463 $x745 $x1626 $x288))))
+(let ((@x1815 (unit-resolution @x1814 (unit-resolution @x740 (unit-resolution @x601 @x1808 $x597) $x675) @x1738 @x1371 $x463)))
+(let ((@x1818 (unit-resolution @x865 (unit-resolution @x623 @x1805 $x620) $x840)))
+(let ((@x1819 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x738 $x932)) (unit-resolution @x601 @x1808 $x597) $x932)))
+(let ((@x1823 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1 1 1) (or $x313 $x707 $x742 $x288 $x1192 $x414 $x1403 $x706 $x743)) @x703 @x1812 @x1126 @x1479 @x1615 @x698 (or $x313 $x288 $x1403))))
+(let ((@x1824 (unit-resolution @x1823 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1371 $x313)))
+(let ((@x1827 ((_ th-lemma arith farkas -1 -3 3 -2 2 -2 2 -1 1 1 1 -1 1 -1 -1 1 1) @x1255 @x1611 @x853 @x1515 @x799 @x857 @x1727 (unit-resolution @x1415 (unit-resolution @x647 @x1824 $x644) $x1382) @x1259 @x1256 @x1126 (unit-resolution @x1450 (unit-resolution @x641 @x1371 $x637) $x1361) @x1819 @x1818 @x832 @x835 (unit-resolution @x1271 (unit-resolution @x591 @x1815 $x588) $x672) false)))
+(let ((@x1829 (lemma @x1827 (or $x288 $x657 $x338))))
+(let ((@x1844 (unit-resolution @x1829 @x1701 @x1256 $x288)))
+(let ((@x1848 (unit-resolution @x1208 @x1479 (or $x438 $x289 $x313))))
+(let ((@x1851 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1844 @x763 $x313) $x644) $x1382)))
+(let ((@x1831 ((_ th-lemma arith farkas -1 1 -1 -1 1 1 1 -1 1 1 -1 -1 1) @x1255 @x1615 @x698 @x1750 @x1259 @x1256 @x1126 @x1613 @x1812 @x687 @x703 @x1127 (hypothesis $x1697) false)))
+(let ((@x1833 (lemma @x1831 (or $x745 $x1530 $x657 $x1142 $x1718))))
+(let ((@x1852 (unit-resolution @x1833 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1843 @x1256 @x1851 $x1718)))
+(let ((@x1855 (unit-resolution @x591 (unit-resolution @x593 (unit-resolution @x1780 @x1852 $x759) $x463) $x588)))
+(let ((@x1857 ((_ th-lemma arith farkas 1/2 -3/2 -1 1 3/2 -1 -1/2 -1/2 1/2 1 1/2 -1/2 -1/2 1/2 1/2 1/2 -1/2 1) @x966 @x1611 @x1515 @x799 @x853 @x857 @x1818 @x832 @x835 @x1727 (unit-resolution @x1271 @x1855 $x672) @x1255 @x1851 @x1259 @x1256 @x1126 (unit-resolution @x1152 (unit-resolution @x639 @x1844 $x636) $x660) @x1844 false)))
+(let ((@x1868 (unit-resolution (lemma @x1857 (or $x338 $x657 $x438)) @x763 @x1256 $x338)))
+(let ((@x1874 (unit-resolution ((_ th-lemma arith assign-bounds 2 2 2 2 2 1) (or $x1529 $x438 $x800 $x801 $x957 $x958 $x1092)) @x853 @x1515 @x1611 @x799 @x1818 (or $x1529 $x438))))
+(let (($x1436 (not $x637)))
+(let ((@x1878 (unit-resolution (unit-resolution @x1650 @x703 @x1615 @x1812 @x1536 @x698 (or $x1024 $x339)) @x1868 $x1024)))
+(let ((@x1881 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x1868 @x1843 @x763 $x463)))
+(let ((@x1864 (unit-resolution @x1422 @x1611 @x1818 (unit-resolution ((_ th-lemma arith assign-bounds 2 -1) (or $x933 $x414 $x800)) @x1515 @x1479 $x933) @x1812 @x1615 (or $x438 $x1081 $x1392 $x1200 $x1403 $x860 $x464))))
+(let ((@x1865 (unit-resolution @x1864 (unit-resolution @x1438 (hypothesis $x637) $x1370) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x763 @x1214 @x858 @x895 @x1314 false)))
+(let ((@x1883 (unit-resolution (lemma @x1865 (or $x1436 $x438 $x1200 $x860 $x464 $x1081)) @x763 (unit-resolution @x1118 (unit-resolution @x631 @x1868 $x628) $x663) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) @x1881 @x1878 $x1436)))
+(let ((@x1887 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 2 -2 -1) (or $x1501 $x733 $x814 $x860 $x1404 $x314 $x707)) @x1812 @x730 @x857 (or $x1501 $x733 $x860 $x314))))
+(let ((@x1888 (unit-resolution @x1887 (unit-resolution @x1848 (unit-resolution @x641 @x1883 $x288) @x763 $x313) (unit-resolution @x1874 @x763 $x1529) (unit-resolution @x1132 (unit-resolution @x631 @x1868 $x628) $x667) $x733)))
+(let ((@x1890 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x1883 $x288) $x636) @x1888 false)))
+(let ((@x1894 (unit-resolution (lemma @x1890 (or $x438 $x657)) @x1256 $x438)))
+(let ((@x1897 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x688 @x1894 $x339)))
+(let ((@x1900 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x1829 @x1897 @x1256 $x288) $x636) $x660)))
+(let ((@x1901 (unit-resolution @x1833 @x1900 @x1843 @x1256 (unit-resolution @x1780 (unit-resolution @x593 @x688 $x589) $x1697) $x1530)))
+(let ((@x1902 (unit-resolution @x1714 @x1900 @x1897 (unit-resolution @x1829 @x1897 @x1256 $x288) $x313)))
+(let ((@x1906 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1902 $x644) @x1901 false) (or $x463 $x657))))
+(let ((@x1909 (unit-resolution @x1271 (unit-resolution @x591 (unit-resolution @x1906 @x1256 $x463) $x588) $x672)))
+(let ((@x1914 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x1894 @x698 @x1615 @x1812 @x1536 @x812 $x1501)))
+(let ((@x1917 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) (unit-resolution @x1906 @x1256 $x463) @x812 @x1615 @x1536 @x832 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) $x839)))
+(let ((@x1921 (unit-resolution @x631 (unit-resolution (unit-resolution @x1483 @x1479 (or $x338 $x872)) @x1917 $x338) $x628)))
+(let ((@x1924 (unit-resolution ((_ th-lemma arith assign-bounds 1 2 2 2 2 2) (or $x872 $x957 $x1200 $x1199 $x288 $x1092 $x1093)) @x1130 @x835 @x1611 @x1818 (or $x872 $x1200 $x288))))
+(let ((@x1926 (unit-resolution @x639 (unit-resolution @x1924 (unit-resolution @x1118 @x1921 $x663) @x1917 $x288) $x636)))
+(let ((@x1929 (unit-resolution @x1532 @x853 @x703 @x1126 @x1259 @x1791 @x832 @x1255 (or $x657 $x1529 $x1530 $x1142 $x903 $x1263))))
+(let ((@x1930 (unit-resolution @x1929 (unit-resolution @x1152 @x1926 $x660) @x1256 @x1914 (unit-resolution @x828 (unit-resolution @x599 @x1894 $x596) $x669) @x1909 $x1530)))
+(let ((@x1932 (unit-resolution ((_ th-lemma arith assign-bounds -1 -1 -1 1 1 1 -1 1 -1) (or $x706 $x743 $x313 $x1142 $x1192 $x817 $x1199 $x1200 $x439 $x818)) @x698 @x1130 @x1126 @x812 (or $x706 $x313 $x1142 $x817 $x1200 $x439))))
+(let ((@x1935 (unit-resolution (unit-resolution @x1932 @x1536 @x1615 (or $x313 $x1142 $x1200 $x439)) (unit-resolution @x1152 @x1926 $x660) (unit-resolution @x1118 @x1921 $x663) @x1894 $x313)))
+(let ((@x1938 (lemma (unit-resolution @x1415 (unit-resolution @x647 @x1935 $x644) @x1930 false) $x657)))
+(let ((@x1942 (unit-resolution @x569 (unit-resolution (unit-resolution @x1280 @x1695 (or $x92 $x766)) @x1938 $x92) $x582)))
+(let ((@x1943 (unit-resolution (unit-resolution @x1653 @x1812 @x1615 (or $x463 $x339 $x745 $x438)) @x688 @x1843 @x763 $x339)))
+(let ((@x1947 (unit-resolution @x1814 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1843 @x688 $x288)))
+(let ((@x1950 (unit-resolution @x1415 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x1382)))
+(let ((@x1954 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1) (or $x488 $x463 $x813 $x815 $x438)) @x720 (or $x488 $x463 $x813 $x438))))
+(let ((@x1957 (unit-resolution @x1294 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1239)))
+(let (($x1958 (not $x932)))
+(let (($x1959 (or $x654 $x1324 $x1391 $x957 $x800 $x801 $x958 $x1404 $x1733 $x1092 $x1093 $x1958 $x1470 $x1530 $x1469 $x710)))
+(let ((@x1961 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) @x1957 @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x966 @x1818 @x832 @x1950 (unit-resolution @x1726 (unit-resolution @x633 @x1943 $x629) $x1696) $x654)))
+(let ((@x1962 (unit-resolution @x1301 (unit-resolution @x573 (unit-resolution @x1954 @x762 @x763 @x688 $x488) $x584) $x1240)))
+(let ((@x1963 (unit-resolution @x1169 (unit-resolution @x647 (unit-resolution @x1848 @x1947 @x763 $x313) $x644) $x664)))
+(let (($x1964 (or $x653 $x1400 $x1401 $x706 $x817 $x818 $x743 $x1199 $x1626 $x707 $x742 $x745 $x744 $x734 $x816 $x766)))
+(let ((@x1966 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) @x1963 @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 (unit-resolution @x1641 (unit-resolution @x633 @x1943 $x629) $x875) @x1962 $x653)))
+(let ((@x1992 (unit-resolution (lemma (unit-resolution @x1307 @x1966 @x1961 @x1942 false) (or $x463 $x438)) @x763 $x463)))
+(let ((@x1995 (unit-resolution @x1387 (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) @x763 @x1992 $x488)))
+(let ((@x1983 (unit-resolution @x1450 (unit-resolution @x641 (unit-resolution @x1848 @x1191 @x763 $x289) $x637) (unit-resolution @x1823 @x1191 (unit-resolution @x1848 @x1191 @x763 $x289) $x1403) false)))
+(let ((@x1999 (unit-resolution @x647 (unit-resolution (lemma @x1983 (or $x313 $x438)) @x763 $x313) $x644)))
+(let ((@x1971 (hypothesis $x932)))
+(let ((@x1987 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1450 (hypothesis $x637) $x1361) @x1252 @x1255 (unit-resolution @x1415 @x1164 $x1382) @x1259 @x1695 @x1126 @x1611 @x853 @x1818 @x835 @x1971 @x832 @x1515 @x799 @x857 $x875)))
+(let ((@x1988 ((_ th-lemma arith assign-bounds 1 -1 1 1 -1 -1 -1 3 -3 1 -1 -1 1 2 -2 2) (unit-resolution @x1438 (hypothesis $x637) $x1370) @x869 @x720 (unit-resolution @x1169 @x1164 $x664) @x715 @x1938 @x730 @x1615 @x698 @x1812 @x703 @x1843 @x687 @x1536 @x812 @x1130 $x1696)))
+(let ((@x1974 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1964) (unit-resolution @x1169 @x1164 $x664) @x812 @x698 @x703 @x1130 @x715 @x1299 @x1938 @x687 @x1615 @x1812 @x1843 @x1536 @x1612 (hypothesis $x1240) $x653)))
+(let ((@x1976 (unit-resolution ((_ th-lemma arith assign-bounds 1 -1 2 1 -1 -2 1 -1 1 -1 -1 1 1 -1 -1) $x1959) (unit-resolution @x1307 @x1974 @x1942 $x1305) @x799 @x853 @x835 @x857 @x1259 @x1287 @x1695 @x1515 @x1611 @x1971 @x1818 @x832 @x1322 (hypothesis $x1696) $x1530)))
+(let ((@x1979 (lemma (unit-resolution @x1415 @x1164 @x1976 false) (or $x1165 $x1958 $x1324 $x1733 $x1626 $x1400))))
+(let ((@x1989 (unit-resolution @x1979 @x1988 @x1987 @x1322 @x1971 @x1164 (hypothesis $x1240) false)))
+(let ((@x2002 (unit-resolution (lemma @x1989 (or $x1436 $x1324 $x1958 $x1165 $x1400 $x871 $x1263)) (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) (unit-resolution @x725 (unit-resolution @x591 @x1992 $x588) $x681) (unit-resolution @x1271 (unit-resolution @x591 @x1992 $x588) $x672) $x1436)))
+(let ((@x2005 ((_ th-lemma arith assign-bounds -2 -1 1 2 -1 1 -1 1 1 -1 1) (or $x875 $x957 $x800 $x801 $x958 $x1404 $x289 $x1092 $x1093 $x1958 $x1470 $x464))))
+(let ((@x2006 (unit-resolution @x2005 (unit-resolution @x641 @x2002 $x288) @x799 @x853 @x835 @x857 @x832 @x1515 @x1992 @x1611 @x966 @x1818 $x875)))
+(let ((@x2007 (unit-resolution @x1979 @x2006 (unit-resolution @x1294 (unit-resolution @x573 @x1995 $x584) $x1239) @x966 @x1999 (unit-resolution @x1301 (unit-resolution @x573 @x1995 $x584) $x1240) $x1733)))
+(let ((@x2010 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x641 @x2002 $x288) $x636) $x661)))
+(let ((@x2011 (unit-resolution @x774 @x2010 @x1938 @x763 (unit-resolution @x1169 @x1999 $x664) $x339)))
+(let ((@x2014 (lemma (unit-resolution @x1726 (unit-resolution @x633 @x2011 $x629) @x2007 false) $x438)))
+(let ((@x2021 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 -2 2 2 -2) (or $x1501 $x707 $x706 $x817 $x818 $x743 $x439)) @x2014 @x698 @x1615 @x1812 @x1536 @x812 $x1501)))
+(let ((@x2017 (unit-resolution ((_ th-lemma arith assign-bounds 1 -2) (or $x875 $x1200 $x339)) (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) @x1635 $x1200)))
+(let ((@x2018 (unit-resolution @x631 (unit-resolution @x633 (unit-resolution @x1641 @x1635 $x1637) $x338) $x628)))
+(let ((@x2020 (lemma (unit-resolution @x1118 @x2018 @x2017 false) $x875)))
+(let ((@x2023 (unit-resolution ((_ th-lemma arith assign-bounds -1 1 -1 -1 1) (or $x1626 $x1199 $x288 $x1529 $x389 $x742)) @x1130 @x1610 @x703 (or $x1626 $x288 $x1529))))
+(let ((@x2026 (unit-resolution @x1152 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x660)))
+(let ((@x2027 (unit-resolution @x1714 @x1701 (unit-resolution @x2023 @x2020 @x2021 $x288) @x2026 $x313)))
+(let ((@x2030 (unit-resolution @x828 (unit-resolution @x599 @x2014 $x596) $x669)))
+(let ((@x2034 (unit-resolution ((_ th-lemma arith assign-bounds -2 2 -2 -2 2 -1) (or $x932 $x817 $x818 $x706 $x364 $x743 $x903)) @x698 @x812 (or $x932 $x817 $x706 $x364 $x903))))
+(let ((@x2037 (unit-resolution (unit-resolution @x2034 @x1536 @x1615 @x1805 (or $x932 $x903)) @x2030 $x932)))
+(let ((@x2040 (unit-resolution ((_ th-lemma arith assign-bounds 1 1 1 1 1 1) (or $x488 $x1530 $x1469 $x710 $x338 $x1142 $x1192)) @x1126 @x1259 @x1695 (or $x488 $x1530 $x338 $x1142))))
+(let ((@x2041 (unit-resolution @x2040 (unit-resolution @x1415 (unit-resolution @x647 @x2027 $x644) $x1382) @x1701 @x2026 $x488)))
+(let ((@x2045 (unit-resolution @x1979 (unit-resolution @x1301 (unit-resolution @x573 @x2041 $x584) $x1240) (unit-resolution @x1294 (unit-resolution @x573 @x2041 $x584) $x1239) @x2020 @x2037 (unit-resolution @x647 @x2027 $x644) @x1727 false)))
+(let ((@x2046 (lemma @x2045 $x338)))
+(let ((@x2049 (unit-resolution @x1147 (unit-resolution @x639 (unit-resolution @x2023 @x2020 @x2021 $x288) $x636) $x661)))
+(let ((@x2050 (unit-resolution (unit-resolution @x709 @x1615 @x1812 (or $x463 $x339 $x439)) @x2046 @x2014 $x463)))
+(let ((@x2055 (unit-resolution (unit-resolution @x1575 @x1791 (or $x654 $x903 $x1263 $x733 $x860)) (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2030 @x2049 (unit-resolution @x1132 (unit-resolution @x631 @x2046 $x628) $x667) $x654)))
+(let ((@x2058 (unit-resolution ((_ th-lemma arith assign-bounds -1 -2 2 -2 2 -2) (or $x839 $x706 $x817 $x818 $x903 $x1470 $x464)) @x2050 @x812 @x1615 @x1536 @x832 @x2030 $x839)))
+(let ((@x2059 (unit-resolution @x1592 (unit-resolution @x1271 (unit-resolution @x591 @x2050 $x588) $x672) @x2026 @x2058 (unit-resolution @x693 (unit-resolution @x599 @x2014 $x596) $x678) (unit-resolution @x725 (unit-resolution @x591 @x2050 $x588) $x681) $x653)))
+(unit-resolution @x1307 @x2059 @x2055 @x1942 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-8778062e40723924421e3a1f0c912b62e43b9b81 20 0
+4a8a0bf3d43500148c2184dcd30bf04139ef48a8 112 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x224 (mod x$ 2)))
+(let (($x318 (>= ?x224 2)))
+(let (($x319 (not $x318)))
+(let ((?x258 (* (- 1) ?x224)))
+(let ((?x29 (mod$ x$ 2)))
+(let ((?x259 (+ ?x29 ?x258)))
+(let (($x275 (<= ?x259 0)))
+(let (($x260 (= ?x259 0)))
+(let (($x201 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x132 (mod ?v0 ?v1)))
+(let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?v1 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?v1 0)))
+(let ((?x171 (ite $x74 ?v0 ?x166)))
+(let ((?x131 (mod$ ?v0 ?v1)))
+(= ?x131 ?x171))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
+))
+(let (($x177 (forall ((?v0 Int) (?v1 Int) )(let ((?x132 (mod ?v0 ?v1)))
+(let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?v1 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?v1 0)))
+(let ((?x171 (ite $x74 ?v0 ?x166)))
+(let ((?x131 (mod$ ?v0 ?v1)))
+(= ?x131 ?x171))))))))))))
+))
+(let ((?x132 (mod ?1 ?0)))
+(let ((?x89 (* (- 1) ?0)))
+(let ((?x86 (* (- 1) ?1)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let (($x107 (<= ?0 0)))
+(let ((?x166 (ite $x107 ?x146 ?x132)))
+(let (($x74 (= ?0 0)))
+(let ((?x171 (ite $x74 ?1 ?x166)))
+(let ((?x131 (mod$ ?1 ?0)))
+(let (($x174 (= ?x131 ?x171)))
+(let (($x138 (forall ((?v0 Int) (?v1 Int) )(let (($x74 (= ?v1 0)))
+(let ((?x136 (ite $x74 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x131 (mod$ ?v0 ?v1)))
+(= ?x131 ?x136)))))
+))
+(let (($x160 (forall ((?v0 Int) (?v1 Int) )(let ((?x89 (* (- 1) ?v1)))
+(let ((?x86 (* (- 1) ?v0)))
+(let ((?x140 (mod ?x86 ?x89)))
+(let ((?x146 (* (- 1) ?x140)))
+(let ((?x132 (mod ?v0 ?v1)))
+(let (($x75 (< 0 ?v1)))
+(let ((?x151 (ite $x75 ?x132 ?x146)))
+(let (($x74 (= ?v1 0)))
+(let ((?x154 (ite $x74 ?v0 ?x151)))
+(let ((?x131 (mod$ ?v0 ?v1)))
+(= ?x131 ?x154))))))))))))
+))
+(let ((@x165 (monotonicity (rewrite (= (< 0 ?0) (not $x107))) (= (ite (< 0 ?0) ?x132 ?x146) (ite (not $x107) ?x132 ?x146)))))
+(let ((@x170 (trans @x165 (rewrite (= (ite (not $x107) ?x132 ?x146) ?x166)) (= (ite (< 0 ?0) ?x132 ?x146) ?x166))))
+(let ((@x173 (monotonicity @x170 (= (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146)) ?x171))))
+(let ((@x176 (monotonicity @x173 (= (= ?x131 (ite $x74 ?1 (ite (< 0 ?0) ?x132 ?x146))) $x174))))
+(let (($x75 (< 0 ?0)))
+(let ((?x151 (ite $x75 ?x132 ?x146)))
+(let ((?x154 (ite $x74 ?1 ?x151)))
+(let (($x157 (= ?x131 ?x154)))
+(let (($x158 (= (= ?x131 (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))))) $x157)))
+(let ((@x142 (monotonicity (rewrite (= (- ?1) ?x86)) (rewrite (= (- ?0) ?x89)) (= (mod (- ?1) (- ?0)) ?x140))))
+(let ((@x150 (trans (monotonicity @x142 (= (- (mod (- ?1) (- ?0))) (- ?x140))) (rewrite (= (- ?x140) ?x146)) (= (- (mod (- ?1) (- ?0))) ?x146))))
+(let ((@x153 (monotonicity @x150 (= (ite $x75 ?x132 (- (mod (- ?1) (- ?0)))) ?x151))))
+(let ((@x156 (monotonicity @x153 (= (ite $x74 ?1 (ite $x75 ?x132 (- (mod (- ?1) (- ?0))))) ?x154))))
+(let ((@x181 (trans (quant-intro (monotonicity @x156 $x158) (= $x138 $x160)) (quant-intro @x176 (= $x160 $x177)) (= $x138 $x177))))
+(let ((@x192 (mp~ (mp (asserted $x138) @x181 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177)))
+(let ((@x206 (mp @x192 (quant-intro (refl (= $x174 $x174)) (= $x177 $x201)) $x201)))
+(let (($x266 (or (not $x201) $x260)))
+(let ((?x221 (* (- 1) 2)))
+(let ((?x220 (* (- 1) x$)))
+(let ((?x222 (mod ?x220 ?x221)))
+(let ((?x223 (* (- 1) ?x222)))
+(let (($x219 (<= 2 0)))
+(let ((?x225 (ite $x219 ?x223 ?x224)))
+(let (($x218 (= 2 0)))
+(let ((?x226 (ite $x218 x$ ?x225)))
+(let (($x227 (= ?x29 ?x226)))
+(let ((@x240 (monotonicity (monotonicity (rewrite (= ?x221 (- 2))) (= ?x222 (mod ?x220 (- 2)))) (= ?x223 (* (- 1) (mod ?x220 (- 2)))))))
+(let ((@x243 (monotonicity (rewrite (= $x219 false)) @x240 (= ?x225 (ite false (* (- 1) (mod ?x220 (- 2))) ?x224)))))
+(let ((@x247 (trans @x243 (rewrite (= (ite false (* (- 1) (mod ?x220 (- 2))) ?x224) ?x224)) (= ?x225 ?x224))))
+(let ((@x250 (monotonicity (rewrite (= $x218 false)) @x247 (= ?x226 (ite false x$ ?x224)))))
+(let ((@x257 (monotonicity (trans @x250 (rewrite (= (ite false x$ ?x224) ?x224)) (= ?x226 ?x224)) (= $x227 (= ?x29 ?x224)))))
+(let ((@x270 (monotonicity (trans @x257 (rewrite (= (= ?x29 ?x224) $x260)) (= $x227 $x260)) (= (or (not $x201) $x227) $x266))))
+(let ((@x273 (trans @x270 (rewrite (= $x266 $x266)) (= (or (not $x201) $x227) $x266))))
+(let ((@x274 (mp ((_ quant-inst x$ 2) (or (not $x201) $x227)) @x273 $x266)))
+(let ((@x336 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x260) $x275)) (unit-resolution @x274 @x206 $x260) $x275)))
+(let (($x63 (>= ?x29 2)))
+(let ((?x37 (* 2 ?x29)))
+(let (($x56 (>= ?x37 3)))
+(let (($x46 (< (+ x$ ?x37) (+ 3 x$))))
+(let (($x49 (not $x46)))
+(let ((@x58 (monotonicity (rewrite (= $x46 (not $x56))) (= $x49 (not (not $x56))))))
+(let ((@x67 (trans (trans @x58 (rewrite (= (not (not $x56)) $x56)) (= $x49 $x56)) (rewrite (= $x56 $x63)) (= $x49 $x63))))
+(let ((@x42 (monotonicity (rewrite (= (+ ?x29 ?x29) ?x37)) (= (+ x$ (+ ?x29 ?x29)) (+ x$ ?x37)))))
+(let ((@x48 (monotonicity @x42 (rewrite (= (+ x$ 3) (+ 3 x$))) (= (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)) $x46))))
+(let ((@x51 (monotonicity @x48 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x49))))
+(let ((@x69 (trans @x51 @x67 (= (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3))) $x63))))
+(let ((@x70 (mp (asserted (not (< (+ x$ (+ ?x29 ?x29)) (+ x$ 3)))) @x69 $x63)))
+((_ th-lemma arith farkas -1 1 1) @x70 @x336 (unit-resolution ((_ th-lemma arith) (or false $x319)) (true-axiom true) $x319) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+79755c254382365be942468233fcaccea51e52f9 113 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x228 (mod x$ 2)))
+(let ((?x262 (* (- 1) ?x228)))
+(let ((?x31 (mod$ x$ 2)))
+(let ((?x263 (+ ?x31 ?x262)))
+(let (($x280 (>= ?x263 0)))
+(let (($x264 (= ?x263 0)))
+(let (($x205 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x136 (mod ?v0 ?v1)))
+(let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?v1 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?v1 0)))
+(let ((?x175 (ite $x78 ?v0 ?x170)))
+(let ((?x135 (mod$ ?v0 ?v1)))
+(= ?x135 ?x175))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
+))
+(let (($x181 (forall ((?v0 Int) (?v1 Int) )(let ((?x136 (mod ?v0 ?v1)))
+(let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?v1 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?v1 0)))
+(let ((?x175 (ite $x78 ?v0 ?x170)))
+(let ((?x135 (mod$ ?v0 ?v1)))
+(= ?x135 ?x175))))))))))))
+))
+(let ((?x136 (mod ?1 ?0)))
+(let ((?x93 (* (- 1) ?0)))
+(let ((?x90 (* (- 1) ?1)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let (($x111 (<= ?0 0)))
+(let ((?x170 (ite $x111 ?x150 ?x136)))
+(let (($x78 (= ?0 0)))
+(let ((?x175 (ite $x78 ?1 ?x170)))
+(let ((?x135 (mod$ ?1 ?0)))
+(let (($x178 (= ?x135 ?x175)))
+(let (($x142 (forall ((?v0 Int) (?v1 Int) )(let (($x78 (= ?v1 0)))
+(let ((?x140 (ite $x78 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x135 (mod$ ?v0 ?v1)))
+(= ?x135 ?x140)))))
+))
+(let (($x164 (forall ((?v0 Int) (?v1 Int) )(let ((?x93 (* (- 1) ?v1)))
+(let ((?x90 (* (- 1) ?v0)))
+(let ((?x144 (mod ?x90 ?x93)))
+(let ((?x150 (* (- 1) ?x144)))
+(let ((?x136 (mod ?v0 ?v1)))
+(let (($x79 (< 0 ?v1)))
+(let ((?x155 (ite $x79 ?x136 ?x150)))
+(let (($x78 (= ?v1 0)))
+(let ((?x158 (ite $x78 ?v0 ?x155)))
+(let ((?x135 (mod$ ?v0 ?v1)))
+(= ?x135 ?x158))))))))))))
+))
+(let ((@x169 (monotonicity (rewrite (= (< 0 ?0) (not $x111))) (= (ite (< 0 ?0) ?x136 ?x150) (ite (not $x111) ?x136 ?x150)))))
+(let ((@x174 (trans @x169 (rewrite (= (ite (not $x111) ?x136 ?x150) ?x170)) (= (ite (< 0 ?0) ?x136 ?x150) ?x170))))
+(let ((@x177 (monotonicity @x174 (= (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150)) ?x175))))
+(let ((@x180 (monotonicity @x177 (= (= ?x135 (ite $x78 ?1 (ite (< 0 ?0) ?x136 ?x150))) $x178))))
+(let (($x79 (< 0 ?0)))
+(let ((?x155 (ite $x79 ?x136 ?x150)))
+(let ((?x158 (ite $x78 ?1 ?x155)))
+(let (($x161 (= ?x135 ?x158)))
+(let (($x162 (= (= ?x135 (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))))) $x161)))
+(let ((@x146 (monotonicity (rewrite (= (- ?1) ?x90)) (rewrite (= (- ?0) ?x93)) (= (mod (- ?1) (- ?0)) ?x144))))
+(let ((@x154 (trans (monotonicity @x146 (= (- (mod (- ?1) (- ?0))) (- ?x144))) (rewrite (= (- ?x144) ?x150)) (= (- (mod (- ?1) (- ?0))) ?x150))))
+(let ((@x157 (monotonicity @x154 (= (ite $x79 ?x136 (- (mod (- ?1) (- ?0)))) ?x155))))
+(let ((@x160 (monotonicity @x157 (= (ite $x78 ?1 (ite $x79 ?x136 (- (mod (- ?1) (- ?0))))) ?x158))))
+(let ((@x185 (trans (quant-intro (monotonicity @x160 $x162) (= $x142 $x164)) (quant-intro @x180 (= $x164 $x181)) (= $x142 $x181))))
+(let ((@x196 (mp~ (mp (asserted $x142) @x185 $x181) (nnf-pos (refl (~ $x178 $x178)) (~ $x181 $x181)) $x181)))
+(let ((@x210 (mp @x196 (quant-intro (refl (= $x178 $x178)) (= $x181 $x205)) $x205)))
+(let (($x270 (or (not $x205) $x264)))
+(let ((?x225 (* (- 1) 2)))
+(let ((?x224 (* (- 1) x$)))
+(let ((?x226 (mod ?x224 ?x225)))
+(let ((?x227 (* (- 1) ?x226)))
+(let (($x223 (<= 2 0)))
+(let ((?x229 (ite $x223 ?x227 ?x228)))
+(let (($x222 (= 2 0)))
+(let ((?x230 (ite $x222 x$ ?x229)))
+(let (($x231 (= ?x31 ?x230)))
+(let ((@x244 (monotonicity (monotonicity (rewrite (= ?x225 (- 2))) (= ?x226 (mod ?x224 (- 2)))) (= ?x227 (* (- 1) (mod ?x224 (- 2)))))))
+(let ((@x247 (monotonicity (rewrite (= $x223 false)) @x244 (= ?x229 (ite false (* (- 1) (mod ?x224 (- 2))) ?x228)))))
+(let ((@x251 (trans @x247 (rewrite (= (ite false (* (- 1) (mod ?x224 (- 2))) ?x228) ?x228)) (= ?x229 ?x228))))
+(let ((@x254 (monotonicity (rewrite (= $x222 false)) @x251 (= ?x230 (ite false x$ ?x228)))))
+(let ((@x261 (monotonicity (trans @x254 (rewrite (= (ite false x$ ?x228) ?x228)) (= ?x230 ?x228)) (= $x231 (= ?x31 ?x228)))))
+(let ((@x274 (monotonicity (trans @x261 (rewrite (= (= ?x31 ?x228) $x264)) (= $x231 $x264)) (= (or (not $x205) $x231) $x270))))
+(let ((@x277 (trans @x274 (rewrite (= $x270 $x270)) (= (or (not $x205) $x231) $x270))))
+(let ((@x278 (mp ((_ quant-inst x$ 2) (or (not $x205) $x231)) @x277 $x270)))
+(let ((@x337 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x264) $x280)) (unit-resolution @x278 @x210 $x264) $x280)))
+(let (($x305 (>= ?x228 0)))
+(let (($x64 (>= ?x31 0)))
+(let (($x67 (not $x64)))
+(let (($x36 (not (<= (+ x$ 1) (+ x$ (+ (* 2 ?x31) 1))))))
+(let ((@x69 (monotonicity (rewrite (= (>= (* 2 ?x31) 0) $x64)) (= (not (>= (* 2 ?x31) 0)) $x67))))
+(let ((?x32 (* 2 ?x31)))
+(let ((?x47 (+ 1 x$ ?x32)))
+(let (($x52 (<= (+ 1 x$) ?x47)))
+(let (($x55 (not $x52)))
+(let ((@x63 (monotonicity (rewrite (= $x52 (>= ?x32 0))) (= $x55 (not (>= ?x32 0))))))
+(let ((@x46 (monotonicity (rewrite (= (+ ?x32 1) (+ 1 ?x32))) (= (+ x$ (+ ?x32 1)) (+ x$ (+ 1 ?x32))))))
+(let ((@x51 (trans @x46 (rewrite (= (+ x$ (+ 1 ?x32)) ?x47)) (= (+ x$ (+ ?x32 1)) ?x47))))
+(let ((@x54 (monotonicity (rewrite (= (+ x$ 1) (+ 1 x$))) @x51 (= (<= (+ x$ 1) (+ x$ (+ ?x32 1))) $x52))))
+(let ((@x73 (trans (monotonicity @x54 (= $x36 $x55)) (trans @x63 @x69 (= $x55 $x67)) (= $x36 $x67))))
+(let ((@x74 (mp (asserted $x36) @x73 $x67)))
+((_ th-lemma arith farkas -1 1 1) @x74 (unit-resolution ((_ th-lemma arith) (or false $x305)) (true-axiom true) $x305) @x337 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+fddd35182d98a66f939d6ead708e259190268f17 32 0
+unsat
+((set-logic <null>)
+(proof
+(let (($x28 (= x$ 0.0)))
+(let (($x29 (not $x28)))
+(let ((@x30 (asserted $x29)))
+(let (($x101 (<= x$ 0.0)))
+(let ((?x47 (* 2.0 x$)))
+(let (($x99 (<= ?x47 0.0)))
+(let (($x95 (= ?x47 0.0)))
+(let (($x36 (< 1.0 (ite (< x$ 0.0) (- x$) x$))))
+(let (($x38 (or $x36 (not $x36))))
+(let ((?x41 (ite $x38 4.0 2.0)))
+(let (($x45 (not (not (= (+ x$ x$) (* ?x41 x$))))))
+(let ((@x90 (rewrite (= (not (not (= ?x47 (* 4.0 x$)))) (= ?x47 (* 4.0 x$))))))
+(let (($x84 (= (not (= (+ x$ x$) (* ?x41 x$))) (not (= ?x47 (* 4.0 x$))))))
+(let (($x57 (< 1.0 (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
+(let (($x55 (= (ite (< x$ 0.0) (- x$) x$) (ite (< x$ 0.0) (* (- 1.0) x$) x$))))
+(let ((@x59 (monotonicity (monotonicity (rewrite (= (- x$) (* (- 1.0) x$))) $x55) (= $x36 $x57))))
+(let ((@x65 (monotonicity @x59 (monotonicity @x59 (= (not $x36) (not $x57))) (= $x38 (or $x57 (not $x57))))))
+(let ((@x69 (trans @x65 (rewrite (= (or $x57 (not $x57)) true)) (= $x38 true))))
+(let ((@x76 (trans (monotonicity @x69 (= ?x41 (ite true 4.0 2.0))) (rewrite (= (ite true 4.0 2.0) 4.0)) (= ?x41 4.0))))
+(let ((@x82 (monotonicity (rewrite (= (+ x$ x$) ?x47)) (monotonicity @x76 (= (* ?x41 x$) (* 4.0 x$))) (= (= (+ x$ x$) (* ?x41 x$)) (= ?x47 (* 4.0 x$))))))
+(let ((@x88 (monotonicity (monotonicity @x82 $x84) (= $x45 (not (not (= ?x47 (* 4.0 x$))))))))
+(let ((@x97 (trans (trans @x88 @x90 (= $x45 (= ?x47 (* 4.0 x$)))) (rewrite (= (= ?x47 (* 4.0 x$)) $x95)) (= $x45 $x95))))
+(let ((@x98 (mp (asserted $x45) @x97 $x95)))
+(let ((@x110 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x101 (not $x99))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x99)) @x98 $x99) $x101)))
+(let (($x102 (>= x$ 0.0)))
+(let (($x100 (>= ?x47 0.0)))
+(let ((@x117 (unit-resolution ((_ th-lemma arith assign-bounds 1) (or $x102 (not $x100))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x95) $x100)) @x98 $x100) $x102)))
+(unit-resolution ((_ th-lemma arith triangle-eq) (or $x28 (not $x101) (not $x102))) @x117 @x110 @x30 false))))))))))))))))))))))))))))))
+
+6137ebc1a4dee6ad5f0013ba64ccdfe87c956a4c 236 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x410 (div n$ 2)))
+(let ((?x704 (* (- 1) ?x410)))
+(let ((?x381 (div n$ 4)))
+(let ((?x601 (* (- 2) ?x381)))
+(let ((?x329 (mod n$ 4)))
+(let ((?x363 (* (- 1) ?x329)))
+(let ((?x35 (mod$ n$ 4)))
+(let ((?x705 (+ n$ ?x35 ?x363 ?x601 ?x704)))
+(let (($x706 (>= ?x705 2)))
+(let ((?x39 (mod$ n$ 2)))
+(let (($x515 (>= ?x39 1)))
+(let (($x725 (not $x515)))
+(let (($x514 (<= ?x39 1)))
+(let ((?x519 (mod n$ 2)))
+(let ((?x534 (* (- 1) ?x519)))
+(let ((?x535 (+ ?x39 ?x534)))
+(let (($x408 (<= ?x535 0)))
+(let (($x490 (= ?x535 0)))
+(let (($x191 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x108 (mod ?v0 ?v1)))
+(let ((?x65 (* (- 1) ?v1)))
+(let ((?x62 (* (- 1) ?v0)))
+(let ((?x116 (mod ?x62 ?x65)))
+(let ((?x122 (* (- 1) ?x116)))
+(let (($x83 (<= ?v1 0)))
+(let ((?x142 (ite $x83 ?x122 ?x108)))
+(let (($x50 (= ?v1 0)))
+(let ((?x147 (ite $x50 ?v0 ?x142)))
+(let ((?x107 (mod$ ?v0 ?v1)))
+(= ?x107 ?x147))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
+))
+(let (($x153 (forall ((?v0 Int) (?v1 Int) )(let ((?x108 (mod ?v0 ?v1)))
+(let ((?x65 (* (- 1) ?v1)))
+(let ((?x62 (* (- 1) ?v0)))
+(let ((?x116 (mod ?x62 ?x65)))
+(let ((?x122 (* (- 1) ?x116)))
+(let (($x83 (<= ?v1 0)))
+(let ((?x142 (ite $x83 ?x122 ?x108)))
+(let (($x50 (= ?v1 0)))
+(let ((?x147 (ite $x50 ?v0 ?x142)))
+(let ((?x107 (mod$ ?v0 ?v1)))
+(= ?x107 ?x147))))))))))))
+))
+(let ((?x108 (mod ?1 ?0)))
+(let ((?x65 (* (- 1) ?0)))
+(let ((?x62 (* (- 1) ?1)))
+(let ((?x116 (mod ?x62 ?x65)))
+(let ((?x122 (* (- 1) ?x116)))
+(let (($x83 (<= ?0 0)))
+(let ((?x142 (ite $x83 ?x122 ?x108)))
+(let (($x50 (= ?0 0)))
+(let ((?x147 (ite $x50 ?1 ?x142)))
+(let ((?x107 (mod$ ?1 ?0)))
+(let (($x150 (= ?x107 ?x147)))
+(let (($x114 (forall ((?v0 Int) (?v1 Int) )(let (($x50 (= ?v1 0)))
+(let ((?x112 (ite $x50 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x107 (mod$ ?v0 ?v1)))
+(= ?x107 ?x112)))))
+))
+(let (($x136 (forall ((?v0 Int) (?v1 Int) )(let ((?x65 (* (- 1) ?v1)))
+(let ((?x62 (* (- 1) ?v0)))
+(let ((?x116 (mod ?x62 ?x65)))
+(let ((?x122 (* (- 1) ?x116)))
+(let ((?x108 (mod ?v0 ?v1)))
+(let (($x51 (< 0 ?v1)))
+(let ((?x127 (ite $x51 ?x108 ?x122)))
+(let (($x50 (= ?v1 0)))
+(let ((?x130 (ite $x50 ?v0 ?x127)))
+(let ((?x107 (mod$ ?v0 ?v1)))
+(= ?x107 ?x130))))))))))))
+))
+(let ((@x141 (monotonicity (rewrite (= (< 0 ?0) (not $x83))) (= (ite (< 0 ?0) ?x108 ?x122) (ite (not $x83) ?x108 ?x122)))))
+(let ((@x146 (trans @x141 (rewrite (= (ite (not $x83) ?x108 ?x122) ?x142)) (= (ite (< 0 ?0) ?x108 ?x122) ?x142))))
+(let ((@x149 (monotonicity @x146 (= (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122)) ?x147))))
+(let ((@x152 (monotonicity @x149 (= (= ?x107 (ite $x50 ?1 (ite (< 0 ?0) ?x108 ?x122))) $x150))))
+(let (($x51 (< 0 ?0)))
+(let ((?x127 (ite $x51 ?x108 ?x122)))
+(let ((?x130 (ite $x50 ?1 ?x127)))
+(let (($x133 (= ?x107 ?x130)))
+(let (($x134 (= (= ?x107 (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))))) $x133)))
+(let ((@x118 (monotonicity (rewrite (= (- ?1) ?x62)) (rewrite (= (- ?0) ?x65)) (= (mod (- ?1) (- ?0)) ?x116))))
+(let ((@x126 (trans (monotonicity @x118 (= (- (mod (- ?1) (- ?0))) (- ?x116))) (rewrite (= (- ?x116) ?x122)) (= (- (mod (- ?1) (- ?0))) ?x122))))
+(let ((@x129 (monotonicity @x126 (= (ite $x51 ?x108 (- (mod (- ?1) (- ?0)))) ?x127))))
+(let ((@x132 (monotonicity @x129 (= (ite $x50 ?1 (ite $x51 ?x108 (- (mod (- ?1) (- ?0))))) ?x130))))
+(let ((@x157 (trans (quant-intro (monotonicity @x132 $x134) (= $x114 $x136)) (quant-intro @x152 (= $x136 $x153)) (= $x114 $x153))))
+(let ((@x168 (mp~ (mp (asserted $x114) @x157 $x153) (nnf-pos (refl (~ $x150 $x150)) (~ $x153 $x153)) $x153)))
+(let ((@x196 (mp @x168 (quant-intro (refl (= $x150 $x150)) (= $x153 $x191)) $x191)))
+(let (($x260 (not $x191)))
+(let (($x541 (or $x260 $x490)))
+(let ((?x211 (* (- 1) 2)))
+(let ((?x222 (* (- 1) n$)))
+(let ((?x517 (mod ?x222 ?x211)))
+(let ((?x518 (* (- 1) ?x517)))
+(let (($x209 (<= 2 0)))
+(let ((?x520 (ite $x209 ?x518 ?x519)))
+(let (($x208 (= 2 0)))
+(let ((?x521 (ite $x208 n$ ?x520)))
+(let (($x485 (= ?x39 ?x521)))
+(let ((@x593 (monotonicity (monotonicity (rewrite (= ?x211 (- 2))) (= ?x517 (mod ?x222 (- 2)))) (= ?x518 (* (- 1) (mod ?x222 (- 2)))))))
+(let ((@x221 (rewrite (= $x209 false))))
+(let ((@x596 (monotonicity @x221 @x593 (= ?x520 (ite false (* (- 1) (mod ?x222 (- 2))) ?x519)))))
+(let ((@x599 (trans @x596 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 2))) ?x519) ?x519)) (= ?x520 ?x519))))
+(let ((@x219 (rewrite (= $x208 false))))
+(let ((@x487 (trans (monotonicity @x219 @x599 (= ?x521 (ite false n$ ?x519))) (rewrite (= (ite false n$ ?x519) ?x519)) (= ?x521 ?x519))))
+(let ((@x538 (trans (monotonicity @x487 (= $x485 (= ?x39 ?x519))) (rewrite (= (= ?x39 ?x519) $x490)) (= $x485 $x490))))
+(let ((@x406 (trans (monotonicity @x538 (= (or $x260 $x485) $x541)) (rewrite (= $x541 $x541)) (= (or $x260 $x485) $x541))))
+(let ((@x407 (mp ((_ quant-inst n$ 2) (or $x260 $x485)) @x406 $x541)))
+(let ((@x715 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x408)) (unit-resolution @x407 @x196 $x490) $x408)))
+(let (($x303 (>= ?x519 2)))
+(let (($x304 (not $x303)))
+(let ((@x26 (true-axiom true)))
+(let ((@x722 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x514 $x303 (not $x408))) (unit-resolution ((_ th-lemma arith) (or false $x304)) @x26 $x304) @x715 $x514)))
+(let (($x41 (= ?x39 1)))
+(let (($x169 (not $x41)))
+(let ((?x42 (mod$ m$ 2)))
+(let (($x43 (= ?x42 1)))
+(let ((?x29 (+ n$ m$)))
+(let ((?x214 (mod ?x29 2)))
+(let ((?x253 (* (- 1) ?x214)))
+(let ((?x31 (mod$ ?x29 2)))
+(let ((?x603 (+ n$ m$ ?x31 ?x35 ?x253 (* (- 1) (div ?x29 2)) ?x363 ?x601 (* (- 1) (div m$ 2)))))
+(let (($x604 (>= ?x603 2)))
+(let (($x523 (>= ?x42 1)))
+(let (($x609 (not $x523)))
+(let (($x522 (<= ?x42 1)))
+(let ((?x439 (mod m$ 2)))
+(let ((?x466 (* (- 1) ?x439)))
+(let ((?x467 (+ ?x42 ?x466)))
+(let (($x482 (<= ?x467 0)))
+(let (($x468 (= ?x467 0)))
+(let (($x473 (or $x260 $x468)))
+(let ((?x440 (ite $x209 (* (- 1) (mod (* (- 1) m$) ?x211)) ?x439)))
+(let ((?x441 (ite $x208 m$ ?x440)))
+(let (($x442 (= ?x42 ?x441)))
+(let ((@x453 (rewrite (= (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439) ?x439))))
+(let (($x447 (= (* (- 1) (mod (* (- 1) m$) ?x211)) (* (- 1) (mod (* (- 1) m$) (- 2))))))
+(let ((@x229 (rewrite (= ?x211 (- 2)))))
+(let ((@x445 (monotonicity @x229 (= (mod (* (- 1) m$) ?x211) (mod (* (- 1) m$) (- 2))))))
+(let ((@x451 (monotonicity @x221 (monotonicity @x445 $x447) (= ?x440 (ite false (* (- 1) (mod (* (- 1) m$) (- 2))) ?x439)))))
+(let ((@x458 (monotonicity @x219 (trans @x451 @x453 (= ?x440 ?x439)) (= ?x441 (ite false m$ ?x439)))))
+(let ((@x465 (monotonicity (trans @x458 (rewrite (= (ite false m$ ?x439) ?x439)) (= ?x441 ?x439)) (= $x442 (= ?x42 ?x439)))))
+(let ((@x477 (monotonicity (trans @x465 (rewrite (= (= ?x42 ?x439) $x468)) (= $x442 $x468)) (= (or $x260 $x442) $x473))))
+(let ((@x481 (mp ((_ quant-inst m$ 2) (or $x260 $x442)) (trans @x477 (rewrite (= $x473 $x473)) (= (or $x260 $x442) $x473)) $x473)))
+(let ((@x277 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) $x482)) (unit-resolution @x481 @x196 $x468) $x482)))
+(let ((@x386 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x439 2)))) @x26 (not (>= ?x439 2)))))
+(let ((@x384 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x522 (>= ?x439 2) (not $x482))) @x386 @x277 $x522)))
+(let ((@x564 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x43 (not $x522) $x609)) (hypothesis (not $x43)) (or (not $x522) $x609))))
+(let ((?x272 (div ?x29 2)))
+(let ((?x288 (* (- 2) ?x272)))
+(let ((?x289 (+ n$ m$ ?x253 ?x288)))
+(let (($x294 (<= ?x289 0)))
+(let (($x287 (= ?x289 0)))
+(let ((@x617 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x294)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x294)))
+(let (($x433 (<= ?x31 0)))
+(let (($x32 (= ?x31 0)))
+(let ((@x33 (asserted $x32)))
+(let ((?x254 (+ ?x31 ?x253)))
+(let (($x270 (<= ?x254 0)))
+(let (($x255 (= ?x254 0)))
+(let (($x261 (or $x260 $x255)))
+(let ((?x215 (ite $x209 (* (- 1) (mod (* (- 1) ?x29) ?x211)) ?x214)))
+(let ((?x216 (ite $x208 ?x29 ?x215)))
+(let (($x217 (= ?x31 ?x216)))
+(let (($x239 (= (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214) ?x214)))
+(let (($x237 (= ?x215 (ite false (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))) ?x214))))
+(let (($x234 (= (* (- 1) (mod (* (- 1) ?x29) ?x211)) (* (- 1) (mod (+ ?x222 (* (- 1) m$)) (- 2))))))
+(let ((@x232 (monotonicity (rewrite (= (* (- 1) ?x29) (+ ?x222 (* (- 1) m$)))) @x229 (= (mod (* (- 1) ?x29) ?x211) (mod (+ ?x222 (* (- 1) m$)) (- 2))))))
+(let ((@x242 (trans (monotonicity @x221 (monotonicity @x232 $x234) $x237) (rewrite $x239) (= ?x215 ?x214))))
+(let ((@x249 (trans (monotonicity @x219 @x242 (= ?x216 (ite false ?x29 ?x214))) (rewrite (= (ite false ?x29 ?x214) ?x214)) (= ?x216 ?x214))))
+(let ((@x259 (trans (monotonicity @x249 (= $x217 (= ?x31 ?x214))) (rewrite (= (= ?x31 ?x214) $x255)) (= $x217 $x255))))
+(let ((@x268 (trans (monotonicity @x259 (= (or $x260 $x217) $x261)) (rewrite (= $x261 $x261)) (= (or $x260 $x217) $x261))))
+(let ((@x269 (mp ((_ quant-inst (+ n$ m$) 2) (or $x260 $x217)) @x268 $x261)))
+(let ((@x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x270)) (unit-resolution @x269 @x196 $x255) $x270)))
+(let ((?x498 (+ m$ ?x466 (* (- 2) (div m$ 2)))))
+(let (($x496 (= ?x498 0)))
+(let ((@x633 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (<= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (<= ?x498 0))))
+(let ((?x397 (* (- 4) ?x381)))
+(let ((?x398 (+ n$ ?x363 ?x397)))
+(let (($x403 (<= ?x398 0)))
+(let (($x396 (= ?x398 0)))
+(let ((@x640 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x403)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x403)))
+(let ((?x364 (+ ?x35 ?x363)))
+(let (($x379 (<= ?x364 0)))
+(let (($x365 (= ?x364 0)))
+(let (($x370 (or $x260 $x365)))
+(let ((?x330 (ite (<= 4 0) (* (- 1) (mod ?x222 (* (- 1) 4))) ?x329)))
+(let ((?x331 (ite (= 4 0) n$ ?x330)))
+(let (($x332 (= ?x35 ?x331)))
+(let ((@x342 (monotonicity (rewrite (= (* (- 1) 4) (- 4))) (= (mod ?x222 (* (- 1) 4)) (mod ?x222 (- 4))))))
+(let ((@x345 (monotonicity @x342 (= (* (- 1) (mod ?x222 (* (- 1) 4))) (* (- 1) (mod ?x222 (- 4)))))))
+(let ((@x348 (monotonicity (rewrite (= (<= 4 0) false)) @x345 (= ?x330 (ite false (* (- 1) (mod ?x222 (- 4))) ?x329)))))
+(let ((@x352 (trans @x348 (rewrite (= (ite false (* (- 1) (mod ?x222 (- 4))) ?x329) ?x329)) (= ?x330 ?x329))))
+(let ((@x355 (monotonicity (rewrite (= (= 4 0) false)) @x352 (= ?x331 (ite false n$ ?x329)))))
+(let ((@x362 (monotonicity (trans @x355 (rewrite (= (ite false n$ ?x329) ?x329)) (= ?x331 ?x329)) (= $x332 (= ?x35 ?x329)))))
+(let ((@x374 (monotonicity (trans @x362 (rewrite (= (= ?x35 ?x329) $x365)) (= $x332 $x365)) (= (or $x260 $x332) $x370))))
+(let ((@x378 (mp ((_ quant-inst n$ 4) (or $x260 $x332)) (trans @x374 (rewrite (= $x370 $x370)) (= (or $x260 $x332) $x370)) $x370)))
+(let ((@x645 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x379)) (unit-resolution @x378 @x196 $x365) $x379)))
+(let (($x435 (<= ?x35 3)))
+(let (($x37 (= ?x35 3)))
+(let ((@x38 (asserted $x37)))
+(let ((@x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x468) (>= ?x467 0))) (unit-resolution @x481 @x196 $x468) (>= ?x467 0))))
+(let ((@x656 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1 1 1 1) @x655 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x604) @x645 @x640 @x633 @x626 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x433)) @x33 $x433) @x617 (hypothesis $x609) false)))
+(let ((@x565 (unit-resolution (lemma @x656 (or (not $x604) $x523)) (unit-resolution @x564 @x384 $x609) (not $x604))))
+(let (($x295 (>= ?x289 0)))
+(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x287) $x295)) (unit-resolution ((_ th-lemma arith) (or false $x287)) @x26 $x287) $x295)))
+(let (($x434 (>= ?x31 0)))
+(let (($x271 (>= ?x254 0)))
+(let ((@x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x255) $x271)) (unit-resolution @x269 @x196 $x255) $x271)))
+(let ((@x537 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x496) (>= ?x498 0))) (unit-resolution ((_ th-lemma arith) (or false $x496)) @x26 $x496) (>= ?x498 0))))
+(let ((@x549 (unit-resolution ((_ th-lemma arith) (or false (>= ?x439 0))) @x26 (>= ?x439 0))))
+(let (($x404 (>= ?x398 0)))
+(let ((@x552 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x396) $x404)) (unit-resolution ((_ th-lemma arith) (or false $x396)) @x26 $x396) $x404)))
+(let (($x380 (>= ?x364 0)))
+(let ((@x274 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x365) $x380)) (unit-resolution @x378 @x196 $x365) $x380)))
+(let (($x436 (>= ?x35 3)))
+(let ((@x545 ((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x274 @x552 @x549 @x537 @x531 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x32) $x434)) @x33 $x434) @x566 @x565 false)))
+(let (($x171 (or $x169 (not $x43))))
+(let ((@x177 (monotonicity (rewrite (= (and $x41 $x43) (not $x171))) (= (not (and $x41 $x43)) (not (not $x171))))))
+(let ((@x181 (trans @x177 (rewrite (= (not (not $x171)) $x171)) (= (not (and $x41 $x43)) $x171))))
+(let ((@x182 (mp (asserted (not (and $x41 $x43))) @x181 $x171)))
+(let ((@x729 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x41 (not $x514) $x725)) (unit-resolution @x182 (lemma @x545 $x43) $x169) (or (not $x514) $x725))))
+(let ((?x420 (* (- 2) ?x410)))
+(let ((?x421 (+ n$ ?x420 ?x534)))
+(let (($x426 (<= ?x421 0)))
+(let (($x419 (= ?x421 0)))
+(let ((@x737 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x426)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x426)))
+(let (($x409 (>= ?x535 0)))
+(let ((@x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x490) $x409)) (unit-resolution @x407 @x196 $x490) $x409)))
+(let ((@x742 ((_ th-lemma arith farkas -1 1 -2 1 1 1 1) @x741 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x435)) @x38 $x435) (hypothesis $x706) @x640 @x737 @x645 (unit-resolution @x729 @x722 $x725) false)))
+(let (($x427 (>= ?x421 0)))
+(let ((@x584 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x419) $x427)) (unit-resolution ((_ th-lemma arith) (or false $x419)) @x26 $x419) $x427)))
+(let (($x542 (>= ?x519 0)))
+((_ th-lemma arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x37) $x436)) @x38 $x436) @x552 (unit-resolution ((_ th-lemma arith) (or false $x542)) @x26 $x542) @x584 @x274 (lemma @x742 (not $x706)) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+53b87189d4fa854317dcd8674e77536e36b623a9 12 0
 unsat
 ((set-logic AUFLIRA)
 (proof
-(let ((?x8 (* 2.0 |x$|)))
-(let ((?x10 (+ ?x8 1.0)))
-(let ((?x6 (+ |x$| |x$|)))
-(let (($x11 (< ?x6 ?x10)))
-(let (($x12 (or false $x11)))
-(let (($x13 (or $x11 $x12)))
-(let (($x14 (not $x13)))
-(let ((@x65 (monotonicity (rewrite (= (< ?x8 (+ 1.0 ?x8)) true)) (= (not (< ?x8 (+ 1.0 ?x8))) (not true)))))
-(let ((@x69 (trans @x65 (rewrite (= (not true) false)) (= (not (< ?x8 (+ 1.0 ?x8))) false))))
-(let ((?x38 (+ 1.0 ?x8)))
-(let (($x41 (< ?x8 ?x38)))
-(let ((@x43 (monotonicity (rewrite (= ?x6 ?x8)) (rewrite (= ?x10 ?x38)) (= $x11 $x41))))
-(let ((@x50 (trans (monotonicity @x43 (= $x12 (or false $x41))) (rewrite (= (or false $x41) $x41)) (= $x12 $x41))))
-(let ((@x57 (trans (monotonicity @x43 @x50 (= $x13 (or $x41 $x41))) (rewrite (= (or $x41 $x41) $x41)) (= $x13 $x41))))
-(let ((@x60 (monotonicity @x57 (= $x14 (not $x41)))))
-(mp (asserted $x14) (trans @x60 @x69 (= $x14 false)) false))))))))))))))))))
+(let (($x27 (exists ((?v0 Real) )false)
+))
+(let (($x28 (not $x27)))
+(let (($x29 (not $x28)))
+(let ((@x35 (monotonicity (elim-unused (= $x27 false)) (= $x28 (not false)))))
+(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x28 true)) (= $x29 (not true)))))
+(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
+(mp (asserted $x29) @x46 false)))))))))
 
-bbf5431bd7e9448dc98de52e9b465f05ca123636 113 0
+c290998049722e9064991552da49de93b1870890 12 0
 unsat
-((set-logic <null>)
-(proof
-(let ((?x215 (mod |x$| 2)))
-(let ((?x249 (* (~ 1) ?x215)))
-(let ((?x9 (|mod$| |x$| 2)))
-(let ((?x250 (+ ?x9 ?x249)))
-(let (($x267 (>= ?x250 0)))
-(let (($x251 (= ?x250 0)))
-(let (($x203 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x30 (mod ?v0 ?v1)))
-(let ((?x99 (* (~ 1) ?v1)))
-(let ((?x96 (* (~ 1) ?v0)))
-(let ((?x142 (mod ?x96 ?x99)))
-(let ((?x148 (* (~ 1) ?x142)))
-(let (($x117 (<= ?v1 0)))
-(let ((?x168 (ite $x117 ?x148 ?x30)))
-(let (($x19 (= ?v1 0)))
-(let ((?x173 (ite $x19 ?v0 ?x168)))
-(let ((?x29 (|mod$| ?v0 ?v1)))
-(= ?x29 ?x173))))))))))) :pattern ( (|mod$| ?v0 ?v1) )))
-))
-(let (($x179 (forall ((?v0 Int) (?v1 Int) )(let ((?x30 (mod ?v0 ?v1)))
-(let ((?x99 (* (~ 1) ?v1)))
-(let ((?x96 (* (~ 1) ?v0)))
-(let ((?x142 (mod ?x96 ?x99)))
-(let ((?x148 (* (~ 1) ?x142)))
-(let (($x117 (<= ?v1 0)))
-(let ((?x168 (ite $x117 ?x148 ?x30)))
-(let (($x19 (= ?v1 0)))
-(let ((?x173 (ite $x19 ?v0 ?x168)))
-(let ((?x29 (|mod$| ?v0 ?v1)))
-(= ?x29 ?x173))))))))))))
-))
-(let ((?x30 (mod ?1 ?0)))
-(let ((?x99 (* (~ 1) ?0)))
-(let ((?x96 (* (~ 1) ?1)))
-(let ((?x142 (mod ?x96 ?x99)))
-(let ((?x148 (* (~ 1) ?x142)))
-(let (($x117 (<= ?0 0)))
-(let ((?x168 (ite $x117 ?x148 ?x30)))
-(let (($x19 (= ?0 0)))
-(let ((?x173 (ite $x19 ?1 ?x168)))
-(let ((?x29 (|mod$| ?1 ?0)))
-(let (($x176 (= ?x29 ?x173)))
-(let (($x36 (forall ((?v0 Int) (?v1 Int) )(let (($x19 (= ?v1 0)))
-(let ((?x34 (ite $x19 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
-(let ((?x29 (|mod$| ?v0 ?v1)))
-(= ?x29 ?x34)))))
-))
-(let (($x162 (forall ((?v0 Int) (?v1 Int) )(let ((?x99 (* (~ 1) ?v1)))
-(let ((?x96 (* (~ 1) ?v0)))
-(let ((?x142 (mod ?x96 ?x99)))
-(let ((?x148 (* (~ 1) ?x142)))
-(let ((?x30 (mod ?v0 ?v1)))
-(let (($x20 (< 0 ?v1)))
-(let ((?x153 (ite $x20 ?x30 ?x148)))
-(let (($x19 (= ?v1 0)))
-(let ((?x156 (ite $x19 ?v0 ?x153)))
-(let ((?x29 (|mod$| ?v0 ?v1)))
-(= ?x29 ?x156))))))))))))
-))
-(let ((@x167 (monotonicity (rewrite (= (< 0 ?0) (not $x117))) (= (ite (< 0 ?0) ?x30 ?x148) (ite (not $x117) ?x30 ?x148)))))
-(let ((@x172 (trans @x167 (rewrite (= (ite (not $x117) ?x30 ?x148) ?x168)) (= (ite (< 0 ?0) ?x30 ?x148) ?x168))))
-(let ((@x175 (monotonicity @x172 (= (ite $x19 ?1 (ite (< 0 ?0) ?x30 ?x148)) ?x173))))
-(let ((@x178 (monotonicity @x175 (= (= ?x29 (ite $x19 ?1 (ite (< 0 ?0) ?x30 ?x148))) $x176))))
-(let (($x20 (< 0 ?0)))
-(let ((?x153 (ite $x20 ?x30 ?x148)))
-(let ((?x156 (ite $x19 ?1 ?x153)))
-(let (($x159 (= ?x29 ?x156)))
-(let (($x160 (= (= ?x29 (ite $x19 ?1 (ite $x20 ?x30 (- (mod (- ?1) (- ?0)))))) $x159)))
-(let ((@x144 (monotonicity (rewrite (= (- ?1) ?x96)) (rewrite (= (- ?0) ?x99)) (= (mod (- ?1) (- ?0)) ?x142))))
-(let ((@x152 (trans (monotonicity @x144 (= (- (mod (- ?1) (- ?0))) (- ?x142))) (rewrite (= (- ?x142) ?x148)) (= (- (mod (- ?1) (- ?0))) ?x148))))
-(let ((@x155 (monotonicity @x152 (= (ite $x20 ?x30 (- (mod (- ?1) (- ?0)))) ?x153))))
-(let ((@x158 (monotonicity @x155 (= (ite $x19 ?1 (ite $x20 ?x30 (- (mod (- ?1) (- ?0))))) ?x156))))
-(let ((@x183 (trans (|quant-intro| (monotonicity @x158 $x160) (= $x36 $x162)) (|quant-intro| @x178 (= $x162 $x179)) (= $x36 $x179))))
-(let ((@x194 (|mp~| (mp (asserted $x36) @x183 $x179) (|nnf-pos| (refl (|~| $x176 $x176)) (|~| $x179 $x179)) $x179)))
-(let ((@x208 (mp @x194 (|quant-intro| (refl (= $x176 $x176)) (= $x179 $x203)) $x203)))
-(let (($x257 (or (not $x203) $x251)))
-(let ((?x212 (* (~ 1) 2)))
-(let ((?x211 (* (~ 1) |x$|)))
-(let ((?x213 (mod ?x211 ?x212)))
-(let ((?x214 (* (~ 1) ?x213)))
-(let (($x210 (<= 2 0)))
-(let ((?x216 (ite $x210 ?x214 ?x215)))
-(let (($x209 (= 2 0)))
-(let ((?x217 (ite $x209 |x$| ?x216)))
-(let (($x218 (= ?x9 ?x217)))
-(let ((@x231 (monotonicity (monotonicity (rewrite (= ?x212 (~ 2))) (= ?x213 (mod ?x211 (~ 2)))) (= ?x214 (* (~ 1) (mod ?x211 (~ 2)))))))
-(let ((@x234 (monotonicity (rewrite (= $x210 false)) @x231 (= ?x216 (ite false (* (~ 1) (mod ?x211 (~ 2))) ?x215)))))
-(let ((@x238 (trans @x234 (rewrite (= (ite false (* (~ 1) (mod ?x211 (~ 2))) ?x215) ?x215)) (= ?x216 ?x215))))
-(let ((@x241 (monotonicity (rewrite (= $x209 false)) @x238 (= ?x217 (ite false |x$| ?x215)))))
-(let ((@x248 (monotonicity (trans @x241 (rewrite (= (ite false |x$| ?x215) ?x215)) (= ?x217 ?x215)) (= $x218 (= ?x9 ?x215)))))
-(let ((@x261 (monotonicity (trans @x248 (rewrite (= (= ?x9 ?x215) $x251)) (= $x218 $x251)) (= (or (not $x203) $x218) $x257))))
-(let ((@x264 (trans @x261 (rewrite (= $x257 $x257)) (= (or (not $x203) $x218) $x257))))
-(let ((@x265 (mp ((_ |quant-inst| |x$| 2) (or (not $x203) $x218)) @x264 $x257)))
-(let ((@x324 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x251) $x267)) (|unit-resolution| @x265 @x208 $x251) $x267)))
-(let (($x292 (>= ?x215 0)))
-(let (($x83 (>= ?x9 0)))
-(let (($x86 (not $x83)))
-(let (($x14 (not (<= (+ |x$| 1) (+ |x$| (+ (* 2 ?x9) 1))))))
-(let ((@x88 (monotonicity (rewrite (= (>= (* 2 ?x9) 0) $x83)) (= (not (>= (* 2 ?x9) 0)) $x86))))
-(let ((?x10 (* 2 ?x9)))
-(let ((?x66 (+ 1 |x$| ?x10)))
-(let (($x71 (<= (+ 1 |x$|) ?x66)))
-(let (($x74 (not $x71)))
-(let ((@x82 (monotonicity (rewrite (= $x71 (>= ?x10 0))) (= $x74 (not (>= ?x10 0))))))
-(let ((@x65 (monotonicity (rewrite (= (+ ?x10 1) (+ 1 ?x10))) (= (+ |x$| (+ ?x10 1)) (+ |x$| (+ 1 ?x10))))))
-(let ((@x70 (trans @x65 (rewrite (= (+ |x$| (+ 1 ?x10)) ?x66)) (= (+ |x$| (+ ?x10 1)) ?x66))))
-(let ((@x73 (monotonicity (rewrite (= (+ |x$| 1) (+ 1 |x$|))) @x70 (= (<= (+ |x$| 1) (+ |x$| (+ ?x10 1))) $x71))))
-(let ((@x92 (trans (monotonicity @x73 (= $x14 $x74)) (trans @x82 @x88 (= $x74 $x86)) (= $x14 $x86))))
-(let ((@x93 (mp (asserted $x14) @x92 $x86)))
-((_ |th-lemma| arith farkas -1 1 1) @x93 (|unit-resolution| ((_ |th-lemma| arith) (or false $x292)) (|true-axiom| true) $x292) @x324 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
-
-b5183bee77d63a5b887fd6f1c6035b47d90e65cb 112 0
-unsat
-((set-logic <null>)
-(proof
-(let ((?x211 (mod |x$| 2)))
-(let (($x305 (>= ?x211 2)))
-(let (($x306 (not $x305)))
-(let ((?x245 (* (~ 1) ?x211)))
-(let ((?x7 (|mod$| |x$| 2)))
-(let ((?x246 (+ ?x7 ?x245)))
-(let (($x262 (<= ?x246 0)))
-(let (($x247 (= ?x246 0)))
-(let (($x199 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x29 (mod ?v0 ?v1)))
-(let ((?x95 (* (~ 1) ?v1)))
-(let ((?x92 (* (~ 1) ?v0)))
-(let ((?x138 (mod ?x92 ?x95)))
-(let ((?x144 (* (~ 1) ?x138)))
-(let (($x113 (<= ?v1 0)))
-(let ((?x164 (ite $x113 ?x144 ?x29)))
-(let (($x18 (= ?v1 0)))
-(let ((?x169 (ite $x18 ?v0 ?x164)))
-(let ((?x28 (|mod$| ?v0 ?v1)))
-(= ?x28 ?x169))))))))))) :pattern ( (|mod$| ?v0 ?v1) )))
-))
-(let (($x175 (forall ((?v0 Int) (?v1 Int) )(let ((?x29 (mod ?v0 ?v1)))
-(let ((?x95 (* (~ 1) ?v1)))
-(let ((?x92 (* (~ 1) ?v0)))
-(let ((?x138 (mod ?x92 ?x95)))
-(let ((?x144 (* (~ 1) ?x138)))
-(let (($x113 (<= ?v1 0)))
-(let ((?x164 (ite $x113 ?x144 ?x29)))
-(let (($x18 (= ?v1 0)))
-(let ((?x169 (ite $x18 ?v0 ?x164)))
-(let ((?x28 (|mod$| ?v0 ?v1)))
-(= ?x28 ?x169))))))))))))
-))
-(let ((?x29 (mod ?1 ?0)))
-(let ((?x95 (* (~ 1) ?0)))
-(let ((?x92 (* (~ 1) ?1)))
-(let ((?x138 (mod ?x92 ?x95)))
-(let ((?x144 (* (~ 1) ?x138)))
-(let (($x113 (<= ?0 0)))
-(let ((?x164 (ite $x113 ?x144 ?x29)))
-(let (($x18 (= ?0 0)))
-(let ((?x169 (ite $x18 ?1 ?x164)))
-(let ((?x28 (|mod$| ?1 ?0)))
-(let (($x172 (= ?x28 ?x169)))
-(let (($x35 (forall ((?v0 Int) (?v1 Int) )(let (($x18 (= ?v1 0)))
-(let ((?x33 (ite $x18 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
-(let ((?x28 (|mod$| ?v0 ?v1)))
-(= ?x28 ?x33)))))
-))
-(let (($x158 (forall ((?v0 Int) (?v1 Int) )(let ((?x95 (* (~ 1) ?v1)))
-(let ((?x92 (* (~ 1) ?v0)))
-(let ((?x138 (mod ?x92 ?x95)))
-(let ((?x144 (* (~ 1) ?x138)))
-(let ((?x29 (mod ?v0 ?v1)))
-(let (($x19 (< 0 ?v1)))
-(let ((?x149 (ite $x19 ?x29 ?x144)))
-(let (($x18 (= ?v1 0)))
-(let ((?x152 (ite $x18 ?v0 ?x149)))
-(let ((?x28 (|mod$| ?v0 ?v1)))
-(= ?x28 ?x152))))))))))))
-))
-(let ((@x163 (monotonicity (rewrite (= (< 0 ?0) (not $x113))) (= (ite (< 0 ?0) ?x29 ?x144) (ite (not $x113) ?x29 ?x144)))))
-(let ((@x168 (trans @x163 (rewrite (= (ite (not $x113) ?x29 ?x144) ?x164)) (= (ite (< 0 ?0) ?x29 ?x144) ?x164))))
-(let ((@x171 (monotonicity @x168 (= (ite $x18 ?1 (ite (< 0 ?0) ?x29 ?x144)) ?x169))))
-(let ((@x174 (monotonicity @x171 (= (= ?x28 (ite $x18 ?1 (ite (< 0 ?0) ?x29 ?x144))) $x172))))
-(let (($x19 (< 0 ?0)))
-(let ((?x149 (ite $x19 ?x29 ?x144)))
-(let ((?x152 (ite $x18 ?1 ?x149)))
-(let (($x155 (= ?x28 ?x152)))
-(let (($x156 (= (= ?x28 (ite $x18 ?1 (ite $x19 ?x29 (- (mod (- ?1) (- ?0)))))) $x155)))
-(let ((@x140 (monotonicity (rewrite (= (- ?1) ?x92)) (rewrite (= (- ?0) ?x95)) (= (mod (- ?1) (- ?0)) ?x138))))
-(let ((@x148 (trans (monotonicity @x140 (= (- (mod (- ?1) (- ?0))) (- ?x138))) (rewrite (= (- ?x138) ?x144)) (= (- (mod (- ?1) (- ?0))) ?x144))))
-(let ((@x151 (monotonicity @x148 (= (ite $x19 ?x29 (- (mod (- ?1) (- ?0)))) ?x149))))
-(let ((@x154 (monotonicity @x151 (= (ite $x18 ?1 (ite $x19 ?x29 (- (mod (- ?1) (- ?0))))) ?x152))))
-(let ((@x179 (trans (|quant-intro| (monotonicity @x154 $x156) (= $x35 $x158)) (|quant-intro| @x174 (= $x158 $x175)) (= $x35 $x175))))
-(let ((@x190 (|mp~| (mp (asserted $x35) @x179 $x175) (|nnf-pos| (refl (|~| $x172 $x172)) (|~| $x175 $x175)) $x175)))
-(let ((@x204 (mp @x190 (|quant-intro| (refl (= $x172 $x172)) (= $x175 $x199)) $x199)))
-(let (($x253 (or (not $x199) $x247)))
-(let ((?x208 (* (~ 1) 2)))
-(let ((?x207 (* (~ 1) |x$|)))
-(let ((?x209 (mod ?x207 ?x208)))
-(let ((?x210 (* (~ 1) ?x209)))
-(let (($x206 (<= 2 0)))
-(let ((?x212 (ite $x206 ?x210 ?x211)))
-(let (($x205 (= 2 0)))
-(let ((?x213 (ite $x205 |x$| ?x212)))
-(let (($x214 (= ?x7 ?x213)))
-(let ((@x227 (monotonicity (monotonicity (rewrite (= ?x208 (~ 2))) (= ?x209 (mod ?x207 (~ 2)))) (= ?x210 (* (~ 1) (mod ?x207 (~ 2)))))))
-(let ((@x230 (monotonicity (rewrite (= $x206 false)) @x227 (= ?x212 (ite false (* (~ 1) (mod ?x207 (~ 2))) ?x211)))))
-(let ((@x234 (trans @x230 (rewrite (= (ite false (* (~ 1) (mod ?x207 (~ 2))) ?x211) ?x211)) (= ?x212 ?x211))))
-(let ((@x237 (monotonicity (rewrite (= $x205 false)) @x234 (= ?x213 (ite false |x$| ?x211)))))
-(let ((@x244 (monotonicity (trans @x237 (rewrite (= (ite false |x$| ?x211) ?x211)) (= ?x213 ?x211)) (= $x214 (= ?x7 ?x211)))))
-(let ((@x257 (monotonicity (trans @x244 (rewrite (= (= ?x7 ?x211) $x247)) (= $x214 $x247)) (= (or (not $x199) $x214) $x253))))
-(let ((@x260 (trans @x257 (rewrite (= $x253 $x253)) (= (or (not $x199) $x214) $x253))))
-(let ((@x261 (mp ((_ |quant-inst| |x$| 2) (or (not $x199) $x214)) @x260 $x253)))
-(let ((@x323 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x247) $x262)) (|unit-resolution| @x261 @x204 $x247) $x262)))
-(let (($x82 (>= ?x7 2)))
-(let ((?x56 (* 2 ?x7)))
-(let (($x75 (>= ?x56 3)))
-(let (($x65 (< (+ |x$| ?x56) (+ 3 |x$|))))
-(let (($x68 (not $x65)))
-(let ((@x77 (monotonicity (rewrite (= $x65 (not $x75))) (= $x68 (not (not $x75))))))
-(let ((@x86 (trans (trans @x77 (rewrite (= (not (not $x75)) $x75)) (= $x68 $x75)) (rewrite (= $x75 $x82)) (= $x68 $x82))))
-(let ((@x61 (monotonicity (rewrite (= (+ ?x7 ?x7) ?x56)) (= (+ |x$| (+ ?x7 ?x7)) (+ |x$| ?x56)))))
-(let ((@x67 (monotonicity @x61 (rewrite (= (+ |x$| 3) (+ 3 |x$|))) (= (< (+ |x$| (+ ?x7 ?x7)) (+ |x$| 3)) $x65))))
-(let ((@x70 (monotonicity @x67 (= (not (< (+ |x$| (+ ?x7 ?x7)) (+ |x$| 3))) $x68))))
-(let ((@x88 (trans @x70 @x86 (= (not (< (+ |x$| (+ ?x7 ?x7)) (+ |x$| 3))) $x82))))
-(let ((@x89 (mp (asserted (not (< (+ |x$| (+ ?x7 ?x7)) (+ |x$| 3)))) @x88 $x82)))
-((_ |th-lemma| arith farkas -1 1 1) @x89 @x323 (|unit-resolution| ((_ |th-lemma| arith) (or false $x306)) (|true-axiom| true) $x306) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
-
-fb75370f1b646783db5a9a683587f9b2b11bd686 32 0
-unsat
-((set-logic <null>)
+((set-logic AUFLIA)
 (proof
-(let (($x7 (= |x$| 0.0)))
-(let (($x8 (not $x7)))
-(let ((@x43 (asserted $x8)))
-(let (($x99 (<= |x$| 0.0)))
-(let ((?x45 (* 2.0 |x$|)))
-(let (($x97 (<= ?x45 0.0)))
-(let (($x93 (= ?x45 0.0)))
-(let (($x14 (< 1.0 (ite (< |x$| 0.0) (- |x$|) |x$|))))
-(let (($x16 (or $x14 (not $x14))))
-(let ((?x19 (ite $x16 4.0 2.0)))
-(let (($x23 (not (not (= (+ |x$| |x$|) (* ?x19 |x$|))))))
-(let ((@x88 (rewrite (= (not (not (= ?x45 (* 4.0 |x$|)))) (= ?x45 (* 4.0 |x$|))))))
-(let (($x82 (= (not (= (+ |x$| |x$|) (* ?x19 |x$|))) (not (= ?x45 (* 4.0 |x$|))))))
-(let (($x55 (< 1.0 (ite (< |x$| 0.0) (* (~ 1.0) |x$|) |x$|))))
-(let (($x53 (= (ite (< |x$| 0.0) (- |x$|) |x$|) (ite (< |x$| 0.0) (* (~ 1.0) |x$|) |x$|))))
-(let ((@x57 (monotonicity (monotonicity (rewrite (= (- |x$|) (* (~ 1.0) |x$|))) $x53) (= $x14 $x55))))
-(let ((@x63 (monotonicity @x57 (monotonicity @x57 (= (not $x14) (not $x55))) (= $x16 (or $x55 (not $x55))))))
-(let ((@x67 (trans @x63 (rewrite (= (or $x55 (not $x55)) true)) (= $x16 true))))
-(let ((@x74 (trans (monotonicity @x67 (= ?x19 (ite true 4.0 2.0))) (rewrite (= (ite true 4.0 2.0) 4.0)) (= ?x19 4.0))))
-(let ((@x80 (monotonicity (rewrite (= (+ |x$| |x$|) ?x45)) (monotonicity @x74 (= (* ?x19 |x$|) (* 4.0 |x$|))) (= (= (+ |x$| |x$|) (* ?x19 |x$|)) (= ?x45 (* 4.0 |x$|))))))
-(let ((@x86 (monotonicity (monotonicity @x80 $x82) (= $x23 (not (not (= ?x45 (* 4.0 |x$|))))))))
-(let ((@x95 (trans (trans @x86 @x88 (= $x23 (= ?x45 (* 4.0 |x$|)))) (rewrite (= (= ?x45 (* 4.0 |x$|)) $x93)) (= $x23 $x93))))
-(let ((@x96 (mp (asserted $x23) @x95 $x93)))
-(let ((@x108 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1) (or $x99 (not $x97))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x93) $x97)) @x96 $x97) $x99)))
-(let (($x100 (>= |x$| 0.0)))
-(let (($x98 (>= ?x45 0.0)))
-(let ((@x115 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1) (or $x100 (not $x98))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x93) $x98)) @x96 $x98) $x100)))
-(|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x7 (not $x99) (not $x100))) @x115 @x108 @x43 false))))))))))))))))))))))))))))))
+(let (($x28 (exists ((?v0 Int) )false)
+))
+(let (($x27 (not $x28)))
+(let (($x29 (not $x27)))
+(let ((@x35 (monotonicity (elim-unused (= $x28 false)) (= $x27 (not false)))))
+(let ((@x42 (monotonicity (trans @x35 (rewrite (= (not false) true)) (= $x27 true)) (= $x29 (not true)))))
+(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= $x29 false))))
+(mp (asserted $x29) @x46 false)))))))))
 
-bba1efa8562001b979c24cfd840c5185f0dad8b2 242 0
-unsat
-((set-logic <null>)
-(proof
-(let ((?x471 (div |m$| 2)))
-(let ((?x531 (* (~ 1) ?x471)))
-(let ((?x426 (mod |m$| 2)))
-(let ((?x453 (* (~ 1) ?x426)))
-(let ((?x368 (div |n$| 4)))
-(let ((?x541 (* (~ 2) ?x368)))
-(let ((?x316 (mod |n$| 4)))
-(let ((?x350 (* (~ 1) ?x316)))
-(let ((?x7 (+ |n$| |m$|)))
-(let ((?x259 (div ?x7 2)))
-(let ((?x540 (* (~ 1) ?x259)))
-(let ((?x201 (mod ?x7 2)))
-(let ((?x240 (* (~ 1) ?x201)))
-(let ((?x13 (|mod$| |n$| 4)))
-(let ((?x9 (|mod$| ?x7 2)))
-(let ((?x534 (+ |n$| |m$| ?x9 ?x13 ?x240 ?x540 ?x350 ?x541 ?x453 ?x531)))
-(let (($x535 (>= ?x534 2)))
-(let (($x492 (>= ?x426 0)))
-(let ((@x62 (|true-axiom| true)))
-(let ((?x484 (* (~ 2) ?x471)))
-(let ((?x485 (+ |m$| ?x453 ?x484)))
-(let (($x490 (<= ?x485 0)))
-(let (($x483 (= ?x485 0)))
-(let ((@x379 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x483) $x490)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x483)) @x62 $x483) $x490)))
-(let ((?x351 (+ ?x13 ?x350)))
-(let (($x366 (<= ?x351 0)))
-(let (($x352 (= ?x351 0)))
-(let (($x189 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x37 (mod ?v0 ?v1)))
-(let ((?x71 (* (~ 1) ?v1)))
-(let ((?x68 (* (~ 1) ?v0)))
-(let ((?x114 (mod ?x68 ?x71)))
-(let ((?x120 (* (~ 1) ?x114)))
-(let (($x89 (<= ?v1 0)))
-(let ((?x140 (ite $x89 ?x120 ?x37)))
-(let (($x26 (= ?v1 0)))
-(let ((?x145 (ite $x26 ?v0 ?x140)))
-(let ((?x36 (|mod$| ?v0 ?v1)))
-(= ?x36 ?x145))))))))))) :pattern ( (|mod$| ?v0 ?v1) )))
-))
-(let (($x151 (forall ((?v0 Int) (?v1 Int) )(let ((?x37 (mod ?v0 ?v1)))
-(let ((?x71 (* (~ 1) ?v1)))
-(let ((?x68 (* (~ 1) ?v0)))
-(let ((?x114 (mod ?x68 ?x71)))
-(let ((?x120 (* (~ 1) ?x114)))
-(let (($x89 (<= ?v1 0)))
-(let ((?x140 (ite $x89 ?x120 ?x37)))
-(let (($x26 (= ?v1 0)))
-(let ((?x145 (ite $x26 ?v0 ?x140)))
-(let ((?x36 (|mod$| ?v0 ?v1)))
-(= ?x36 ?x145))))))))))))
-))
-(let ((?x37 (mod ?1 ?0)))
-(let ((?x71 (* (~ 1) ?0)))
-(let ((?x68 (* (~ 1) ?1)))
-(let ((?x114 (mod ?x68 ?x71)))
-(let ((?x120 (* (~ 1) ?x114)))
-(let (($x89 (<= ?0 0)))
-(let ((?x140 (ite $x89 ?x120 ?x37)))
-(let (($x26 (= ?0 0)))
-(let ((?x145 (ite $x26 ?1 ?x140)))
-(let ((?x36 (|mod$| ?1 ?0)))
-(let (($x148 (= ?x36 ?x145)))
-(let (($x43 (forall ((?v0 Int) (?v1 Int) )(let (($x26 (= ?v1 0)))
-(let ((?x41 (ite $x26 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
-(let ((?x36 (|mod$| ?v0 ?v1)))
-(= ?x36 ?x41)))))
-))
-(let (($x134 (forall ((?v0 Int) (?v1 Int) )(let ((?x71 (* (~ 1) ?v1)))
-(let ((?x68 (* (~ 1) ?v0)))
-(let ((?x114 (mod ?x68 ?x71)))
-(let ((?x120 (* (~ 1) ?x114)))
-(let ((?x37 (mod ?v0 ?v1)))
-(let (($x27 (< 0 ?v1)))
-(let ((?x125 (ite $x27 ?x37 ?x120)))
-(let (($x26 (= ?v1 0)))
-(let ((?x128 (ite $x26 ?v0 ?x125)))
-(let ((?x36 (|mod$| ?v0 ?v1)))
-(= ?x36 ?x128))))))))))))
-))
-(let ((@x139 (monotonicity (rewrite (= (< 0 ?0) (not $x89))) (= (ite (< 0 ?0) ?x37 ?x120) (ite (not $x89) ?x37 ?x120)))))
-(let ((@x144 (trans @x139 (rewrite (= (ite (not $x89) ?x37 ?x120) ?x140)) (= (ite (< 0 ?0) ?x37 ?x120) ?x140))))
-(let ((@x147 (monotonicity @x144 (= (ite $x26 ?1 (ite (< 0 ?0) ?x37 ?x120)) ?x145))))
-(let ((@x150 (monotonicity @x147 (= (= ?x36 (ite $x26 ?1 (ite (< 0 ?0) ?x37 ?x120))) $x148))))
-(let (($x27 (< 0 ?0)))
-(let ((?x125 (ite $x27 ?x37 ?x120)))
-(let ((?x128 (ite $x26 ?1 ?x125)))
-(let (($x131 (= ?x36 ?x128)))
-(let (($x132 (= (= ?x36 (ite $x26 ?1 (ite $x27 ?x37 (- (mod (- ?1) (- ?0)))))) $x131)))
-(let ((@x116 (monotonicity (rewrite (= (- ?1) ?x68)) (rewrite (= (- ?0) ?x71)) (= (mod (- ?1) (- ?0)) ?x114))))
-(let ((@x124 (trans (monotonicity @x116 (= (- (mod (- ?1) (- ?0))) (- ?x114))) (rewrite (= (- ?x114) ?x120)) (= (- (mod (- ?1) (- ?0))) ?x120))))
-(let ((@x127 (monotonicity @x124 (= (ite $x27 ?x37 (- (mod (- ?1) (- ?0)))) ?x125))))
-(let ((@x130 (monotonicity @x127 (= (ite $x26 ?1 (ite $x27 ?x37 (- (mod (- ?1) (- ?0))))) ?x128))))
-(let ((@x155 (trans (|quant-intro| (monotonicity @x130 $x132) (= $x43 $x134)) (|quant-intro| @x150 (= $x134 $x151)) (= $x43 $x151))))
-(let ((@x166 (|mp~| (mp (asserted $x43) @x155 $x151) (|nnf-pos| (refl (|~| $x148 $x148)) (|~| $x151 $x151)) $x151)))
-(let ((@x194 (mp @x166 (|quant-intro| (refl (= $x148 $x148)) (= $x151 $x189)) $x189)))
-(let (($x247 (not $x189)))
-(let (($x357 (or $x247 $x352)))
-(let ((?x317 (ite (<= 4 0) (* (~ 1) (mod (* (~ 1) |n$|) (* (~ 1) 4))) ?x316)))
-(let ((?x318 (ite (= 4 0) |n$| ?x317)))
-(let (($x319 (= ?x13 ?x318)))
-(let ((@x337 (rewrite (= (ite false (* (~ 1) (mod (* (~ 1) |n$|) (~ 4))) ?x316) ?x316))))
-(let (($x331 (= (* (~ 1) (mod (* (~ 1) |n$|) (* (~ 1) 4))) (* (~ 1) (mod (* (~ 1) |n$|) (~ 4))))))
-(let ((@x329 (monotonicity (rewrite (= (* (~ 1) 4) (~ 4))) (= (mod (* (~ 1) |n$|) (* (~ 1) 4)) (mod (* (~ 1) |n$|) (~ 4))))))
-(let ((@x335 (monotonicity (rewrite (= (<= 4 0) false)) (monotonicity @x329 $x331) (= ?x317 (ite false (* (~ 1) (mod (* (~ 1) |n$|) (~ 4))) ?x316)))))
-(let ((@x342 (monotonicity (rewrite (= (= 4 0) false)) (trans @x335 @x337 (= ?x317 ?x316)) (= ?x318 (ite false |n$| ?x316)))))
-(let ((@x349 (monotonicity (trans @x342 (rewrite (= (ite false |n$| ?x316) ?x316)) (= ?x318 ?x316)) (= $x319 (= ?x13 ?x316)))))
-(let ((@x361 (monotonicity (trans @x349 (rewrite (= (= ?x13 ?x316) $x352)) (= $x319 $x352)) (= (or $x247 $x319) $x357))))
-(let ((@x365 (mp ((_ |quant-inst| |n$| 4) (or $x247 $x319)) (trans @x361 (rewrite (= $x357 $x357)) (= (or $x247 $x319) $x357)) $x357)))
-(let ((@x570 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x352) $x366)) (|unit-resolution| @x365 @x194 $x352) $x366)))
-(let ((?x275 (* (~ 2) ?x259)))
-(let ((?x276 (+ |n$| |m$| ?x240 ?x275)))
-(let (($x281 (<= ?x276 0)))
-(let (($x274 (= ?x276 0)))
-(let ((@x560 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x274) $x281)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x274)) @x62 $x274) $x281)))
-(let ((?x241 (+ ?x9 ?x240)))
-(let (($x257 (<= ?x241 0)))
-(let (($x242 (= ?x241 0)))
-(let (($x248 (or $x247 $x242)))
-(let (($x196 (<= 2 0)))
-(let ((?x202 (ite $x196 (* (~ 1) (mod (* (~ 1) ?x7) (* (~ 1) 2))) ?x201)))
-(let (($x195 (= 2 0)))
-(let ((?x203 (ite $x195 ?x7 ?x202)))
-(let (($x204 (= ?x9 ?x203)))
-(let ((?x223 (ite false (* (~ 1) (mod (+ (* (~ 1) |n$|) (* (~ 1) |m$|)) (~ 2))) ?x201)))
-(let (($x221 (= (* (~ 1) (mod (* (~ 1) ?x7) (* (~ 1) 2))) (* (~ 1) (mod (+ (* (~ 1) |n$|) (* (~ 1) |m$|)) (~ 2))))))
-(let (($x218 (= (mod (* (~ 1) ?x7) (* (~ 1) 2)) (mod (+ (* (~ 1) |n$|) (* (~ 1) |m$|)) (~ 2)))))
-(let ((@x216 (rewrite (= (* (~ 1) 2) (~ 2)))))
-(let ((@x219 (monotonicity (rewrite (= (* (~ 1) ?x7) (+ (* (~ 1) |n$|) (* (~ 1) |m$|)))) @x216 $x218)))
-(let ((@x208 (rewrite (= $x196 false))))
-(let ((@x229 (trans (monotonicity @x208 (monotonicity @x219 $x221) (= ?x202 ?x223)) (rewrite (= ?x223 ?x201)) (= ?x202 ?x201))))
-(let ((@x206 (rewrite (= $x195 false))))
-(let ((@x236 (trans (monotonicity @x206 @x229 (= ?x203 (ite false ?x7 ?x201))) (rewrite (= (ite false ?x7 ?x201) ?x201)) (= ?x203 ?x201))))
-(let ((@x246 (trans (monotonicity @x236 (= $x204 (= ?x9 ?x201))) (rewrite (= (= ?x9 ?x201) $x242)) (= $x204 $x242))))
-(let ((@x255 (trans (monotonicity @x246 (= (or $x247 $x204) $x248)) (rewrite (= $x248 $x248)) (= (or $x247 $x204) $x248))))
-(let ((@x256 (mp ((_ |quant-inst| (+ |n$| |m$|) 2) (or $x247 $x204)) @x255 $x248)))
-(let ((@x565 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x242) $x257)) (|unit-resolution| @x256 @x194 $x242) $x257)))
-(let ((?x384 (* (~ 4) ?x368)))
-(let ((?x385 (+ |n$| ?x350 ?x384)))
-(let (($x390 (<= ?x385 0)))
-(let (($x383 (= ?x385 0)))
-(let ((@x577 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x383) $x390)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x383)) @x62 $x383) $x390)))
-(let (($x422 (<= ?x13 3)))
-(let (($x15 (= ?x13 3)))
-(let ((@x64 (asserted $x15)))
-(let ((@x581 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x15) $x422)) @x64 $x422)))
-(let (($x420 (<= ?x9 0)))
-(let (($x11 (= ?x9 0)))
-(let ((@x63 (asserted $x11)))
-(let ((@x553 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x11) $x420)) @x63 $x420)))
-(let ((@x494 ((_ |th-lemma| arith farkas -1 -1 2 -1 -1 -1 -1 -1 1) @x553 @x581 (hypothesis $x535) @x577 @x565 @x560 @x570 @x379 (|unit-resolution| ((_ |th-lemma| arith) (or false $x492)) @x62 $x492) false)))
-(let (($x304 (>= ?x485 0)))
-(let ((@x648 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x483) $x304)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x483)) @x62 $x483) $x304)))
-(let (($x367 (>= ?x351 0)))
-(let ((@x473 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x352) $x367)) (|unit-resolution| @x365 @x194 $x352) $x367)))
-(let (($x421 (>= ?x9 0)))
-(let (($x282 (>= ?x276 0)))
-(let ((@x371 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x274) $x282)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x274)) @x62 $x274) $x282)))
-(let (($x258 (>= ?x241 0)))
-(let ((@x377 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x242) $x258)) (|unit-resolution| @x256 @x194 $x242) $x258)))
-(let (($x391 (>= ?x385 0)))
-(let ((@x474 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x383) $x391)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x383)) @x62 $x383) $x391)))
-(let (($x423 (>= ?x13 3)))
-(let ((@x261 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x15) $x423)) @x64 $x423)))
-(let ((?x19 (|mod$| |m$| 2)))
-(let ((?x454 (+ ?x19 ?x453)))
-(let (($x263 (>= ?x454 0)))
-(let (($x386 (= ?x454 0)))
-(let (($x486 (or $x247 $x386)))
-(let ((?x198 (* (~ 1) 2)))
-(let ((?x210 (* (~ 1) |m$|)))
-(let ((?x424 (mod ?x210 ?x198)))
-(let ((?x425 (* (~ 1) ?x424)))
-(let ((?x427 (ite $x196 ?x425 ?x426)))
-(let ((?x428 (ite $x195 |m$| ?x427)))
-(let (($x429 (= ?x19 ?x428)))
-(let ((@x594 (monotonicity (monotonicity @x216 (= ?x424 (mod ?x210 (~ 2)))) (= ?x425 (* (~ 1) (mod ?x210 (~ 2)))))))
-(let ((@x596 (monotonicity @x208 @x594 (= ?x427 (ite false (* (~ 1) (mod ?x210 (~ 2))) ?x426)))))
-(let ((@x603 (trans @x596 (rewrite (= (ite false (* (~ 1) (mod ?x210 (~ 2))) ?x426) ?x426)) (= ?x427 ?x426))))
-(let ((@x414 (trans (monotonicity @x206 @x603 (= ?x428 (ite false |m$| ?x426))) (rewrite (= (ite false |m$| ?x426) ?x426)) (= ?x428 ?x426))))
-(let ((@x482 (trans (monotonicity @x414 (= $x429 (= ?x19 ?x426))) (rewrite (= (= ?x19 ?x426) $x386)) (= $x429 $x386))))
-(let ((@x511 (trans (monotonicity @x482 (= (or $x247 $x429) $x486)) (rewrite (= $x486 $x486)) (= (or $x247 $x429) $x486))))
-(let ((@x512 (mp ((_ |quant-inst| |m$| 2) (or $x247 $x429)) @x511 $x486)))
-(let ((@x653 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x386) $x263)) (|unit-resolution| @x512 @x194 $x386) $x263)))
-(let (($x271 (>= ?x19 1)))
-(let (($x666 (not $x271)))
-(let (($x509 (<= ?x19 1)))
-(let (($x498 (>= ?x426 2)))
-(let (($x635 (not $x498)))
-(let (($x469 (<= ?x454 0)))
-(let ((@x659 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x386) $x469)) (|unit-resolution| @x512 @x194 $x386) $x469)))
-(let ((@x663 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x509 $x498 (not $x469))) @x659 (|unit-resolution| ((_ |th-lemma| arith) (or false $x635)) @x62 $x635) $x509)))
-(let (($x20 (= ?x19 1)))
-(let (($x168 (not $x20)))
-(let ((?x16 (|mod$| |n$| 2)))
-(let (($x18 (= ?x16 1)))
-(let (($x280 (>= ?x16 1)))
-(let (($x606 (not $x280)))
-(let (($x279 (<= ?x16 1)))
-(let ((?x430 (mod |n$| 2)))
-(let ((?x437 (* (~ 1) ?x430)))
-(let ((?x438 (+ ?x16 ?x437)))
-(let (($x455 (<= ?x438 0)))
-(let (($x439 (= ?x438 0)))
-(let (($x444 (or $x247 $x439)))
-(let ((?x209 (* (~ 1) |n$|)))
-(let ((?x461 (mod ?x209 ?x198)))
-(let ((?x462 (* (~ 1) ?x461)))
-(let ((?x431 (ite $x196 ?x462 ?x430)))
-(let ((?x432 (ite $x195 |n$| ?x431)))
-(let (($x433 (= ?x16 ?x432)))
-(let ((@x522 (monotonicity (monotonicity @x216 (= ?x461 (mod ?x209 (~ 2)))) (= ?x462 (* (~ 1) (mod ?x209 (~ 2)))))))
-(let ((@x521 (monotonicity @x208 @x522 (= ?x431 (ite false (* (~ 1) (mod ?x209 (~ 2))) ?x430)))))
-(let ((@x288 (trans @x521 (rewrite (= (ite false (* (~ 1) (mod ?x209 (~ 2))) ?x430) ?x430)) (= ?x431 ?x430))))
-(let ((@x538 (trans (monotonicity @x206 @x288 (= ?x432 (ite false |n$| ?x430))) (rewrite (= (ite false |n$| ?x430) ?x430)) (= ?x432 ?x430))))
-(let ((@x443 (trans (monotonicity @x538 (= $x433 (= ?x16 ?x430))) (rewrite (= (= ?x16 ?x430) $x439)) (= $x433 $x439))))
-(let ((@x451 (trans (monotonicity @x443 (= (or $x247 $x433) $x444)) (rewrite (= $x444 $x444)) (= (or $x247 $x433) $x444))))
-(let ((@x460 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x439) $x455)) (|unit-resolution| (mp ((_ |quant-inst| |n$| 2) (or $x247 $x433)) @x451 $x444) @x194 $x439) $x455)))
-(let ((@x463 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= ?x430 2)))) @x62 (not (>= ?x430 2)))))
-(let ((@x295 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x279 (>= ?x430 2) (not $x455))) @x463 @x460 $x279)))
-(let ((@x292 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x18 (not $x279) $x606)) (hypothesis (not $x18)) (or (not $x279) $x606))))
-(let (($x623 (or (not (>= (+ |n$| ?x13 ?x350 ?x541 (* (~ 1) (div |n$| 2))) 2)) $x280)))
-(let ((?x491 (+ |n$| ?x437 (* (~ 2) (div |n$| 2)))))
-(let (($x397 (<= ?x491 0)))
-(let (($x508 (= ?x491 0)))
-(let ((@x614 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x508) $x397)) (|unit-resolution| ((_ |th-lemma| arith) (or false $x508)) @x62 $x508) $x397)))
-(let (($x601 (>= (+ |n$| ?x13 ?x350 ?x541 (* (~ 1) (div |n$| 2))) 2)))
-(let ((@x620 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x439) (>= ?x438 0))) (|unit-resolution| (mp ((_ |quant-inst| |n$| 2) (or $x247 $x433)) @x451 $x444) @x194 $x439) (>= ?x438 0))))
-(let ((@x621 ((_ |th-lemma| arith farkas -1 -2 1 1 1 1 1) @x620 (hypothesis $x601) @x614 @x570 @x577 @x581 (hypothesis $x606) false)))
-(let ((@x403 (|unit-resolution| (lemma @x621 $x623) (|unit-resolution| @x292 @x295 $x606) (not $x601))))
-(let ((@x406 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x508) (>= ?x491 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x508)) @x62 $x508) (>= ?x491 0))))
-(let ((@x411 (|unit-resolution| ((_ |th-lemma| arith) (or false (>= ?x430 0))) @x62 (>= ?x430 0))))
-(let (($x169 (or (not $x18) $x168)))
-(let ((@x175 (monotonicity (rewrite (= (and $x18 $x20) (not $x169))) (= (not (and $x18 $x20)) (not (not $x169))))))
-(let ((@x179 (trans @x175 (rewrite (= (not (not $x169)) $x169)) (= (not (and $x18 $x20)) $x169))))
-(let ((@x180 (mp (asserted (not (and $x18 $x20))) @x179 $x169)))
-(let ((@x664 (|unit-resolution| @x180 (lemma ((_ |th-lemma| arith farkas -1/2 -1/2 -1/2 -1/2 -1/2 1) @x411 @x406 @x473 @x474 @x261 @x403 false) $x18) $x168)))
-(let ((@x670 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x20 (not $x509) $x666)) @x664 (or (not $x509) $x666))))
-((_ |th-lemma| arith farkas 1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 -1/2 1) (|unit-resolution| @x670 @x663 $x666) @x653 @x261 @x474 @x377 @x371 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x11) $x421)) @x63 $x421) @x473 @x648 (lemma @x494 (not $x535)) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
-
-5e6ffeb79676694a9ab7732936a1e448ef9134cd 12 0
+006eb5bfd7c221833bed8cb6329632aaa194fbfb 22 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x6 (exists ((?v0 Int) )false)
-))
-(let (($x5 (not $x6)))
-(let (($x7 (not $x5)))
-(let ((@x33 (monotonicity (|elim-unused| (= $x6 false)) (= $x5 (not false)))))
-(let ((@x40 (monotonicity (trans @x33 (rewrite (= (not false) true)) (= $x5 true)) (= $x7 (not true)))))
-(let ((@x44 (trans @x40 (rewrite (= (not true) false)) (= $x7 false))))
-(mp (asserted $x7) @x44 false)))))))))
+(let (($x52 (forall ((?v0 Int) )(<= ?v0 0))
+))
+(let (($x46 (forall ((?v0 Int) )(let (($x34 (<= ?v0 0)))
+(let (($x35 (not $x34)))
+(not $x35))))
+))
+(let ((@x54 (quant-intro (rewrite (= (not (not (<= ?0 0))) (<= ?0 0))) (= $x46 $x52))))
+(let (($x38 (exists ((?v0 Int) )(let (($x34 (<= ?v0 0)))
+(not $x34)))
+))
+(let (($x41 (not $x38)))
+(let ((@x48 (nnf-neg (refl (~ (not (not (<= ?0 0))) (not (not (<= ?0 0))))) (~ $x41 $x46))))
+(let (($x29 (exists ((?v0 Int) )(< 0 ?v0))
+))
+(let (($x30 (not $x29)))
+(let ((@x40 (quant-intro (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x29 $x38))))
+(let ((@x49 (mp~ (mp (asserted $x30) (monotonicity @x40 (= $x30 $x41)) $x41) @x48 $x46)))
+(mp (mp @x49 @x54 $x52) (rewrite (= $x52 false)) false)))))))))))))
 
-d02a9dcd83dfb0d3e50a887c4f5274a79c10c85e 12 0
+4b537bd0ac915a6248e7ab628729c96862196610 22 0
 unsat
 ((set-logic AUFLIRA)
 (proof
-(let (($x6 (exists ((?v0 Real) )false)
-))
-(let (($x5 (not $x6)))
-(let (($x7 (not $x5)))
-(let ((@x33 (monotonicity (|elim-unused| (= $x6 false)) (= $x5 (not false)))))
-(let ((@x40 (monotonicity (trans @x33 (rewrite (= (not false) true)) (= $x5 true)) (= $x7 (not true)))))
-(let ((@x44 (trans @x40 (rewrite (= (not true) false)) (= $x7 false))))
-(mp (asserted $x7) @x44 false)))))))))
+(let (($x51 (forall ((?v0 Real) )(<= ?v0 0.0))
+))
+(let (($x45 (forall ((?v0 Real) )(let (($x33 (<= ?v0 0.0)))
+(let (($x34 (not $x33)))
+(not $x34))))
+))
+(let ((@x53 (quant-intro (rewrite (= (not (not (<= ?0 0.0))) (<= ?0 0.0))) (= $x45 $x51))))
+(let (($x37 (exists ((?v0 Real) )(let (($x33 (<= ?v0 0.0)))
+(not $x33)))
+))
+(let (($x40 (not $x37)))
+(let ((@x47 (nnf-neg (refl (~ (not (not (<= ?0 0.0))) (not (not (<= ?0 0.0))))) (~ $x40 $x45))))
+(let (($x28 (exists ((?v0 Real) )(< 0.0 ?v0))
+))
+(let (($x29 (not $x28)))
+(let ((@x39 (quant-intro (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x28 $x37))))
+(let ((@x48 (mp~ (mp (asserted $x29) (monotonicity @x39 (= $x29 $x40)) $x40) @x47 $x45)))
+(mp (mp @x48 @x53 $x51) (rewrite (= $x51 false)) false)))))))))))))
 
-1a820d07cf476448545d144873b309b9cfc3a238 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-23ed6364c527ef515dd659de8b496cfd59df4ec7 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-9722ff2e938783a69202c957c858fb219ec0cdb0 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-cb87115705dc568881932b35aa82751f3f97049c 22 0
+a4d78976c78e2e93de6480dddf342fdcc4b645d0 31 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!0 () Int)
+(proof
+(let (($x71 (forall ((?v1 Int) )(<= (+ ?v1 (* (- 1) ?v0!0)) 0))
+))
+(let (($x63 (forall ((?v1 Int) )(not (not (<= (+ ?v1 (* (- 1) ?v0!0)) 0))))
+))
+(let (($x54 (<= (+ ?0 (* (- 1) ?v0!0)) 0)))
+(let (($x60 (not (not $x54))))
+(let (($x46 (forall ((?v0 Int) )(exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?v0)) 0)))
+)
+))
+(let (($x49 (not $x46)))
+(let (($x56 (exists ((?v1 Int) )(let (($x54 (<= (+ ?v1 (* (- 1) ?v0!0)) 0)))
+(not $x54)))
+))
+(let ((@x67 (trans (sk (~ $x49 (not $x56))) (nnf-neg (refl (~ $x60 $x60)) (~ (not $x56) $x63)) (~ $x49 $x63))))
+(let (($x31 (forall ((?v0 Int) )(exists ((?v1 Int) )(< ?v0 ?v1))
+)
+))
+(let (($x32 (not $x31)))
+(let (($x43 (exists ((?v1 Int) )(not (<= (+ ?v1 (* (- 1) ?0)) 0)))
+))
+(let (($x30 (exists ((?v1 Int) )(< ?0 ?v1))
+))
+(let ((@x42 (rewrite (= (< ?1 ?0) (not (<= (+ ?0 (* (- 1) ?1)) 0))))))
+(let ((@x51 (monotonicity (quant-intro (quant-intro @x42 (= $x30 $x43)) (= $x31 $x46)) (= $x32 $x49))))
+(let ((@x74 (mp (mp~ (mp (asserted $x32) @x51 $x49) @x67 $x63) (quant-intro (rewrite (= $x60 $x54)) (= $x63 $x71)) $x71)))
+(mp @x74 (rewrite (= $x71 false)) false))))))))))))))))))
+
+0599cab93c20e7ec32e4ccd96b617b98c9583ac6 22 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v1!0 () Int)
 (declare-fun ?v0!1 () Int)
 (proof
-(let (($x51 (= ?v1!0 1)))
-(let (($x57 (not (or (not (and (= ?v0!1 0) $x51)) (not (= ?v0!1 ?v1!0))))))
-(let (($x41 (forall ((?v0 Int) (?v1 Int) )(or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))))
-))
-(let (($x44 (not $x41)))
-(let (($x15 (forall ((?v0 Int) (?v1 Int) )(=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))))
-))
-(let (($x16 (not $x15)))
-(let (($x39 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0))))))
-(let ((@x46 (monotonicity (|quant-intro| (rewrite $x39) (= $x15 $x41)) (= $x16 $x44))))
-(let ((@x63 (|not-or-elim| (|mp~| (mp (asserted $x16) @x46 $x44) (sk (|~| $x44 $x57)) $x57) (and (= ?v0!1 0) $x51))))
-(let ((@x65 (|and-elim| @x63 $x51)))
-(let (($x54 (= ?v0!1 ?v1!0)))
-(let ((@x66 (|not-or-elim| (|mp~| (mp (asserted $x16) @x46 $x44) (sk (|~| $x44 $x57)) $x57) $x54)))
-(let ((@x68 (trans (symm (|and-elim| @x63 (= ?v0!1 0)) (= 0 ?v0!1)) @x66 (= 0 ?v1!0))))
-(mp (trans @x68 @x65 (= 0 1)) (rewrite (= (= 0 1) false)) false))))))))))))))))
+(let (($x53 (= ?v1!0 1)))
+(let (($x59 (not (or (not (and (= ?v0!1 0) $x53)) (not (= ?v0!1 ?v1!0))))))
+(let (($x43 (forall ((?v0 Int) (?v1 Int) )(or (not (and (= ?v0 0) (= ?v1 1))) (not (= ?v0 ?v1))))
+))
+(let (($x46 (not $x43)))
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(=> (and (= ?v0 0) (= ?v1 1)) (not (= ?v0 ?v1))))
+))
+(let (($x37 (not $x36)))
+(let (($x41 (= (=> (and (= ?1 0) (= ?0 1)) (not (= ?1 ?0))) (or (not (and (= ?1 0) (= ?0 1))) (not (= ?1 ?0))))))
+(let ((@x48 (monotonicity (quant-intro (rewrite $x41) (= $x36 $x43)) (= $x37 $x46))))
+(let ((@x65 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) (and (= ?v0!1 0) $x53))))
+(let ((@x67 (and-elim @x65 $x53)))
+(let (($x56 (= ?v0!1 ?v1!0)))
+(let ((@x68 (not-or-elim (mp~ (mp (asserted $x37) @x48 $x46) (sk (~ $x46 $x59)) $x59) $x56)))
+(let ((@x70 (trans (symm (and-elim @x65 (= ?v0!1 0)) (= 0 ?v0!1)) @x68 (= 0 ?v1!0))))
+(mp (trans @x70 @x67 (= 0 1)) (rewrite (= (= 0 1) false)) false))))))))))))))))
 
-d2d0a7794c4de3708d5541374fd9e0075ad5fa36 55 0
+d8593d44297c3187a702aba2fd49f4ad76117020 55 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x14 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
-(let (($x9 (< ?v1 0)))
-(let (($x11 (or $x9 $x10)))
-(let (($x7 (< ?v0 ?v1)))
-(=> $x7 $x11))))))
+(let (($x35 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?v0 ?v1)))
+(=> $x29 $x32))))))
 )
 ))
-(let (($x15 (not $x14)))
-(let (($x43 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
-(let (($x9 (< ?v1 0)))
-(let (($x11 (or $x9 $x10)))
-(let (($x7 (< ?v0 ?v1)))
-(let (($x36 (not $x7)))
-(or $x36 $x11)))))))
+(let (($x36 (not $x35)))
+(let (($x45 (exists ((?v0 Int) )(forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?v0 ?v1)))
+(let (($x38 (not $x29)))
+(or $x38 $x32)))))))
 )
 ))
-(let (($x46 (not $x43)))
-(let (($x86 (exists ((?v0 Int) )true)
-))
-(let (($x40 (forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
-(let (($x9 (< ?v1 0)))
-(let (($x11 (or $x9 $x10)))
-(let (($x7 (< ?0 ?v1)))
-(let (($x36 (not $x7)))
-(or $x36 $x11)))))))
-))
-(let (($x79 (forall ((?v1 Int) )true)
-))
-(let (($x10 (<= 0 ?0)))
-(let (($x9 (< ?0 0)))
-(let (($x11 (or $x9 $x10)))
-(let (($x7 (< ?1 ?0)))
-(let (($x36 (not $x7)))
-(let (($x37 (or $x36 $x11)))
-(let (($x58 (<= (+ ?0 (* (~ 1) ?1)) 0)))
-(let ((@x76 (rewrite (= (or $x58 (or (not (>= ?0 0)) (>= ?0 0))) true))))
-(let ((@x71 (monotonicity (rewrite (= $x9 (not (>= ?0 0)))) (rewrite (= $x10 (>= ?0 0))) (= $x11 (or (not (>= ?0 0)) (>= ?0 0))))))
-(let ((@x64 (monotonicity (rewrite (= $x7 (not $x58))) (= $x36 (not (not $x58))))))
-(let ((@x74 (monotonicity (trans @x64 (rewrite (= (not (not $x58)) $x58)) (= $x36 $x58)) @x71 (= $x37 (or $x58 (or (not (>= ?0 0)) (>= ?0 0)))))))
-(let ((@x85 (trans (|quant-intro| (trans @x74 @x76 (= $x37 true)) (= $x40 $x79)) (|elim-unused| (= $x79 true)) (= $x40 true))))
-(let ((@x92 (trans (|quant-intro| @x85 (= $x43 $x86)) (|elim-unused| (= $x86 true)) (= $x43 true))))
-(let ((@x99 (trans (monotonicity @x92 (= $x46 (not true))) (rewrite (= (not true) false)) (= $x46 false))))
-(let (($x13 (forall ((?v1 Int) )(let (($x10 (<= 0 ?v1)))
-(let (($x9 (< ?v1 0)))
-(let (($x11 (or $x9 $x10)))
-(let (($x7 (< ?0 ?v1)))
-(=> $x7 $x11))))))
-))
-(let ((@x45 (|quant-intro| (|quant-intro| (rewrite (= (=> $x7 $x11) $x37)) (= $x13 $x40)) (= $x14 $x43))))
-(let ((@x48 (monotonicity @x45 (= $x15 $x46))))
-(mp (asserted $x15) (trans @x48 @x99 (= $x15 false)) false)))))))))))))))))))))))))))
+(let (($x48 (not $x45)))
+(let (($x88 (exists ((?v0 Int) )true)
+))
+(let (($x42 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?0 ?v1)))
+(let (($x38 (not $x29)))
+(or $x38 $x32)))))))
+))
+(let (($x81 (forall ((?v1 Int) )true)
+))
+(let (($x31 (<= 0 ?0)))
+(let (($x30 (< ?0 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?1 ?0)))
+(let (($x38 (not $x29)))
+(let (($x39 (or $x38 $x32)))
+(let (($x60 (<= (+ ?0 (* (- 1) ?1)) 0)))
+(let ((@x78 (rewrite (= (or $x60 (or (not (>= ?0 0)) (>= ?0 0))) true))))
+(let ((@x73 (monotonicity (rewrite (= $x30 (not (>= ?0 0)))) (rewrite (= $x31 (>= ?0 0))) (= $x32 (or (not (>= ?0 0)) (>= ?0 0))))))
+(let ((@x66 (monotonicity (rewrite (= $x29 (not $x60))) (= $x38 (not (not $x60))))))
+(let ((@x76 (monotonicity (trans @x66 (rewrite (= (not (not $x60)) $x60)) (= $x38 $x60)) @x73 (= $x39 (or $x60 (or (not (>= ?0 0)) (>= ?0 0)))))))
+(let ((@x87 (trans (quant-intro (trans @x76 @x78 (= $x39 true)) (= $x42 $x81)) (elim-unused (= $x81 true)) (= $x42 true))))
+(let ((@x94 (trans (quant-intro @x87 (= $x45 $x88)) (elim-unused (= $x88 true)) (= $x45 true))))
+(let ((@x101 (trans (monotonicity @x94 (= $x48 (not true))) (rewrite (= (not true) false)) (= $x48 false))))
+(let (($x34 (forall ((?v1 Int) )(let (($x31 (<= 0 ?v1)))
+(let (($x30 (< ?v1 0)))
+(let (($x32 (or $x30 $x31)))
+(let (($x29 (< ?0 ?v1)))
+(=> $x29 $x32))))))
+))
+(let ((@x47 (quant-intro (quant-intro (rewrite (= (=> $x29 $x32) $x39)) (= $x34 $x42)) (= $x35 $x45))))
+(let ((@x50 (monotonicity @x47 (= $x36 $x48))))
+(mp (asserted $x36) (trans @x50 @x101 (= $x36 false)) false)))))))))))))))))))))))))))
 
-75e4df9c205f7c15d7e530b5e1e97635aed16d82 42 0
+75068fac55f5cd4cceebee82c7f07a7dd4bf9104 42 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x15 (forall ((?v0 Int) (?v1 Int) )(let ((?x12 (* 2 ?v1)))
-(let ((?x9 (* 2 ?v0)))
-(let ((?x11 (+ ?x9 1)))
-(let (($x13 (< ?x11 ?x12)))
-(let (($x7 (< ?v0 ?v1)))
-(=> $x7 $x13)))))))
-))
-(let (($x16 (not $x15)))
-(let (($x53 (forall ((?v0 Int) (?v1 Int) )(let ((?x12 (* 2 ?v1)))
-(let ((?x9 (* 2 ?v0)))
-(let ((?x38 (+ 1 ?x9)))
-(let (($x41 (< ?x38 ?x12)))
-(let (($x7 (< ?v0 ?v1)))
-(let (($x47 (not $x7)))
-(or $x47 $x41))))))))
-))
-(let (($x56 (not $x53)))
-(let (($x82 (forall ((?v0 Int) (?v1 Int) )true)
-))
-(let ((?x12 (* 2 ?0)))
-(let ((?x9 (* 2 ?1)))
-(let ((?x38 (+ 1 ?x9)))
-(let (($x41 (< ?x38 ?x12)))
-(let (($x7 (< ?1 ?0)))
-(let (($x47 (not $x7)))
-(let (($x48 (or $x47 $x41)))
-(let (($x61 (>= (+ ?1 (* (~ 1) ?0)) 0)))
-(let (($x60 (not $x61)))
-(let ((@x72 (trans (monotonicity (rewrite (= $x7 $x60)) (= $x47 (not $x60))) (rewrite (= (not $x60) $x61)) (= $x47 $x61))))
-(let ((@x77 (monotonicity @x72 (rewrite (= $x41 $x60)) (= $x48 (or $x61 $x60)))))
-(let ((@x84 (|quant-intro| (trans @x77 (rewrite (= (or $x61 $x60) true)) (= $x48 true)) (= $x53 $x82))))
-(let ((@x91 (monotonicity (trans @x84 (|elim-unused| (= $x82 true)) (= $x53 true)) (= $x56 (not true)))))
-(let ((@x95 (trans @x91 (rewrite (= (not true) false)) (= $x56 false))))
-(let ((@x43 (monotonicity (rewrite (= (+ ?x9 1) ?x38)) (= (< (+ ?x9 1) ?x12) $x41))))
-(let ((@x46 (monotonicity @x43 (= (=> $x7 (< (+ ?x9 1) ?x12)) (=> $x7 $x41)))))
-(let ((@x52 (trans @x46 (rewrite (= (=> $x7 $x41) $x48)) (= (=> $x7 (< (+ ?x9 1) ?x12)) $x48))))
-(let ((@x58 (monotonicity (|quant-intro| @x52 (= $x15 $x53)) (= $x16 $x56))))
-(mp (asserted $x16) (trans @x58 @x95 (= $x16 false)) false))))))))))))))))))))))))))
+(let (($x37 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1)))
+(let ((?x31 (* 2 ?v0)))
+(let ((?x33 (+ ?x31 1)))
+(let (($x35 (< ?x33 ?x34)))
+(let (($x29 (< ?v0 ?v1)))
+(=> $x29 $x35)))))))
+))
+(let (($x38 (not $x37)))
+(let (($x55 (forall ((?v0 Int) (?v1 Int) )(let ((?x34 (* 2 ?v1)))
+(let ((?x31 (* 2 ?v0)))
+(let ((?x40 (+ 1 ?x31)))
+(let (($x43 (< ?x40 ?x34)))
+(let (($x29 (< ?v0 ?v1)))
+(let (($x49 (not $x29)))
+(or $x49 $x43))))))))
+))
+(let (($x58 (not $x55)))
+(let (($x84 (forall ((?v0 Int) (?v1 Int) )true)
+))
+(let ((?x34 (* 2 ?0)))
+(let ((?x31 (* 2 ?1)))
+(let ((?x40 (+ 1 ?x31)))
+(let (($x43 (< ?x40 ?x34)))
+(let (($x29 (< ?1 ?0)))
+(let (($x49 (not $x29)))
+(let (($x50 (or $x49 $x43)))
+(let (($x63 (>= (+ ?1 (* (- 1) ?0)) 0)))
+(let (($x62 (not $x63)))
+(let ((@x74 (trans (monotonicity (rewrite (= $x29 $x62)) (= $x49 (not $x62))) (rewrite (= (not $x62) $x63)) (= $x49 $x63))))
+(let ((@x79 (monotonicity @x74 (rewrite (= $x43 $x62)) (= $x50 (or $x63 $x62)))))
+(let ((@x86 (quant-intro (trans @x79 (rewrite (= (or $x63 $x62) true)) (= $x50 true)) (= $x55 $x84))))
+(let ((@x93 (monotonicity (trans @x86 (elim-unused (= $x84 true)) (= $x55 true)) (= $x58 (not true)))))
+(let ((@x97 (trans @x93 (rewrite (= (not true) false)) (= $x58 false))))
+(let ((@x45 (monotonicity (rewrite (= (+ ?x31 1) ?x40)) (= (< (+ ?x31 1) ?x34) $x43))))
+(let ((@x48 (monotonicity @x45 (= (=> $x29 (< (+ ?x31 1) ?x34)) (=> $x29 $x43)))))
+(let ((@x54 (trans @x48 (rewrite (= (=> $x29 $x43) $x50)) (= (=> $x29 (< (+ ?x31 1) ?x34)) $x50))))
+(let ((@x60 (monotonicity (quant-intro @x54 (= $x37 $x55)) (= $x38 $x58))))
+(mp (asserted $x38) (trans @x60 @x97 (= $x38 false)) false))))))))))))))))))))))))))
 
-591a3beb5d84c4e2d6724bf947c2fd4fa44c6bbc 32 0
+a2f9a6aa539c30e09dd3b64e591e790324d7c645 32 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x14 (forall ((?v0 Int) (?v1 Int) )(let ((?x11 (* 2 ?v1)))
-(let ((?x8 (* 2 ?v0)))
-(let ((?x10 (+ ?x8 1)))
-(let (($x12 (= ?x10 ?x11)))
-(not $x12))))))
-))
-(let (($x15 (not $x14)))
-(let (($x46 (forall ((?v0 Int) (?v1 Int) )(let ((?x11 (* 2 ?v1)))
-(let ((?x8 (* 2 ?v0)))
-(let ((?x37 (+ 1 ?x8)))
-(let (($x40 (= ?x37 ?x11)))
-(not $x40))))))
-))
-(let (($x49 (not $x46)))
-(let (($x61 (forall ((?v0 Int) (?v1 Int) )true)
-))
-(let ((?x11 (* 2 ?0)))
-(let ((?x8 (* 2 ?1)))
-(let ((?x37 (+ 1 ?x8)))
-(let (($x40 (= ?x37 ?x11)))
-(let (($x43 (not $x40)))
-(let ((@x60 (trans (monotonicity (rewrite (= $x40 false)) (= $x43 (not false))) (rewrite (= (not false) true)) (= $x43 true))))
-(let ((@x67 (trans (|quant-intro| @x60 (= $x46 $x61)) (|elim-unused| (= $x61 true)) (= $x46 true))))
-(let ((@x74 (trans (monotonicity @x67 (= $x49 (not true))) (rewrite (= (not true) false)) (= $x49 false))))
-(let ((@x42 (monotonicity (rewrite (= (+ ?x8 1) ?x37)) (= (= (+ ?x8 1) ?x11) $x40))))
-(let ((@x48 (|quant-intro| (monotonicity @x42 (= (not (= (+ ?x8 1) ?x11)) $x43)) (= $x14 $x46))))
-(let ((@x51 (monotonicity @x48 (= $x15 $x49))))
-(mp (asserted $x15) (trans @x51 @x74 (= $x15 false)) false)))))))))))))))))))
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1)))
+(let ((?x30 (* 2 ?v0)))
+(let ((?x32 (+ ?x30 1)))
+(let (($x34 (= ?x32 ?x33)))
+(not $x34))))))
+))
+(let (($x37 (not $x36)))
+(let (($x48 (forall ((?v0 Int) (?v1 Int) )(let ((?x33 (* 2 ?v1)))
+(let ((?x30 (* 2 ?v0)))
+(let ((?x39 (+ 1 ?x30)))
+(let (($x42 (= ?x39 ?x33)))
+(not $x42))))))
+))
+(let (($x51 (not $x48)))
+(let (($x63 (forall ((?v0 Int) (?v1 Int) )true)
+))
+(let ((?x33 (* 2 ?0)))
+(let ((?x30 (* 2 ?1)))
+(let ((?x39 (+ 1 ?x30)))
+(let (($x42 (= ?x39 ?x33)))
+(let (($x45 (not $x42)))
+(let ((@x62 (trans (monotonicity (rewrite (= $x42 false)) (= $x45 (not false))) (rewrite (= (not false) true)) (= $x45 true))))
+(let ((@x69 (trans (quant-intro @x62 (= $x48 $x63)) (elim-unused (= $x63 true)) (= $x48 true))))
+(let ((@x76 (trans (monotonicity @x69 (= $x51 (not true))) (rewrite (= (not true) false)) (= $x51 false))))
+(let ((@x44 (monotonicity (rewrite (= (+ ?x30 1) ?x39)) (= (= (+ ?x30 1) ?x33) $x42))))
+(let ((@x50 (quant-intro (monotonicity @x44 (= (not (= (+ ?x30 1) ?x33)) $x45)) (= $x36 $x48))))
+(let ((@x53 (monotonicity @x50 (= $x37 $x51))))
+(mp (asserted $x37) (trans @x53 @x76 (= $x37 false)) false)))))))))))))))))))
 
-ed6b5d78e5a12fb3a6471e02bc6e89ebc78c1a34 43 0
+94385afe5a4674c0cf5e8e53c895cbd5392d7e69 43 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v0!1 () Int)
@@ -2294,2264 +3113,2724 @@
 (let (($x87 (= ?x78 2)))
 (let (($x81 (<= ?x78 2)))
 (let (($x84 (not $x81)))
-(let (($x71 (or (not (<= (+ ?v0!1 ?v1!0) 2)) (= (+ ?v0!1 ?v1!0) 2) (not (>= (+ ?v0!1 ?v1!0) 2)))))
-(let (($x72 (not $x71)))
+(let (($x73 (or (not (<= (+ ?v0!1 ?v1!0) 2)) (= (+ ?v0!1 ?v1!0) 2) (not (>= (+ ?v0!1 ?v1!0) 2)))))
+(let (($x74 (not $x73)))
 (let ((@x80 (rewrite (= (+ ?v0!1 ?v1!0) ?x78))))
 (let ((@x95 (monotonicity (monotonicity @x80 (= (>= (+ ?v0!1 ?v1!0) 2) $x90)) (= (not (>= (+ ?v0!1 ?v1!0) 2)) $x93))))
 (let ((@x86 (monotonicity (monotonicity @x80 (= (<= (+ ?v0!1 ?v1!0) 2) $x81)) (= (not (<= (+ ?v0!1 ?v1!0) 2)) $x84))))
-(let ((@x98 (monotonicity @x86 (monotonicity @x80 (= (= (+ ?v0!1 ?v1!0) 2) $x87)) @x95 (= $x71 (or $x84 $x87 $x93)))))
-(let (($x58 (forall ((?v0 Int) (?v1 Int) )(let (($x39 (not (>= (+ ?v0 ?v1) 2))))
-(let ((?x8 (+ ?v0 ?v1)))
-(let (($x10 (= ?x8 2)))
-(let (($x44 (not (<= ?x8 2))))
-(or $x44 $x10 $x39))))))
-))
-(let (($x61 (not $x58)))
-(let (($x14 (forall ((?v0 Int) (?v1 Int) )(or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))))
-))
-(let (($x15 (not $x14)))
-(let (($x39 (not (>= (+ ?1 ?0) 2))))
-(let ((?x8 (+ ?1 ?0)))
-(let (($x10 (= ?x8 2)))
-(let (($x44 (not (<= ?x8 2))))
-(let (($x53 (or $x44 $x10 $x39)))
-(let (($x13 (or (< 2 ?x8) (or $x10 (< ?x8 2)))))
-(let ((@x49 (monotonicity (rewrite (= (< ?x8 2) $x39)) (= (or $x10 (< ?x8 2)) (or $x10 $x39)))))
-(let ((@x52 (monotonicity (rewrite (= (< 2 ?x8) $x44)) @x49 (= $x13 (or $x44 (or $x10 $x39))))))
-(let ((@x57 (trans @x52 (rewrite (= (or $x44 (or $x10 $x39)) $x53)) (= $x13 $x53))))
-(let ((@x64 (mp (asserted $x15) (monotonicity (|quant-intro| @x57 (= $x14 $x58)) (= $x15 $x61)) $x61)))
-(let ((@x76 (mp (|mp~| @x64 (sk (|~| $x61 $x72)) $x72) (monotonicity @x98 (= $x72 (not (or $x84 $x87 $x93)))) (not (or $x84 $x87 $x93)))))
-(let ((@x103 (|not-or-elim| @x76 (not $x87))))
-(let ((@x104 (|not-or-elim| @x76 $x90)))
-(let ((@x77 (|not-or-elim| @x76 $x81)))
-(|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x87 $x84 $x93)) @x77 (or $x87 $x93)) @x104 @x103 false)))))))))))))))))))))))))))))))))
+(let ((@x98 (monotonicity @x86 (monotonicity @x80 (= (= (+ ?v0!1 ?v1!0) 2) $x87)) @x95 (= $x73 (or $x84 $x87 $x93)))))
+(let (($x60 (forall ((?v0 Int) (?v1 Int) )(let (($x41 (not (>= (+ ?v0 ?v1) 2))))
+(let ((?x30 (+ ?v0 ?v1)))
+(let (($x32 (= ?x30 2)))
+(let (($x46 (not (<= ?x30 2))))
+(or $x46 $x32 $x41))))))
+))
+(let (($x63 (not $x60)))
+(let (($x36 (forall ((?v0 Int) (?v1 Int) )(or (< 2 (+ ?v0 ?v1)) (or (= (+ ?v0 ?v1) 2) (< (+ ?v0 ?v1) 2))))
+))
+(let (($x37 (not $x36)))
+(let (($x41 (not (>= (+ ?1 ?0) 2))))
+(let ((?x30 (+ ?1 ?0)))
+(let (($x32 (= ?x30 2)))
+(let (($x46 (not (<= ?x30 2))))
+(let (($x55 (or $x46 $x32 $x41)))
+(let (($x35 (or (< 2 ?x30) (or $x32 (< ?x30 2)))))
+(let ((@x51 (monotonicity (rewrite (= (< ?x30 2) $x41)) (= (or $x32 (< ?x30 2)) (or $x32 $x41)))))
+(let ((@x54 (monotonicity (rewrite (= (< 2 ?x30) $x46)) @x51 (= $x35 (or $x46 (or $x32 $x41))))))
+(let ((@x59 (trans @x54 (rewrite (= (or $x46 (or $x32 $x41)) $x55)) (= $x35 $x55))))
+(let ((@x66 (mp (asserted $x37) (monotonicity (quant-intro @x59 (= $x36 $x60)) (= $x37 $x63)) $x63)))
+(let ((@x102 (mp (mp~ @x66 (sk (~ $x63 $x74)) $x74) (monotonicity @x98 (= $x74 (not (or $x84 $x87 $x93)))) (not (or $x84 $x87 $x93)))))
+(let ((@x105 (not-or-elim @x102 (not $x87))))
+(let ((@x106 (not-or-elim @x102 $x90)))
+(let ((@x103 (not-or-elim @x102 $x81)))
+(unit-resolution (unit-resolution ((_ th-lemma arith triangle-eq) (or $x87 $x84 $x93)) @x103 (or $x87 $x93)) @x106 @x105 false)))))))))))))))))))))))))))))))))
 
-092a8c0984dc61be1fab786d699cb79093b7c5f2 46 0
+e71a92d0ec57041b4a90cd14085e39ffbc344b71 46 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v0!0 () Int)
 (proof
-(let (($x81 (<= ?v0!0 0)))
-(let (($x84 (<= ?v0!0 (~ 1))))
-(let (($x85 (not $x84)))
-(let ((@x103 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x85 $x81)) (hypothesis (not $x81)) $x85)))
-(let (($x82 (>= ?v0!0 1)))
-(let (($x83 (not $x82)))
-(let (($x86 (ite $x81 $x83 $x85)))
+(let (($x83 (<= ?v0!0 0)))
+(let (($x86 (<= ?v0!0 (- 1))))
 (let (($x87 (not $x86)))
-(let (($x71 (forall ((?v0 Int) )(let (($x56 (not (<= ?v0 (~ 1)))))
-(let (($x59 (not (>= ?v0 1))))
-(ite (<= ?v0 0) $x59 $x56))))
-))
-(let (($x74 (not $x71)))
-(let (($x13 (forall ((?v0 Int) )(let (($x11 (< ?v0 1)))
-(let (($x7 (< 0 ?v0)))
-(ite $x7 (< 0 (+ ?v0 1)) $x11))))
-))
-(let (($x14 (not $x13)))
-(let (($x44 (forall ((?v0 Int) )(let (($x11 (< ?v0 1)))
-(let (($x38 (< 0 (+ 1 ?v0))))
-(let (($x7 (< 0 ?v0)))
-(ite $x7 $x38 $x11)))))
-))
-(let (($x56 (not (<= ?0 (~ 1)))))
-(let (($x59 (not (>= ?0 1))))
-(let (($x66 (ite (<= ?0 0) $x59 $x56)))
-(let (($x11 (< ?0 1)))
-(let (($x38 (< 0 (+ 1 ?0))))
-(let (($x7 (< 0 ?0)))
-(let (($x41 (ite $x7 $x38 $x11)))
-(let ((@x65 (monotonicity (rewrite (= $x7 (not (<= ?0 0)))) (rewrite (= $x38 $x56)) (rewrite (= $x11 $x59)) (= $x41 (ite (not (<= ?0 0)) $x56 $x59)))))
-(let ((@x70 (trans @x65 (rewrite (= (ite (not (<= ?0 0)) $x56 $x59) $x66)) (= $x41 $x66))))
-(let ((@x76 (monotonicity (|quant-intro| @x70 (= $x44 $x71)) (= (not $x44) $x74))))
-(let ((@x40 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= (< 0 (+ ?0 1)) $x38))))
-(let ((@x43 (monotonicity @x40 (= (ite $x7 (< 0 (+ ?0 1)) $x11) $x41))))
-(let ((@x49 (monotonicity (|quant-intro| @x43 (= $x13 $x44)) (= $x14 (not $x44)))))
-(let ((@x90 (|mp~| (mp (asserted $x14) (trans @x49 @x76 (= $x14 $x74)) $x74) (sk (|~| $x74 $x87)) $x87)))
-(let ((@x106 (|unit-resolution| (|unit-resolution| (|def-axiom| (or $x86 $x81 $x84)) @x90 (or $x81 $x84)) @x103 (hypothesis (not $x81)) false)))
-(let ((@x107 (lemma @x106 $x81)))
-(let ((@x112 (|unit-resolution| (|def-axiom| (or $x86 (not $x81) $x82)) @x90 (or (not $x81) $x82))))
-(|unit-resolution| @x112 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x83 (not $x81))) @x107 $x83) @x107 false)))))))))))))))))))))))))))))))))
+(let ((@x105 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x87 $x83)) (hypothesis (not $x83)) $x87)))
+(let (($x84 (>= ?v0!0 1)))
+(let (($x85 (not $x84)))
+(let (($x88 (ite $x83 $x85 $x87)))
+(let (($x89 (not $x88)))
+(let (($x73 (forall ((?v0 Int) )(let (($x58 (not (<= ?v0 (- 1)))))
+(let (($x61 (not (>= ?v0 1))))
+(ite (<= ?v0 0) $x61 $x58))))
+))
+(let (($x76 (not $x73)))
+(let (($x34 (forall ((?v0 Int) )(let (($x32 (< ?v0 1)))
+(let (($x28 (< 0 ?v0)))
+(ite $x28 (< 0 (+ ?v0 1)) $x32))))
+))
+(let (($x35 (not $x34)))
+(let (($x46 (forall ((?v0 Int) )(let (($x32 (< ?v0 1)))
+(let (($x40 (< 0 (+ 1 ?v0))))
+(let (($x28 (< 0 ?v0)))
+(ite $x28 $x40 $x32)))))
+))
+(let (($x58 (not (<= ?0 (- 1)))))
+(let (($x61 (not (>= ?0 1))))
+(let (($x68 (ite (<= ?0 0) $x61 $x58)))
+(let (($x32 (< ?0 1)))
+(let (($x40 (< 0 (+ 1 ?0))))
+(let (($x28 (< 0 ?0)))
+(let (($x43 (ite $x28 $x40 $x32)))
+(let ((@x67 (monotonicity (rewrite (= $x28 (not (<= ?0 0)))) (rewrite (= $x40 $x58)) (rewrite (= $x32 $x61)) (= $x43 (ite (not (<= ?0 0)) $x58 $x61)))))
+(let ((@x72 (trans @x67 (rewrite (= (ite (not (<= ?0 0)) $x58 $x61) $x68)) (= $x43 $x68))))
+(let ((@x78 (monotonicity (quant-intro @x72 (= $x46 $x73)) (= (not $x46) $x76))))
+(let ((@x42 (monotonicity (rewrite (= (+ ?0 1) (+ 1 ?0))) (= (< 0 (+ ?0 1)) $x40))))
+(let ((@x45 (monotonicity @x42 (= (ite $x28 (< 0 (+ ?0 1)) $x32) $x43))))
+(let ((@x51 (monotonicity (quant-intro @x45 (= $x34 $x46)) (= $x35 (not $x46)))))
+(let ((@x92 (mp~ (mp (asserted $x35) (trans @x51 @x78 (= $x35 $x76)) $x76) (sk (~ $x76 $x89)) $x89)))
+(let ((@x108 (unit-resolution (unit-resolution (def-axiom (or $x88 $x83 $x86)) @x92 (or $x83 $x86)) @x105 (hypothesis (not $x83)) false)))
+(let ((@x109 (lemma @x108 $x83)))
+(let ((@x114 (unit-resolution (def-axiom (or $x88 (not $x83) $x84)) @x92 (or (not $x83) $x84))))
+(unit-resolution @x114 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x85 (not $x83))) @x109 $x85) @x109 false)))))))))))))))))))))))))))))))))
 
-a5ac1b17c244dd3aef6c7c1289500bca02b482d0 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-f697308f77e23a8625c050b2aa7a7f131faf390d 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-ad02a5379962c0c41aaf5c95191947c03228f5e6 39 0
+cec63c4e61277cab3f34c858a58786d0b6b7272b 31 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x56 (forall ((?v0 Int) )(let (($x50 (not (<= ?v0 0))))
+(let (($x45 (not (>= ?v0 0))))
+(or $x45 $x50))))
+))
+(let (($x458 (not $x56)))
+(let (($x153 (<= 0 0)))
+(let (($x68 (not $x153)))
+(let (($x158 (>= 0 0)))
+(let (($x143 (not $x158)))
+(let (($x154 (or $x143 $x68)))
+(let (($x119 (or $x458 $x154)))
+(let ((@x482 (trans (monotonicity (rewrite (= $x153 true)) (= $x68 (not true))) (rewrite (= (not true) false)) (= $x68 false))))
+(let ((@x261 (trans (monotonicity (rewrite (= $x158 true)) (= $x143 (not true))) (rewrite (= (not true) false)) (= $x143 false))))
+(let ((@x116 (trans (monotonicity @x261 @x482 (= $x154 (or false false))) (rewrite (= (or false false) false)) (= $x154 false))))
+(let ((@x463 (trans (monotonicity @x116 (= $x119 (or $x458 false))) (rewrite (= (or $x458 false) $x458)) (= $x119 $x458))))
+(let ((@x464 (mp ((_ quant-inst 0) $x119) @x463 $x458)))
+(let (($x50 (not (<= ?0 0))))
+(let (($x45 (not (>= ?0 0))))
+(let (($x53 (or $x45 $x50)))
+(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
+))
+(let (($x33 (not (ite $x31 false true))))
+(let ((@x55 (monotonicity (rewrite (= (< ?0 0) $x45)) (rewrite (= (< 0 ?0) $x50)) (= (or (< ?0 0) (< 0 ?0)) $x53))))
+(let ((@x40 (monotonicity (rewrite (= (ite $x31 false true) (not $x31))) (= $x33 (not (not $x31))))))
+(let ((@x60 (trans (trans @x40 (rewrite (= (not (not $x31)) $x31)) (= $x33 $x31)) (quant-intro @x55 (= $x31 $x56)) (= $x33 $x56))))
+(let ((@x66 (mp~ (mp (asserted $x33) @x60 $x56) (nnf-pos (refl (~ $x53 $x53)) (~ $x56 $x56)) $x56)))
+(unit-resolution @x66 @x464 false)))))))))))))))))))))))))
+
+3ad025eb052c9510c89e0ee0394bb351383dc7cd 39 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x16 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x11 (- 6)))
-(let ((?x12 (* ?x11 ?v1)))
-(let ((?x9 (* 4 ?v0)))
-(let ((?x13 (+ ?x9 ?x12)))
-(= ?x13 1))))))
-))
-(let (($x7 (not $x16)))
-(let (($x17 (not $x7)))
-(let (($x59 (exists ((?v0 Int) (?v1 Int) )(let ((?x56 (* (~ 6) ?v1)))
-(let ((?x55 (* 4 ?v0)))
-(let ((?x57 (+ ?x55 ?x56)))
-(= ?x57 1)))))
-))
-(let (($x75 (exists ((?v0 Int) (?v1 Int) )false)
-))
-(let ((@x79 (|quant-intro| (rewrite (= (= (+ (* 4 ?1) (* (~ 6) ?0)) 1) false)) (= $x59 $x75))))
-(let ((@x83 (trans @x79 (|elim-unused| (= $x75 false)) (= $x59 false))))
-(let (($x51 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x42 (* (~ 6) ?v1)))
-(let ((?x9 (* 4 ?v0)))
-(let ((?x45 (+ ?x9 ?x42)))
-(= ?x45 1)))))
-))
-(let ((?x42 (* (~ 6) ?1)))
-(let ((?x9 (* 4 ?2)))
-(let ((?x45 (+ ?x9 ?x42)))
-(let (($x48 (= ?x45 1)))
-(let ((?x11 (- 6)))
-(let ((?x12 (* ?x11 ?1)))
-(let ((?x13 (+ ?x9 ?x12)))
-(let (($x15 (= ?x13 1)))
-(let ((@x47 (monotonicity (monotonicity (rewrite (= ?x11 (~ 6))) (= ?x12 ?x42)) (= ?x13 ?x45))))
-(let ((@x63 (trans (|quant-intro| (monotonicity @x47 (= $x15 $x48)) (= $x16 $x51)) (|elim-unused| (= $x51 $x59)) (= $x16 $x59))))
-(let ((@x69 (monotonicity (monotonicity @x63 (= $x7 (not $x59))) (= $x17 (not (not $x59))))))
-(let ((@x73 (trans @x69 (rewrite (= (not (not $x59)) $x59)) (= $x17 $x59))))
-(mp (asserted $x17) (trans @x73 @x83 (= $x17 false)) false)))))))))))))))))))))))
+(let (($x38 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x33 (- 6)))
+(let ((?x34 (* ?x33 ?v1)))
+(let ((?x31 (* 4 ?v0)))
+(let ((?x35 (+ ?x31 ?x34)))
+(= ?x35 1))))))
+))
+(let (($x29 (not $x38)))
+(let (($x39 (not $x29)))
+(let (($x61 (exists ((?v0 Int) (?v1 Int) )(let ((?x58 (* (- 6) ?v1)))
+(let ((?x57 (* 4 ?v0)))
+(let ((?x59 (+ ?x57 ?x58)))
+(= ?x59 1)))))
+))
+(let (($x77 (exists ((?v0 Int) (?v1 Int) )false)
+))
+(let ((@x81 (quant-intro (rewrite (= (= (+ (* 4 ?1) (* (- 6) ?0)) 1) false)) (= $x61 $x77))))
+(let ((@x85 (trans @x81 (elim-unused (= $x77 false)) (= $x61 false))))
+(let (($x53 (exists ((?v0 Int) (?v1 Int) (?v2 Int) )(let ((?x44 (* (- 6) ?v1)))
+(let ((?x31 (* 4 ?v0)))
+(let ((?x47 (+ ?x31 ?x44)))
+(= ?x47 1)))))
+))
+(let ((?x44 (* (- 6) ?1)))
+(let ((?x31 (* 4 ?2)))
+(let ((?x47 (+ ?x31 ?x44)))
+(let (($x50 (= ?x47 1)))
+(let ((?x33 (- 6)))
+(let ((?x34 (* ?x33 ?1)))
+(let ((?x35 (+ ?x31 ?x34)))
+(let (($x37 (= ?x35 1)))
+(let ((@x49 (monotonicity (monotonicity (rewrite (= ?x33 (- 6))) (= ?x34 ?x44)) (= ?x35 ?x47))))
+(let ((@x65 (trans (quant-intro (monotonicity @x49 (= $x37 $x50)) (= $x38 $x53)) (elim-unused (= $x53 $x61)) (= $x38 $x61))))
+(let ((@x71 (monotonicity (monotonicity @x65 (= $x29 (not $x61))) (= $x39 (not (not $x61))))))
+(let ((@x75 (trans @x71 (rewrite (= (not (not $x61)) $x61)) (= $x39 $x61))))
+(mp (asserted $x39) (trans @x75 @x85 (= $x39 false)) false)))))))))))))))))))))))
 
-8a423de6b668d07fe5d90dcad74d7fbb1fcb9c11 52 0
+742605321b1c1bf714414e704f5fbaa4881d29be 62 0
+unsat
+((set-logic AUFLIA)
+(declare-fun ?v0!1 () Int)
+(declare-fun z3name!0 () Bool)
+(proof
+(let ((?x96 (ite z3name!0 (- 1) 3)))
+(let (($x99 (<= ?x96 0)))
+(let (($x62 (forall ((?v0 Int) )(let (($x56 (not (<= ?v0 0))))
+(let (($x51 (not (>= ?v0 0))))
+(or $x51 $x56))))
+))
+(let ((?x65 (ite $x62 (- 1) 3)))
+(let (($x71 (<= ?x65 0)))
+(let ((@x93 (intro-def (and (or (not z3name!0) $x62) (or z3name!0 (not $x62))))))
+(let ((@x101 (monotonicity (monotonicity (apply-def @x93 (~ $x62 z3name!0)) (= ?x65 ?x96)) (= $x71 $x99))))
+(let (($x31 (forall ((?v0 Int) )(or (< ?v0 0) (< 0 ?v0)))
+))
+(let (($x37 (not (< 0 (ite $x31 (- 1) 3)))))
+(let (($x56 (not (<= ?0 0))))
+(let (($x51 (not (>= ?0 0))))
+(let (($x59 (or $x51 $x56)))
+(let ((@x61 (monotonicity (rewrite (= (< ?0 0) $x51)) (rewrite (= (< 0 ?0) $x56)) (= (or (< ?0 0) (< 0 ?0)) $x59))))
+(let ((@x67 (monotonicity (quant-intro @x61 (= $x31 $x62)) (= (ite $x31 (- 1) 3) ?x65))))
+(let ((@x70 (monotonicity @x67 (= (< 0 (ite $x31 (- 1) 3)) (< 0 ?x65)))))
+(let ((@x76 (trans @x70 (rewrite (= (< 0 ?x65) (not $x71))) (= (< 0 (ite $x31 (- 1) 3)) (not $x71)))))
+(let ((@x79 (monotonicity @x76 (= (not (< 0 (ite $x31 (- 1) 3))) (not (not $x71))))))
+(let ((@x83 (trans @x79 (rewrite (= (not (not $x71)) $x71)) (= (not (< 0 (ite $x31 (- 1) 3))) $x71))))
+(let ((?x42 (ite $x31 (- 1) 3)))
+(let (($x45 (< 0 ?x42)))
+(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (ite $x31 (- 1) 3) ?x42))))
+(let ((@x50 (monotonicity (monotonicity @x44 (= (< 0 (ite $x31 (- 1) 3)) $x45)) (= $x37 (not $x45)))))
+(let ((@x128 (mp (mp (asserted $x37) (trans @x50 @x83 (= $x37 $x71)) $x71) @x101 $x99)))
+(let ((@x245 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not (>= ?x96 3)) (not $x99))) @x128 (not (>= ?x96 3)))))
+(let (($x220 (= ?x96 3)))
+(let (($x88 (not z3name!0)))
+(let (($x90 (not $x62)))
+(let (($x323 (<= 0 0)))
+(let (($x533 (not $x323)))
+(let (($x542 (>= 0 0)))
+(let (($x179 (not $x542)))
+(let (($x206 (or $x179 $x533)))
+(let (($x529 (or $x90 $x206)))
+(let ((@x522 (trans (monotonicity (rewrite (= $x323 true)) (= $x533 (not true))) (rewrite (= (not true) false)) (= $x533 false))))
+(let ((@x200 (trans (monotonicity (rewrite (= $x542 true)) (= $x179 (not true))) (rewrite (= (not true) false)) (= $x179 false))))
+(let ((@x528 (trans (monotonicity @x200 @x522 (= $x206 (or false false))) (rewrite (= (or false false) false)) (= $x206 false))))
+(let ((@x237 (trans (monotonicity @x528 (= $x529 (or $x90 false))) (rewrite (= (or $x90 false) $x90)) (= $x529 $x90))))
+(let ((@x238 (mp ((_ quant-inst 0) $x529) @x237 $x90)))
+(let (($x89 (or $x88 $x62)))
+(let (($x115 (<= ?v0!1 0)))
+(let (($x116 (not $x115)))
+(let (($x113 (>= ?v0!1 0)))
+(let (($x114 (not $x113)))
+(let (($x117 (or $x114 $x116)))
+(let (($x118 (not $x117)))
+(let (($x121 (or z3name!0 $x118)))
+(let ((@x123 (monotonicity (refl (~ z3name!0 z3name!0)) (sk (~ $x90 $x118)) (~ (or z3name!0 $x90) $x121))))
+(let ((@x109 (monotonicity (refl (~ $x88 $x88)) (nnf-pos (refl (~ $x59 $x59)) (~ $x62 $x62)) (~ $x89 $x89))))
+(let ((@x126 (monotonicity @x109 @x123 (~ (and $x89 (or z3name!0 $x90)) (and $x89 $x121)))))
+(let ((@x131 (and-elim (mp~ @x93 @x126 (and $x89 $x121)) $x89)))
+(let ((@x515 (unit-resolution (def-axiom (or z3name!0 $x220)) (unit-resolution @x131 @x238 $x88) $x220)))
+(unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x220) (>= ?x96 3))) @x515 @x245 false))))))))))))))))))))))))))))))))))))))))))))))))))))))
+
+b419771c87952c92c2e97909ff791914992c4c92 52 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v1!1 () Int)
 (declare-fun ?v2!0 () Int)
 (proof
-(let ((?x103 (+ ?v2!0 ?v1!1)))
-(let (($x104 (<= ?x103 0)))
-(let (($x106 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not $x104))))
-(let (($x86 (forall ((?v1 Int) (?v2 Int) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))))
-))
-(let (($x89 (not $x86)))
-(let (($x15 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let (($x10 (and (< 0 ?v1) (< 0 ?v2))))
-(=> $x10 (< 0 (+ ?v1 ?v2)))))
+(let ((?x105 (+ ?v2!0 ?v1!1)))
+(let (($x106 (<= ?x105 0)))
+(let (($x108 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0)))) (not $x106))))
+(let (($x88 (forall ((?v1 Int) (?v2 Int) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0)))) (not (<= (+ ?v2 ?v1) 0))))
+))
+(let (($x91 (not $x88)))
+(let (($x36 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
+(=> $x31 (< 0 (+ ?v1 ?v2)))))
 )
 ))
-(let (($x16 (not $x15)))
-(let (($x52 (forall ((?v1 Int) (?v2 Int) )(let ((?x37 (+ ?v2 ?v1)))
-(let (($x40 (< 0 ?x37)))
-(or (not (and (< 0 ?v1) (< 0 ?v2))) $x40))))
-))
-(let (($x83 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0)))))
-(let ((?x37 (+ ?0 ?1)))
-(let (($x40 (< 0 ?x37)))
-(let (($x47 (or (not (and (< 0 ?1) (< 0 ?0))) $x40)))
-(let (($x77 (= (not (and (< 0 ?1) (< 0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0)))))))
-(let (($x10 (and (< 0 ?1) (< 0 ?0))))
-(let ((@x75 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x10 (and (not (<= ?1 0)) (not (<= ?0 0)))))))
-(let ((@x85 (monotonicity (monotonicity @x75 $x77) (rewrite (= $x40 (not (<= ?x37 0)))) (= $x47 $x83))))
-(let ((@x91 (monotonicity (|quant-intro| @x85 (= $x52 $x86)) (= (not $x52) $x89))))
-(let (($x55 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let ((?x37 (+ ?v2 ?v1)))
-(let (($x40 (< 0 ?x37)))
-(or (not (and (< 0 ?v1) (< 0 ?v2))) $x40))))
+(let (($x37 (not $x36)))
+(let (($x54 (forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1)))
+(let (($x42 (< 0 ?x39)))
+(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))))
+))
+(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0)))) (not (<= (+ ?0 ?1) 0)))))
+(let ((?x39 (+ ?0 ?1)))
+(let (($x42 (< 0 ?x39)))
+(let (($x49 (or (not (and (< 0 ?1) (< 0 ?0))) $x42)))
+(let (($x79 (= (not (and (< 0 ?1) (< 0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0)))))))
+(let (($x31 (and (< 0 ?1) (< 0 ?0))))
+(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0)))))))
+(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?x39 0)))) (= $x49 $x85))))
+(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
+(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Int) )(let ((?x39 (+ ?v2 ?v1)))
+(let (($x42 (< 0 ?x39)))
+(or (not (and (< 0 ?v1) (< 0 ?v2))) $x42))))
 )
 ))
-(let (($x14 (forall ((?v1 Int) (?v2 Int) )(let (($x10 (and (< 0 ?v1) (< 0 ?v2))))
-(=> $x10 (< 0 (+ ?v1 ?v2)))))
-))
-(let ((@x42 (monotonicity (rewrite (= (+ ?1 ?0) ?x37)) (= (< 0 (+ ?1 ?0)) $x40))))
-(let ((@x45 (monotonicity @x42 (= (=> $x10 (< 0 (+ ?1 ?0))) (=> $x10 $x40)))))
-(let ((@x51 (trans @x45 (rewrite (= (=> $x10 $x40) $x47)) (= (=> $x10 (< 0 (+ ?1 ?0))) $x47))))
-(let ((@x61 (trans (|quant-intro| (|quant-intro| @x51 (= $x14 $x52)) (= $x15 $x55)) (|elim-unused| (= $x55 $x52)) (= $x15 $x52))))
-(let ((@x93 (trans (monotonicity @x61 (= $x16 (not $x52))) @x91 (= $x16 $x89))))
-(let ((@x110 (|mp~| (mp (asserted $x16) @x93 $x89) (sk (|~| $x89 (not $x106))) (not $x106))))
-(let ((@x116 (|not-or-elim| @x110 $x104)))
-(let (($x97 (<= ?v1!1 0)))
-(let (($x98 (not $x97)))
-(let ((@x114 (|and-elim| (|not-or-elim| @x110 (and $x98 (not (<= ?v2!0 0)))) $x98)))
-(let (($x99 (<= ?v2!0 0)))
+(let (($x35 (forall ((?v1 Int) (?v2 Int) )(let (($x31 (and (< 0 ?v1) (< 0 ?v2))))
+(=> $x31 (< 0 (+ ?v1 ?v2)))))
+))
+(let ((@x44 (monotonicity (rewrite (= (+ ?1 ?0) ?x39)) (= (< 0 (+ ?1 ?0)) $x42))))
+(let ((@x47 (monotonicity @x44 (= (=> $x31 (< 0 (+ ?1 ?0))) (=> $x31 $x42)))))
+(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< 0 (+ ?1 ?0))) $x49))))
+(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x35 $x54)) (= $x36 $x57)) (elim-unused (= $x57 $x54)) (= $x36 $x54))))
+(let ((@x95 (trans (monotonicity @x63 (= $x37 (not $x54))) @x93 (= $x37 $x91))))
+(let ((@x112 (mp~ (mp (asserted $x37) @x95 $x91) (sk (~ $x91 (not $x108))) (not $x108))))
+(let ((@x118 (not-or-elim @x112 $x106)))
+(let (($x99 (<= ?v1!1 0)))
 (let (($x100 (not $x99)))
-(let ((@x115 (|and-elim| (|not-or-elim| @x110 (and $x98 $x100)) $x100)))
-((_ |th-lemma| arith farkas 1 1 1) @x115 @x114 @x116 false)))))))))))))))))))))))))))))))))))
+(let ((@x116 (and-elim (not-or-elim @x112 (and $x100 (not (<= ?v2!0 0)))) $x100)))
+(let (($x101 (<= ?v2!0 0)))
+(let (($x102 (not $x101)))
+(let ((@x117 (and-elim (not-or-elim @x112 (and $x100 $x102)) $x102)))
+((_ th-lemma arith farkas 1 1 1) @x117 @x116 @x118 false)))))))))))))))))))))))))))))))))))
 
-7c93c190dc21779c8214786ce8c1fd4de433814f 46 0
+aca1057d33e2c20ed6a4e7340ea11d94647e9dc8 46 0
 unsat
 ((set-logic AUFLIRA)
 (declare-fun ?v1!1 () Int)
 (declare-fun ?v2!0 () Real)
 (proof
-(let (($x103 (<= ?v1!1 (~ 1))))
-(let (($x104 (not $x103)))
-(let (($x105 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) $x104)))
-(let (($x86 (forall ((?v1 Int) (?v2 Real) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (~ 1)))))
-))
-(let (($x89 (not $x86)))
-(let (($x18 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x12 (and (< 0 ?v1) (< 0.0 ?v2))))
-(=> $x12 (< (- 1) ?v1))))
+(let (($x105 (<= ?v1!1 (- 1))))
+(let (($x106 (not $x105)))
+(let (($x107 (or (not (and (not (<= ?v1!1 0)) (not (<= ?v2!0 0.0)))) $x106)))
+(let (($x88 (forall ((?v1 Int) (?v2 Real) )(or (not (and (not (<= ?v1 0)) (not (<= ?v2 0.0)))) (not (<= ?v1 (- 1)))))
+))
+(let (($x91 (not $x88)))
+(let (($x37 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
+(=> $x31 (< (- 1) ?v1))))
 )
 ))
-(let (($x5 (not $x18)))
-(let (($x52 (forall ((?v1 Int) (?v2 Real) )(let (($x40 (< (~ 1) ?v1)))
-(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x40)))
-))
-(let (($x83 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) (not (<= ?1 (~ 1))))))
-(let (($x40 (< (~ 1) ?1)))
-(let (($x47 (or (not (and (< 0 ?1) (< 0.0 ?0))) $x40)))
-(let (($x77 (= (not (and (< 0 ?1) (< 0.0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
-(let (($x12 (and (< 0 ?1) (< 0.0 ?0))))
-(let ((@x75 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x12 (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
-(let ((@x85 (monotonicity (monotonicity @x75 $x77) (rewrite (= $x40 (not (<= ?1 (~ 1))))) (= $x47 $x83))))
-(let ((@x91 (monotonicity (|quant-intro| @x85 (= $x52 $x86)) (= (not $x52) $x89))))
-(let (($x55 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x40 (< (~ 1) ?v1)))
-(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x40)))
+(let (($x27 (not $x37)))
+(let (($x54 (forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1)))
+(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)))
+))
+(let (($x85 (or (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))) (not (<= ?1 (- 1))))))
+(let (($x42 (< (- 1) ?1)))
+(let (($x49 (or (not (and (< 0 ?1) (< 0.0 ?0))) $x42)))
+(let (($x79 (= (not (and (< 0 ?1) (< 0.0 ?0))) (not (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
+(let (($x31 (and (< 0 ?1) (< 0.0 ?0))))
+(let ((@x77 (monotonicity (rewrite (= (< 0 ?1) (not (<= ?1 0)))) (rewrite (= (< 0.0 ?0) (not (<= ?0 0.0)))) (= $x31 (and (not (<= ?1 0)) (not (<= ?0 0.0)))))))
+(let ((@x87 (monotonicity (monotonicity @x77 $x79) (rewrite (= $x42 (not (<= ?1 (- 1))))) (= $x49 $x85))))
+(let ((@x93 (monotonicity (quant-intro @x87 (= $x54 $x88)) (= (not $x54) $x91))))
+(let (($x57 (exists ((?v0 Int) )(forall ((?v1 Int) (?v2 Real) )(let (($x42 (< (- 1) ?v1)))
+(or (not (and (< 0 ?v1) (< 0.0 ?v2))) $x42)))
 )
 ))
-(let (($x17 (forall ((?v1 Int) (?v2 Real) )(let (($x12 (and (< 0 ?v1) (< 0.0 ?v2))))
-(=> $x12 (< (- 1) ?v1))))
-))
-(let ((@x42 (monotonicity (rewrite (= (- 1) (~ 1))) (= (< (- 1) ?1) $x40))))
-(let ((@x45 (monotonicity @x42 (= (=> $x12 (< (- 1) ?1)) (=> $x12 $x40)))))
-(let ((@x51 (trans @x45 (rewrite (= (=> $x12 $x40) $x47)) (= (=> $x12 (< (- 1) ?1)) $x47))))
-(let ((@x61 (trans (|quant-intro| (|quant-intro| @x51 (= $x17 $x52)) (= $x18 $x55)) (|elim-unused| (= $x55 $x52)) (= $x18 $x52))))
-(let ((@x93 (trans (monotonicity @x61 (= $x5 (not $x52))) @x91 (= $x5 $x89))))
-(let ((@x109 (|mp~| (mp (asserted $x5) @x93 $x89) (sk (|~| $x89 (not $x105))) (not $x105))))
-(let ((@x115 (|not-or-elim| @x109 $x103)))
-(let (($x97 (<= ?v1!1 0)))
-(let (($x98 (not $x97)))
-(let ((@x113 (|and-elim| (|not-or-elim| @x109 (and $x98 (not (<= ?v2!0 0.0)))) $x98)))
-(|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x104 $x97)) @x113 $x104) @x115 false)))))))))))))))))))))))))))))))
+(let (($x36 (forall ((?v1 Int) (?v2 Real) )(let (($x31 (and (< 0 ?v1) (< 0.0 ?v2))))
+(=> $x31 (< (- 1) ?v1))))
+))
+(let ((@x44 (monotonicity (rewrite (= (- 1) (- 1))) (= (< (- 1) ?1) $x42))))
+(let ((@x47 (monotonicity @x44 (= (=> $x31 (< (- 1) ?1)) (=> $x31 $x42)))))
+(let ((@x53 (trans @x47 (rewrite (= (=> $x31 $x42) $x49)) (= (=> $x31 (< (- 1) ?1)) $x49))))
+(let ((@x63 (trans (quant-intro (quant-intro @x53 (= $x36 $x54)) (= $x37 $x57)) (elim-unused (= $x57 $x54)) (= $x37 $x54))))
+(let ((@x95 (trans (monotonicity @x63 (= $x27 (not $x54))) @x93 (= $x27 $x91))))
+(let ((@x111 (mp~ (mp (asserted $x27) @x95 $x91) (sk (~ $x91 (not $x107))) (not $x107))))
+(let ((@x117 (not-or-elim @x111 $x105)))
+(let (($x99 (<= ?v1!1 0)))
+(let (($x100 (not $x99)))
+(let ((@x115 (and-elim (not-or-elim @x111 (and $x100 (not (<= ?v2!0 0.0)))) $x100)))
+(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x106 $x99)) @x115 $x106) @x117 false)))))))))))))))))))))))))))))))
 
-39a3c02f6687608102bd092d376b8901575e5356 2 0
-unknown
-(error "line 6 column 10: proof is not available")
-3bdf1da3a49c7c0ce726c85bf6e844aabdd6afa0 36 0
+271acbb7e8a77900a25a72e272c627346e8e5aad 110 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x13 (forall ((?v0 Int) )(let ((?x10 (* 2 |a$|)))
-(let ((?x9 (* 2 ?v0)))
-(let (($x11 (< ?x9 ?x10)))
-(let (($x7 (< ?v0 |a$|)))
-(=> $x7 $x11))))))
-))
-(let (($x14 (not $x13)))
-(let (($x40 (forall ((?v0 Int) )(let ((?x10 (* 2 |a$|)))
-(let ((?x9 (* 2 ?v0)))
-(let (($x11 (< ?x9 ?x10)))
-(let (($x7 (< ?v0 |a$|)))
-(let (($x36 (not $x7)))
-(or $x36 $x11)))))))
-))
-(let (($x43 (not $x40)))
-(let (($x69 (forall ((?v0 Int) )true)
-))
-(let ((?x10 (* 2 |a$|)))
-(let ((?x9 (* 2 ?0)))
-(let (($x11 (< ?x9 ?x10)))
-(let (($x7 (< ?0 |a$|)))
-(let (($x36 (not $x7)))
-(let (($x37 (or $x36 $x11)))
-(let (($x48 (>= (+ ?0 (* (~ 1) |a$|)) 0)))
-(let (($x47 (not $x48)))
-(let ((@x59 (trans (monotonicity (rewrite (= $x7 $x47)) (= $x36 (not $x47))) (rewrite (= (not $x47) $x48)) (= $x36 $x48))))
-(let ((@x64 (monotonicity @x59 (rewrite (= $x11 $x47)) (= $x37 (or $x48 $x47)))))
-(let ((@x71 (|quant-intro| (trans @x64 (rewrite (= (or $x48 $x47) true)) (= $x37 true)) (= $x40 $x69))))
-(let ((@x78 (monotonicity (trans @x71 (|elim-unused| (= $x69 true)) (= $x40 true)) (= $x43 (not true)))))
-(let ((@x82 (trans @x78 (rewrite (= (not true) false)) (= $x43 false))))
-(let ((@x45 (monotonicity (|quant-intro| (rewrite (= (=> $x7 $x11) $x37)) (= $x13 $x40)) (= $x14 $x43))))
-(mp (asserted $x14) (trans @x45 @x82 (= $x14 false)) false))))))))))))))))))))))
+(let (($x152 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x143 (not false)))
+(let (($x146 (or $x143 $x69)))
+(not $x146))))))
+))
+(let (($x174 (forall ((?v0 Int) )false)
+))
+(let (($x68 (<= ?0 0)))
+(let (($x69 (not $x68)))
+(let (($x143 (not false)))
+(let (($x146 (or $x143 $x69)))
+(let ((@x166 (trans (monotonicity (rewrite (= $x143 true)) (= $x146 (or true $x69))) (rewrite (= (or true $x69) true)) (= $x146 true))))
+(let ((@x173 (trans (monotonicity @x166 (= (not $x146) (not true))) (rewrite (= (not true) false)) (= (not $x146) false))))
+(let ((@x180 (trans (quant-intro @x173 (= $x152 $x174)) (elim-unused (= $x174 false)) (= $x152 false))))
+(let (($x122 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
+))
+(let (($x78 (not $x75)))
+(let (($x81 (or $x78 $x69)))
+(not $x81)))))))
+))
+(let (($x138 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x126 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(not $x68)))
+))
+(not (or (not $x126) $x69))))))
+))
+(let ((@x156 (trans (rewrite (= $x122 $x138)) (rewrite (= $x138 $x152)) (= $x122 $x152))))
+(let (($x116 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
+))
+(and $x75 $x68))))
+))
+(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?0)) 0)) $x69))))
+))
+(let (($x78 (not $x75)))
+(let (($x81 (or $x78 $x69)))
+(let (($x104 (not $x81)))
+(let (($x113 (and $x75 $x68)))
+(let (($x107 (forall ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x100 (not $x69)))
+(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
+))
+(and $x75 $x100))))))
+))
+(let ((@x115 (monotonicity (rewrite (= (not $x69) $x68)) (= (and $x75 (not $x69)) $x113))))
+(let (($x84 (exists ((?v0 Int) )(let (($x68 (<= ?v0 0)))
+(let (($x69 (not $x68)))
+(let (($x75 (forall ((?v1 Int) )(let (($x68 (<= ?v1 0)))
+(let (($x69 (not $x68)))
+(or (not (>= (+ ?v1 (* (- 1) ?v0)) 0)) $x69))))
+))
+(let (($x78 (not $x75)))
+(or $x78 $x69))))))
+))
+(let (($x87 (not $x84)))
+(let (($x72 (or (not (>= (+ ?0 (* (- 1) ?1)) 0)) $x69)))
+(let ((@x99 (nnf-neg (nnf-pos (refl (~ $x72 $x72)) (~ $x75 $x75)) (~ (not $x78) $x75))))
+(let ((@x106 (nnf-neg @x99 (refl (~ (not $x69) (not $x69))) (~ $x104 (and $x75 (not $x69))))))
+(let (($x34 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0)))
+(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
+(let (($x29 (<= ?v0 ?v1)))
+(=> $x29 $x30))))
+))
+(=> $x32 $x30))))
+))
+(let (($x35 (not $x34)))
+(let (($x53 (exists ((?v0 Int) )(let (($x30 (< 0 ?v0)))
+(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
+(or (not (<= ?v0 ?v1)) $x30)))
+))
+(or (not $x41) $x30))))
+))
+(let (($x30 (< 0 ?0)))
+(let (($x41 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
+(or (not (<= ?0 ?v1)) $x30)))
+))
+(let (($x48 (or (not $x41) $x30)))
+(let ((@x67 (monotonicity (rewrite (= (<= ?1 ?0) (>= (+ ?0 (* (- 1) ?1)) 0))) (= (not (<= ?1 ?0)) (not (>= (+ ?0 (* (- 1) ?1)) 0))))))
+(let ((@x74 (monotonicity @x67 (rewrite (= $x30 $x69)) (= (or (not (<= ?1 ?0)) $x30) $x72))))
+(let ((@x80 (monotonicity (quant-intro @x74 (= $x41 $x75)) (= (not $x41) $x78))))
+(let ((@x86 (quant-intro (monotonicity @x80 (rewrite (= $x30 $x69)) (= $x48 $x81)) (= $x53 $x84))))
+(let (($x32 (forall ((?v1 Int) )(let (($x30 (< 0 ?v1)))
+(let (($x29 (<= ?0 ?v1)))
+(=> $x29 $x30))))
+))
+(let (($x33 (=> $x32 $x30)))
+(let ((@x40 (rewrite (= (=> (<= ?1 ?0) $x30) (or (not (<= ?1 ?0)) $x30)))))
+(let ((@x46 (monotonicity (quant-intro @x40 (= $x32 $x41)) (= $x33 (=> $x41 $x30)))))
+(let ((@x55 (quant-intro (trans @x46 (rewrite (= (=> $x41 $x30) $x48)) (= $x33 $x48)) (= $x34 $x53))))
+(let ((@x91 (trans (monotonicity @x55 (= $x35 (not $x53))) (monotonicity @x86 (= (not $x53) $x87)) (= $x35 $x87))))
+(let ((@x110 (mp~ (mp (asserted $x35) @x91 $x87) (nnf-neg @x106 (~ $x87 $x107)) $x107)))
+(let ((@x125 (mp (mp @x110 (quant-intro @x115 (= $x107 $x116)) $x116) (quant-intro (rewrite (= $x113 $x104)) (= $x116 $x122)) $x122)))
+(mp (mp @x125 @x156 $x152) @x180 false))))))))))))))))))))))))))))))))))))))))))))))
 
-0737ab0e9619ba68da155fd5dcce2691243e7d8d 24 0
+d435f7f9afa42bb528c08b9973fb84251457cc61 36 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x35 (forall ((?v0 Int) )(let ((?x32 (* 2 a$)))
+(let ((?x31 (* 2 ?v0)))
+(let (($x33 (< ?x31 ?x32)))
+(let (($x29 (< ?v0 a$)))
+(=> $x29 $x33))))))
+))
+(let (($x36 (not $x35)))
+(let (($x42 (forall ((?v0 Int) )(let ((?x32 (* 2 a$)))
+(let ((?x31 (* 2 ?v0)))
+(let (($x33 (< ?x31 ?x32)))
+(let (($x29 (< ?v0 a$)))
+(let (($x38 (not $x29)))
+(or $x38 $x33)))))))
+))
+(let (($x45 (not $x42)))
+(let (($x71 (forall ((?v0 Int) )true)
+))
+(let ((?x32 (* 2 a$)))
+(let ((?x31 (* 2 ?0)))
+(let (($x33 (< ?x31 ?x32)))
+(let (($x29 (< ?0 a$)))
+(let (($x38 (not $x29)))
+(let (($x39 (or $x38 $x33)))
+(let (($x50 (>= (+ ?0 (* (- 1) a$)) 0)))
+(let (($x49 (not $x50)))
+(let ((@x61 (trans (monotonicity (rewrite (= $x29 $x49)) (= $x38 (not $x49))) (rewrite (= (not $x49) $x50)) (= $x38 $x50))))
+(let ((@x66 (monotonicity @x61 (rewrite (= $x33 $x49)) (= $x39 (or $x50 $x49)))))
+(let ((@x73 (quant-intro (trans @x66 (rewrite (= (or $x50 $x49) true)) (= $x39 true)) (= $x42 $x71))))
+(let ((@x80 (monotonicity (trans @x73 (elim-unused (= $x71 true)) (= $x42 true)) (= $x45 (not true)))))
+(let ((@x84 (trans @x80 (rewrite (= (not true) false)) (= $x45 false))))
+(let ((@x47 (monotonicity (quant-intro (rewrite (= (=> $x29 $x33) $x39)) (= $x35 $x42)) (= $x36 $x45))))
+(mp (asserted $x36) (trans @x47 @x84 (= $x36 false)) false))))))))))))))))))))))
+
+6da91cb6f227cacea1dfaf3034cb4a390ac0baa5 24 0
 unsat
 ((set-logic AUFLIA)
 (declare-fun ?v1!0 () Int)
 (proof
-(let (($x62 (>= ?v1!0 1)))
-(let (($x50 (forall ((?v1 Int) )(or (not (<= ?v1 0)) (not (>= ?v1 1))))
-))
-(let (($x53 (not $x50)))
-(let (($x12 (forall ((?v0 Int) (?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
-))
-(let (($x5 (not $x12)))
-(let (($x33 (forall ((?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
-))
-(let (($x11 (or (< 0 ?0) (< ?0 1))))
-(let ((@x49 (monotonicity (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= $x11 (or (not (<= ?0 0)) (not (>= ?0 1)))))))
-(let ((@x55 (monotonicity (|quant-intro| @x49 (= $x33 $x50)) (= (not $x33) $x53))))
-(let ((@x57 (trans (monotonicity (|elim-unused| (= $x12 $x33)) (= $x5 (not $x33))) @x55 (= $x5 $x53))))
-(let ((@x68 (|mp~| (mp (asserted $x5) @x57 $x53) (sk (|~| $x53 (not (or (not (<= ?v1!0 0)) (not $x62))))) (not (or (not (<= ?v1!0 0)) (not $x62))))))
-(let ((@x72 (|not-or-elim| @x68 $x62)))
-(let (($x63 (not $x62)))
-(let (($x60 (<= ?v1!0 0)))
-(let ((@x71 (|not-or-elim| @x68 $x60)))
-(|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x63 (not $x60))) @x71 $x63) @x72 false))))))))))))))))))
+(let (($x64 (>= ?v1!0 1)))
+(let (($x52 (forall ((?v1 Int) )(or (not (<= ?v1 0)) (not (>= ?v1 1))))
+))
+(let (($x55 (not $x52)))
+(let (($x33 (forall ((?v0 Int) (?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
+))
+(let (($x27 (not $x33)))
+(let (($x35 (forall ((?v1 Int) )(or (< 0 ?v1) (< ?v1 1)))
+))
+(let (($x32 (or (< 0 ?0) (< ?0 1))))
+(let ((@x51 (monotonicity (rewrite (= (< 0 ?0) (not (<= ?0 0)))) (rewrite (= (< ?0 1) (not (>= ?0 1)))) (= $x32 (or (not (<= ?0 0)) (not (>= ?0 1)))))))
+(let ((@x57 (monotonicity (quant-intro @x51 (= $x35 $x52)) (= (not $x35) $x55))))
+(let ((@x59 (trans (monotonicity (elim-unused (= $x33 $x35)) (= $x27 (not $x35))) @x57 (= $x27 $x55))))
+(let ((@x70 (mp~ (mp (asserted $x27) @x59 $x55) (sk (~ $x55 (not (or (not (<= ?v1!0 0)) (not $x64))))) (not (or (not (<= ?v1!0 0)) (not $x64))))))
+(let ((@x74 (not-or-elim @x70 $x64)))
+(let (($x65 (not $x64)))
+(let (($x62 (<= ?v1!0 0)))
+(let ((@x73 (not-or-elim @x70 $x62)))
+(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x65 (not $x62))) @x73 $x65) @x74 false))))))))))))))))))
 
-40bda8c0d6f113a97f5dc1db7c4465fe4cb9ac06 26 0
+fe3b63dadb4f4e5b321fc5b7c5f730628f383434 26 0
 unsat
 ((set-logic <null>)
 (proof
-(let (($x56 (<= |b$| 0)))
-(let (($x60 (or (not (and (not (<= |a$| 0)) (not (<= (* |a$| |b$|) 0)))) (not $x56))))
-(let (($x63 (not $x60)))
-(let (($x14 (not (=> (and (< 0 |a$|) (< 0 (* |a$| |b$|))) (< 0 |b$|)))))
-(let (($x12 (< 0 |b$|)))
-(let (($x36 (or (not (and (< 0 |a$|) (< 0 (* |a$| |b$|)))) $x12)))
-(let (($x54 (= (not (and (< 0 |a$|) (< 0 (* |a$| |b$|)))) (not (and (not (<= |a$| 0)) (not (<= (* |a$| |b$|) 0)))))))
-(let ((?x9 (* |a$| |b$|)))
-(let (($x46 (<= ?x9 0)))
-(let (($x47 (not $x46)))
-(let (($x42 (<= |a$| 0)))
-(let (($x43 (not $x42)))
-(let (($x50 (and $x43 $x47)))
-(let (($x11 (and (< 0 |a$|) (< 0 ?x9))))
-(let ((@x52 (monotonicity (rewrite (= (< 0 |a$|) $x43)) (rewrite (= (< 0 ?x9) $x47)) (= $x11 $x50))))
-(let ((@x62 (monotonicity (monotonicity @x52 $x54) (rewrite (= $x12 (not $x56))) (= $x36 $x60))))
-(let ((@x41 (monotonicity (rewrite (= (=> $x11 $x12) $x36)) (= $x14 (not $x36)))))
-(let ((@x67 (trans @x41 (monotonicity @x62 (= (not $x36) $x63)) (= $x14 $x63))))
-(let ((@x72 (|not-or-elim| (mp (asserted $x14) @x67 $x63) $x56)))
-(let ((@x70 (|and-elim| (|not-or-elim| (mp (asserted $x14) @x67 $x63) $x50) $x43)))
-(let ((@x71 (|and-elim| (|not-or-elim| (mp (asserted $x14) @x67 $x63) $x50) $x47)))
-((_ |th-lemma| arith farkas 1 1 1) @x71 @x70 @x72 false))))))))))))))))))))))))
+(let (($x58 (<= b$ 0)))
+(let (($x62 (or (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))) (not $x58))))
+(let (($x65 (not $x62)))
+(let (($x35 (not (=> (and (< 0 a$) (< 0 (* a$ b$))) (< 0 b$)))))
+(let (($x33 (< 0 b$)))
+(let (($x38 (or (not (and (< 0 a$) (< 0 (* a$ b$)))) $x33)))
+(let (($x56 (= (not (and (< 0 a$) (< 0 (* a$ b$)))) (not (and (not (<= a$ 0)) (not (<= (* a$ b$) 0)))))))
+(let ((?x30 (* a$ b$)))
+(let (($x48 (<= ?x30 0)))
+(let (($x49 (not $x48)))
+(let (($x44 (<= a$ 0)))
+(let (($x45 (not $x44)))
+(let (($x52 (and $x45 $x49)))
+(let (($x32 (and (< 0 a$) (< 0 ?x30))))
+(let ((@x54 (monotonicity (rewrite (= (< 0 a$) $x45)) (rewrite (= (< 0 ?x30) $x49)) (= $x32 $x52))))
+(let ((@x64 (monotonicity (monotonicity @x54 $x56) (rewrite (= $x33 (not $x58))) (= $x38 $x62))))
+(let ((@x43 (monotonicity (rewrite (= (=> $x32 $x33) $x38)) (= $x35 (not $x38)))))
+(let ((@x69 (trans @x43 (monotonicity @x64 (= (not $x38) $x65)) (= $x35 $x65))))
+(let ((@x74 (not-or-elim (mp (asserted $x35) @x69 $x65) $x58)))
+(let ((@x72 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x45)))
+(let ((@x73 (and-elim (not-or-elim (mp (asserted $x35) @x69 $x65) $x52) $x49)))
+((_ th-lemma arith farkas 1 1 1) @x73 @x72 @x74 false))))))))))))))))))))))))
 
-3f9914c501829bba4f4b416ce311c4f49855326d 26 0
+24c8f0dd4aa6c97766e14b2f7117e047e77febf6 26 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x13 (+ |y$| 1)))
-(let ((?x14 (* |a$| ?x13)))
-(let ((?x12 (* |a$| |x$|)))
-(let ((?x15 (+ ?x12 ?x14)))
-(let ((?x8 (+ |x$| 1)))
-(let ((?x10 (+ ?x8 |y$|)))
-(let ((?x11 (* |a$| ?x10)))
-(let (($x16 (= ?x11 ?x15)))
-(let (($x17 (not $x16)))
-(let (($x80 (= (= (+ |a$| ?x12 (* |a$| |y$|)) (+ |a$| ?x12 (* |a$| |y$|))) true)))
-(let (($x78 (= $x16 (= (+ |a$| ?x12 (* |a$| |y$|)) (+ |a$| ?x12 (* |a$| |y$|))))))
-(let ((@x74 (rewrite (= (+ ?x12 (+ |a$| (* |a$| |y$|))) (+ |a$| ?x12 (* |a$| |y$|))))))
-(let ((@x64 (monotonicity (rewrite (= ?x13 (+ 1 |y$|))) (= ?x14 (* |a$| (+ 1 |y$|))))))
-(let ((@x69 (trans @x64 (rewrite (= (* |a$| (+ 1 |y$|)) (+ |a$| (* |a$| |y$|)))) (= ?x14 (+ |a$| (* |a$| |y$|))))))
-(let ((@x76 (trans (monotonicity @x69 (= ?x15 (+ ?x12 (+ |a$| (* |a$| |y$|))))) @x74 (= ?x15 (+ |a$| ?x12 (* |a$| |y$|))))))
-(let ((@x56 (rewrite (= (* |a$| (+ 1 |x$| |y$|)) (+ |a$| ?x12 (* |a$| |y$|))))))
-(let ((@x44 (monotonicity (rewrite (= ?x8 (+ 1 |x$|))) (= ?x10 (+ (+ 1 |x$|) |y$|)))))
-(let ((@x49 (trans @x44 (rewrite (= (+ (+ 1 |x$|) |y$|) (+ 1 |x$| |y$|))) (= ?x10 (+ 1 |x$| |y$|)))))
-(let ((@x58 (trans (monotonicity @x49 (= ?x11 (* |a$| (+ 1 |x$| |y$|)))) @x56 (= ?x11 (+ |a$| ?x12 (* |a$| |y$|))))))
-(let ((@x86 (monotonicity (trans (monotonicity @x58 @x76 $x78) (rewrite $x80) (= $x16 true)) (= $x17 (not true)))))
-(let ((@x90 (trans @x86 (rewrite (= (not true) false)) (= $x17 false))))
-(mp (asserted $x17) @x90 false))))))))))))))))))))))))
+(let ((?x35 (+ y$ 1)))
+(let ((?x36 (* a$ ?x35)))
+(let ((?x34 (* a$ x$)))
+(let ((?x37 (+ ?x34 ?x36)))
+(let ((?x30 (+ x$ 1)))
+(let ((?x32 (+ ?x30 y$)))
+(let ((?x33 (* a$ ?x32)))
+(let (($x38 (= ?x33 ?x37)))
+(let (($x39 (not $x38)))
+(let (($x82 (= (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))) true)))
+(let (($x80 (= $x38 (= (+ a$ ?x34 (* a$ y$)) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x76 (rewrite (= (+ ?x34 (+ a$ (* a$ y$))) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x66 (monotonicity (rewrite (= ?x35 (+ 1 y$))) (= ?x36 (* a$ (+ 1 y$))))))
+(let ((@x71 (trans @x66 (rewrite (= (* a$ (+ 1 y$)) (+ a$ (* a$ y$)))) (= ?x36 (+ a$ (* a$ y$))))))
+(let ((@x78 (trans (monotonicity @x71 (= ?x37 (+ ?x34 (+ a$ (* a$ y$))))) @x76 (= ?x37 (+ a$ ?x34 (* a$ y$))))))
+(let ((@x58 (rewrite (= (* a$ (+ 1 x$ y$)) (+ a$ ?x34 (* a$ y$))))))
+(let ((@x46 (monotonicity (rewrite (= ?x30 (+ 1 x$))) (= ?x32 (+ (+ 1 x$) y$)))))
+(let ((@x51 (trans @x46 (rewrite (= (+ (+ 1 x$) y$) (+ 1 x$ y$))) (= ?x32 (+ 1 x$ y$)))))
+(let ((@x60 (trans (monotonicity @x51 (= ?x33 (* a$ (+ 1 x$ y$)))) @x58 (= ?x33 (+ a$ ?x34 (* a$ y$))))))
+(let ((@x88 (monotonicity (trans (monotonicity @x60 @x78 $x80) (rewrite $x82) (= $x38 true)) (= $x39 (not true)))))
+(let ((@x92 (trans @x88 (rewrite (= (not true) false)) (= $x39 false))))
+(mp (asserted $x39) @x92 false))))))))))))))))))))))))
 
-f65cca85cf5c1c666974448574788ae3b34595b7 23 0
+e22e8faf67fe7e4aace8b3f6a8b1454fcc24ea86 23 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x14 (* 2.0 |x$|)))
-(let ((?x15 (* ?x14 |y$|)))
-(let ((?x10 (- 1.0 |y$|)))
-(let ((?x11 (* |x$| ?x10)))
-(let ((?x8 (+ 1.0 |y$|)))
-(let ((?x9 (* |x$| ?x8)))
-(let ((?x12 (- ?x9 ?x11)))
-(let (($x16 (= ?x12 ?x15)))
-(let (($x17 (not $x16)))
-(let ((@x71 (rewrite (= (= (* 2.0 (* |x$| |y$|)) (* 2.0 (* |x$| |y$|))) true))))
-(let ((?x39 (* |x$| |y$|)))
-(let ((?x61 (* 2.0 ?x39)))
-(let ((@x54 (rewrite (= (* |x$| (+ 1.0 (* (~ 1.0) |y$|))) (+ |x$| (* (~ 1.0) ?x39))))))
-(let ((@x50 (monotonicity (rewrite (= ?x10 (+ 1.0 (* (~ 1.0) |y$|)))) (= ?x11 (* |x$| (+ 1.0 (* (~ 1.0) |y$|)))))))
-(let ((@x59 (monotonicity (rewrite (= ?x9 (+ |x$| ?x39))) (trans @x50 @x54 (= ?x11 (+ |x$| (* (~ 1.0) ?x39)))) (= ?x12 (- (+ |x$| ?x39) (+ |x$| (* (~ 1.0) ?x39)))))))
-(let ((@x64 (trans @x59 (rewrite (= (- (+ |x$| ?x39) (+ |x$| (* (~ 1.0) ?x39))) ?x61)) (= ?x12 ?x61))))
-(let ((@x73 (trans (monotonicity @x64 (rewrite (= ?x15 ?x61)) (= $x16 (= ?x61 ?x61))) @x71 (= $x16 true))))
-(let ((@x80 (trans (monotonicity @x73 (= $x17 (not true))) (rewrite (= (not true) false)) (= $x17 false))))
-(mp (asserted $x17) @x80 false)))))))))))))))))))))
+(let ((?x36 (* 2.0 x$)))
+(let ((?x37 (* ?x36 y$)))
+(let ((?x32 (- 1.0 y$)))
+(let ((?x33 (* x$ ?x32)))
+(let ((?x30 (+ 1.0 y$)))
+(let ((?x31 (* x$ ?x30)))
+(let ((?x34 (- ?x31 ?x33)))
+(let (($x38 (= ?x34 ?x37)))
+(let (($x39 (not $x38)))
+(let ((@x73 (rewrite (= (= (* 2.0 (* x$ y$)) (* 2.0 (* x$ y$))) true))))
+(let ((?x41 (* x$ y$)))
+(let ((?x63 (* 2.0 ?x41)))
+(let ((@x56 (rewrite (= (* x$ (+ 1.0 (* (- 1.0) y$))) (+ x$ (* (- 1.0) ?x41))))))
+(let ((@x52 (monotonicity (rewrite (= ?x32 (+ 1.0 (* (- 1.0) y$)))) (= ?x33 (* x$ (+ 1.0 (* (- 1.0) y$)))))))
+(let ((@x61 (monotonicity (rewrite (= ?x31 (+ x$ ?x41))) (trans @x52 @x56 (= ?x33 (+ x$ (* (- 1.0) ?x41)))) (= ?x34 (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41)))))))
+(let ((@x66 (trans @x61 (rewrite (= (- (+ x$ ?x41) (+ x$ (* (- 1.0) ?x41))) ?x63)) (= ?x34 ?x63))))
+(let ((@x75 (trans (monotonicity @x66 (rewrite (= ?x37 ?x63)) (= $x38 (= ?x63 ?x63))) @x73 (= $x38 true))))
+(let ((@x82 (trans (monotonicity @x75 (= $x39 (not true))) (rewrite (= (not true) false)) (= $x39 false))))
+(mp (asserted $x39) @x82 false)))))))))))))))))))))
 
-2643ba95811453f95121cf28c15c748e73c8c127 51 0
+c0e8a04cf61a70a02319dafd0746e974e08efce6 51 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x25 (+ |b$| |d$|)))
-(let ((?x26 (+ ?x25 |e$|)))
-(let ((?x8 (+ 1 |p$|)))
-(let ((?x27 (* ?x8 ?x26)))
-(let ((?x22 (* |d$| |p$|)))
-(let ((?x20 (* ?x8 |d$|)))
-(let ((?x11 (+ |b$| |e$|)))
-(let ((?x18 (* 2 ?x8)))
-(let ((?x19 (* ?x18 ?x11)))
-(let ((?x21 (+ ?x19 ?x20)))
-(let ((?x23 (+ ?x21 ?x22)))
-(let ((?x24 (+ |u$| ?x23)))
-(let ((?x28 (- ?x24 ?x27)))
-(let ((?x15 (* |p$| |d$|)))
-(let ((?x12 (* ?x8 ?x11)))
-(let ((?x13 (+ |u$| ?x12)))
-(let ((?x16 (+ ?x13 ?x15)))
-(let (($x29 (= ?x16 ?x28)))
-(let (($x30 (not $x29)))
-(let ((?x53 (* |p$| |e$|)))
-(let ((?x52 (* |p$| |b$|)))
-(let ((?x68 (+ |u$| |b$| |e$| ?x15 ?x52 ?x53)))
-(let ((?x125 (+ |b$| |e$| |d$| ?x15 ?x52 ?x53)))
-(let ((?x83 (* 2 ?x53)))
-(let ((?x81 (* 2 ?x52)))
-(let ((?x82 (* 2 |e$|)))
-(let ((?x80 (* 2 |b$|)))
-(let ((?x114 (+ |u$| ?x80 ?x82 |d$| (* 2 ?x15) ?x81 ?x83)))
-(let ((@x124 (monotonicity (rewrite (= ?x26 (+ |b$| |e$| |d$|))) (= ?x27 (* ?x8 (+ |b$| |e$| |d$|))))))
-(let ((@x129 (trans @x124 (rewrite (= (* ?x8 (+ |b$| |e$| |d$|)) ?x125)) (= ?x27 ?x125))))
-(let ((@x116 (rewrite (= (+ |u$| (+ ?x80 ?x82 |d$| (* 2 ?x15) ?x81 ?x83)) ?x114))))
-(let ((?x106 (+ ?x80 ?x82 |d$| (* 2 ?x15) ?x81 ?x83)))
-(let ((?x95 (+ ?x80 ?x82 |d$| ?x15 ?x81 ?x83)))
-(let ((@x86 (rewrite (= (* (+ 2 (* 2 |p$|)) ?x11) (+ ?x80 ?x82 ?x81 ?x83)))))
-(let ((@x79 (monotonicity (rewrite (= ?x18 (+ 2 (* 2 |p$|)))) (= ?x19 (* (+ 2 (* 2 |p$|)) ?x11)))))
-(let ((@x94 (monotonicity (trans @x79 @x86 (= ?x19 (+ ?x80 ?x82 ?x81 ?x83))) (rewrite (= ?x20 (+ |d$| ?x15))) (= ?x21 (+ (+ ?x80 ?x82 ?x81 ?x83) (+ |d$| ?x15))))))
-(let ((@x99 (trans @x94 (rewrite (= (+ (+ ?x80 ?x82 ?x81 ?x83) (+ |d$| ?x15)) ?x95)) (= ?x21 ?x95))))
-(let ((@x110 (trans (monotonicity @x99 (rewrite (= ?x22 ?x15)) (= ?x23 (+ ?x95 ?x15))) (rewrite (= (+ ?x95 ?x15) ?x106)) (= ?x23 ?x106))))
-(let ((@x118 (trans (monotonicity @x110 (= ?x24 (+ |u$| ?x106))) @x116 (= ?x24 ?x114))))
-(let ((@x137 (trans (monotonicity @x118 @x129 (= ?x28 (- ?x114 ?x125))) (rewrite (= (- ?x114 ?x125) ?x68)) (= ?x28 ?x68))))
-(let ((@x62 (rewrite (= (+ |u$| (+ |b$| |e$| ?x52 ?x53)) (+ |u$| |b$| |e$| ?x52 ?x53)))))
-(let ((@x59 (monotonicity (rewrite (= ?x12 (+ |b$| |e$| ?x52 ?x53))) (= ?x13 (+ |u$| (+ |b$| |e$| ?x52 ?x53))))))
-(let ((@x67 (monotonicity (trans @x59 @x62 (= ?x13 (+ |u$| |b$| |e$| ?x52 ?x53))) (= ?x16 (+ (+ |u$| |b$| |e$| ?x52 ?x53) ?x15)))))
-(let ((@x72 (trans @x67 (rewrite (= (+ (+ |u$| |b$| |e$| ?x52 ?x53) ?x15) ?x68)) (= ?x16 ?x68))))
-(let ((@x143 (trans (monotonicity @x72 @x137 (= $x29 (= ?x68 ?x68))) (rewrite (= (= ?x68 ?x68) true)) (= $x29 true))))
-(let ((@x150 (trans (monotonicity @x143 (= $x30 (not true))) (rewrite (= (not true) false)) (= $x30 false))))
-(mp (asserted $x30) @x150 false)))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x47 (+ b$ d$)))
+(let ((?x48 (+ ?x47 e$)))
+(let ((?x30 (+ 1 p$)))
+(let ((?x49 (* ?x30 ?x48)))
+(let ((?x44 (* d$ p$)))
+(let ((?x42 (* ?x30 d$)))
+(let ((?x33 (+ b$ e$)))
+(let ((?x40 (* 2 ?x30)))
+(let ((?x41 (* ?x40 ?x33)))
+(let ((?x43 (+ ?x41 ?x42)))
+(let ((?x45 (+ ?x43 ?x44)))
+(let ((?x46 (+ u$ ?x45)))
+(let ((?x50 (- ?x46 ?x49)))
+(let ((?x37 (* p$ d$)))
+(let ((?x34 (* ?x30 ?x33)))
+(let ((?x35 (+ u$ ?x34)))
+(let ((?x38 (+ ?x35 ?x37)))
+(let (($x51 (= ?x38 ?x50)))
+(let (($x52 (not $x51)))
+(let ((?x55 (* p$ e$)))
+(let ((?x54 (* p$ b$)))
+(let ((?x70 (+ u$ b$ e$ ?x37 ?x54 ?x55)))
+(let ((?x127 (+ b$ e$ d$ ?x37 ?x54 ?x55)))
+(let ((?x85 (* 2 ?x55)))
+(let ((?x83 (* 2 ?x54)))
+(let ((?x84 (* 2 e$)))
+(let ((?x82 (* 2 b$)))
+(let ((?x116 (+ u$ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
+(let ((@x126 (monotonicity (rewrite (= ?x48 (+ b$ e$ d$))) (= ?x49 (* ?x30 (+ b$ e$ d$))))))
+(let ((@x131 (trans @x126 (rewrite (= (* ?x30 (+ b$ e$ d$)) ?x127)) (= ?x49 ?x127))))
+(let ((@x118 (rewrite (= (+ u$ (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)) ?x116))))
+(let ((?x108 (+ ?x82 ?x84 d$ (* 2 ?x37) ?x83 ?x85)))
+(let ((?x97 (+ ?x82 ?x84 d$ ?x37 ?x83 ?x85)))
+(let ((@x88 (rewrite (= (* (+ 2 (* 2 p$)) ?x33) (+ ?x82 ?x84 ?x83 ?x85)))))
+(let ((@x81 (monotonicity (rewrite (= ?x40 (+ 2 (* 2 p$)))) (= ?x41 (* (+ 2 (* 2 p$)) ?x33)))))
+(let ((@x96 (monotonicity (trans @x81 @x88 (= ?x41 (+ ?x82 ?x84 ?x83 ?x85))) (rewrite (= ?x42 (+ d$ ?x37))) (= ?x43 (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37))))))
+(let ((@x101 (trans @x96 (rewrite (= (+ (+ ?x82 ?x84 ?x83 ?x85) (+ d$ ?x37)) ?x97)) (= ?x43 ?x97))))
+(let ((@x112 (trans (monotonicity @x101 (rewrite (= ?x44 ?x37)) (= ?x45 (+ ?x97 ?x37))) (rewrite (= (+ ?x97 ?x37) ?x108)) (= ?x45 ?x108))))
+(let ((@x120 (trans (monotonicity @x112 (= ?x46 (+ u$ ?x108))) @x118 (= ?x46 ?x116))))
+(let ((@x139 (trans (monotonicity @x120 @x131 (= ?x50 (- ?x116 ?x127))) (rewrite (= (- ?x116 ?x127) ?x70)) (= ?x50 ?x70))))
+(let ((@x64 (rewrite (= (+ u$ (+ b$ e$ ?x54 ?x55)) (+ u$ b$ e$ ?x54 ?x55)))))
+(let ((@x61 (monotonicity (rewrite (= ?x34 (+ b$ e$ ?x54 ?x55))) (= ?x35 (+ u$ (+ b$ e$ ?x54 ?x55))))))
+(let ((@x69 (monotonicity (trans @x61 @x64 (= ?x35 (+ u$ b$ e$ ?x54 ?x55))) (= ?x38 (+ (+ u$ b$ e$ ?x54 ?x55) ?x37)))))
+(let ((@x74 (trans @x69 (rewrite (= (+ (+ u$ b$ e$ ?x54 ?x55) ?x37) ?x70)) (= ?x38 ?x70))))
+(let ((@x145 (trans (monotonicity @x74 @x139 (= $x51 (= ?x70 ?x70))) (rewrite (= (= ?x70 ?x70) true)) (= $x51 true))))
+(let ((@x152 (trans (monotonicity @x145 (= $x52 (not true))) (rewrite (= (not true) false)) (= $x52 false))))
+(mp (asserted $x52) @x152 false)))))))))))))))))))))))))))))))))))))))))))))))))
 
-9377273e8e637d8916ed13b81bd56a602ea76d29 126 0
+cbab19031067d3b53edcf7fe0ab1b4b285157eaf 126 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x7 (|of_nat$| |x$|)))
-(let ((?x8 (* 2 ?x7)))
-(let ((?x9 (|nat$| ?x8)))
-(let ((?x147 (|of_nat$| ?x9)))
-(let ((?x160 (* (~ 1) ?x147)))
-(let ((?x161 (+ ?x8 ?x160)))
-(let (($x177 (<= ?x161 0)))
-(let (($x158 (= ?x161 0)))
-(let (($x150 (>= ?x7 0)))
-(let (($x239 (>= ?x147 1)))
-(let (($x237 (= ?x147 1)))
-(let ((?x11 (|nat$| 1)))
-(let ((?x200 (|of_nat$| ?x11)))
-(let (($x201 (= ?x200 1)))
-(let (($x128 (forall ((?v0 Int) )(!(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x25 (= ?x24 ?v0)))
-(let (($x66 (>= ?v0 0)))
-(let (($x67 (not $x66)))
-(or $x67 $x25)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x73 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x25 (= ?x24 ?v0)))
-(let (($x66 (>= ?v0 0)))
-(let (($x67 (not $x66)))
-(or $x67 $x25)))))))
-))
-(let ((?x23 (|nat$| ?0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x25 (= ?x24 ?0)))
-(let (($x66 (>= ?0 0)))
-(let (($x67 (not $x66)))
-(let (($x70 (or $x67 $x25)))
-(let (($x27 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x25 (= ?x24 ?v0)))
-(let (($x22 (<= 0 ?v0)))
-(=> $x22 $x25))))))
-))
-(let (($x61 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x25 (= ?x24 ?v0)))
-(or (not (<= 0 ?v0)) $x25)))))
-))
-(let ((@x69 (monotonicity (rewrite (= (<= 0 ?0) $x66)) (= (not (<= 0 ?0)) $x67))))
-(let ((@x75 (|quant-intro| (monotonicity @x69 (= (or (not (<= 0 ?0)) $x25) $x70)) (= $x61 $x73))))
-(let ((@x60 (rewrite (= (=> (<= 0 ?0) $x25) (or (not (<= 0 ?0)) $x25)))))
-(let ((@x78 (mp (asserted $x27) (trans (|quant-intro| @x60 (= $x27 $x61)) @x75 (= $x27 $x73)) $x73)))
-(let ((@x133 (mp (|mp~| @x78 (|nnf-pos| (refl (|~| $x70 $x70)) (|~| $x73 $x73)) $x73) (|quant-intro| (refl (= $x70 $x70)) (= $x73 $x128)) $x128)))
-(let (($x165 (not $x128)))
-(let (($x219 (or $x165 $x201)))
-(let ((@x204 (rewrite (= (>= 1 0) true))))
-(let ((@x211 (trans (monotonicity @x204 (= (not (>= 1 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 1 0)) false))))
-(let ((@x214 (monotonicity @x211 (= (or (not (>= 1 0)) $x201) (or false $x201)))))
-(let ((@x218 (trans @x214 (rewrite (= (or false $x201) $x201)) (= (or (not (>= 1 0)) $x201) $x201))))
-(let ((@x223 (monotonicity @x218 (= (or $x165 (or (not (>= 1 0)) $x201)) $x219))))
-(let ((@x226 (trans @x223 (rewrite (= $x219 $x219)) (= (or $x165 (or (not (>= 1 0)) $x201)) $x219))))
-(let ((@x227 (mp ((_ |quant-inst| 1) (or $x165 (or (not (>= 1 0)) $x201))) @x226 $x219)))
-(let (($x12 (= ?x9 ?x11)))
-(let ((@x56 (mp (asserted (not (not $x12))) (rewrite (= (not (not $x12)) $x12)) $x12)))
-(let ((@x252 (trans (monotonicity @x56 (= ?x147 ?x200)) (|unit-resolution| @x227 @x133 $x201) $x237)))
-(let ((@x261 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x239) (not (<= ?x147 0)))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x237) $x239)) @x252 $x239) (not (<= ?x147 0)))))
-(let ((@x265 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x147 0)) (<= ?x147 0))) @x261 (not (= ?x147 0)))))
-(let (($x179 (= ?x147 0)))
-(let (($x181 (or $x150 $x179)))
-(let (($x134 (forall ((?v0 Int) )(!(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x29 (= ?x24 0)))
-(let (($x66 (>= ?v0 0)))
-(or $x66 $x29))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x99 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x29 (= ?x24 0)))
-(let (($x66 (>= ?v0 0)))
-(or $x66 $x29))))))
-))
-(let ((@x138 (|quant-intro| (refl (= (or $x66 (= ?x24 0)) (or $x66 (= ?x24 0)))) (= $x99 $x134))))
-(let ((@x118 (|nnf-pos| (refl (|~| (or $x66 (= ?x24 0)) (or $x66 (= ?x24 0)))) (|~| $x99 $x99))))
-(let (($x31 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x29 (= ?x24 0)))
-(let (($x28 (< ?v0 0)))
-(=> $x28 $x29))))))
-))
-(let (($x84 (forall ((?v0 Int) )(let ((?x23 (|nat$| ?v0)))
-(let ((?x24 (|of_nat$| ?x23)))
-(let (($x29 (= ?x24 0)))
-(let (($x28 (< ?v0 0)))
-(let (($x80 (not $x28)))
-(or $x80 $x29)))))))
-))
-(let (($x29 (= ?x24 0)))
-(let (($x96 (or $x66 $x29)))
-(let (($x28 (< ?0 0)))
-(let (($x80 (not $x28)))
-(let (($x81 (or $x80 $x29)))
-(let ((@x95 (trans (monotonicity (rewrite (= $x28 $x67)) (= $x80 (not $x67))) (rewrite (= (not $x67) $x66)) (= $x80 $x66))))
-(let ((@x103 (trans (|quant-intro| (rewrite (= (=> $x28 $x29) $x81)) (= $x31 $x84)) (|quant-intro| (monotonicity @x95 (= $x81 $x96)) (= $x84 $x99)) (= $x31 $x99))))
-(let ((@x139 (mp (|mp~| (mp (asserted $x31) @x103 $x99) @x118 $x99) @x138 $x134)))
-(let (($x184 (not $x134)))
-(let (($x185 (or $x184 $x150 $x179)))
-(let ((@x152 (rewrite (= (>= ?x8 0) $x150))))
-(let ((@x190 (monotonicity (monotonicity @x152 (= (or (>= ?x8 0) $x179) $x181)) (= (or $x184 (or (>= ?x8 0) $x179)) (or $x184 $x181)))))
-(let ((@x194 (trans @x190 (rewrite (= (or $x184 $x181) $x185)) (= (or $x184 (or (>= ?x8 0) $x179)) $x185))))
-(let ((@x195 (mp ((_ |quant-inst| (* 2 ?x7)) (or $x184 (or (>= ?x8 0) $x179))) @x194 $x185)))
-(let (($x153 (not $x150)))
-(let (($x162 (or $x153 $x158)))
-(let (($x166 (or $x165 $x153 $x158)))
-(let (($x148 (= ?x147 ?x8)))
-(let (($x142 (>= ?x8 0)))
-(let (($x143 (not $x142)))
-(let (($x149 (or $x143 $x148)))
-(let (($x167 (or $x165 $x149)))
-(let ((@x164 (monotonicity (monotonicity @x152 (= $x143 $x153)) (rewrite (= $x148 $x158)) (= $x149 $x162))))
-(let ((@x175 (trans (monotonicity @x164 (= $x167 (or $x165 $x162))) (rewrite (= (or $x165 $x162) $x166)) (= $x167 $x166))))
-(let ((@x176 (mp ((_ |quant-inst| (* 2 ?x7)) $x167) @x175 $x166)))
-(let ((@x269 (|unit-resolution| (|unit-resolution| @x176 @x133 $x162) (|unit-resolution| (|unit-resolution| @x195 @x139 $x181) @x265 $x150) $x158)))
-(let (($x178 (>= ?x161 0)))
-(let (($x238 (<= ?x147 1)))
-((_ |th-lemma| arith gcd-test -1/2 -1/2 -1/2 -1/2) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x237) $x239)) @x252 $x239) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x237) $x238)) @x252 $x238) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x158) $x178)) @x269 $x178) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x158) $x177)) @x269 $x177) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x29 (of_nat$ x$)))
+(let ((?x30 (* 2 ?x29)))
+(let ((?x31 (nat$ ?x30)))
+(let ((?x212 (of_nat$ ?x31)))
+(let ((?x532 (* (- 1) ?x212)))
+(let ((?x533 (+ ?x30 ?x532)))
+(let (($x513 (<= ?x533 0)))
+(let (($x531 (= ?x533 0)))
+(let (($x193 (>= ?x29 0)))
+(let (($x487 (>= ?x212 1)))
+(let (($x485 (= ?x212 1)))
+(let ((?x33 (nat$ 1)))
+(let ((?x504 (of_nat$ ?x33)))
+(let (($x505 (= ?x504 1)))
+(let (($x546 (forall ((?v0 Int) )(!(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x51 (= ?x50 ?v0)))
+(let (($x64 (>= ?v0 0)))
+(let (($x65 (not $x64)))
+(or $x65 $x51)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x71 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x51 (= ?x50 ?v0)))
+(let (($x64 (>= ?v0 0)))
+(let (($x65 (not $x64)))
+(or $x65 $x51)))))))
+))
+(let ((?x49 (nat$ ?0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x51 (= ?x50 ?0)))
+(let (($x64 (>= ?0 0)))
+(let (($x65 (not $x64)))
+(let (($x68 (or $x65 $x51)))
+(let (($x53 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x51 (= ?x50 ?v0)))
+(let (($x48 (<= 0 ?v0)))
+(=> $x48 $x51))))))
+))
+(let (($x59 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x51 (= ?x50 ?v0)))
+(or (not (<= 0 ?v0)) $x51)))))
+))
+(let ((@x67 (monotonicity (rewrite (= (<= 0 ?0) $x64)) (= (not (<= 0 ?0)) $x65))))
+(let ((@x73 (quant-intro (monotonicity @x67 (= (or (not (<= 0 ?0)) $x51) $x68)) (= $x59 $x71))))
+(let ((@x58 (rewrite (= (=> (<= 0 ?0) $x51) (or (not (<= 0 ?0)) $x51)))))
+(let ((@x76 (mp (asserted $x53) (trans (quant-intro @x58 (= $x53 $x59)) @x73 (= $x53 $x71)) $x71)))
+(let ((@x551 (mp (mp~ @x76 (nnf-pos (refl (~ $x68 $x68)) (~ $x71 $x71)) $x71) (quant-intro (refl (= $x68 $x68)) (= $x71 $x546)) $x546)))
+(let (($x526 (not $x546)))
+(let (($x489 (or $x526 $x505)))
+(let ((@x506 (rewrite (= (>= 1 0) true))))
+(let ((@x219 (trans (monotonicity @x506 (= (not (>= 1 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 1 0)) false))))
+(let ((@x223 (monotonicity @x219 (= (or (not (>= 1 0)) $x505) (or false $x505)))))
+(let ((@x503 (trans @x223 (rewrite (= (or false $x505) $x505)) (= (or (not (>= 1 0)) $x505) $x505))))
+(let ((@x493 (monotonicity @x503 (= (or $x526 (or (not (>= 1 0)) $x505)) $x489))))
+(let ((@x496 (trans @x493 (rewrite (= $x489 $x489)) (= (or $x526 (or (not (>= 1 0)) $x505)) $x489))))
+(let ((@x497 (mp ((_ quant-inst 1) (or $x526 (or (not (>= 1 0)) $x505))) @x496 $x489)))
+(let (($x34 (= ?x31 ?x33)))
+(let ((@x42 (mp (asserted (not (not $x34))) (rewrite (= (not (not $x34)) $x34)) $x34)))
+(let ((@x356 (trans (monotonicity @x42 (= ?x212 ?x504)) (unit-resolution @x497 @x551 $x505) $x485)))
+(let ((@x371 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x487) (not (<= ?x212 0)))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x485) $x487)) @x356 $x487) (not (<= ?x212 0)))))
+(let ((@x374 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x212 0)) (<= ?x212 0))) @x371 (not (= ?x212 0)))))
+(let (($x515 (= ?x212 0)))
+(let (($x517 (or $x193 $x515)))
+(let (($x552 (forall ((?v0 Int) )(!(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x78 (= ?x50 0)))
+(let (($x64 (>= ?v0 0)))
+(or $x64 $x78))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x101 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x78 (= ?x50 0)))
+(let (($x64 (>= ?v0 0)))
+(or $x64 $x78))))))
+))
+(let ((@x556 (quant-intro (refl (= (or $x64 (= ?x50 0)) (or $x64 (= ?x50 0)))) (= $x101 $x552))))
+(let ((@x120 (nnf-pos (refl (~ (or $x64 (= ?x50 0)) (or $x64 (= ?x50 0)))) (~ $x101 $x101))))
+(let (($x80 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x78 (= ?x50 0)))
+(let (($x77 (< ?v0 0)))
+(=> $x77 $x78))))))
+))
+(let (($x86 (forall ((?v0 Int) )(let ((?x49 (nat$ ?v0)))
+(let ((?x50 (of_nat$ ?x49)))
+(let (($x78 (= ?x50 0)))
+(let (($x77 (< ?v0 0)))
+(let (($x82 (not $x77)))
+(or $x82 $x78)))))))
+))
+(let (($x78 (= ?x50 0)))
+(let (($x98 (or $x64 $x78)))
+(let (($x77 (< ?0 0)))
+(let (($x82 (not $x77)))
+(let (($x83 (or $x82 $x78)))
+(let ((@x97 (trans (monotonicity (rewrite (= $x77 $x65)) (= $x82 (not $x65))) (rewrite (= (not $x65) $x64)) (= $x82 $x64))))
+(let ((@x105 (trans (quant-intro (rewrite (= (=> $x77 $x78) $x83)) (= $x80 $x86)) (quant-intro (monotonicity @x97 (= $x83 $x98)) (= $x86 $x101)) (= $x80 $x101))))
+(let ((@x557 (mp (mp~ (mp (asserted $x80) @x105 $x101) @x120 $x101) @x556 $x552)))
+(let (($x156 (not $x552)))
+(let (($x520 (or $x156 $x193 $x515)))
+(let ((@x530 (rewrite (= (>= ?x30 0) $x193))))
+(let ((@x523 (monotonicity (monotonicity @x530 (= (or (>= ?x30 0) $x515) $x517)) (= (or $x156 (or (>= ?x30 0) $x515)) (or $x156 $x517)))))
+(let ((@x215 (trans @x523 (rewrite (= (or $x156 $x517) $x520)) (= (or $x156 (or (>= ?x30 0) $x515)) $x520))))
+(let ((@x229 (mp ((_ quant-inst (* 2 ?x29)) (or $x156 (or (>= ?x30 0) $x515))) @x215 $x520)))
+(let (($x185 (not $x193)))
+(let (($x534 (or $x185 $x531)))
+(let (($x188 (or $x526 $x185 $x531)))
+(let (($x213 (= ?x212 ?x30)))
+(let (($x208 (>= ?x30 0)))
+(let (($x209 (not $x208)))
+(let (($x214 (or $x209 $x213)))
+(let (($x189 (or $x526 $x214)))
+(let ((@x536 (monotonicity (monotonicity @x530 (= $x209 $x185)) (rewrite (= $x213 $x531)) (= $x214 $x534))))
+(let ((@x175 (trans (monotonicity @x536 (= $x189 (or $x526 $x534))) (rewrite (= (or $x526 $x534) $x188)) (= $x189 $x188))))
+(let ((@x176 (mp ((_ quant-inst (* 2 ?x29)) $x189) @x175 $x188)))
+(let ((@x470 (unit-resolution (unit-resolution @x176 @x551 $x534) (unit-resolution (unit-resolution @x229 @x557 $x517) @x374 $x193) $x531)))
+(let (($x514 (>= ?x533 0)))
+(let (($x486 (<= ?x212 1)))
+((_ th-lemma arith gcd-test -1/2 -1/2 -1/2 -1/2) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x485) $x487)) @x356 $x487) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x485) $x486)) @x356 $x486) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x531) $x514)) @x470 $x514) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x531) $x513)) @x470 $x513) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-7540f10f61e5a987b0848b309bd25f2a2ae1cd0a 22 0
+a26825fade3f4c15b8fd2d7864ae3dcd4a826d6d 22 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x6 (|of_nat$| |a$|)))
-(let (($x71 (>= ?x6 4)))
-(let (($x78 (not (or (>= ?x6 3) (not $x71)))))
-(let (($x12 (< (* 2 ?x6) 7)))
-(let (($x8 (< ?x6 3)))
-(let (($x52 (not $x8)))
-(let (($x53 (or $x52 $x12)))
-(let ((@x65 (monotonicity (rewrite (= $x8 (not (>= ?x6 3)))) (= $x52 (not (not (>= ?x6 3)))))))
-(let ((@x69 (trans @x65 (rewrite (= (not (not (>= ?x6 3))) (>= ?x6 3))) (= $x52 (>= ?x6 3)))))
-(let ((@x77 (monotonicity @x69 (rewrite (= $x12 (not $x71))) (= $x53 (or (>= ?x6 3) (not $x71))))))
-(let ((@x58 (monotonicity (rewrite (= (=> $x8 $x12) $x53)) (= (not (=> $x8 $x12)) (not $x53)))))
-(let ((@x82 (trans @x58 (monotonicity @x77 (= (not $x53) $x78)) (= (not (=> $x8 $x12)) $x78))))
-(let ((@x85 (|not-or-elim| (mp (asserted (not (=> $x8 $x12))) @x82 $x78) $x71)))
-(let (($x72 (not $x71)))
-(let (($x61 (>= ?x6 3)))
-(let (($x59 (not $x61)))
-(let ((@x84 (|not-or-elim| (mp (asserted (not (=> $x8 $x12))) @x82 $x78) $x59)))
-(|unit-resolution| (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x72 $x61)) @x84 $x72) @x85 false))))))))))))))))))))
+(let ((?x28 (of_nat$ a$)))
+(let (($x57 (>= ?x28 4)))
+(let (($x64 (not (or (>= ?x28 3) (not $x57)))))
+(let (($x34 (< (* 2 ?x28) 7)))
+(let (($x30 (< ?x28 3)))
+(let (($x38 (not $x30)))
+(let (($x39 (or $x38 $x34)))
+(let ((@x51 (monotonicity (rewrite (= $x30 (not (>= ?x28 3)))) (= $x38 (not (not (>= ?x28 3)))))))
+(let ((@x55 (trans @x51 (rewrite (= (not (not (>= ?x28 3))) (>= ?x28 3))) (= $x38 (>= ?x28 3)))))
+(let ((@x63 (monotonicity @x55 (rewrite (= $x34 (not $x57))) (= $x39 (or (>= ?x28 3) (not $x57))))))
+(let ((@x44 (monotonicity (rewrite (= (=> $x30 $x34) $x39)) (= (not (=> $x30 $x34)) (not $x39)))))
+(let ((@x68 (trans @x44 (monotonicity @x63 (= (not $x39) $x64)) (= (not (=> $x30 $x34)) $x64))))
+(let ((@x71 (not-or-elim (mp (asserted (not (=> $x30 $x34))) @x68 $x64) $x57)))
+(let (($x58 (not $x57)))
+(let (($x47 (>= ?x28 3)))
+(let (($x45 (not $x47)))
+(let ((@x70 (not-or-elim (mp (asserted (not (=> $x30 $x34))) @x68 $x64) $x45)))
+(unit-resolution (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x58 $x47)) @x70 $x58) @x71 false))))))))))))))))))))
 
-3a9a1f0f87885c249813dfb78d14e1062fc20ce3 147 0
+0e96d2bcbd5540b8d6a69936d530d9d9ced1c4be 147 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x8 (|of_nat$| |y$|)))
-(let ((?x9 (+ 1 ?x8)))
-(let ((?x10 (|nat$| ?x9)))
-(let ((?x11 (|of_nat$| ?x10)))
-(let ((?x57 (* (~ 1) ?x8)))
-(let ((?x58 (+ ?x57 ?x11)))
-(let ((?x61 (|nat$| ?x58)))
-(let ((?x64 (|of_nat$| ?x61)))
-(let ((?x195 (* (~ 1) ?x11)))
-(let ((?x246 (+ ?x8 ?x195 ?x64)))
-(let (($x265 (>= ?x246 0)))
-(let (($x247 (= ?x246 0)))
-(let ((?x196 (+ ?x8 ?x195)))
-(let (($x240 (<= ?x196 0)))
-(let (($x215 (<= ?x196 (~ 1))))
-(let (($x197 (= ?x196 (~ 1))))
-(let (($x189 (>= ?x8 (~ 1))))
-(let (($x283 (>= ?x8 0)))
-(let ((?x172 (|nat$| ?x8)))
-(let ((?x284 (|of_nat$| ?x172)))
-(let (($x285 (= ?x284 0)))
-(let (($x286 (or $x283 $x285)))
-(let (($x166 (forall ((?v0 Int) )(!(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x31 (= ?x26 0)))
-(let (($x97 (>= ?v0 0)))
-(or $x97 $x31))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x131 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x31 (= ?x26 0)))
-(let (($x97 (>= ?v0 0)))
-(or $x97 $x31))))))
-))
-(let ((?x25 (|nat$| ?0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x31 (= ?x26 0)))
-(let (($x97 (>= ?0 0)))
-(let (($x128 (or $x97 $x31)))
-(let (($x33 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x31 (= ?x26 0)))
-(let (($x30 (< ?v0 0)))
-(=> $x30 $x31))))))
-))
-(let (($x116 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x31 (= ?x26 0)))
-(let (($x30 (< ?v0 0)))
-(let (($x112 (not $x30)))
-(or $x112 $x31)))))))
-))
-(let ((@x123 (monotonicity (rewrite (= (< ?0 0) (not $x97))) (= (not (< ?0 0)) (not (not $x97))))))
-(let ((@x127 (trans @x123 (rewrite (= (not (not $x97)) $x97)) (= (not (< ?0 0)) $x97))))
-(let ((@x133 (|quant-intro| (monotonicity @x127 (= (or (not (< ?0 0)) $x31) $x128)) (= $x116 $x131))))
-(let ((@x115 (rewrite (= (=> (< ?0 0) $x31) (or (not (< ?0 0)) $x31)))))
-(let ((@x136 (mp (asserted $x33) (trans (|quant-intro| @x115 (= $x33 $x116)) @x133 (= $x33 $x131)) $x131)))
-(let ((@x171 (mp (|mp~| @x136 (|nnf-pos| (refl (|~| $x128 $x128)) (|~| $x131 $x131)) $x131) (|quant-intro| (refl (= $x128 $x128)) (= $x131 $x166)) $x166)))
-(let (($x222 (not $x166)))
-(let (($x289 (or $x222 $x283 $x285)))
-(let ((@x294 (mp ((_ |quant-inst| (|of_nat$| |y$|)) (or $x222 $x286)) (rewrite (= (or $x222 $x286) $x289)) $x289)))
-(let ((@x316 (|unit-resolution| (|unit-resolution| @x294 @x171 $x286) (hypothesis (not $x283)) $x285)))
-(let (($x173 (= ?x172 |y$|)))
-(let (($x153 (forall ((?v0 |Nat$|) )(!(= (|nat$| (|of_nat$| ?v0)) ?v0) :pattern ( (|of_nat$| ?v0) )))
-))
-(let (($x22 (forall ((?v0 |Nat$|) )(= (|nat$| (|of_nat$| ?v0)) ?v0))
-))
-(let ((@x155 (refl (= (= (|nat$| (|of_nat$| ?0)) ?0) (= (|nat$| (|of_nat$| ?0)) ?0)))))
-(let ((@x140 (refl (|~| (= (|nat$| (|of_nat$| ?0)) ?0) (= (|nat$| (|of_nat$| ?0)) ?0)))))
-(let ((@x158 (mp (|mp~| (asserted $x22) (|nnf-pos| @x140 (|~| $x22 $x22)) $x22) (|quant-intro| @x155 (= $x22 $x153)) $x153)))
-(let (($x176 (not $x153)))
-(let (($x177 (or $x176 $x173)))
-(let ((@x178 ((_ |quant-inst| |y$|) $x177)))
-(let ((@x321 (monotonicity (symm (|unit-resolution| @x178 @x158 $x173) (= |y$| ?x172)) (= ?x8 ?x284))))
-(let ((@x326 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x8 0)) $x283)) (hypothesis (not $x283)) (trans @x321 @x316 (= ?x8 0)) false)))
-(let ((@x329 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x283) $x189)) (lemma @x326 $x283) $x189)))
-(let (($x192 (not $x189)))
-(let (($x200 (or $x192 $x197)))
-(let (($x160 (forall ((?v0 Int) )(!(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x27 (= ?x26 ?v0)))
-(let (($x97 (>= ?v0 0)))
-(let (($x99 (not $x97)))
-(or $x99 $x27)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x105 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x27 (= ?x26 ?v0)))
-(let (($x97 (>= ?v0 0)))
-(let (($x99 (not $x97)))
-(or $x99 $x27)))))))
-))
-(let ((@x162 (refl (= (or (not $x97) (= ?x26 ?0)) (or (not $x97) (= ?x26 ?0))))))
-(let ((@x143 (refl (|~| (or (not $x97) (= ?x26 ?0)) (or (not $x97) (= ?x26 ?0))))))
-(let (($x29 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x27 (= ?x26 ?v0)))
-(let (($x24 (<= 0 ?v0)))
-(=> $x24 $x27))))))
-))
-(let (($x93 (forall ((?v0 Int) )(let ((?x25 (|nat$| ?v0)))
-(let ((?x26 (|of_nat$| ?x25)))
-(let (($x27 (= ?x26 ?v0)))
-(or (not (<= 0 ?v0)) $x27)))))
-))
-(let (($x27 (= ?x26 ?0)))
-(let (($x99 (not $x97)))
-(let (($x102 (or $x99 $x27)))
-(let (($x90 (or (not (<= 0 ?0)) $x27)))
-(let ((@x101 (monotonicity (rewrite (= (<= 0 ?0) $x97)) (= (not (<= 0 ?0)) $x99))))
-(let ((@x95 (|quant-intro| (rewrite (= (=> (<= 0 ?0) $x27) $x90)) (= $x29 $x93))))
-(let ((@x109 (trans @x95 (|quant-intro| (monotonicity @x101 (= $x90 $x102)) (= $x93 $x105)) (= $x29 $x105))))
-(let ((@x146 (|mp~| (mp (asserted $x29) @x109 $x105) (|nnf-pos| @x143 (|~| $x105 $x105)) $x105)))
-(let ((@x165 (mp @x146 (|quant-intro| @x162 (= $x105 $x160)) $x160)))
-(let (($x203 (not $x160)))
-(let (($x204 (or $x203 $x192 $x197)))
-(let (($x188 (or (not (>= ?x9 0)) (= ?x11 ?x9))))
-(let (($x205 (or $x203 $x188)))
-(let ((@x194 (monotonicity (rewrite (= (>= ?x9 0) $x189)) (= (not (>= ?x9 0)) $x192))))
-(let ((@x202 (monotonicity @x194 (rewrite (= (= ?x11 ?x9) $x197)) (= $x188 $x200))))
-(let ((@x213 (trans (monotonicity @x202 (= $x205 (or $x203 $x200))) (rewrite (= (or $x203 $x200) $x204)) (= $x205 $x204))))
-(let ((@x214 (mp ((_ |quant-inst| (+ 1 ?x8)) $x205) @x213 $x204)))
-(let ((@x335 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x197) $x215)) (|unit-resolution| (|unit-resolution| @x214 @x165 $x200) @x329 $x197) $x215)))
-(let (($x243 (not $x240)))
-(let (($x250 (or $x243 $x247)))
-(let (($x253 (or $x203 $x243 $x247)))
-(let (($x239 (or (not (>= ?x58 0)) (= ?x64 ?x58))))
-(let (($x254 (or $x203 $x239)))
-(let ((@x245 (monotonicity (rewrite (= (>= ?x58 0) $x240)) (= (not (>= ?x58 0)) $x243))))
-(let ((@x252 (monotonicity @x245 (rewrite (= (= ?x64 ?x58) $x247)) (= $x239 $x250))))
-(let ((@x262 (trans (monotonicity @x252 (= $x254 (or $x203 $x250))) (rewrite (= (or $x203 $x250) $x253)) (= $x254 $x253))))
-(let ((@x263 (mp ((_ |quant-inst| (+ ?x57 ?x11)) $x254) @x262 $x253)))
-(let ((@x341 (|unit-resolution| (|unit-resolution| @x263 @x165 $x250) (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x215) $x240)) @x335 $x240) $x247)))
-(let (($x73 (<= ?x64 0)))
-(let ((@x79 (monotonicity (rewrite (= (< 0 ?x64) (not $x73))) (= (not (< 0 ?x64)) (not (not $x73))))))
-(let ((@x83 (trans @x79 (rewrite (= (not (not $x73)) $x73)) (= (not (< 0 ?x64)) $x73))))
-(let (($x67 (< 0 ?x64)))
-(let (($x70 (not $x67)))
-(let (($x17 (not (< (* 0 ?x11) (|of_nat$| (|nat$| (- ?x11 ?x8)))))))
-(let ((@x63 (monotonicity (rewrite (= (- ?x11 ?x8) ?x58)) (= (|nat$| (- ?x11 ?x8)) ?x61))))
-(let ((@x69 (monotonicity (rewrite (= (* 0 ?x11) 0)) (monotonicity @x63 (= (|of_nat$| (|nat$| (- ?x11 ?x8))) ?x64)) (= (< (* 0 ?x11) (|of_nat$| (|nat$| (- ?x11 ?x8)))) $x67))))
-(let ((@x86 (mp (asserted $x17) (trans (monotonicity @x69 (= $x17 $x70)) @x83 (= $x17 $x73)) $x73)))
-((_ |th-lemma| arith farkas -1 -1 1) @x86 @x335 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x247) $x265)) @x341 $x265) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x29 (of_nat$ y$)))
+(let ((?x30 (+ 1 ?x29)))
+(let ((?x31 (nat$ ?x30)))
+(let ((?x32 (of_nat$ ?x31)))
+(let ((?x43 (* (- 1) ?x29)))
+(let ((?x44 (+ ?x43 ?x32)))
+(let ((?x47 (nat$ ?x44)))
+(let ((?x50 (of_nat$ ?x47)))
+(let ((?x567 (* (- 1) ?x32)))
+(let ((?x255 (+ ?x29 ?x567 ?x50)))
+(let (($x513 (>= ?x255 0)))
+(let (($x532 (= ?x255 0)))
+(let ((?x568 (+ ?x29 ?x567)))
+(let (($x248 (<= ?x568 0)))
+(let (($x551 (<= ?x568 (- 1))))
+(let (($x558 (= ?x568 (- 1))))
+(let (($x229 (>= ?x29 (- 1))))
+(let (($x387 (>= ?x29 0)))
+(let ((?x154 (nat$ ?x29)))
+(let ((?x388 (of_nat$ ?x154)))
+(let (($x352 (= ?x388 0)))
+(let (($x498 (or $x387 $x352)))
+(let (($x584 (forall ((?v0 Int) )(!(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x110 (= ?x82 0)))
+(let (($x95 (>= ?v0 0)))
+(or $x95 $x110))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x133 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x110 (= ?x82 0)))
+(let (($x95 (>= ?v0 0)))
+(or $x95 $x110))))))
+))
+(let ((?x81 (nat$ ?0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x110 (= ?x82 0)))
+(let (($x95 (>= ?0 0)))
+(let (($x130 (or $x95 $x110)))
+(let (($x112 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x110 (= ?x82 0)))
+(let (($x109 (< ?v0 0)))
+(=> $x109 $x110))))))
+))
+(let (($x118 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x110 (= ?x82 0)))
+(let (($x109 (< ?v0 0)))
+(let (($x114 (not $x109)))
+(or $x114 $x110)))))))
+))
+(let ((@x125 (monotonicity (rewrite (= (< ?0 0) (not $x95))) (= (not (< ?0 0)) (not (not $x95))))))
+(let ((@x129 (trans @x125 (rewrite (= (not (not $x95)) $x95)) (= (not (< ?0 0)) $x95))))
+(let ((@x135 (quant-intro (monotonicity @x129 (= (or (not (< ?0 0)) $x110) $x130)) (= $x118 $x133))))
+(let ((@x117 (rewrite (= (=> (< ?0 0) $x110) (or (not (< ?0 0)) $x110)))))
+(let ((@x138 (mp (asserted $x112) (trans (quant-intro @x117 (= $x112 $x118)) @x135 (= $x112 $x133)) $x133)))
+(let ((@x589 (mp (mp~ @x138 (nnf-pos (refl (~ $x130 $x130)) (~ $x133 $x133)) $x133) (quant-intro (refl (= $x130 $x130)) (= $x133 $x584)) $x584)))
+(let (($x555 (not $x584)))
+(let (($x500 (or $x555 $x387 $x352)))
+(let ((@x404 (mp ((_ quant-inst (of_nat$ y$)) (or $x555 $x498)) (rewrite (= (or $x555 $x498) $x500)) $x500)))
+(let ((@x487 (unit-resolution (unit-resolution @x404 @x589 $x498) (hypothesis (not $x387)) $x352)))
+(let (($x239 (= ?x154 y$)))
+(let (($x570 (forall ((?v0 Nat$) )(!(= (nat$ (of_nat$ ?v0)) ?v0) :pattern ( (of_nat$ ?v0) )))
+))
+(let (($x77 (forall ((?v0 Nat$) )(= (nat$ (of_nat$ ?v0)) ?v0))
+))
+(let ((@x575 (trans (rewrite (= $x77 $x570)) (rewrite (= $x570 $x570)) (= $x77 $x570))))
+(let ((@x144 (refl (~ (= (nat$ (of_nat$ ?0)) ?0) (= (nat$ (of_nat$ ?0)) ?0)))))
+(let ((@x576 (mp (mp~ (asserted $x77) (nnf-pos @x144 (~ $x77 $x77)) $x77) @x575 $x570)))
+(let (($x241 (not $x570)))
+(let (($x231 (or $x241 $x239)))
+(let ((@x242 ((_ quant-inst y$) $x231)))
+(let ((@x475 (monotonicity (symm (unit-resolution @x242 @x576 $x239) (= y$ ?x154)) (= ?x29 ?x388))))
+(let ((@x480 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x29 0)) $x387)) (hypothesis (not $x387)) (trans @x475 @x487 (= ?x29 0)) false)))
+(let ((@x468 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x387) $x229)) (lemma @x480 $x387) $x229)))
+(let (($x564 (not $x229)))
+(let (($x559 (or $x564 $x558)))
+(let (($x578 (forall ((?v0 Int) )(!(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x83 (= ?x82 ?v0)))
+(let (($x95 (>= ?v0 0)))
+(let (($x97 (not $x95)))
+(or $x97 $x83)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x103 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x83 (= ?x82 ?v0)))
+(let (($x95 (>= ?v0 0)))
+(let (($x97 (not $x95)))
+(or $x97 $x83)))))))
+))
+(let ((@x580 (refl (= (or (not $x95) (= ?x82 ?0)) (or (not $x95) (= ?x82 ?0))))))
+(let ((@x139 (refl (~ (or (not $x95) (= ?x82 ?0)) (or (not $x95) (= ?x82 ?0))))))
+(let (($x85 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x83 (= ?x82 ?v0)))
+(let (($x80 (<= 0 ?v0)))
+(=> $x80 $x83))))))
+))
+(let (($x91 (forall ((?v0 Int) )(let ((?x81 (nat$ ?v0)))
+(let ((?x82 (of_nat$ ?x81)))
+(let (($x83 (= ?x82 ?v0)))
+(or (not (<= 0 ?v0)) $x83)))))
+))
+(let (($x83 (= ?x82 ?0)))
+(let (($x97 (not $x95)))
+(let (($x100 (or $x97 $x83)))
+(let (($x88 (or (not (<= 0 ?0)) $x83)))
+(let ((@x99 (monotonicity (rewrite (= (<= 0 ?0) $x95)) (= (not (<= 0 ?0)) $x97))))
+(let ((@x93 (quant-intro (rewrite (= (=> (<= 0 ?0) $x83) $x88)) (= $x85 $x91))))
+(let ((@x107 (trans @x93 (quant-intro (monotonicity @x99 (= $x88 $x100)) (= $x91 $x103)) (= $x85 $x103))))
+(let ((@x148 (mp~ (mp (asserted $x85) @x107 $x103) (nnf-pos @x139 (~ $x103 $x103)) $x103)))
+(let ((@x583 (mp @x148 (quant-intro @x580 (= $x103 $x578)) $x578)))
+(let (($x202 (not $x578)))
+(let (($x544 (or $x202 $x564 $x558)))
+(let (($x557 (or (not (>= ?x30 0)) (= ?x32 ?x30))))
+(let (($x205 (or $x202 $x557)))
+(let ((@x566 (monotonicity (rewrite (= (>= ?x30 0) $x229)) (= (not (>= ?x30 0)) $x564))))
+(let ((@x560 (monotonicity @x566 (rewrite (= (= ?x32 ?x30) $x558)) (= $x557 $x559))))
+(let ((@x549 (trans (monotonicity @x560 (= $x205 (or $x202 $x559))) (rewrite (= (or $x202 $x559) $x544)) (= $x205 $x544))))
+(let ((@x550 (mp ((_ quant-inst (+ 1 ?x29)) $x205) @x549 $x544)))
+(let ((@x453 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x558) $x551)) (unit-resolution (unit-resolution @x550 @x583 $x559) @x468 $x558) $x551)))
+(let (($x251 (not $x248)))
+(let (($x535 (or $x251 $x532)))
+(let (($x523 (or $x202 $x251 $x532)))
+(let (($x541 (or (not (>= ?x44 0)) (= ?x50 ?x44))))
+(let (($x524 (or $x202 $x541)))
+(let ((@x531 (monotonicity (rewrite (= (>= ?x44 0) $x248)) (= (not (>= ?x44 0)) $x251))))
+(let ((@x522 (monotonicity @x531 (rewrite (= (= ?x50 ?x44) $x532)) (= $x541 $x535))))
+(let ((@x369 (trans (monotonicity @x522 (= $x524 (or $x202 $x535))) (rewrite (= (or $x202 $x535) $x523)) (= $x524 $x523))))
+(let ((@x511 (mp ((_ quant-inst (+ ?x43 ?x32)) $x524) @x369 $x523)))
+(let ((@x459 (unit-resolution (unit-resolution @x511 @x583 $x535) (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x551) $x248)) @x453 $x248) $x532)))
+(let (($x59 (<= ?x50 0)))
+(let ((@x65 (monotonicity (rewrite (= (< 0 ?x50) (not $x59))) (= (not (< 0 ?x50)) (not (not $x59))))))
+(let ((@x69 (trans @x65 (rewrite (= (not (not $x59)) $x59)) (= (not (< 0 ?x50)) $x59))))
+(let (($x53 (< 0 ?x50)))
+(let (($x56 (not $x53)))
+(let (($x38 (not (< (* 0 ?x32) (of_nat$ (nat$ (- ?x32 ?x29)))))))
+(let ((@x49 (monotonicity (rewrite (= (- ?x32 ?x29) ?x44)) (= (nat$ (- ?x32 ?x29)) ?x47))))
+(let ((@x55 (monotonicity (rewrite (= (* 0 ?x32) 0)) (monotonicity @x49 (= (of_nat$ (nat$ (- ?x32 ?x29))) ?x50)) (= (< (* 0 ?x32) (of_nat$ (nat$ (- ?x32 ?x29)))) $x53))))
+(let ((@x72 (mp (asserted $x38) (trans (monotonicity @x55 (= $x38 $x56)) @x69 (= $x38 $x59)) $x59)))
+((_ th-lemma arith farkas -1 -1 1) @x72 @x453 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x532) $x513)) @x459 $x513) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-72e646f619a773762ccf2e62425eb512a9cd35f3 144 0
+0ca03284fa57fab888696978d182e9520b70a64b 145 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x8 (|of_nat$| |y$|)))
-(let ((?x9 (+ 1 ?x8)))
-(let ((?x10 (|nat$| ?x9)))
-(let ((?x11 (|of_nat$| ?x10)))
-(let ((?x62 (+ (~ 1) ?x11)))
-(let ((?x65 (|nat$| ?x62)))
-(let ((?x281 (|of_nat$| ?x65)))
-(let ((?x291 (* (~ 1) ?x281)))
-(let ((?x330 (+ ?x8 ?x291)))
-(let (($x332 (>= ?x330 0)))
-(let (($x329 (= ?x8 ?x281)))
-(let (($x68 (= ?x65 |y$|)))
-(let (($x102 (<= ?x11 0)))
-(let (($x112 (not (or (= (not $x102) $x68) (not $x102)))))
-(let (($x19 (=> (not (ite (< 0 ?x11) true false)) false)))
-(let (($x12 (< 0 ?x11)))
-(let (($x13 (ite $x12 true false)))
-(let (($x17 (= $x13 (= (|nat$| (- ?x11 1)) |y$|))))
-(let (($x21 (or false (or $x17 $x19))))
-(let (($x22 (not $x21)))
-(let (($x74 (= $x12 $x68)))
-(let (($x89 (or $x74 $x12)))
-(let ((@x108 (monotonicity (rewrite (= $x12 (not $x102))) (= $x74 (= (not $x102) $x68)))))
-(let ((@x111 (monotonicity @x108 (rewrite (= $x12 (not $x102))) (= $x89 (or (= (not $x102) $x68) (not $x102))))))
-(let ((@x84 (monotonicity (monotonicity (rewrite (= $x13 $x12)) (= (not $x13) (not $x12))) (= $x19 (=> (not $x12) false)))))
-(let ((@x88 (trans @x84 (rewrite (= (=> (not $x12) false) $x12)) (= $x19 $x12))))
-(let ((@x67 (monotonicity (rewrite (= (- ?x11 1) ?x62)) (= (|nat$| (- ?x11 1)) ?x65))))
-(let ((@x73 (monotonicity (rewrite (= $x13 $x12)) (monotonicity @x67 (= (= (|nat$| (- ?x11 1)) |y$|) $x68)) (= $x17 (= $x12 $x68)))))
-(let ((@x91 (monotonicity (trans @x73 (rewrite (= (= $x12 $x68) $x74)) (= $x17 $x74)) @x88 (= (or $x17 $x19) $x89))))
-(let ((@x98 (trans (monotonicity @x91 (= $x21 (or false $x89))) (rewrite (= (or false $x89) $x89)) (= $x21 $x89))))
-(let ((@x116 (trans (monotonicity @x98 (= $x22 (not $x89))) (monotonicity @x111 (= (not $x89) $x112)) (= $x22 $x112))))
-(let ((@x120 (|not-or-elim| (mp (asserted $x22) @x116 $x112) $x102)))
-(let (($x171 (= $x102 $x68)))
-(let ((@x119 (|not-or-elim| (mp (asserted $x22) @x116 $x112) (not (= (not $x102) $x68)))))
-(let ((@x173 (mp @x119 (rewrite (= (not (= (not $x102) $x68)) $x171)) $x171)))
-(let ((@x219 (|unit-resolution| (|def-axiom| (or (not $x102) $x68 (not $x171))) @x173 (or (not $x102) $x68))))
-(let ((@x345 (monotonicity (symm (|unit-resolution| @x219 @x120 $x68) (= |y$| ?x65)) $x329)))
-(let ((?x241 (* (~ 1) ?x11)))
-(let ((?x242 (+ ?x8 ?x241)))
-(let (($x259 (<= ?x242 (~ 1))))
-(let (($x240 (= ?x242 (~ 1))))
-(let (($x233 (>= ?x8 (~ 1))))
-(let (($x328 (>= ?x281 0)))
-(let (($x311 (= ?x281 0)))
-(let (($x284 (>= ?x11 1)))
-(let (($x287 (not $x284)))
-(let (($x204 (forall ((?v0 Int) )(!(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x36 (= ?x31 0)))
-(let (($x131 (>= ?v0 0)))
-(or $x131 $x36))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x165 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x36 (= ?x31 0)))
-(let (($x131 (>= ?v0 0)))
-(or $x131 $x36))))))
-))
-(let ((?x30 (|nat$| ?0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x36 (= ?x31 0)))
-(let (($x131 (>= ?0 0)))
-(let (($x162 (or $x131 $x36)))
-(let (($x38 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x36 (= ?x31 0)))
-(let (($x35 (< ?v0 0)))
-(=> $x35 $x36))))))
-))
-(let (($x150 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x36 (= ?x31 0)))
-(let (($x35 (< ?v0 0)))
-(let (($x146 (not $x35)))
-(or $x146 $x36)))))))
-))
-(let ((@x157 (monotonicity (rewrite (= (< ?0 0) (not $x131))) (= (not (< ?0 0)) (not (not $x131))))))
-(let ((@x161 (trans @x157 (rewrite (= (not (not $x131)) $x131)) (= (not (< ?0 0)) $x131))))
-(let ((@x167 (|quant-intro| (monotonicity @x161 (= (or (not (< ?0 0)) $x36) $x162)) (= $x150 $x165))))
-(let ((@x149 (rewrite (= (=> (< ?0 0) $x36) (or (not (< ?0 0)) $x36)))))
-(let ((@x170 (mp (asserted $x38) (trans (|quant-intro| @x149 (= $x38 $x150)) @x167 (= $x38 $x165)) $x165)))
-(let ((@x209 (mp (|mp~| @x170 (|nnf-pos| (refl (|~| $x162 $x162)) (|~| $x165 $x165)) $x165) (|quant-intro| (refl (= $x162 $x162)) (= $x165 $x204)) $x204)))
-(let (($x266 (not $x204)))
-(let (($x316 (or $x266 $x284 $x311)))
-(let ((@x286 (rewrite (= (>= ?x62 0) $x284))))
-(let ((@x321 (monotonicity (monotonicity @x286 (= (or (>= ?x62 0) $x311) (or $x284 $x311))) (= (or $x266 (or (>= ?x62 0) $x311)) (or $x266 (or $x284 $x311))))))
-(let ((@x325 (trans @x321 (rewrite (= (or $x266 (or $x284 $x311)) $x316)) (= (or $x266 (or (>= ?x62 0) $x311)) $x316))))
-(let ((@x326 (mp ((_ |quant-inst| (+ (~ 1) ?x11)) (or $x266 (or (>= ?x62 0) $x311))) @x325 $x316)))
-(let ((@x353 (|unit-resolution| @x326 @x209 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x287 (not $x102))) @x120 $x287) $x311)))
-(let ((@x362 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x233 (not $x328) (not $x332))) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x311) $x328)) @x353 $x328) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x329) $x332)) @x345 $x332) $x233)))
-(let (($x236 (not $x233)))
-(let (($x244 (or $x236 $x240)))
-(let (($x198 (forall ((?v0 Int) )(!(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x32 (= ?x31 ?v0)))
-(let (($x131 (>= ?v0 0)))
-(let (($x133 (not $x131)))
-(or $x133 $x32)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x139 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x32 (= ?x31 ?v0)))
-(let (($x131 (>= ?v0 0)))
-(let (($x133 (not $x131)))
-(or $x133 $x32)))))))
-))
-(let ((@x200 (refl (= (or (not $x131) (= ?x31 ?0)) (or (not $x131) (= ?x31 ?0))))))
-(let ((@x181 (refl (|~| (or (not $x131) (= ?x31 ?0)) (or (not $x131) (= ?x31 ?0))))))
-(let (($x34 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x32 (= ?x31 ?v0)))
-(let (($x29 (<= 0 ?v0)))
-(=> $x29 $x32))))))
-))
-(let (($x127 (forall ((?v0 Int) )(let ((?x30 (|nat$| ?v0)))
-(let ((?x31 (|of_nat$| ?x30)))
-(let (($x32 (= ?x31 ?v0)))
-(or (not (<= 0 ?v0)) $x32)))))
-))
-(let (($x32 (= ?x31 ?0)))
-(let (($x133 (not $x131)))
-(let (($x136 (or $x133 $x32)))
-(let (($x124 (or (not (<= 0 ?0)) $x32)))
-(let ((@x135 (monotonicity (rewrite (= (<= 0 ?0) $x131)) (= (not (<= 0 ?0)) $x133))))
-(let ((@x129 (|quant-intro| (rewrite (= (=> (<= 0 ?0) $x32) $x124)) (= $x34 $x127))))
-(let ((@x143 (trans @x129 (|quant-intro| (monotonicity @x135 (= $x124 $x136)) (= $x127 $x139)) (= $x34 $x139))))
-(let ((@x184 (|mp~| (mp (asserted $x34) @x143 $x139) (|nnf-pos| @x181 (|~| $x139 $x139)) $x139)))
-(let ((@x203 (mp @x184 (|quant-intro| @x200 (= $x139 $x198)) $x198)))
-(let (($x247 (not $x198)))
-(let (($x248 (or $x247 $x236 $x240)))
-(let (($x231 (= ?x11 ?x9)))
-(let (($x227 (>= ?x9 0)))
-(let (($x228 (not $x227)))
-(let (($x232 (or $x228 $x231)))
-(let (($x249 (or $x247 $x232)))
-(let ((@x246 (monotonicity (monotonicity (rewrite (= $x227 $x233)) (= $x228 $x236)) (rewrite (= $x231 $x240)) (= $x232 $x244))))
-(let ((@x257 (trans (monotonicity @x246 (= $x249 (or $x247 $x244))) (rewrite (= (or $x247 $x244) $x248)) (= $x249 $x248))))
-(let ((@x258 (mp ((_ |quant-inst| (+ 1 ?x8)) $x249) @x257 $x248)))
-(let ((@x368 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x240) $x259)) (|unit-resolution| (|unit-resolution| @x258 @x203 $x244) @x362 $x240) $x259)))
-((_ |th-lemma| arith farkas 1 -1 -1 1) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x311) $x328)) @x353 $x328) @x120 @x368 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x329) $x332)) @x345 $x332) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x29 (of_nat$ y$)))
+(let ((?x30 (+ 1 ?x29)))
+(let ((?x31 (nat$ ?x30)))
+(let ((?x32 (of_nat$ ?x31)))
+(let ((?x48 (+ (- 1) ?x32)))
+(let ((?x51 (nat$ ?x48)))
+(let ((?x585 (of_nat$ ?x51)))
+(let ((?x299 (* (- 1) ?x585)))
+(let ((?x434 (+ ?x29 ?x299)))
+(let (($x436 (>= ?x434 0)))
+(let (($x558 (= ?x29 ?x585)))
+(let (($x54 (= ?x51 y$)))
+(let (($x88 (<= ?x32 0)))
+(let (($x98 (not (or (= (not $x88) $x54) (not $x88)))))
+(let (($x40 (=> (not (ite (< 0 ?x32) true false)) false)))
+(let (($x33 (< 0 ?x32)))
+(let (($x34 (ite $x33 true false)))
+(let (($x38 (= $x34 (= (nat$ (- ?x32 1)) y$))))
+(let (($x42 (or false (or $x38 $x40))))
+(let (($x43 (not $x42)))
+(let (($x60 (= $x33 $x54)))
+(let (($x75 (or $x60 $x33)))
+(let ((@x94 (monotonicity (rewrite (= $x33 (not $x88))) (= $x60 (= (not $x88) $x54)))))
+(let ((@x97 (monotonicity @x94 (rewrite (= $x33 (not $x88))) (= $x75 (or (= (not $x88) $x54) (not $x88))))))
+(let ((@x70 (monotonicity (monotonicity (rewrite (= $x34 $x33)) (= (not $x34) (not $x33))) (= $x40 (=> (not $x33) false)))))
+(let ((@x74 (trans @x70 (rewrite (= (=> (not $x33) false) $x33)) (= $x40 $x33))))
+(let ((@x53 (monotonicity (rewrite (= (- ?x32 1) ?x48)) (= (nat$ (- ?x32 1)) ?x51))))
+(let ((@x59 (monotonicity (rewrite (= $x34 $x33)) (monotonicity @x53 (= (= (nat$ (- ?x32 1)) y$) $x54)) (= $x38 (= $x33 $x54)))))
+(let ((@x77 (monotonicity (trans @x59 (rewrite (= (= $x33 $x54) $x60)) (= $x38 $x60)) @x74 (= (or $x38 $x40) $x75))))
+(let ((@x84 (trans (monotonicity @x77 (= $x42 (or false $x75))) (rewrite (= (or false $x75) $x75)) (= $x42 $x75))))
+(let ((@x102 (trans (monotonicity @x84 (= $x43 (not $x75))) (monotonicity @x97 (= (not $x75) $x98)) (= $x43 $x98))))
+(let ((@x106 (not-or-elim (mp (asserted $x43) @x102 $x98) $x88)))
+(let ((@x187 (monotonicity (iff-true @x106 (= $x88 true)) (= (= $x88 $x54) (= true $x54)))))
+(let ((@x191 (trans @x187 (rewrite (= (= true $x54) $x54)) (= (= $x88 $x54) $x54))))
+(let (($x173 (= $x88 $x54)))
+(let ((@x105 (not-or-elim (mp (asserted $x43) @x102 $x98) (not (= (not $x88) $x54)))))
+(let ((@x192 (mp (mp @x105 (rewrite (= (not (= (not $x88) $x54)) $x173)) $x173) @x191 $x54)))
+(let ((@x457 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x558) $x436)) (monotonicity (symm @x192 (= y$ ?x51)) $x558) $x436)))
+(let ((?x613 (* (- 1) ?x32)))
+(let ((?x614 (+ ?x29 ?x613)))
+(let (($x595 (<= ?x614 (- 1))))
+(let (($x612 (= ?x614 (- 1))))
+(let (($x610 (>= ?x29 (- 1))))
+(let (($x557 (>= ?x585 0)))
+(let (($x559 (= ?x585 0)))
+(let (($x586 (>= ?x32 1)))
+(let (($x589 (not $x586)))
+(let (($x632 (forall ((?v0 Int) )(!(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x144 (= ?x116 0)))
+(let (($x129 (>= ?v0 0)))
+(or $x129 $x144))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x167 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x144 (= ?x116 0)))
+(let (($x129 (>= ?v0 0)))
+(or $x129 $x144))))))
+))
+(let ((?x115 (nat$ ?0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x144 (= ?x116 0)))
+(let (($x129 (>= ?0 0)))
+(let (($x164 (or $x129 $x144)))
+(let (($x146 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x144 (= ?x116 0)))
+(let (($x143 (< ?v0 0)))
+(=> $x143 $x144))))))
+))
+(let (($x152 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x144 (= ?x116 0)))
+(let (($x143 (< ?v0 0)))
+(let (($x148 (not $x143)))
+(or $x148 $x144)))))))
+))
+(let ((@x159 (monotonicity (rewrite (= (< ?0 0) (not $x129))) (= (not (< ?0 0)) (not (not $x129))))))
+(let ((@x163 (trans @x159 (rewrite (= (not (not $x129)) $x129)) (= (not (< ?0 0)) $x129))))
+(let ((@x169 (quant-intro (monotonicity @x163 (= (or (not (< ?0 0)) $x144) $x164)) (= $x152 $x167))))
+(let ((@x151 (rewrite (= (=> (< ?0 0) $x144) (or (not (< ?0 0)) $x144)))))
+(let ((@x172 (mp (asserted $x146) (trans (quant-intro @x151 (= $x146 $x152)) @x169 (= $x146 $x167)) $x167)))
+(let ((@x637 (mp (mp~ @x172 (nnf-pos (refl (~ $x164 $x164)) (~ $x167 $x167)) $x167) (quant-intro (refl (= $x164 $x164)) (= $x167 $x632)) $x632)))
+(let (($x601 (not $x632)))
+(let (($x564 (or $x601 $x586 $x559)))
+(let ((@x588 (rewrite (= (>= ?x48 0) $x586))))
+(let ((@x394 (monotonicity (monotonicity @x588 (= (or (>= ?x48 0) $x559) (or $x586 $x559))) (= (or $x601 (or (>= ?x48 0) $x559)) (or $x601 (or $x586 $x559))))))
+(let ((@x554 (trans @x394 (rewrite (= (or $x601 (or $x586 $x559)) $x564)) (= (or $x601 (or (>= ?x48 0) $x559)) $x564))))
+(let ((@x555 (mp ((_ quant-inst (+ (- 1) ?x32)) (or $x601 (or (>= ?x48 0) $x559))) @x554 $x564)))
+(let ((@x539 (unit-resolution @x555 @x637 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x589 (not $x88))) @x106 $x589) $x559)))
+(let ((@x545 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x610 (not $x557) (not $x436))) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x559) $x557)) @x539 $x557) @x457 $x610)))
+(let (($x605 (not $x610)))
+(let (($x616 (or $x605 $x612)))
+(let (($x626 (forall ((?v0 Int) )(!(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x117 (= ?x116 ?v0)))
+(let (($x129 (>= ?v0 0)))
+(let (($x131 (not $x129)))
+(or $x131 $x117)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x137 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x117 (= ?x116 ?v0)))
+(let (($x129 (>= ?v0 0)))
+(let (($x131 (not $x129)))
+(or $x131 $x117)))))))
+))
+(let ((@x628 (refl (= (or (not $x129) (= ?x116 ?0)) (or (not $x129) (= ?x116 ?0))))))
+(let ((@x185 (refl (~ (or (not $x129) (= ?x116 ?0)) (or (not $x129) (= ?x116 ?0))))))
+(let (($x119 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x117 (= ?x116 ?v0)))
+(let (($x114 (<= 0 ?v0)))
+(=> $x114 $x117))))))
+))
+(let (($x125 (forall ((?v0 Int) )(let ((?x115 (nat$ ?v0)))
+(let ((?x116 (of_nat$ ?x115)))
+(let (($x117 (= ?x116 ?v0)))
+(or (not (<= 0 ?v0)) $x117)))))
+))
+(let (($x117 (= ?x116 ?0)))
+(let (($x131 (not $x129)))
+(let (($x134 (or $x131 $x117)))
+(let (($x122 (or (not (<= 0 ?0)) $x117)))
+(let ((@x133 (monotonicity (rewrite (= (<= 0 ?0) $x129)) (= (not (<= 0 ?0)) $x131))))
+(let ((@x127 (quant-intro (rewrite (= (=> (<= 0 ?0) $x117) $x122)) (= $x119 $x125))))
+(let ((@x141 (trans @x127 (quant-intro (monotonicity @x133 (= $x122 $x134)) (= $x125 $x137)) (= $x119 $x137))))
+(let ((@x196 (mp~ (mp (asserted $x119) @x141 $x137) (nnf-pos @x185 (~ $x137 $x137)) $x137)))
+(let ((@x631 (mp @x196 (quant-intro @x628 (= $x137 $x626)) $x626)))
+(let (($x269 (not $x626)))
+(let (($x607 (or $x269 $x605 $x612)))
+(let (($x273 (= ?x32 ?x30)))
+(let (($x291 (>= ?x30 0)))
+(let (($x292 (not $x291)))
+(let (($x609 (or $x292 $x273)))
+(let (($x271 (or $x269 $x609)))
+(let ((@x268 (monotonicity (monotonicity (rewrite (= $x291 $x610)) (= $x292 $x605)) (rewrite (= $x273 $x612)) (= $x609 $x616))))
+(let ((@x593 (trans (monotonicity @x268 (= $x271 (or $x269 $x616))) (rewrite (= (or $x269 $x616) $x607)) (= $x271 $x607))))
+(let ((@x594 (mp ((_ quant-inst (+ 1 ?x29)) $x271) @x593 $x607)))
+(let ((@x538 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x612) $x595)) (unit-resolution (unit-resolution @x594 @x631 $x616) @x545 $x612) $x595)))
+((_ th-lemma arith farkas 1 -1 -1 1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x559) $x557)) @x539 $x557) @x106 @x538 @x457 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-bda6be21dc699a816acc75c786757ad36dd913c8 78 0
+ed992e8735f6c9b531d67fd3885b90b06272f149 78 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x51 (* (~ 1) |x$|)))
-(let (($x69 (>= |x$| 0)))
-(let ((?x76 (ite $x69 |x$| ?x51)))
-(let ((?x213 (* (~ 1) ?x76)))
-(let ((?x216 (+ ?x51 ?x213)))
-(let (($x226 (<= ?x216 0)))
-(let (($x182 (= ?x51 ?x76)))
-(let (($x70 (not $x69)))
-(let (($x181 (= |x$| ?x76)))
-(let ((@x222 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x181) (<= (+ |x$| ?x213) 0))) (|unit-resolution| (|def-axiom| (or $x70 $x181)) (hypothesis $x69) $x181) (<= (+ |x$| ?x213) 0))))
-(let (($x189 (>= ?x76 0)))
-(let (($x190 (not $x189)))
-(let (($x169 (forall ((?v0 Int) )(!(let ((?x21 (|nat$| ?v0)))
-(let ((?x22 (|of_nat$| ?x21)))
-(let (($x23 (= ?x22 ?v0)))
-(let (($x106 (>= ?v0 0)))
-(let (($x108 (not $x106)))
-(or $x108 $x23)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x114 (forall ((?v0 Int) )(let ((?x21 (|nat$| ?v0)))
-(let ((?x22 (|of_nat$| ?x21)))
-(let (($x23 (= ?x22 ?v0)))
-(let (($x106 (>= ?v0 0)))
-(let (($x108 (not $x106)))
-(or $x108 $x23)))))))
-))
-(let ((?x21 (|nat$| ?0)))
-(let ((?x22 (|of_nat$| ?x21)))
-(let (($x23 (= ?x22 ?0)))
-(let (($x106 (>= ?0 0)))
-(let (($x108 (not $x106)))
-(let (($x111 (or $x108 $x23)))
-(let (($x25 (forall ((?v0 Int) )(let ((?x21 (|nat$| ?v0)))
-(let ((?x22 (|of_nat$| ?x21)))
-(let (($x23 (= ?x22 ?v0)))
-(let (($x20 (<= 0 ?v0)))
-(=> $x20 $x23))))))
-))
-(let (($x102 (forall ((?v0 Int) )(let ((?x21 (|nat$| ?v0)))
-(let ((?x22 (|of_nat$| ?x21)))
-(let (($x23 (= ?x22 ?v0)))
-(or (not (<= 0 ?v0)) $x23)))))
-))
-(let ((@x110 (monotonicity (rewrite (= (<= 0 ?0) $x106)) (= (not (<= 0 ?0)) $x108))))
-(let ((@x116 (|quant-intro| (monotonicity @x110 (= (or (not (<= 0 ?0)) $x23) $x111)) (= $x102 $x114))))
-(let ((@x101 (rewrite (= (=> (<= 0 ?0) $x23) (or (not (<= 0 ?0)) $x23)))))
-(let ((@x119 (mp (asserted $x25) (trans (|quant-intro| @x101 (= $x25 $x102)) @x116 (= $x25 $x114)) $x114)))
-(let ((@x174 (mp (|mp~| @x119 (|nnf-pos| (refl (|~| $x111 $x111)) (|~| $x114 $x114)) $x114) (|quant-intro| (refl (= $x111 $x111)) (= $x114 $x169)) $x169)))
-(let ((?x81 (|nat$| ?x76)))
-(let ((?x84 (|of_nat$| ?x81)))
-(let (($x87 (= ?x84 ?x76)))
-(let (($x90 (not $x87)))
-(let (($x7 (< |x$| 0)))
-(let ((?x9 (ite $x7 (- |x$|) |x$|)))
-(let (($x13 (not (= (|of_nat$| (|nat$| ?x9)) ?x9))))
-(let (($x91 (= (not (= (|of_nat$| (|nat$| (ite $x7 ?x51 |x$|))) (ite $x7 ?x51 |x$|))) $x90)))
-(let ((?x54 (ite $x7 ?x51 |x$|)))
-(let ((?x57 (|nat$| ?x54)))
-(let ((?x60 (|of_nat$| ?x57)))
-(let (($x63 (= ?x60 ?x54)))
-(let ((@x80 (trans (monotonicity (rewrite (= $x7 $x70)) (= ?x54 (ite $x70 ?x51 |x$|))) (rewrite (= (ite $x70 ?x51 |x$|) ?x76)) (= ?x54 ?x76))))
-(let ((@x89 (monotonicity (monotonicity (monotonicity @x80 (= ?x57 ?x81)) (= ?x60 ?x84)) @x80 (= $x63 $x87))))
-(let ((@x59 (monotonicity (monotonicity (rewrite (= (- |x$|) ?x51)) (= ?x9 ?x54)) (= (|nat$| ?x9) ?x57))))
-(let ((@x65 (monotonicity (monotonicity @x59 (= (|of_nat$| (|nat$| ?x9)) ?x60)) (monotonicity (rewrite (= (- |x$|) ?x51)) (= ?x9 ?x54)) (= (= (|of_nat$| (|nat$| ?x9)) ?x9) $x63))))
-(let ((@x94 (trans (monotonicity @x65 (= $x13 (not $x63))) (monotonicity @x89 $x91) (= $x13 $x90))))
-(let ((@x95 (mp (asserted $x13) @x94 $x90)))
-(let (($x198 (or (not $x169) $x190 $x87)))
-(let ((@x203 (mp ((_ |quant-inst| (ite $x69 |x$| ?x51)) (or (not $x169) (or $x190 $x87))) (rewrite (= (or (not $x169) (or $x190 $x87)) $x198)) $x198)))
-(let ((@x224 ((_ |th-lemma| arith farkas -1 1 1) (hypothesis $x69) (|unit-resolution| @x203 @x95 @x174 $x190) @x222 false)))
-(let ((@x225 (lemma @x224 $x70)))
-(let ((@x232 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x182) $x226)) (|unit-resolution| (|def-axiom| (or $x69 $x182)) @x225 $x182) $x226)))
-(let (($x205 (<= ?x76 0)))
-(let ((@x235 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or $x205 $x189)) (|unit-resolution| @x203 @x95 @x174 $x190) $x205)))
-((_ |th-lemma| arith farkas 1 1 1) @x235 @x225 @x232 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x37 (* (- 1) x$)))
+(let (($x55 (>= x$ 0)))
+(let ((?x62 (ite $x55 x$ ?x37)))
+(let ((?x554 (* (- 1) ?x62)))
+(let ((?x217 (+ ?x37 ?x554)))
+(let (($x562 (<= ?x217 0)))
+(let (($x249 (= ?x37 ?x62)))
+(let (($x56 (not $x55)))
+(let (($x163 (= x$ ?x62)))
+(let ((@x559 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x163) (<= (+ x$ ?x554) 0))) (unit-resolution (def-axiom (or $x56 $x163)) (hypothesis $x55) $x163) (<= (+ x$ ?x554) 0))))
+(let (($x254 (>= ?x62 0)))
+(let (($x255 (not $x254)))
+(let (($x588 (forall ((?v0 Int) )(!(let ((?x90 (nat$ ?v0)))
+(let ((?x91 (of_nat$ ?x90)))
+(let (($x92 (= ?x91 ?v0)))
+(let (($x104 (>= ?v0 0)))
+(let (($x106 (not $x104)))
+(or $x106 $x92)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x112 (forall ((?v0 Int) )(let ((?x90 (nat$ ?v0)))
+(let ((?x91 (of_nat$ ?x90)))
+(let (($x92 (= ?x91 ?v0)))
+(let (($x104 (>= ?v0 0)))
+(let (($x106 (not $x104)))
+(or $x106 $x92)))))))
+))
+(let ((?x90 (nat$ ?0)))
+(let ((?x91 (of_nat$ ?x90)))
+(let (($x92 (= ?x91 ?0)))
+(let (($x104 (>= ?0 0)))
+(let (($x106 (not $x104)))
+(let (($x109 (or $x106 $x92)))
+(let (($x94 (forall ((?v0 Int) )(let ((?x90 (nat$ ?v0)))
+(let ((?x91 (of_nat$ ?x90)))
+(let (($x92 (= ?x91 ?v0)))
+(let (($x89 (<= 0 ?v0)))
+(=> $x89 $x92))))))
+))
+(let (($x100 (forall ((?v0 Int) )(let ((?x90 (nat$ ?v0)))
+(let ((?x91 (of_nat$ ?x90)))
+(let (($x92 (= ?x91 ?v0)))
+(or (not (<= 0 ?v0)) $x92)))))
+))
+(let ((@x108 (monotonicity (rewrite (= (<= 0 ?0) $x104)) (= (not (<= 0 ?0)) $x106))))
+(let ((@x114 (quant-intro (monotonicity @x108 (= (or (not (<= 0 ?0)) $x92) $x109)) (= $x100 $x112))))
+(let ((@x99 (rewrite (= (=> (<= 0 ?0) $x92) (or (not (<= 0 ?0)) $x92)))))
+(let ((@x117 (mp (asserted $x94) (trans (quant-intro @x99 (= $x94 $x100)) @x114 (= $x94 $x112)) $x112)))
+(let ((@x593 (mp (mp~ @x117 (nnf-pos (refl (~ $x109 $x109)) (~ $x112 $x112)) $x112) (quant-intro (refl (= $x109 $x109)) (= $x112 $x588)) $x588)))
+(let ((?x67 (nat$ ?x62)))
+(let ((?x70 (of_nat$ ?x67)))
+(let (($x73 (= ?x70 ?x62)))
+(let (($x76 (not $x73)))
+(let (($x28 (< x$ 0)))
+(let ((?x30 (ite $x28 (- x$) x$)))
+(let (($x34 (not (= (of_nat$ (nat$ ?x30)) ?x30))))
+(let (($x77 (= (not (= (of_nat$ (nat$ (ite $x28 ?x37 x$))) (ite $x28 ?x37 x$))) $x76)))
+(let ((?x40 (ite $x28 ?x37 x$)))
+(let ((?x43 (nat$ ?x40)))
+(let ((?x46 (of_nat$ ?x43)))
+(let (($x49 (= ?x46 ?x40)))
+(let ((@x66 (trans (monotonicity (rewrite (= $x28 $x56)) (= ?x40 (ite $x56 ?x37 x$))) (rewrite (= (ite $x56 ?x37 x$) ?x62)) (= ?x40 ?x62))))
+(let ((@x75 (monotonicity (monotonicity (monotonicity @x66 (= ?x43 ?x67)) (= ?x46 ?x70)) @x66 (= $x49 $x73))))
+(let ((@x45 (monotonicity (monotonicity (rewrite (= (- x$) ?x37)) (= ?x30 ?x40)) (= (nat$ ?x30) ?x43))))
+(let ((@x51 (monotonicity (monotonicity @x45 (= (of_nat$ (nat$ ?x30)) ?x46)) (monotonicity (rewrite (= (- x$) ?x37)) (= ?x30 ?x40)) (= (= (of_nat$ (nat$ ?x30)) ?x30) $x49))))
+(let ((@x80 (trans (monotonicity @x51 (= $x34 (not $x49))) (monotonicity @x75 $x77) (= $x34 $x76))))
+(let ((@x81 (mp (asserted $x34) @x80 $x76)))
+(let (($x239 (or (not $x588) $x255 $x73)))
+(let ((@x576 (mp ((_ quant-inst (ite $x55 x$ ?x37)) (or (not $x588) (or $x255 $x73))) (rewrite (= (or (not $x588) (or $x255 $x73)) $x239)) $x239)))
+(let ((@x561 ((_ th-lemma arith farkas -1 1 1) (hypothesis $x55) (unit-resolution @x576 @x81 @x593 $x255) @x559 false)))
+(let ((@x198 (lemma @x561 $x56)))
+(let ((@x566 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x249) $x562)) (unit-resolution (def-axiom (or $x55 $x249)) @x198 $x249) $x562)))
+(let (($x578 (<= ?x62 0)))
+(let ((@x257 (unit-resolution ((_ th-lemma arith farkas 1 1) (or $x578 $x254)) (unit-resolution @x576 @x81 @x593 $x255) $x578)))
+((_ th-lemma arith farkas 1 1 1) @x257 @x198 @x566 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-777f9032b35b7e1c0dce62f13109424c73d5d094 312 0
+859305ec6d928beaf23fc5a8882356fcb3b97d7d 312 0
 unsat
 ((set-logic AUFLIA)
-(declare-fun ?v1!0 (|Nat$|) |Nat$|)
+(declare-fun ?v1!0 (Nat$) Nat$)
 (proof
-(let ((?x23 (|of_nat$| |m$|)))
-(let ((?x24 (* 4 ?x23)))
-(let ((?x110 (+ 1 ?x24)))
-(let ((?x113 (|nat$| ?x110)))
-(let ((?x344 (|of_nat$| ?x113)))
-(let ((?x491 (* (~ 1) ?x344)))
-(let ((?x492 (+ ?x24 ?x491)))
-(let (($x509 (>= ?x492 (~ 1))))
-(let (($x489 (= ?x492 (~ 1))))
-(let (($x481 (>= ?x23 0)))
-(let (($x345 (<= ?x344 1)))
-(let (($x373 (not $x345)))
-(let (($x351 (forall ((?v1 |Nat$|) )(!(let ((?x23 (|of_nat$| |m$|)))
-(let ((?x24 (* 4 ?x23)))
-(let ((?x110 (+ 1 ?x24)))
-(let ((?x113 (|nat$| ?x110)))
-(let (($x348 (= ?v1 ?x113)))
-(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(let (($x346 (|dvd$| ?v1 ?x113)))
-(let (($x347 (not $x346)))
-(or $x347 $x13 $x348)))))))))) :pattern ( (|dvd$| ?v1 (|nat$| (+ 1 (* 4 (|of_nat$| |m$|))))) )))
-))
-(let (($x352 (not $x351)))
-(let (($x353 (or $x345 $x352)))
-(let (($x354 (not $x353)))
-(let (($x116 (|prime_nat$| ?x113)))
-(let (($x122 (not $x116)))
-(let (($x355 (or $x122 $x354)))
-(let ((?x357 (?v1!0 ?x113)))
-(let (($x361 (= ?x357 ?x113)))
-(let ((?x12 (|nat$| 1)))
-(let (($x360 (= ?x357 ?x12)))
-(let (($x358 (|dvd$| ?x357 ?x113)))
-(let (($x359 (not $x358)))
-(let (($x362 (or $x359 $x360 $x361)))
-(let (($x363 (not $x362)))
-(let (($x364 (or $x116 $x345 $x363)))
-(let (($x365 (not $x364)))
-(let (($x356 (not $x355)))
-(let (($x366 (or $x356 $x365)))
-(let (($x367 (not $x366)))
-(let (($x321 (forall ((?v0 |Nat$|) )(!(let (($x217 (or (not (|dvd$| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|nat$| 1)) (= (?v1!0 ?v0) ?v0))))
-(let (($x218 (not $x217)))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x6 (|prime_nat$| ?v0)))
-(let (($x245 (or $x6 $x87 $x218)))
-(let (($x293 (forall ((?v1 |Nat$|) )(!(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?v0)) $x13 (= ?v1 ?v0)))) :pattern ( (|dvd$| ?v1 ?v0) )))
-))
-(let (($x198 (not $x6)))
-(not (or (not (or $x198 (not (or $x87 (not $x293))))) (not $x245))))))))))) :pattern ( (|prime_nat$| ?v0) ) :pattern ( (|of_nat$| ?v0) )))
-))
-(let (($x288 (forall ((?v0 |Nat$|) )(let (($x217 (or (not (|dvd$| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|nat$| 1)) (= (?v1!0 ?v0) ?v0))))
-(let (($x218 (not $x217)))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x6 (|prime_nat$| ?v0)))
-(let (($x245 (or $x6 $x87 $x218)))
-(let (($x94 (forall ((?v1 |Nat$|) )(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
-))
-(let (($x219 (not $x94)))
-(let (($x271 (not (or $x87 $x219))))
-(let (($x198 (not $x6)))
-(let (($x274 (or $x198 $x271)))
-(not (or (not $x274) (not $x245)))))))))))))))
-))
-(let (($x217 (or (not (|dvd$| (?v1!0 ?0) ?0)) (= (?v1!0 ?0) ?x12) (= (?v1!0 ?0) ?0))))
-(let (($x218 (not $x217)))
-(let ((?x8 (|of_nat$| ?0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x6 (|prime_nat$| ?0)))
-(let (($x245 (or $x6 $x87 $x218)))
-(let (($x293 (forall ((?v1 |Nat$|) )(!(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?0)) $x13 (= ?v1 ?0)))) :pattern ( (|dvd$| ?v1 ?0) )))
-))
-(let (($x198 (not $x6)))
-(let (($x94 (forall ((?v1 |Nat$|) )(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?0)) $x13 (= ?v1 ?0)))))
-))
-(let (($x219 (not $x94)))
-(let (($x271 (not (or $x87 $x219))))
-(let (($x274 (or $x198 $x271)))
-(let (($x283 (not (or (not $x274) (not $x245)))))
-(let (($x317 (= $x283 (not (or (not (or $x198 (not (or $x87 (not $x293))))) (not $x245))))))
-(let (($x314 (= (or (not $x274) (not $x245)) (or (not (or $x198 (not (or $x87 (not $x293))))) (not $x245)))))
-(let (($x13 (= ?0 ?x12)))
-(let (($x91 (or (not (|dvd$| ?0 ?1)) $x13 (= ?0 ?1))))
-(let ((@x300 (monotonicity (|quant-intro| (refl (= $x91 $x91)) (= $x94 $x293)) (= $x219 (not $x293)))))
-(let ((@x306 (monotonicity (monotonicity @x300 (= (or $x87 $x219) (or $x87 (not $x293)))) (= $x271 (not (or $x87 (not $x293)))))))
-(let ((@x312 (monotonicity (monotonicity @x306 (= $x274 (or $x198 (not (or $x87 (not $x293)))))) (= (not $x274) (not (or $x198 (not (or $x87 (not $x293)))))))))
-(let ((@x323 (|quant-intro| (monotonicity (monotonicity @x312 $x314) $x317) (= $x288 $x321))))
-(let (($x253 (forall ((?v0 |Nat$|) )(let (($x217 (or (not (|dvd$| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|nat$| 1)) (= (?v1!0 ?v0) ?v0))))
-(let (($x218 (not $x217)))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x6 (|prime_nat$| ?v0)))
-(let (($x245 (or $x6 $x87 $x218)))
-(let (($x94 (forall ((?v1 |Nat$|) )(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
-))
-(let (($x88 (not $x87)))
-(let (($x97 (and $x88 $x94)))
-(let (($x198 (not $x6)))
-(let (($x227 (or $x198 $x97)))
-(and $x227 $x245)))))))))))))
-))
-(let ((@x276 (monotonicity (rewrite (= (and (not $x87) $x94) $x271)) (= (or $x198 (and (not $x87) $x94)) $x274))))
-(let ((@x279 (monotonicity @x276 (= (and (or $x198 (and (not $x87) $x94)) $x245) (and $x274 $x245)))))
-(let ((@x287 (trans @x279 (rewrite (= (and $x274 $x245) $x283)) (= (and (or $x198 (and (not $x87) $x94)) $x245) $x283))))
-(let (($x231 (forall ((?v0 |Nat$|) )(let (($x217 (or (not (|dvd$| (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (|nat$| 1)) (= (?v1!0 ?v0) ?v0))))
-(let (($x218 (not $x217)))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x88 (not $x87)))
-(let (($x209 (not $x88)))
-(let (($x222 (or $x209 $x218)))
-(let (($x6 (|prime_nat$| ?v0)))
-(let (($x226 (or $x6 $x222)))
-(let (($x94 (forall ((?v1 |Nat$|) )(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
-))
-(let (($x97 (and $x88 $x94)))
-(let (($x198 (not $x6)))
-(let (($x227 (or $x198 $x97)))
-(and $x227 $x226)))))))))))))))
-))
-(let (($x88 (not $x87)))
-(let (($x97 (and $x88 $x94)))
-(let (($x227 (or $x198 $x97)))
-(let (($x250 (and $x227 $x245)))
-(let (($x209 (not $x88)))
-(let (($x222 (or $x209 $x218)))
-(let (($x226 (or $x6 $x222)))
-(let (($x228 (and $x227 $x226)))
-(let ((@x244 (monotonicity (monotonicity (rewrite (= $x209 $x87)) (= $x222 (or $x87 $x218))) (= $x226 (or $x6 (or $x87 $x218))))))
-(let ((@x249 (trans @x244 (rewrite (= (or $x6 (or $x87 $x218)) $x245)) (= $x226 $x245))))
-(let (($x103 (forall ((?v0 |Nat$|) )(let (($x94 (forall ((?v1 |Nat$|) )(let ((?x12 (|nat$| 1)))
-(let (($x13 (= ?v1 ?x12)))
-(or (not (|dvd$| ?v1 ?v0)) $x13 (= ?v1 ?v0)))))
-))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x87 (<= ?x8 1)))
-(let (($x88 (not $x87)))
-(let (($x97 (and $x88 $x94)))
-(let (($x6 (|prime_nat$| ?v0)))
-(= $x6 $x97))))))))
-))
-(let ((@x225 (|nnf-neg| (refl (|~| $x209 $x209)) (sk (|~| $x219 $x218)) (|~| (not $x97) $x222))))
-(let ((@x208 (monotonicity (refl (|~| $x88 $x88)) (|nnf-pos| (refl (|~| $x91 $x91)) (|~| $x94 $x94)) (|~| $x97 $x97))))
-(let ((@x230 (|nnf-pos| (refl (|~| $x6 $x6)) (refl (|~| $x198 $x198)) @x208 @x225 (|~| (= $x6 $x97) $x228))))
-(let (($x20 (forall ((?v0 |Nat$|) )(let (($x17 (forall ((?v1 |Nat$|) )(let (($x11 (|dvd$| ?v1 ?v0)))
-(=> $x11 (or (= ?v1 (|nat$| 1)) (= ?v1 ?v0)))))
-))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x9 (< 1 ?x8)))
-(let (($x6 (|prime_nat$| ?v0)))
-(= $x6 (and $x9 $x17)))))))
-))
-(let (($x84 (forall ((?v0 |Nat$|) )(let (($x70 (forall ((?v1 |Nat$|) )(or (not (|dvd$| ?v1 ?v0)) (or (= ?v1 (|nat$| 1)) (= ?v1 ?v0))))
-))
-(let ((?x8 (|of_nat$| ?v0)))
-(let (($x9 (< 1 ?x8)))
-(let (($x73 (and $x9 $x70)))
-(let (($x6 (|prime_nat$| ?v0)))
-(= $x6 $x73)))))))
-))
-(let (($x100 (= $x6 $x97)))
-(let (($x70 (forall ((?v1 |Nat$|) )(or (not (|dvd$| ?v1 ?0)) (or (= ?v1 (|nat$| 1)) (= ?v1 ?0))))
-))
-(let (($x9 (< 1 ?x8)))
-(let (($x73 (and $x9 $x70)))
-(let (($x79 (= $x6 $x73)))
-(let ((@x93 (rewrite (= (or (not (|dvd$| ?0 ?1)) (or $x13 (= ?0 ?1))) $x91))))
-(let ((@x99 (monotonicity (rewrite (= $x9 $x88)) (|quant-intro| @x93 (= $x70 $x94)) (= $x73 $x97))))
-(let (($x17 (forall ((?v1 |Nat$|) )(let (($x11 (|dvd$| ?v1 ?0)))
-(=> $x11 (or (= ?v1 (|nat$| 1)) (= ?v1 ?0)))))
-))
-(let (($x19 (= $x6 (and $x9 $x17))))
-(let (($x67 (or (not (|dvd$| ?0 ?1)) (or $x13 (= ?0 ?1)))))
-(let ((@x72 (|quant-intro| (rewrite (= (=> (|dvd$| ?0 ?1) (or $x13 (= ?0 ?1))) $x67)) (= $x17 $x70))))
-(let ((@x78 (monotonicity (monotonicity @x72 (= (and $x9 $x17) $x73)) (= $x19 (= $x6 $x73)))))
-(let ((@x86 (|quant-intro| (trans @x78 (rewrite (= (= $x6 $x73) $x79)) (= $x19 $x79)) (= $x20 $x84))))
-(let ((@x107 (trans @x86 (|quant-intro| (monotonicity @x99 (= $x79 $x100)) (= $x84 $x103)) (= $x20 $x103))))
-(let ((@x234 (|mp~| (mp (asserted $x20) @x107 $x103) (|nnf-pos| @x230 (|~| $x103 $x231)) $x231)))
-(let ((@x235 (mp @x234 (|quant-intro| (monotonicity @x249 (= $x228 $x250)) (= $x231 $x253)) $x253)))
-(let ((@x324 (mp (mp @x235 (|quant-intro| @x287 (= $x253 $x288)) $x288) @x323 $x321)))
-(let (($x371 (or (not $x321) $x367)))
-(let ((@x372 ((_ |quant-inst| (|nat$| ?x110)) $x371)))
-(let ((@x530 (|unit-resolution| (|def-axiom| (or $x366 $x355)) (|unit-resolution| @x372 @x324 $x367) $x355)))
-(let (($x137 (not (or $x122 (>= ?x23 1)))))
-(let (($x28 (<= 1 ?x23)))
-(let (($x29 (=> (|prime_nat$| (|nat$| (+ ?x24 1))) $x28)))
-(let (($x30 (not $x29)))
-(let ((@x136 (monotonicity (rewrite (= $x28 (>= ?x23 1))) (= (or $x122 $x28) (or $x122 (>= ?x23 1))))))
-(let ((@x115 (monotonicity (rewrite (= (+ ?x24 1) ?x110)) (= (|nat$| (+ ?x24 1)) ?x113))))
-(let ((@x121 (monotonicity (monotonicity @x115 (= (|prime_nat$| (|nat$| (+ ?x24 1))) $x116)) (= $x29 (=> $x116 $x28)))))
-(let ((@x127 (trans @x121 (rewrite (= (=> $x116 $x28) (or $x122 $x28))) (= $x29 (or $x122 $x28)))))
-(let ((@x141 (trans (monotonicity @x127 (= $x30 (not (or $x122 $x28)))) (monotonicity @x136 (= (not (or $x122 $x28)) $x137)) (= $x30 $x137))))
-(let ((@x143 (|not-or-elim| (mp (asserted $x30) @x141 $x137) $x116)))
-(let ((@x533 (|unit-resolution| (|unit-resolution| (|def-axiom| (or $x356 $x122 $x354)) @x143 (or $x356 $x354)) @x530 $x354)))
-(let ((@x538 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not (<= ?x344 0)) $x345)) (|unit-resolution| (|def-axiom| (or $x353 $x373)) @x533 $x373) (not (<= ?x344 0)))))
-(let ((@x542 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not (= ?x344 0)) (<= ?x344 0))) @x538 (not (= ?x344 0)))))
-(let (($x510 (= ?x344 0)))
-(let (($x512 (or $x481 $x510)))
-(let (($x338 (forall ((?v0 Int) )(!(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x43 (= ?x38 0)))
-(let (($x157 (>= ?v0 0)))
-(or $x157 $x43))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x190 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x43 (= ?x38 0)))
-(let (($x157 (>= ?v0 0)))
-(or $x157 $x43))))))
-))
-(let ((?x37 (|nat$| ?0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x43 (= ?x38 0)))
-(let (($x157 (>= ?0 0)))
-(let (($x187 (or $x157 $x43)))
-(let (($x45 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x43 (= ?x38 0)))
-(let (($x42 (< ?v0 0)))
-(=> $x42 $x43))))))
-))
-(let (($x175 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x43 (= ?x38 0)))
-(let (($x42 (< ?v0 0)))
-(let (($x171 (not $x42)))
-(or $x171 $x43)))))))
-))
-(let ((@x182 (monotonicity (rewrite (= (< ?0 0) (not $x157))) (= (not (< ?0 0)) (not (not $x157))))))
-(let ((@x186 (trans @x182 (rewrite (= (not (not $x157)) $x157)) (= (not (< ?0 0)) $x157))))
-(let ((@x192 (|quant-intro| (monotonicity @x186 (= (or (not (< ?0 0)) $x43) $x187)) (= $x175 $x190))))
-(let ((@x174 (rewrite (= (=> (< ?0 0) $x43) (or (not (< ?0 0)) $x43)))))
-(let ((@x195 (mp (asserted $x45) (trans (|quant-intro| @x174 (= $x45 $x175)) @x192 (= $x45 $x190)) $x190)))
-(let ((@x343 (mp (|mp~| @x195 (|nnf-pos| (refl (|~| $x187 $x187)) (|~| $x190 $x190)) $x190) (|quant-intro| (refl (= $x187 $x187)) (= $x190 $x338)) $x338)))
-(let (($x515 (not $x338)))
-(let (($x516 (or $x515 $x481 $x510)))
-(let ((@x483 (rewrite (= (>= ?x110 0) $x481))))
-(let ((@x514 (monotonicity @x483 (= (or (>= ?x110 0) $x510) $x512))))
-(let ((@x521 (monotonicity @x514 (= (or $x515 (or (>= ?x110 0) $x510)) (or $x515 $x512)))))
-(let ((@x525 (trans @x521 (rewrite (= (or $x515 $x512) $x516)) (= (or $x515 (or (>= ?x110 0) $x510)) $x516))))
-(let ((@x526 (mp ((_ |quant-inst| (+ 1 ?x24)) (or $x515 (or (>= ?x110 0) $x510))) @x525 $x516)))
-(let (($x484 (not $x481)))
-(let (($x493 (or $x484 $x489)))
-(let (($x332 (forall ((?v0 Int) )(!(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x39 (= ?x38 ?v0)))
-(let (($x157 (>= ?v0 0)))
-(let (($x158 (not $x157)))
-(or $x158 $x39)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x164 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x39 (= ?x38 ?v0)))
-(let (($x157 (>= ?v0 0)))
-(let (($x158 (not $x157)))
-(or $x158 $x39)))))))
-))
-(let ((@x334 (refl (= (or (not $x157) (= ?x38 ?0)) (or (not $x157) (= ?x38 ?0))))))
-(let ((@x261 (refl (|~| (or (not $x157) (= ?x38 ?0)) (or (not $x157) (= ?x38 ?0))))))
-(let (($x41 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x39 (= ?x38 ?v0)))
-(let (($x36 (<= 0 ?v0)))
-(=> $x36 $x39))))))
-))
-(let (($x152 (forall ((?v0 Int) )(let ((?x37 (|nat$| ?v0)))
-(let ((?x38 (|of_nat$| ?x37)))
-(let (($x39 (= ?x38 ?v0)))
-(or (not (<= 0 ?v0)) $x39)))))
-))
-(let (($x39 (= ?x38 ?0)))
-(let (($x158 (not $x157)))
-(let (($x161 (or $x158 $x39)))
-(let (($x149 (or (not (<= 0 ?0)) $x39)))
-(let ((@x160 (monotonicity (rewrite (= (<= 0 ?0) $x157)) (= (not (<= 0 ?0)) $x158))))
-(let ((@x154 (|quant-intro| (rewrite (= (=> (<= 0 ?0) $x39) $x149)) (= $x41 $x152))))
-(let ((@x168 (trans @x154 (|quant-intro| (monotonicity @x160 (= $x149 $x161)) (= $x152 $x164)) (= $x41 $x164))))
-(let ((@x264 (|mp~| (mp (asserted $x41) @x168 $x164) (|nnf-pos| @x261 (|~| $x164 $x164)) $x164)))
-(let ((@x337 (mp @x264 (|quant-intro| @x334 (= $x164 $x332)) $x332)))
-(let (($x496 (not $x332)))
-(let (($x497 (or $x496 $x484 $x489)))
-(let (($x479 (= ?x344 ?x110)))
-(let (($x474 (>= ?x110 0)))
-(let (($x475 (not $x474)))
-(let (($x480 (or $x475 $x479)))
-(let (($x498 (or $x496 $x480)))
-(let ((@x495 (monotonicity (monotonicity @x483 (= $x475 $x484)) (rewrite (= $x479 $x489)) (= $x480 $x493))))
-(let ((@x506 (trans (monotonicity @x495 (= $x498 (or $x496 $x493))) (rewrite (= (or $x496 $x493) $x497)) (= $x498 $x497))))
-(let ((@x507 (mp ((_ |quant-inst| (+ 1 ?x24)) $x498) @x506 $x497)))
-(let ((@x546 (|unit-resolution| (|unit-resolution| @x507 @x337 $x493) (|unit-resolution| (|unit-resolution| @x526 @x343 $x512) @x542 $x481) $x489)))
-(let ((@x145 (|not-or-elim| (mp (asserted $x30) @x141 $x137) (not (>= ?x23 1)))))
-((_ |th-lemma| arith farkas -4 1 1) @x145 (|unit-resolution| (|def-axiom| (or $x353 $x373)) @x533 $x373) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x489) $x509)) @x546 $x509) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x89 (of_nat$ m$)))
+(let ((?x90 (* 4 ?x89)))
+(let ((?x98 (+ 1 ?x90)))
+(let ((?x101 (nat$ ?x98)))
+(let ((?x295 (of_nat$ ?x101)))
+(let ((?x598 (* (- 1) ?x295)))
+(let ((?x599 (+ ?x90 ?x598)))
+(let (($x574 (>= ?x599 (- 1))))
+(let (($x597 (= ?x599 (- 1))))
+(let (($x610 (>= ?x89 0)))
+(let (($x380 (<= ?x295 1)))
+(let (($x687 (not $x380)))
+(let (($x701 (forall ((?v1 Nat$) )(!(let ((?x89 (of_nat$ m$)))
+(let ((?x90 (* 4 ?x89)))
+(let ((?x98 (+ 1 ?x90)))
+(let ((?x101 (nat$ ?x98)))
+(let (($x382 (= ?v1 ?x101)))
+(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(let (($x381 (dvd$ ?v1 ?x101)))
+(let (($x371 (not $x381)))
+(or $x371 $x35 $x382)))))))))) :pattern ( (dvd$ ?v1 (nat$ (+ 1 (* 4 (of_nat$ m$))))) )))
+))
+(let (($x702 (not $x701)))
+(let (($x357 (or $x380 $x702)))
+(let (($x487 (not $x357)))
+(let (($x104 (prime_nat$ ?x101)))
+(let (($x110 (not $x104)))
+(let (($x697 (or $x110 $x487)))
+(let ((?x703 (?v1!0 ?x101)))
+(let (($x707 (= ?x703 ?x101)))
+(let ((?x34 (nat$ 1)))
+(let (($x706 (= ?x703 ?x34)))
+(let (($x704 (dvd$ ?x703 ?x101)))
+(let (($x705 (not $x704)))
+(let (($x708 (or $x705 $x706 $x707)))
+(let (($x698 (not $x708)))
+(let (($x360 (or $x104 $x380 $x698)))
+(let (($x700 (not $x360)))
+(let (($x369 (not $x697)))
+(let (($x342 (or $x369 $x700)))
+(let (($x684 (not $x342)))
+(let (($x738 (forall ((?v0 Nat$) )(!(let (($x219 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (nat$ 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x221 (not $x219)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x245 (or $x28 $x65 $x221)))
+(let (($x710 (forall ((?v1 Nat$) )(!(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?v0)) $x35 (= ?v1 ?v0)))) :pattern ( (dvd$ ?v1 ?v0) )))
+))
+(let (($x200 (not $x28)))
+(not (or (not (or $x200 (not (or $x65 (not $x710))))) (not $x245))))))))))) :pattern ( (prime_nat$ ?v0) ) :pattern ( (of_nat$ ?v0) )))
+))
+(let (($x290 (forall ((?v0 Nat$) )(let (($x219 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (nat$ 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x221 (not $x219)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x245 (or $x28 $x65 $x221)))
+(let (($x72 (forall ((?v1 Nat$) )(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?v0)) $x35 (= ?v1 ?v0)))))
+))
+(let (($x220 (not $x72)))
+(let (($x273 (not (or $x65 $x220))))
+(let (($x200 (not $x28)))
+(let (($x276 (or $x200 $x273)))
+(not (or (not $x276) (not $x245)))))))))))))))
+))
+(let (($x219 (or (not (dvd$ (?v1!0 ?0) ?0)) (= (?v1!0 ?0) ?x34) (= (?v1!0 ?0) ?0))))
+(let (($x221 (not $x219)))
+(let ((?x30 (of_nat$ ?0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?0)))
+(let (($x245 (or $x28 $x65 $x221)))
+(let (($x710 (forall ((?v1 Nat$) )(!(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?0)) $x35 (= ?v1 ?0)))) :pattern ( (dvd$ ?v1 ?0) )))
+))
+(let (($x200 (not $x28)))
+(let (($x72 (forall ((?v1 Nat$) )(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?0)) $x35 (= ?v1 ?0)))))
+))
+(let (($x220 (not $x72)))
+(let (($x273 (not (or $x65 $x220))))
+(let (($x276 (or $x200 $x273)))
+(let (($x285 (not (or (not $x276) (not $x245)))))
+(let (($x734 (= $x285 (not (or (not (or $x200 (not (or $x65 (not $x710))))) (not $x245))))))
+(let (($x731 (= (or (not $x276) (not $x245)) (or (not (or $x200 (not (or $x65 (not $x710))))) (not $x245)))))
+(let (($x35 (= ?0 ?x34)))
+(let (($x69 (or (not (dvd$ ?0 ?1)) $x35 (= ?0 ?1))))
+(let ((@x717 (monotonicity (quant-intro (refl (= $x69 $x69)) (= $x72 $x710)) (= $x220 (not $x710)))))
+(let ((@x723 (monotonicity (monotonicity @x717 (= (or $x65 $x220) (or $x65 (not $x710)))) (= $x273 (not (or $x65 (not $x710)))))))
+(let ((@x729 (monotonicity (monotonicity @x723 (= $x276 (or $x200 (not (or $x65 (not $x710)))))) (= (not $x276) (not (or $x200 (not (or $x65 (not $x710)))))))))
+(let ((@x740 (quant-intro (monotonicity (monotonicity @x729 $x731) $x734) (= $x290 $x738))))
+(let (($x253 (forall ((?v0 Nat$) )(let (($x219 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (nat$ 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x221 (not $x219)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x245 (or $x28 $x65 $x221)))
+(let (($x72 (forall ((?v1 Nat$) )(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?v0)) $x35 (= ?v1 ?v0)))))
+))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x200 (not $x28)))
+(let (($x228 (or $x200 $x75)))
+(and $x228 $x245)))))))))))))
+))
+(let ((@x278 (monotonicity (rewrite (= (and (not $x65) $x72) $x273)) (= (or $x200 (and (not $x65) $x72)) $x276))))
+(let ((@x281 (monotonicity @x278 (= (and (or $x200 (and (not $x65) $x72)) $x245) (and $x276 $x245)))))
+(let ((@x289 (trans @x281 (rewrite (= (and $x276 $x245) $x285)) (= (and (or $x200 (and (not $x65) $x72)) $x245) $x285))))
+(let (($x233 (forall ((?v0 Nat$) )(let (($x219 (or (not (dvd$ (?v1!0 ?v0) ?v0)) (= (?v1!0 ?v0) (nat$ 1)) (= (?v1!0 ?v0) ?v0))))
+(let (($x221 (not $x219)))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x66 (not $x65)))
+(let (($x211 (not $x66)))
+(let (($x224 (or $x211 $x221)))
+(let (($x28 (prime_nat$ ?v0)))
+(let (($x229 (or $x28 $x224)))
+(let (($x72 (forall ((?v1 Nat$) )(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?v0)) $x35 (= ?v1 ?v0)))))
+))
+(let (($x75 (and $x66 $x72)))
+(let (($x200 (not $x28)))
+(let (($x228 (or $x200 $x75)))
+(and $x228 $x229)))))))))))))))
+))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x228 (or $x200 $x75)))
+(let (($x250 (and $x228 $x245)))
+(let (($x211 (not $x66)))
+(let (($x224 (or $x211 $x221)))
+(let (($x229 (or $x28 $x224)))
+(let (($x230 (and $x228 $x229)))
+(let ((@x244 (monotonicity (monotonicity (rewrite (= $x211 $x65)) (= $x224 (or $x65 $x221))) (= $x229 (or $x28 (or $x65 $x221))))))
+(let ((@x249 (trans @x244 (rewrite (= (or $x28 (or $x65 $x221)) $x245)) (= $x229 $x245))))
+(let (($x81 (forall ((?v0 Nat$) )(let (($x72 (forall ((?v1 Nat$) )(let ((?x34 (nat$ 1)))
+(let (($x35 (= ?v1 ?x34)))
+(or (not (dvd$ ?v1 ?v0)) $x35 (= ?v1 ?v0)))))
+))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x65 (<= ?x30 1)))
+(let (($x66 (not $x65)))
+(let (($x75 (and $x66 $x72)))
+(let (($x28 (prime_nat$ ?v0)))
+(= $x28 $x75))))))))
+))
+(let ((@x227 (nnf-neg (refl (~ $x211 $x211)) (sk (~ $x220 $x221)) (~ (not $x75) $x224))))
+(let ((@x210 (monotonicity (refl (~ $x66 $x66)) (nnf-pos (refl (~ $x69 $x69)) (~ $x72 $x72)) (~ $x75 $x75))))
+(let ((@x232 (nnf-pos (refl (~ $x28 $x28)) (refl (~ $x200 $x200)) @x210 @x227 (~ (= $x28 $x75) $x230))))
+(let (($x42 (forall ((?v0 Nat$) )(let (($x39 (forall ((?v1 Nat$) )(let (($x33 (dvd$ ?v1 ?v0)))
+(=> $x33 (or (= ?v1 (nat$ 1)) (= ?v1 ?v0)))))
+))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x31 (< 1 ?x30)))
+(let (($x28 (prime_nat$ ?v0)))
+(= $x28 (and $x31 $x39)))))))
+))
+(let (($x62 (forall ((?v0 Nat$) )(let (($x48 (forall ((?v1 Nat$) )(or (not (dvd$ ?v1 ?v0)) (or (= ?v1 (nat$ 1)) (= ?v1 ?v0))))
+))
+(let ((?x30 (of_nat$ ?v0)))
+(let (($x31 (< 1 ?x30)))
+(let (($x51 (and $x31 $x48)))
+(let (($x28 (prime_nat$ ?v0)))
+(= $x28 $x51)))))))
+))
+(let (($x78 (= $x28 $x75)))
+(let (($x48 (forall ((?v1 Nat$) )(or (not (dvd$ ?v1 ?0)) (or (= ?v1 (nat$ 1)) (= ?v1 ?0))))
+))
+(let (($x31 (< 1 ?x30)))
+(let (($x51 (and $x31 $x48)))
+(let (($x57 (= $x28 $x51)))
+(let ((@x71 (rewrite (= (or (not (dvd$ ?0 ?1)) (or $x35 (= ?0 ?1))) $x69))))
+(let ((@x77 (monotonicity (rewrite (= $x31 $x66)) (quant-intro @x71 (= $x48 $x72)) (= $x51 $x75))))
+(let (($x39 (forall ((?v1 Nat$) )(let (($x33 (dvd$ ?v1 ?0)))
+(=> $x33 (or (= ?v1 (nat$ 1)) (= ?v1 ?0)))))
+))
+(let (($x41 (= $x28 (and $x31 $x39))))
+(let (($x45 (or (not (dvd$ ?0 ?1)) (or $x35 (= ?0 ?1)))))
+(let ((@x50 (quant-intro (rewrite (= (=> (dvd$ ?0 ?1) (or $x35 (= ?0 ?1))) $x45)) (= $x39 $x48))))
+(let ((@x56 (monotonicity (monotonicity @x50 (= (and $x31 $x39) $x51)) (= $x41 (= $x28 $x51)))))
+(let ((@x64 (quant-intro (trans @x56 (rewrite (= (= $x28 $x51) $x57)) (= $x41 $x57)) (= $x42 $x62))))
+(let ((@x85 (trans @x64 (quant-intro (monotonicity @x77 (= $x57 $x78)) (= $x62 $x81)) (= $x42 $x81))))
+(let ((@x236 (mp~ (mp (asserted $x42) @x85 $x81) (nnf-pos @x232 (~ $x81 $x233)) $x233)))
+(let ((@x256 (mp @x236 (quant-intro (monotonicity @x249 (= $x230 $x250)) (= $x233 $x253)) $x253)))
+(let ((@x741 (mp (mp @x256 (quant-intro @x289 (= $x253 $x290)) $x290) @x740 $x738)))
+(let (($x348 (or (not $x738) $x684)))
+(let ((@x685 ((_ quant-inst (nat$ ?x98)) $x348)))
+(let ((@x569 (unit-resolution (def-axiom (or $x342 $x697)) (unit-resolution @x685 @x741 $x684) $x697)))
+(let (($x125 (not (or $x110 (>= ?x89 1)))))
+(let (($x94 (<= 1 ?x89)))
+(let (($x95 (=> (prime_nat$ (nat$ (+ ?x90 1))) $x94)))
+(let (($x96 (not $x95)))
+(let ((@x124 (monotonicity (rewrite (= $x94 (>= ?x89 1))) (= (or $x110 $x94) (or $x110 (>= ?x89 1))))))
+(let ((@x103 (monotonicity (rewrite (= (+ ?x90 1) ?x98)) (= (nat$ (+ ?x90 1)) ?x101))))
+(let ((@x109 (monotonicity (monotonicity @x103 (= (prime_nat$ (nat$ (+ ?x90 1))) $x104)) (= $x95 (=> $x104 $x94)))))
+(let ((@x115 (trans @x109 (rewrite (= (=> $x104 $x94) (or $x110 $x94))) (= $x95 (or $x110 $x94)))))
+(let ((@x129 (trans (monotonicity @x115 (= $x96 (not (or $x110 $x94)))) (monotonicity @x124 (= (not (or $x110 $x94)) $x125)) (= $x96 $x125))))
+(let ((@x131 (not-or-elim (mp (asserted $x96) @x129 $x125) $x104)))
+(let ((@x572 (unit-resolution (unit-resolution (def-axiom (or $x369 $x110 $x487)) @x131 (or $x369 $x487)) @x569 $x487)))
+(let ((@x530 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not (<= ?x295 0)) $x380)) (unit-resolution (def-axiom (or $x357 $x687)) @x572 $x687) (not (<= ?x295 0)))))
+(let ((@x561 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not (= ?x295 0)) (<= ?x295 0))) @x530 (not (= ?x295 0)))))
+(let (($x575 (= ?x295 0)))
+(let (($x577 (or $x610 $x575)))
+(let (($x756 (forall ((?v0 Int) )(!(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x169 (= ?x141 0)))
+(let (($x155 (>= ?v0 0)))
+(or $x155 $x169))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x192 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x169 (= ?x141 0)))
+(let (($x155 (>= ?v0 0)))
+(or $x155 $x169))))))
+))
+(let ((?x140 (nat$ ?0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x169 (= ?x141 0)))
+(let (($x155 (>= ?0 0)))
+(let (($x189 (or $x155 $x169)))
+(let (($x171 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x169 (= ?x141 0)))
+(let (($x168 (< ?v0 0)))
+(=> $x168 $x169))))))
+))
+(let (($x177 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x169 (= ?x141 0)))
+(let (($x168 (< ?v0 0)))
+(let (($x173 (not $x168)))
+(or $x173 $x169)))))))
+))
+(let ((@x184 (monotonicity (rewrite (= (< ?0 0) (not $x155))) (= (not (< ?0 0)) (not (not $x155))))))
+(let ((@x188 (trans @x184 (rewrite (= (not (not $x155)) $x155)) (= (not (< ?0 0)) $x155))))
+(let ((@x194 (quant-intro (monotonicity @x188 (= (or (not (< ?0 0)) $x169) $x189)) (= $x177 $x192))))
+(let ((@x176 (rewrite (= (=> (< ?0 0) $x169) (or (not (< ?0 0)) $x169)))))
+(let ((@x197 (mp (asserted $x171) (trans (quant-intro @x176 (= $x171 $x177)) @x194 (= $x171 $x192)) $x192)))
+(let ((@x761 (mp (mp~ @x197 (nnf-pos (refl (~ $x189 $x189)) (~ $x192 $x192)) $x192) (quant-intro (refl (= $x189 $x189)) (= $x192 $x756)) $x756)))
+(let (($x580 (not $x756)))
+(let (($x581 (or $x580 $x610 $x575)))
+(let ((@x612 (rewrite (= (>= ?x98 0) $x610))))
+(let ((@x579 (monotonicity @x612 (= (or (>= ?x98 0) $x575) $x577))))
+(let ((@x555 (monotonicity @x579 (= (or $x580 (or (>= ?x98 0) $x575)) (or $x580 $x577)))))
+(let ((@x564 (trans @x555 (rewrite (= (or $x580 $x577) $x581)) (= (or $x580 (or (>= ?x98 0) $x575)) $x581))))
+(let ((@x565 (mp ((_ quant-inst (+ 1 ?x90)) (or $x580 (or (>= ?x98 0) $x575))) @x564 $x581)))
+(let (($x613 (not $x610)))
+(let (($x600 (or $x613 $x597)))
+(let (($x750 (forall ((?v0 Int) )(!(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x142 (= ?x141 ?v0)))
+(let (($x155 (>= ?v0 0)))
+(let (($x156 (not $x155)))
+(or $x156 $x142)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x162 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x142 (= ?x141 ?v0)))
+(let (($x155 (>= ?v0 0)))
+(let (($x156 (not $x155)))
+(or $x156 $x142)))))))
+))
+(let ((@x752 (refl (= (or (not $x155) (= ?x141 ?0)) (or (not $x155) (= ?x141 ?0))))))
+(let ((@x263 (refl (~ (or (not $x155) (= ?x141 ?0)) (or (not $x155) (= ?x141 ?0))))))
+(let (($x144 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x142 (= ?x141 ?v0)))
+(let (($x139 (<= 0 ?v0)))
+(=> $x139 $x142))))))
+))
+(let (($x150 (forall ((?v0 Int) )(let ((?x140 (nat$ ?v0)))
+(let ((?x141 (of_nat$ ?x140)))
+(let (($x142 (= ?x141 ?v0)))
+(or (not (<= 0 ?v0)) $x142)))))
+))
+(let (($x142 (= ?x141 ?0)))
+(let (($x156 (not $x155)))
+(let (($x159 (or $x156 $x142)))
+(let (($x147 (or (not (<= 0 ?0)) $x142)))
+(let ((@x158 (monotonicity (rewrite (= (<= 0 ?0) $x155)) (= (not (<= 0 ?0)) $x156))))
+(let ((@x152 (quant-intro (rewrite (= (=> (<= 0 ?0) $x142) $x147)) (= $x144 $x150))))
+(let ((@x166 (trans @x152 (quant-intro (monotonicity @x158 (= $x147 $x159)) (= $x150 $x162)) (= $x144 $x162))))
+(let ((@x266 (mp~ (mp (asserted $x144) @x166 $x162) (nnf-pos @x263 (~ $x162 $x162)) $x162)))
+(let ((@x755 (mp @x266 (quant-intro @x752 (= $x162 $x750)) $x750)))
+(let (($x603 (not $x750)))
+(let (($x604 (or $x603 $x613 $x597)))
+(let (($x608 (= ?x295 ?x98)))
+(let (($x618 (>= ?x98 0)))
+(let (($x619 (not $x618)))
+(let (($x609 (or $x619 $x608)))
+(let (($x605 (or $x603 $x609)))
+(let ((@x602 (monotonicity (monotonicity @x612 (= $x619 $x613)) (rewrite (= $x608 $x597)) (= $x609 $x600))))
+(let ((@x590 (trans (monotonicity @x602 (= $x605 (or $x603 $x600))) (rewrite (= (or $x603 $x600) $x604)) (= $x605 $x604))))
+(let ((@x591 (mp ((_ quant-inst (+ 1 ?x90)) $x605) @x590 $x604)))
+(let ((@x532 (unit-resolution (unit-resolution @x591 @x755 $x600) (unit-resolution (unit-resolution @x565 @x761 $x577) @x561 $x610) $x597)))
+(let ((@x133 (not-or-elim (mp (asserted $x96) @x129 $x125) (not (>= ?x89 1)))))
+((_ th-lemma arith farkas -4 1 1) @x133 (unit-resolution (def-axiom (or $x357 $x687)) @x572 $x687) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x597) $x574)) @x532 $x574) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-c7efedca31e5e8360d3c81014f43c447bc784df3 23 0
+632a5cc60479c47e39f08b133241258ad5a60c0d 23 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x40 (= x$ a$)))
+(let ((?x36 (pair$ x$ y$)))
+(let ((?x37 (fst$ ?x36)))
+(let (($x39 (= ?x37 a$)))
+(let ((@x50 (monotonicity (rewrite (= (=> $x39 $x40) (or (not $x39) $x40))) (= (not (=> $x39 $x40)) (not (or (not $x39) $x40))))))
+(let ((@x51 (not-or-elim (mp (asserted (not (=> $x39 $x40))) @x50 (not (or (not $x39) $x40))) $x39)))
+(let (($x56 (= ?x37 x$)))
+(let (($x478 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$ (pair$ ?v0 ?v1)) ?v0) :pattern ( (pair$ ?v0 ?v1) )))
+))
+(let (($x32 (forall ((?v0 A$) (?v1 B$) )(= (fst$ (pair$ ?v0 ?v1)) ?v0))
+))
+(let (($x31 (= (fst$ (pair$ ?1 ?0)) ?1)))
+(let ((@x55 (mp~ (asserted $x32) (nnf-pos (refl (~ $x31 $x31)) (~ $x32 $x32)) $x32)))
+(let ((@x483 (mp @x55 (quant-intro (refl (= $x31 $x31)) (= $x32 $x478)) $x478)))
+(let (($x62 (or (not $x478) $x56)))
+(let ((@x149 ((_ quant-inst x$ y$) $x62)))
+(let ((@x150 (trans (symm (unit-resolution @x149 @x483 $x56) (= x$ ?x37)) @x51 $x40)))
+(let ((@x54 (not-or-elim (mp (asserted (not (=> $x39 $x40))) @x50 (not (or (not $x39) $x40))) (not $x40))))
+(unit-resolution @x54 @x150 false)))))))))))))))))))
+
+ef7d2926debcf081d5863191925f0342f600bafa 42 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x59 (snd$a p2$)))
+(let ((?x58 (fst$a p1$)))
+(let (($x60 (= ?x58 ?x59)))
+(let ((?x55 (pair$ y$ x$)))
+(let (($x56 (= p2$ ?x55)))
+(let ((?x52 (pair$a x$ y$)))
+(let (($x53 (= p1$ ?x52)))
+(let (($x57 (and $x53 $x56)))
+(let ((@x70 (monotonicity (rewrite (= (=> $x57 $x60) (or (not $x57) $x60))) (= (not (=> $x57 $x60)) (not (or (not $x57) $x60))))))
+(let ((@x71 (not-or-elim (mp (asserted (not (=> $x57 $x60))) @x70 (not (or (not $x57) $x60))) $x57)))
+(let ((@x74 (and-elim @x71 $x56)))
+(let ((@x504 (symm (monotonicity @x74 (= ?x59 (snd$a ?x55))) (= (snd$a ?x55) ?x59))))
+(let ((?x100 (snd$a ?x55)))
+(let (($x185 (= ?x100 x$)))
+(let (($x534 (forall ((?v0 B$) (?v1 A$) )(!(= (snd$a (pair$ ?v0 ?v1)) ?v1) :pattern ( (pair$ ?v0 ?v1) )))
+))
+(let (($x47 (forall ((?v0 B$) (?v1 A$) )(= (snd$a (pair$ ?v0 ?v1)) ?v1))
+))
+(let (($x46 (= (snd$a (pair$ ?1 ?0)) ?0)))
+(let ((@x96 (mp~ (asserted $x47) (nnf-pos (refl (~ $x46 $x46)) (~ $x47 $x47)) $x47)))
+(let ((@x539 (mp @x96 (quant-intro (refl (= $x46 $x46)) (= $x47 $x534)) $x534)))
+(let (($x190 (or (not $x534) $x185)))
+(let ((@x191 ((_ quant-inst y$ x$) $x190)))
+(let ((?x187 (fst$a ?x52)))
+(let (($x188 (= ?x187 x$)))
+(let (($x522 (forall ((?v0 A$) (?v1 B$) )(!(= (fst$a (pair$a ?v0 ?v1)) ?v0) :pattern ( (pair$a ?v0 ?v1) )))
+))
+(let (($x39 (forall ((?v0 A$) (?v1 B$) )(= (fst$a (pair$a ?v0 ?v1)) ?v0))
+))
+(let (($x38 (= (fst$a (pair$a ?1 ?0)) ?1)))
+(let ((@x90 (mp~ (asserted $x39) (nnf-pos (refl (~ $x38 $x38)) (~ $x39 $x39)) $x39)))
+(let ((@x527 (mp @x90 (quant-intro (refl (= $x38 $x38)) (= $x39 $x522)) $x522)))
+(let (($x162 (or (not $x522) $x188)))
+(let ((@x292 ((_ quant-inst x$ y$) $x162)))
+(let ((@x505 (trans (monotonicity (and-elim @x71 $x53) (= ?x58 ?x187)) (unit-resolution @x292 @x527 $x188) (= ?x58 x$))))
+(let ((@x489 (trans @x505 (symm (unit-resolution @x191 @x539 $x185) (= x$ ?x100)) (= ?x58 ?x100))))
+(let ((@x76 (not-or-elim (mp (asserted (not (=> $x57 $x60))) @x70 (not (or (not $x57) $x60))) (not $x60))))
+(unit-resolution @x76 (trans @x489 @x504 $x60) false))))))))))))))))))))))))))))))))))))
+
+a7b6c0ca99c35f7f160cb791dff0471341a655d2 60 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let ((?x69 (fun_app$ f$ i$)))
+(let ((?x60 (fun_upd$ f$)))
+(let ((?x61 (fun_app$b ?x60 i1$)))
+(let ((?x63 (fun_app$a ?x61 v1$)))
+(let ((?x64 (fun_upd$ ?x63)))
+(let ((?x65 (fun_app$b ?x64 i2$)))
+(let ((?x67 (fun_app$a ?x65 v2$)))
+(let ((?x68 (fun_app$ ?x67 i$)))
+(let (($x70 (= ?x68 ?x69)))
+(let ((?x197 (fun_app$ ?x63 i$)))
+(let (($x205 (= ?x197 ?x69)))
+(let (($x204 (= ?x197 v1$)))
+(let (($x53 (= i$ i1$)))
+(let (($x484 (ite $x53 $x204 $x205)))
+(let (($x531 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(!(let ((?x46 (fun_app$ ?v0 ?v3)))
+(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(let (($x45 (= ?v3 ?v1)))
+(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))) :pattern ( (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3) )))
+))
+(let (($x102 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x46 (fun_app$ ?v0 ?v3)))
+(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(let (($x45 (= ?v3 ?v1)))
+(ite $x45 (= ?x44 ?v2) (= ?x44 ?x46))))))
+))
+(let ((?x46 (fun_app$ ?3 ?0)))
+(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?3) ?2) ?1) ?0)))
+(let (($x45 (= ?0 ?2)))
+(let (($x97 (ite $x45 (= ?x44 ?1) (= ?x44 ?x46))))
+(let (($x49 (forall ((?v0 A_b_fun$) (?v1 A$) (?v2 B$) (?v3 A$) )(let ((?x44 (fun_app$ (fun_app$a (fun_app$b (fun_upd$ ?v0) ?v1) ?v2) ?v3)))
+(= ?x44 (ite (= ?v3 ?v1) ?v2 (fun_app$ ?v0 ?v3)))))
+))
+(let ((@x104 (quant-intro (rewrite (= (= ?x44 (ite $x45 ?1 ?x46)) $x97)) (= $x49 $x102))))
+(let ((@x91 (refl (~ (= ?x44 (ite $x45 ?1 ?x46)) (= ?x44 (ite $x45 ?1 ?x46))))))
+(let ((@x105 (mp (mp~ (asserted $x49) (nnf-pos @x91 (~ $x49 $x49)) $x49) @x104 $x102)))
+(let ((@x536 (mp @x105 (quant-intro (refl (= $x97 $x97)) (= $x102 $x531)) $x531)))
+(let (($x171 (not $x531)))
+(let (($x486 (or $x171 $x484)))
+(let ((@x487 ((_ quant-inst f$ i1$ v1$ i$) $x486)))
+(let (($x54 (not $x53)))
+(let (($x56 (= i$ i2$)))
+(let (($x57 (not $x56)))
+(let (($x58 (and $x54 $x57)))
+(let ((@x80 (monotonicity (rewrite (= (=> $x58 $x70) (or (not $x58) $x70))) (= (not (=> $x58 $x70)) (not (or (not $x58) $x70))))))
+(let ((@x81 (not-or-elim (mp (asserted (not (=> $x58 $x70))) @x80 (not (or (not $x58) $x70))) $x58)))
+(let ((@x82 (and-elim @x81 $x54)))
+(let ((@x321 (unit-resolution (def-axiom (or (not $x484) $x53 $x205)) @x82 (or (not $x484) $x205))))
+(let (($x200 (= ?x68 ?x197)))
+(let (($x196 (= ?x68 v2$)))
+(let (($x179 (ite $x56 $x196 $x200)))
+(let (($x301 (or $x171 $x179)))
+(let ((@x511 ((_ quant-inst (fun_app$a ?x61 v1$) i2$ v2$ i$) $x301)))
+(let ((@x84 (and-elim @x81 $x57)))
+(let ((@x466 (unit-resolution (def-axiom (or (not $x179) $x56 $x200)) @x84 (or (not $x179) $x200))))
+(let ((@x470 (trans (unit-resolution @x466 (unit-resolution @x511 @x536 $x179) $x200) (unit-resolution @x321 (unit-resolution @x487 @x536 $x484) $x205) $x70)))
+(let ((@x86 (not-or-elim (mp (asserted (not (=> $x58 $x70))) @x80 (not (or (not $x58) $x70))) (not $x70))))
+(unit-resolution @x86 @x470 false))))))))))))))))))))))))))))))))))))))))))))))))
+
+398e19463db97884db9b1a6cf323ad9e8d7ed595 24 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x17 (= |x$| |a$|)))
-(let ((?x13 (|pair$| |x$| |y$|)))
-(let ((?x14 (|fst$| ?x13)))
-(let (($x16 (= ?x14 |a$|)))
-(let ((@x48 (monotonicity (rewrite (= (=> $x16 $x17) (or (not $x16) $x17))) (= (not (=> $x16 $x17)) (not (or (not $x16) $x17))))))
-(let ((@x49 (|not-or-elim| (mp (asserted (not (=> $x16 $x17))) @x48 (not (or (not $x16) $x17))) $x16)))
-(let (($x65 (= ?x14 |x$|)))
-(let (($x59 (forall ((?v0 |A$|) (?v1 |B$|) )(!(= (|fst$| (|pair$| ?v0 ?v1)) ?v0) :pattern ( (|pair$| ?v0 ?v1) )))
-))
-(let (($x10 (forall ((?v0 |A$|) (?v1 |B$|) )(= (|fst$| (|pair$| ?v0 ?v1)) ?v0))
-))
-(let (($x9 (= (|fst$| (|pair$| ?1 ?0)) ?1)))
-(let ((@x57 (|mp~| (asserted $x10) (|nnf-pos| (refl (|~| $x9 $x9)) (|~| $x10 $x10)) $x10)))
-(let ((@x64 (mp @x57 (|quant-intro| (refl (= $x9 $x9)) (= $x10 $x59)) $x59)))
-(let (($x69 (or (not $x59) $x65)))
-(let ((@x70 ((_ |quant-inst| |x$| |y$|) $x69)))
-(let ((@x72 (trans (symm (|unit-resolution| @x70 @x64 $x65) (= |x$| ?x14)) @x49 $x17)))
-(let ((@x52 (|not-or-elim| (mp (asserted (not (=> $x16 $x17))) @x48 (not (or (not $x16) $x17))) (not $x17))))
-(|unit-resolution| @x52 @x72 false)))))))))))))))))))
+(let (($x29 (f$ g$ x$)))
+(let (($x73 (not $x29)))
+(let (($x65 (not (or (= $x29 (fun_app$ g$ x$)) $x29 (fun_app$ g$ x$)))))
+(let (($x32 (= $x29 (and (fun_app$ g$ x$) true))))
+(let (($x37 (not (or $x32 (or (= $x29 true) (= (fun_app$ g$ x$) true))))))
+(let (($x30 (fun_app$ g$ x$)))
+(let (($x44 (= $x29 $x30)))
+(let (($x56 (or $x44 (or $x29 $x30))))
+(let ((@x67 (monotonicity (rewrite (= $x56 (or $x44 $x29 $x30))) (= (not $x56) $x65))))
+(let ((@x55 (monotonicity (rewrite (= (= $x29 true) $x29)) (rewrite (= (= $x30 true) $x30)) (= (or (= $x29 true) (= $x30 true)) (or $x29 $x30)))))
+(let ((@x43 (monotonicity (rewrite (= (and $x30 true) $x30)) (= $x32 (= $x29 $x30)))))
+(let ((@x58 (monotonicity (trans @x43 (rewrite (= (= $x29 $x30) $x44)) (= $x32 $x44)) @x55 (= (or $x32 (or (= $x29 true) (= $x30 true))) $x56))))
+(let ((@x69 (trans (monotonicity @x58 (= $x37 (not $x56))) @x67 (= $x37 $x65))))
+(let ((@x70 (mp (asserted $x37) @x69 $x65)))
+(let ((@x87 (monotonicity (iff-false (not-or-elim @x70 (not $x30)) (= $x30 false)) (= (= $x73 $x30) (= $x73 false)))))
+(let ((@x91 (trans @x87 (rewrite (= (= $x73 false) $x29)) (= (= $x73 $x30) $x29))))
+(let ((@x93 (trans @x91 (iff-false (not-or-elim @x70 $x73) (= $x29 false)) (= (= $x73 $x30) false))))
+(let (($x77 (= $x73 $x30)))
+(let ((@x80 (mp (not-or-elim @x70 (not $x44)) (rewrite (= (not $x44) $x77)) $x77)))
+(mp @x80 @x93 false))))))))))))))))))))))
 
-aea156a69bb23683148bfccfaa255f874937bce0 42 0
+c7546359abeadcc57d79b687aff33f5d29209729 45 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x33 (|snd$a| |p2$|)))
-(let ((?x32 (|fst$a| |p1$|)))
-(let (($x34 (= ?x32 ?x33)))
-(let ((?x29 (|pair$| |y$| |x$|)))
-(let (($x30 (= |p2$| ?x29)))
-(let ((?x26 (|pair$a| |x$| |y$|)))
-(let (($x27 (= |p1$| ?x26)))
-(let (($x31 (and $x27 $x30)))
-(let ((@x68 (monotonicity (rewrite (= (=> $x31 $x34) (or (not $x31) $x34))) (= (not (=> $x31 $x34)) (not (or (not $x31) $x34))))))
-(let ((@x69 (|not-or-elim| (mp (asserted (not (=> $x31 $x34))) @x68 (not (or (not $x31) $x34))) $x31)))
-(let ((@x72 (|and-elim| @x69 $x30)))
-(let ((@x150 (symm (monotonicity @x72 (= ?x33 (|snd$a| ?x29))) (= (|snd$a| ?x29) ?x33))))
-(let ((?x123 (|snd$a| ?x29)))
-(let (($x124 (= ?x123 |x$|)))
-(let (($x115 (forall ((?v0 |B$|) (?v1 |A$|) )(!(= (|snd$a| (|pair$| ?v0 ?v1)) ?v1) :pattern ( (|pair$| ?v0 ?v1) )))
-))
-(let (($x22 (forall ((?v0 |B$|) (?v1 |A$|) )(= (|snd$a| (|pair$| ?v0 ?v1)) ?v1))
-))
-(let (($x21 (= (|snd$a| (|pair$| ?1 ?0)) ?0)))
-(let ((@x94 (|mp~| (asserted $x22) (|nnf-pos| (refl (|~| $x21 $x21)) (|~| $x22 $x22)) $x22)))
-(let ((@x120 (mp @x94 (|quant-intro| (refl (= $x21 $x21)) (= $x22 $x115)) $x115)))
-(let (($x131 (or (not $x115) $x124)))
-(let ((@x132 ((_ |quant-inst| |y$| |x$|) $x131)))
-(let ((?x128 (|fst$a| ?x26)))
-(let (($x129 (= ?x128 |x$|)))
-(let (($x103 (forall ((?v0 |A$|) (?v1 |B$|) )(!(= (|fst$a| (|pair$a| ?v0 ?v1)) ?v0) :pattern ( (|pair$a| ?v0 ?v1) )))
-))
-(let (($x16 (forall ((?v0 |A$|) (?v1 |B$|) )(= (|fst$a| (|pair$a| ?v0 ?v1)) ?v0))
-))
-(let (($x15 (= (|fst$a| (|pair$a| ?1 ?0)) ?1)))
-(let ((@x84 (|mp~| (asserted $x16) (|nnf-pos| (refl (|~| $x15 $x15)) (|~| $x16 $x16)) $x16)))
-(let ((@x108 (mp @x84 (|quant-intro| (refl (= $x15 $x15)) (= $x16 $x103)) $x103)))
-(let (($x136 (or (not $x103) $x129)))
-(let ((@x137 ((_ |quant-inst| |x$| |y$|) $x136)))
-(let ((@x152 (trans (monotonicity (|and-elim| @x69 $x27) (= ?x32 ?x128)) (|unit-resolution| @x137 @x108 $x129) (= ?x32 |x$|))))
-(let ((@x154 (trans @x152 (symm (|unit-resolution| @x132 @x120 $x124) (= |x$| ?x123)) (= ?x32 ?x123))))
-(let ((@x74 (|not-or-elim| (mp (asserted (not (=> $x31 $x34))) @x68 (not (or (not $x31) $x34))) (not $x34))))
-(|unit-resolution| @x74 (trans @x154 @x150 $x34) false))))))))))))))))))))))))))))))))))))
+(let ((?x44 (id$ x$)))
+(let (($x46 (= ?x44 x$)))
+(let (($x73 (not $x46)))
+(let (($x47 (id$a true)))
+(let (($x510 (forall ((?v0 Bool) )(!(let (($x33 (id$a ?v0)))
+(= $x33 ?v0)) :pattern ( (id$a ?v0) )))
+))
+(let (($x40 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0)))
+(= $x33 ?v0)))
+))
+(let ((@x514 (quant-intro (refl (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x40 $x510))))
+(let ((@x69 (nnf-pos (refl (~ (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (~ $x40 $x40))))
+(let (($x35 (forall ((?v0 Bool) )(let (($x33 (id$a ?v0)))
+(= $x33 ?v0)))
+))
+(let ((@x42 (quant-intro (rewrite (= (= (id$a ?0) ?0) (= (id$a ?0) ?0))) (= $x35 $x40))))
+(let ((@x515 (mp (mp~ (mp (asserted $x35) @x42 $x40) @x69 $x40) @x514 $x510)))
+(let (($x87 (or (not $x510) $x47)))
+(let ((@x176 (monotonicity (rewrite (= (= $x47 true) $x47)) (= (or (not $x510) (= $x47 true)) $x87))))
+(let ((@x179 (trans @x176 (rewrite (= $x87 $x87)) (= (or (not $x510) (= $x47 true)) $x87))))
+(let ((@x495 (unit-resolution (mp ((_ quant-inst true) (or (not $x510) (= $x47 true))) @x179 $x87) @x515 (hypothesis (not $x47)) false)))
+(let (($x71 (or $x73 (not $x47))))
+(let ((@x79 (monotonicity (rewrite (= (and $x46 $x47) (not $x71))) (= (not (and $x46 $x47)) (not (not $x71))))))
+(let ((@x83 (trans @x79 (rewrite (= (not (not $x71)) $x71)) (= (not (and $x46 $x47)) $x71))))
+(let (($x54 (and $x46 $x47)))
+(let (($x57 (not $x54)))
+(let ((@x56 (monotonicity (rewrite (= (= $x47 true) $x47)) (= (and $x46 (= $x47 true)) $x54))))
+(let ((@x62 (mp (asserted (not (and $x46 (= $x47 true)))) (monotonicity @x56 (= (not (and $x46 (= $x47 true))) $x57)) $x57)))
+(let ((@x84 (mp @x62 @x83 $x71)))
+(let (($x503 (forall ((?v0 A$) )(!(let ((?x28 (id$ ?v0)))
+(= ?x28 ?v0)) :pattern ( (id$ ?v0) )))
+))
+(let (($x30 (forall ((?v0 A$) )(let ((?x28 (id$ ?v0)))
+(= ?x28 ?v0)))
+))
+(let ((@x507 (quant-intro (refl (= (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (= $x30 $x503))))
+(let ((@x64 (nnf-pos (refl (~ (= (id$ ?0) ?0) (= (id$ ?0) ?0))) (~ $x30 $x30))))
+(let ((@x508 (mp (mp~ (asserted $x30) @x64 $x30) @x507 $x503)))
+(let (($x163 (or (not $x503) $x46)))
+(let ((@x496 ((_ quant-inst x$) $x163)))
+(unit-resolution @x496 @x508 (unit-resolution @x84 (lemma @x495 $x47) $x73) false)))))))))))))))))))))))))))))))))
 
-9e587b4eedc0dc25b019cb54b54b4a4e643bf93e 49 0
+0c570d8faa2ef80523f83dbdeb271e428451f2b8 14 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x45 (|fun_app$| |f$| |i$|)))
-(let ((?x36 (|fun_upd$| |f$|)))
-(let ((?x37 (|fun_app$b| ?x36 |i1$|)))
-(let ((?x39 (|fun_app$a| ?x37 |v1$|)))
-(let ((?x40 (|fun_upd$| ?x39)))
-(let ((?x41 (|fun_app$b| ?x40 |i2$|)))
-(let ((?x43 (|fun_app$a| ?x41 |v2$|)))
-(let ((?x44 (|fun_app$| ?x43 |i$|)))
-(let (($x46 (= ?x44 ?x45)))
-(let (($x29 (= |i$| |i1$|)))
-(let ((?x178 (ite $x29 |v1$| ?x45)))
-(let (($x185 (= ?x45 ?x178)))
-(let (($x30 (not $x29)))
-(let (($x32 (= |i$| |i2$|)))
+(let (($x29 (exists ((?v0 A$) )(g$ ?v0))
+))
+(let (($x30 (ite $x29 true false)))
+(let (($x31 (f$ $x30)))
+(let (($x32 (=> $x31 true)))
 (let (($x33 (not $x32)))
-(let (($x34 (and $x30 $x33)))
-(let ((@x78 (monotonicity (rewrite (= (=> $x34 $x46) (or (not $x34) $x46))) (= (not (=> $x34 $x46)) (not (or (not $x34) $x46))))))
-(let ((@x79 (|not-or-elim| (mp (asserted (not (=> $x34 $x46))) @x78 (not (or (not $x34) $x46))) $x34)))
-(let ((@x80 (|and-elim| @x79 $x30)))
-(let ((@x197 (symm (|unit-resolution| (|def-axiom| (or $x29 $x185)) @x80 $x185) (= ?x178 ?x45))))
-(let ((?x116 (|fun_app$| ?x39 |i$|)))
-(let (($x179 (= ?x116 ?x178)))
-(let (($x103 (forall ((?v0 |A_b_fun$|) (?v1 |A$|) (?v2 |B$|) (?v3 |A$|) )(!(let ((?x21 (|fun_app$| (|fun_app$a| (|fun_app$b| (|fun_upd$| ?v0) ?v1) ?v2) ?v3)))
-(= ?x21 (ite (= ?v3 ?v1) ?v2 (|fun_app$| ?v0 ?v3)))) :pattern ( (|fun_app$| (|fun_app$a| (|fun_app$b| (|fun_upd$| ?v0) ?v1) ?v2) ?v3) )))
-))
-(let (($x26 (forall ((?v0 |A_b_fun$|) (?v1 |A$|) (?v2 |B$|) (?v3 |A$|) )(let ((?x21 (|fun_app$| (|fun_app$a| (|fun_app$b| (|fun_upd$| ?v0) ?v1) ?v2) ?v3)))
-(= ?x21 (ite (= ?v3 ?v1) ?v2 (|fun_app$| ?v0 ?v3)))))
-))
-(let ((?x21 (|fun_app$| (|fun_app$a| (|fun_app$b| (|fun_upd$| ?3) ?2) ?1) ?0)))
-(let (($x25 (= ?x21 (ite (= ?0 ?2) ?1 (|fun_app$| ?3 ?0)))))
-(let ((@x94 (|mp~| (asserted $x26) (|nnf-pos| (refl (|~| $x25 $x25)) (|~| $x26 $x26)) $x26)))
-(let ((@x108 (mp @x94 (|quant-intro| (refl (= $x25 $x25)) (= $x26 $x103)) $x103)))
-(let (($x123 (not $x103)))
-(let (($x182 (or $x123 $x179)))
-(let ((@x183 ((_ |quant-inst| |f$| |i1$| |v1$| |i$|) $x182)))
-(let ((?x117 (ite $x32 |v2$| ?x116)))
-(let (($x127 (= ?x116 ?x117)))
-(let ((@x82 (|and-elim| @x79 $x33)))
-(let ((@x195 (symm (|unit-resolution| (|def-axiom| (or $x32 $x127)) @x82 $x127) (= ?x117 ?x116))))
-(let (($x120 (= ?x44 ?x117)))
-(let (($x124 (or $x123 $x120)))
-(let ((@x125 ((_ |quant-inst| (|fun_app$a| ?x37 |v1$|) |i2$| |v2$| |i$|) $x124)))
-(let ((@x201 (trans (trans (|unit-resolution| @x125 @x108 $x120) @x195 (= ?x44 ?x116)) (|unit-resolution| @x183 @x108 $x179) (= ?x44 ?x178))))
-(let ((@x84 (|not-or-elim| (mp (asserted (not (=> $x34 $x46))) @x78 (not (or (not $x34) $x46))) (not $x46))))
-(|unit-resolution| @x84 (trans @x201 @x197 $x46) false)))))))))))))))))))))))))))))))))))))))))))
+(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true)))))
+(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true))))
+(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false))))
+(mp (asserted $x33) @x53 false)))))))))))
 
-b3ae8e1fe1d7b019d0bef97ff09cdb8e0a1cd7dd 25 0
+0acbd728d248ce2e753dfea749c0f4b89e597d4d 14 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x29 (forall ((?v0 A$) )(g$ ?v0))
+))
+(let (($x30 (ite $x29 true false)))
+(let (($x31 (f$ $x30)))
+(let (($x32 (=> $x31 true)))
+(let (($x33 (not $x32)))
+(let ((@x42 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= $x31 (f$ $x29))) (= $x32 (=> (f$ $x29) true)))))
+(let ((@x46 (trans @x42 (rewrite (= (=> (f$ $x29) true) true)) (= $x32 true))))
+(let ((@x53 (trans (monotonicity @x46 (= $x33 (not true))) (rewrite (= (not true) false)) (= $x33 false))))
+(mp (asserted $x33) @x53 false)))))))))))
+
+9adfad76d5881b3c86f178d354224ff6c8530870 46 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x7 (|f$| |g$| |x$|)))
-(let (($x71 (not $x7)))
-(let (($x63 (not (or (= $x7 (|fun_app$| |g$| |x$|)) $x7 (|fun_app$| |g$| |x$|)))))
-(let (($x10 (= $x7 (and (|fun_app$| |g$| |x$|) true))))
-(let (($x15 (not (or $x10 (or (= $x7 true) (= (|fun_app$| |g$| |x$|) true))))))
-(let (($x8 (|fun_app$| |g$| |x$|)))
-(let (($x51 (or $x7 $x8)))
-(let (($x42 (= $x7 $x8)))
-(let (($x54 (or $x42 $x51)))
-(let ((@x65 (monotonicity (rewrite (= $x54 (or $x42 $x7 $x8))) (= (not $x54) $x63))))
-(let ((@x53 (monotonicity (rewrite (= (= $x7 true) $x7)) (rewrite (= (= $x8 true) $x8)) (= (or (= $x7 true) (= $x8 true)) $x51))))
-(let ((@x41 (monotonicity (rewrite (= (and $x8 true) $x8)) (= $x10 (= $x7 $x8)))))
-(let ((@x56 (monotonicity (trans @x41 (rewrite (= (= $x7 $x8) $x42)) (= $x10 $x42)) @x53 (= (or $x10 (or (= $x7 true) (= $x8 true))) $x54))))
-(let ((@x67 (trans (monotonicity @x56 (= $x15 (not $x54))) @x65 (= $x15 $x63))))
-(let ((@x68 (mp (asserted $x15) @x67 $x63)))
-(let ((@x72 (|not-or-elim| @x68 $x71)))
-(let (($x73 (not $x8)))
-(let ((@x74 (|not-or-elim| @x68 $x73)))
-(let (($x75 (= $x71 $x8)))
-(let ((@x77 (mp (|not-or-elim| @x68 (not $x42)) (rewrite (= (not $x42) $x75)) $x75)))
-(|unit-resolution| (|unit-resolution| (|def-axiom| (or $x7 $x8 (not $x75))) @x77 $x51) @x74 @x72 false)))))))))))))))))))))))
+(let ((?x61 (fun_app$a le$ 3)))
+(let (($x63 (fun_app$ ?x61 42)))
+(let (($x75 (not $x63)))
+(let (($x59 (= le$ uu$)))
+(let ((@x73 (monotonicity (rewrite (= (=> $x59 $x63) (or (not $x59) $x63))) (= (not (=> $x59 $x63)) (not (or (not $x59) $x63))))))
+(let ((@x74 (not-or-elim (mp (asserted (not (=> $x59 $x63))) @x73 (not (or (not $x59) $x63))) $x59)))
+(let ((@x482 (monotonicity (symm @x74 (= uu$ le$)) (= (fun_app$a uu$ 3) ?x61))))
+(let ((@x484 (symm (monotonicity @x482 (= (fun_app$ (fun_app$a uu$ 3) 42) $x63)) (= $x63 (fun_app$ (fun_app$a uu$ 3) 42)))))
+(let ((@x472 (monotonicity @x484 (= $x75 (not (fun_app$ (fun_app$a uu$ 3) 42))))))
+(let ((@x77 (not-or-elim (mp (asserted (not (=> $x59 $x63))) @x73 (not (or (not $x59) $x63))) $x75)))
+(let ((?x79 (fun_app$a uu$ 3)))
+(let (($x168 (fun_app$ ?x79 42)))
+(let (($x52 (forall ((?v0 Int) (?v1 Int) )(!(let (($x46 (<= (+ ?v0 (* (- 1) ?v1)) 0)))
+(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
+(= $x31 $x46))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
+))
+(let (($x46 (<= (+ ?1 (* (- 1) ?0)) 0)))
+(let (($x31 (fun_app$ (fun_app$a uu$ ?1) ?0)))
+(let (($x49 (= $x31 $x46)))
+(let (($x35 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1)))
+(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
+(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
+))
+(let (($x40 (forall ((?v0 Int) (?v1 Int) )(!(let (($x32 (<= ?v0 ?v1)))
+(let (($x31 (fun_app$ (fun_app$a uu$ ?v0) ?v1)))
+(= $x31 $x32))) :pattern ( (fun_app$ (fun_app$a uu$ ?v0) ?v1) )))
+))
+(let ((@x51 (monotonicity (rewrite (= (<= ?1 ?0) $x46)) (= (= $x31 (<= ?1 ?0)) $x49))))
+(let ((@x42 (quant-intro (rewrite (= (= $x31 (<= ?1 ?0)) (= $x31 (<= ?1 ?0)))) (= $x35 $x40))))
+(let ((@x57 (mp (asserted $x35) (trans @x42 (quant-intro @x51 (= $x40 $x52)) (= $x35 $x52)) $x52)))
+(let ((@x78 (mp~ @x57 (nnf-pos (refl (~ $x49 $x49)) (~ $x52 $x52)) $x52)))
+(let (($x134 (or (not $x52) $x168)))
+(let (($x137 (= (or (not $x52) (= $x168 (<= (+ 3 (* (- 1) 42)) 0))) $x134)))
+(let ((?x169 (* (- 1) 42)))
+(let ((?x170 (+ 3 ?x169)))
+(let (($x160 (<= ?x170 0)))
+(let (($x171 (= $x168 $x160)))
+(let ((@x158 (trans (monotonicity (rewrite (= ?x169 (- 42))) (= ?x170 (+ 3 (- 42)))) (rewrite (= (+ 3 (- 42)) (- 39))) (= ?x170 (- 39)))))
+(let ((@x497 (trans (monotonicity @x158 (= $x160 (<= (- 39) 0))) (rewrite (= (<= (- 39) 0) true)) (= $x160 true))))
+(let ((@x131 (trans (monotonicity @x497 (= $x171 (= $x168 true))) (rewrite (= (= $x168 true) $x168)) (= $x171 $x168))))
+(let ((@x478 (mp ((_ quant-inst 3 42) (or (not $x52) $x171)) (trans (monotonicity @x131 $x137) (rewrite (= $x134 $x134)) $x137) $x134)))
+(unit-resolution (unit-resolution @x478 @x78 $x168) (mp @x77 @x472 (not $x168)) false)))))))))))))))))))))))))))))))))))
 
-d9e693c8b48e2988c493bb1e4e83656e750403bf 14 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let (($x7 (exists ((?v0 |A$|) )(|g$| ?v0))
-))
-(let (($x8 (ite $x7 true false)))
-(let (($x9 (|f$| $x8)))
-(let (($x10 (=> $x9 true)))
-(let (($x11 (not $x10)))
-(let ((@x40 (monotonicity (monotonicity (rewrite (= $x8 $x7)) (= $x9 (|f$| $x7))) (= $x10 (=> (|f$| $x7) true)))))
-(let ((@x44 (trans @x40 (rewrite (= (=> (|f$| $x7) true) true)) (= $x10 true))))
-(let ((@x51 (trans (monotonicity @x44 (= $x11 (not true))) (rewrite (= (not true) false)) (= $x11 false))))
-(mp (asserted $x11) @x51 false)))))))))))
-
-389aa7c628b5a2215f1c34b1b3aea4f4becc378c 14 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let (($x7 (forall ((?v0 |A$|) )(|g$| ?v0))
-))
-(let (($x8 (ite $x7 true false)))
-(let (($x9 (|f$| $x8)))
-(let (($x10 (=> $x9 true)))
-(let (($x11 (not $x10)))
-(let ((@x40 (monotonicity (monotonicity (rewrite (= $x8 $x7)) (= $x9 (|f$| $x7))) (= $x10 (=> (|f$| $x7) true)))))
-(let ((@x44 (trans @x40 (rewrite (= (=> (|f$| $x7) true) true)) (= $x10 true))))
-(let ((@x51 (trans (monotonicity @x44 (= $x11 (not true))) (rewrite (= (not true) false)) (= $x11 false))))
-(mp (asserted $x11) @x51 false)))))))))))
-
-53b477f55537542d72fa148413e684cc3ff42e5b 46 0
+95598ecc48263b667471a0a5145776d543f7750b 189 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x17 (|fun_app$a| |le$| 3)))
-(let (($x19 (|fun_app$| ?x17 42)))
-(let (($x73 (not $x19)))
-(let (($x15 (= |le$| |uu$|)))
-(let ((@x71 (monotonicity (rewrite (= (=> $x15 $x19) (or (not $x15) $x19))) (= (not (=> $x15 $x19)) (not (or (not $x15) $x19))))))
-(let ((@x72 (|not-or-elim| (mp (asserted (not (=> $x15 $x19))) @x71 (not (or (not $x15) $x19))) $x15)))
-(let ((@x126 (monotonicity (symm @x72 (= |uu$| |le$|)) (= (|fun_app$a| |uu$| 3) ?x17))))
-(let ((@x130 (symm (monotonicity @x126 (= (|fun_app$| (|fun_app$a| |uu$| 3) 42) $x19)) (= $x19 (|fun_app$| (|fun_app$a| |uu$| 3) 42)))))
-(let ((@x133 (monotonicity @x130 (= $x73 (not (|fun_app$| (|fun_app$a| |uu$| 3) 42))))))
-(let ((@x75 (|not-or-elim| (mp (asserted (not (=> $x15 $x19))) @x71 (not (or (not $x15) $x19))) $x73)))
-(let ((?x81 (|fun_app$a| |uu$| 3)))
-(let (($x82 (|fun_app$| ?x81 42)))
-(let (($x58 (forall ((?v0 Int) (?v1 Int) )(!(let (($x52 (<= (+ ?v0 (* (~ 1) ?v1)) 0)))
-(let (($x9 (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1)))
-(= $x9 $x52))) :pattern ( (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1) )))
-))
-(let (($x52 (<= (+ ?1 (* (~ 1) ?0)) 0)))
-(let (($x9 (|fun_app$| (|fun_app$a| |uu$| ?1) ?0)))
-(let (($x55 (= $x9 $x52)))
-(let (($x13 (forall ((?v0 Int) (?v1 Int) )(!(let (($x10 (<= ?v0 ?v1)))
-(let (($x9 (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1)))
-(= $x9 $x10))) :pattern ( (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1) )))
-))
-(let (($x46 (forall ((?v0 Int) (?v1 Int) )(!(let (($x10 (<= ?v0 ?v1)))
-(let (($x9 (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1)))
-(= $x9 $x10))) :pattern ( (|fun_app$| (|fun_app$a| |uu$| ?v0) ?v1) )))
-))
-(let ((@x57 (monotonicity (rewrite (= (<= ?1 ?0) $x52)) (= (= $x9 (<= ?1 ?0)) $x55))))
-(let ((@x48 (|quant-intro| (rewrite (= (= $x9 (<= ?1 ?0)) (= $x9 (<= ?1 ?0)))) (= $x13 $x46))))
-(let ((@x63 (mp (asserted $x13) (trans @x48 (|quant-intro| @x57 (= $x46 $x58)) (= $x13 $x58)) $x58)))
-(let ((@x80 (|mp~| @x63 (|nnf-pos| (refl (|~| $x55 $x55)) (|~| $x58 $x58)) $x58)))
-(let (($x113 (or (not $x58) $x82)))
-(let (($x116 (= (or (not $x58) (= $x82 (<= (+ 3 (* (~ 1) 42)) 0))) $x113)))
-(let ((?x83 (* (~ 1) 42)))
-(let ((?x84 (+ 3 ?x83)))
-(let (($x85 (<= ?x84 0)))
-(let (($x86 (= $x82 $x85)))
-(let ((@x97 (trans (monotonicity (rewrite (= ?x83 (~ 42))) (= ?x84 (+ 3 (~ 42)))) (rewrite (= (+ 3 (~ 42)) (~ 39))) (= ?x84 (~ 39)))))
-(let ((@x104 (trans (monotonicity @x97 (= $x85 (<= (~ 39) 0))) (rewrite (= (<= (~ 39) 0) true)) (= $x85 true))))
-(let ((@x111 (trans (monotonicity @x104 (= $x86 (= $x82 true))) (rewrite (= (= $x82 true) $x82)) (= $x86 $x82))))
-(let ((@x121 (mp ((_ |quant-inst| 3 42) (or (not $x58) $x86)) (trans (monotonicity @x111 $x116) (rewrite (= $x113 $x113)) $x116) $x113)))
-(|unit-resolution| (|unit-resolution| @x121 @x80 $x82) (mp @x75 @x133 (not $x82)) false)))))))))))))))))))))))))))))))))))
+(let ((?x74 (nat$ 2)))
+(let ((?x75 (cons$ ?x74 nil$)))
+(let ((?x69 (nat$ 1)))
+(let ((?x76 (cons$ ?x69 ?x75)))
+(let ((?x70 (cons$ ?x69 nil$)))
+(let ((?x68 (nat$ 0)))
+(let ((?x71 (cons$ ?x68 ?x70)))
+(let ((?x72 (map$ uu$ ?x71)))
+(let (($x77 (= ?x72 ?x76)))
+(let ((?x264 (map$ uu$ ?x70)))
+(let ((?x427 (map$ uu$ nil$)))
+(let ((?x426 (fun_app$ uu$ ?x69)))
+(let ((?x428 (cons$ ?x426 ?x427)))
+(let (($x429 (= ?x264 ?x428)))
+(let (($x598 (forall ((?v0 Nat_nat_fun$) (?v1 Nat$) (?v2 Nat_list$) )(!(let ((?x64 (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))))
+(let ((?x61 (map$ ?v0 (cons$ ?v1 ?v2))))
+(= ?x61 ?x64))) :pattern ( (map$ ?v0 (cons$ ?v1 ?v2)) ) :pattern ( (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2)) )))
+))
+(let (($x66 (forall ((?v0 Nat_nat_fun$) (?v1 Nat$) (?v2 Nat_list$) )(let ((?x64 (cons$ (fun_app$ ?v0 ?v1) (map$ ?v0 ?v2))))
+(let ((?x61 (map$ ?v0 (cons$ ?v1 ?v2))))
+(= ?x61 ?x64))))
+))
+(let ((?x64 (cons$ (fun_app$ ?2 ?1) (map$ ?2 ?0))))
+(let ((?x61 (map$ ?2 (cons$ ?1 ?0))))
+(let (($x65 (= ?x61 ?x64)))
+(let ((@x158 (mp~ (asserted $x66) (nnf-pos (refl (~ $x65 $x65)) (~ $x66 $x66)) $x66)))
+(let ((@x603 (mp @x158 (quant-intro (refl (= $x65 $x65)) (= $x66 $x598)) $x598)))
+(let (($x582 (not $x598)))
+(let (($x524 (or $x582 $x429)))
+(let ((@x511 ((_ quant-inst uu$ (nat$ 1) nil$) $x524)))
+(let (($x515 (= ?x427 nil$)))
+(let (($x590 (forall ((?v0 Nat_nat_fun$) )(!(= (map$ ?v0 nil$) nil$) :pattern ( (map$ ?v0 nil$) )))
+))
+(let (($x55 (forall ((?v0 Nat_nat_fun$) )(= (map$ ?v0 nil$) nil$))
+))
+(let ((@x592 (refl (= (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$)))))
+(let ((@x152 (refl (~ (= (map$ ?0 nil$) nil$) (= (map$ ?0 nil$) nil$)))))
+(let ((@x595 (mp (mp~ (asserted $x55) (nnf-pos @x152 (~ $x55 $x55)) $x55) (quant-intro @x592 (= $x55 $x590)) $x590)))
+(let (($x506 (or (not $x590) $x515)))
+(let ((@x507 ((_ quant-inst uu$) $x506)))
+(let ((?x281 (of_nat$ ?x69)))
+(let ((?x516 (+ 1 ?x281)))
+(let ((?x517 (nat$ ?x516)))
+(let (($x508 (= ?x426 ?x517)))
+(let (($x47 (forall ((?v0 Nat$) )(!(let ((?x29 (fun_app$ uu$ ?v0)))
+(= ?x29 (nat$ (+ 1 (of_nat$ ?v0))))) :pattern ( (fun_app$ uu$ ?v0) )))
+))
+(let ((?x29 (fun_app$ uu$ ?0)))
+(let (($x44 (= ?x29 (nat$ (+ 1 (of_nat$ ?0))))))
+(let (($x36 (forall ((?v0 Nat$) )(!(let ((?x29 (fun_app$ uu$ ?v0)))
+(= ?x29 (nat$ (+ (of_nat$ ?v0) 1)))) :pattern ( (fun_app$ uu$ ?v0) )))
+))
+(let ((@x43 (monotonicity (rewrite (= (+ (of_nat$ ?0) 1) (+ 1 (of_nat$ ?0)))) (= (nat$ (+ (of_nat$ ?0) 1)) (nat$ (+ 1 (of_nat$ ?0)))))))
+(let ((@x46 (monotonicity @x43 (= (= ?x29 (nat$ (+ (of_nat$ ?0) 1))) $x44))))
+(let ((@x156 (mp~ (mp (asserted $x36) (quant-intro @x46 (= $x36 $x47)) $x47) (nnf-pos (refl (~ $x44 $x44)) (~ $x47 $x47)) $x47)))
+(let (($x494 (or (not $x47) $x508)))
+(let ((@x495 ((_ quant-inst (nat$ 1)) $x494)))
+(let ((?x445 (of_nat$ ?x517)))
+(let ((?x376 (nat$ ?x445)))
+(let (($x377 (= ?x376 ?x517)))
+(let (($x605 (forall ((?v0 Nat$) )(!(= (nat$ (of_nat$ ?v0)) ?v0) :pattern ( (of_nat$ ?v0) )))
+))
+(let (($x82 (forall ((?v0 Nat$) )(= (nat$ (of_nat$ ?v0)) ?v0))
+))
+(let ((@x610 (trans (rewrite (= $x82 $x605)) (rewrite (= $x605 $x605)) (= $x82 $x605))))
+(let ((@x162 (refl (~ (= (nat$ (of_nat$ ?0)) ?0) (= (nat$ (of_nat$ ?0)) ?0)))))
+(let ((@x611 (mp (mp~ (asserted $x82) (nnf-pos @x162 (~ $x82 $x82)) $x82) @x610 $x605)))
+(let (($x384 (or (not $x605) $x377)))
+(let ((@x385 ((_ quant-inst (nat$ ?x516)) $x384)))
+(let ((?x437 (* (- 1) ?x445)))
+(let ((?x410 (+ ?x281 ?x437)))
+(let (($x431 (<= ?x410 (- 1))))
+(let (($x378 (= ?x410 (- 1))))
+(let (($x448 (>= ?x281 (- 1))))
+(let (($x442 (>= ?x281 1)))
+(let (($x282 (= ?x281 1)))
+(let (($x613 (forall ((?v0 Int) )(!(let (($x88 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x101 (>= ?v0 0)))
+(let (($x102 (not $x101)))
+(or $x102 $x88)))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x108 (forall ((?v0 Int) )(let (($x88 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x101 (>= ?v0 0)))
+(let (($x102 (not $x101)))
+(or $x102 $x88)))))
+))
+(let (($x88 (= (of_nat$ (nat$ ?0)) ?0)))
+(let (($x101 (>= ?0 0)))
+(let (($x102 (not $x101)))
+(let (($x105 (or $x102 $x88)))
+(let (($x90 (forall ((?v0 Int) )(let (($x88 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x85 (<= 0 ?v0)))
+(=> $x85 $x88))))
+))
+(let (($x96 (forall ((?v0 Int) )(let (($x88 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(or (not (<= 0 ?v0)) $x88)))
+))
+(let ((@x104 (monotonicity (rewrite (= (<= 0 ?0) $x101)) (= (not (<= 0 ?0)) $x102))))
+(let ((@x110 (quant-intro (monotonicity @x104 (= (or (not (<= 0 ?0)) $x88) $x105)) (= $x96 $x108))))
+(let ((@x95 (rewrite (= (=> (<= 0 ?0) $x88) (or (not (<= 0 ?0)) $x88)))))
+(let ((@x113 (mp (asserted $x90) (trans (quant-intro @x95 (= $x90 $x96)) @x110 (= $x90 $x108)) $x108)))
+(let ((@x618 (mp (mp~ @x113 (nnf-pos (refl (~ $x105 $x105)) (~ $x108 $x108)) $x108) (quant-intro (refl (= $x105 $x105)) (= $x108 $x613)) $x613)))
+(let (($x227 (not $x613)))
+(let (($x271 (or $x227 $x282)))
+(let ((@x578 (rewrite (= (not true) false))))
+(let ((@x181 (rewrite (= (>= 1 0) true))))
+(let ((@x289 (trans (monotonicity @x181 (= (not (>= 1 0)) (not true))) @x578 (= (not (>= 1 0)) false))))
+(let ((@x560 (monotonicity @x289 (= (or (not (>= 1 0)) $x282) (or false $x282)))))
+(let ((@x270 (trans @x560 (rewrite (= (or false $x282) $x282)) (= (or (not (>= 1 0)) $x282) $x282))))
+(let ((@x552 (monotonicity @x270 (= (or $x227 (or (not (>= 1 0)) $x282)) $x271))))
+(let ((@x555 (trans @x552 (rewrite (= $x271 $x271)) (= (or $x227 (or (not (>= 1 0)) $x282)) $x271))))
+(let ((@x541 (mp ((_ quant-inst 1) (or $x227 (or (not (>= 1 0)) $x282))) @x555 $x271)))
+(let ((@x351 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x282) $x442)) (unit-resolution @x541 @x618 $x282) $x442)))
+(let (($x451 (not $x448)))
+(let (($x409 (or $x227 $x451 $x378)))
+(let (($x446 (= ?x445 ?x516)))
+(let (($x443 (>= ?x516 0)))
+(let (($x444 (not $x443)))
+(let (($x447 (or $x444 $x446)))
+(let (($x411 (or $x227 $x447)))
+(let ((@x441 (monotonicity (monotonicity (rewrite (= $x443 $x448)) (= $x444 $x451)) (rewrite (= $x446 $x378)) (= $x447 (or $x451 $x378)))))
+(let ((@x420 (trans (monotonicity @x441 (= $x411 (or $x227 (or $x451 $x378)))) (rewrite (= (or $x227 (or $x451 $x378)) $x409)) (= $x411 $x409))))
+(let ((@x430 (mp ((_ quant-inst (+ 1 ?x281)) $x411) @x420 $x409)))
+(let ((@x343 (unit-resolution @x430 @x618 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x442) $x448)) @x351 $x448) $x378)))
+(let (($x432 (>= ?x410 (- 1))))
+(let (($x331 (<= ?x281 1)))
+(let ((@x335 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x282) $x331)) (unit-resolution @x541 @x618 $x282) $x331)))
+(let ((@x341 ((_ th-lemma arith eq-propagate -1 -1 1 1) @x351 @x335 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x378) $x432)) @x343 $x432) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x378) $x431)) @x343 $x431) (= ?x445 2))))
+(let ((@x327 (trans (monotonicity (symm @x341 (= 2 ?x445)) (= ?x74 ?x376)) (unit-resolution @x385 @x611 $x377) (= ?x74 ?x517))))
+(let ((@x329 (trans @x327 (symm (unit-resolution @x495 @x156 $x508) (= ?x517 ?x426)) (= ?x74 ?x426))))
+(let ((@x312 (monotonicity @x329 (symm (unit-resolution @x507 @x595 $x515) (= nil$ ?x427)) (= ?x75 ?x428))))
+(let ((@x316 (trans @x312 (symm (unit-resolution @x511 @x603 $x429) (= ?x428 ?x264)) (= ?x75 ?x264))))
+(let ((?x577 (of_nat$ ?x68)))
+(let ((?x522 (+ 1 ?x577)))
+(let ((?x523 (nat$ ?x522)))
+(let ((?x263 (fun_app$ uu$ ?x68)))
+(let (($x512 (= ?x263 ?x523)))
+(let (($x513 (or (not $x47) $x512)))
+(let ((@x514 ((_ quant-inst (nat$ 0)) $x513)))
+(let ((?x496 (of_nat$ ?x523)))
+(let ((?x373 (nat$ ?x496)))
+(let (($x375 (= ?x373 ?x523)))
+(let (($x380 (or (not $x605) $x375)))
+(let ((@x381 ((_ quant-inst (nat$ ?x522)) $x380)))
+(let ((?x490 (* (- 1) ?x577)))
+(let ((?x491 (+ ?x496 ?x490)))
+(let (($x465 (<= ?x491 1)))
+(let (($x492 (= ?x491 1)))
+(let (($x499 (>= ?x577 (- 1))))
+(let (($x502 (>= ?x577 0)))
+(let (($x249 (= ?x577 0)))
+(let (($x228 (or $x227 $x249)))
+(let ((@x584 (rewrite (= (>= 0 0) true))))
+(let ((@x241 (trans (monotonicity @x584 (= (not (>= 0 0)) (not true))) @x578 (= (not (>= 0 0)) false))))
+(let ((@x580 (monotonicity @x241 (= (or (not (>= 0 0)) $x249) (or false $x249)))))
+(let ((@x226 (trans @x580 (rewrite (= (or false $x249) $x249)) (= (or (not (>= 0 0)) $x249) $x249))))
+(let ((@x568 (monotonicity @x226 (= (or $x227 (or (not (>= 0 0)) $x249)) $x228))))
+(let ((@x571 (trans @x568 (rewrite (= $x228 $x228)) (= (or $x227 (or (not (>= 0 0)) $x249)) $x228))))
+(let ((@x208 (mp ((_ quant-inst 0) (or $x227 (or (not (>= 0 0)) $x249))) @x571 $x228)))
+(let ((@x323 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x249) $x502)) (unit-resolution @x208 @x618 $x249) $x502)))
+(let (($x487 (not $x499)))
+(let (($x477 (or $x227 $x487 $x492)))
+(let (($x497 (= ?x496 ?x522)))
+(let (($x509 (>= ?x522 0)))
+(let (($x510 (not $x509)))
+(let (($x498 (or $x510 $x497)))
+(let (($x478 (or $x227 $x498)))
+(let ((@x476 (monotonicity (monotonicity (rewrite (= $x509 $x499)) (= $x510 $x487)) (rewrite (= $x497 $x492)) (= $x498 (or $x487 $x492)))))
+(let ((@x486 (trans (monotonicity @x476 (= $x478 (or $x227 (or $x487 $x492)))) (rewrite (= (or $x227 (or $x487 $x492)) $x477)) (= $x478 $x477))))
+(let ((@x464 (mp ((_ quant-inst (+ 1 ?x577)) $x478) @x486 $x477)))
+(let ((@x304 (unit-resolution @x464 @x618 (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x502) $x499)) @x323 $x499) $x492)))
+(let (($x466 (>= ?x491 1)))
+(let (($x504 (<= ?x577 0)))
+(let ((@x298 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x249) $x504)) (unit-resolution @x208 @x618 $x249) $x504)))
+(let ((@x300 ((_ th-lemma arith eq-propagate -1 -1 -1 -1) @x323 @x298 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x492) $x466)) @x304 $x466) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x492) $x465)) @x304 $x465) (= ?x496 1))))
+(let ((@x294 (trans (monotonicity (symm @x300 (= 1 ?x496)) (= ?x69 ?x373)) (unit-resolution @x381 @x611 $x375) (= ?x69 ?x523))))
+(let ((@x273 (trans @x294 (symm (unit-resolution @x514 @x156 $x512) (= ?x523 ?x263)) (= ?x69 ?x263))))
+(let ((@x279 (symm (monotonicity @x273 @x316 (= ?x76 (cons$ ?x263 ?x264))) (= (cons$ ?x263 ?x264) ?x76))))
+(let ((?x265 (cons$ ?x263 ?x264)))
+(let (($x266 (= ?x72 ?x265)))
+(let (($x237 (or $x582 $x266)))
+(let ((@x367 ((_ quant-inst uu$ (nat$ 0) (cons$ ?x69 nil$)) $x237)))
+(let (($x78 (not $x77)))
+(let ((@x79 (asserted $x78)))
+(unit-resolution @x79 (trans (unit-resolution @x367 @x603 $x266) @x279 $x77) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-737e9aeb0ce08125531c37a003d0a11fe8c1aa00 189 0
+f9d9f73f1f276df0f7f9790713a13204b3df5ba4 11 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x37 (|nat$| 2)))
-(let ((?x38 (|cons$| ?x37 |nil$|)))
-(let ((?x32 (|nat$| 1)))
-(let ((?x39 (|cons$| ?x32 ?x38)))
-(let ((?x33 (|cons$| ?x32 |nil$|)))
-(let ((?x31 (|nat$| 0)))
-(let ((?x34 (|cons$| ?x31 ?x33)))
-(let ((?x35 (|map$| |uu$| ?x34)))
-(let (($x40 (= ?x35 ?x39)))
-(let ((?x208 (|map$| |uu$| ?x33)))
-(let ((?x326 (|map$| |uu$| |nil$|)))
-(let ((?x325 (|fun_app$| |uu$| ?x32)))
-(let ((?x327 (|cons$| ?x325 ?x326)))
-(let (($x328 (= ?x208 ?x327)))
-(let (($x181 (forall ((?v0 |Nat_nat_fun$|) (?v1 |Nat$|) (?v2 |Nat_list$|) )(!(let ((?x27 (|cons$| (|fun_app$| ?v0 ?v1) (|map$| ?v0 ?v2))))
-(let ((?x24 (|map$| ?v0 (|cons$| ?v1 ?v2))))
-(= ?x24 ?x27))) :pattern ( (|map$| ?v0 (|cons$| ?v1 ?v2)) ) :pattern ( (|cons$| (|fun_app$| ?v0 ?v1) (|map$| ?v0 ?v2)) )))
-))
-(let (($x29 (forall ((?v0 |Nat_nat_fun$|) (?v1 |Nat$|) (?v2 |Nat_list$|) )(let ((?x27 (|cons$| (|fun_app$| ?v0 ?v1) (|map$| ?v0 ?v2))))
-(let ((?x24 (|map$| ?v0 (|cons$| ?v1 ?v2))))
-(= ?x24 ?x27))))
-))
-(let ((?x27 (|cons$| (|fun_app$| ?2 ?1) (|map$| ?2 ?0))))
-(let ((?x24 (|map$| ?2 (|cons$| ?1 ?0))))
-(let (($x28 (= ?x24 ?x27)))
-(let ((@x156 (|mp~| (asserted $x29) (|nnf-pos| (refl (|~| $x28 $x28)) (|~| $x29 $x29)) $x29)))
-(let ((@x186 (mp @x156 (|quant-intro| (refl (= $x28 $x28)) (= $x29 $x181)) $x181)))
-(let (($x213 (not $x181)))
-(let (($x331 (or $x213 $x328)))
-(let ((@x332 ((_ |quant-inst| |uu$| (|nat$| 1) |nil$|) $x331)))
-(let (($x339 (= ?x326 |nil$|)))
-(let (($x173 (forall ((?v0 |Nat_nat_fun$|) )(!(= (|map$| ?v0 |nil$|) |nil$|) :pattern ( (|map$| ?v0 |nil$|) )))
-))
-(let (($x19 (forall ((?v0 |Nat_nat_fun$|) )(= (|map$| ?v0 |nil$|) |nil$|))
-))
-(let ((@x175 (refl (= (= (|map$| ?0 |nil$|) |nil$|) (= (|map$| ?0 |nil$|) |nil$|)))))
-(let ((@x148 (refl (|~| (= (|map$| ?0 |nil$|) |nil$|) (= (|map$| ?0 |nil$|) |nil$|)))))
-(let ((@x178 (mp (|mp~| (asserted $x19) (|nnf-pos| @x148 (|~| $x19 $x19)) $x19) (|quant-intro| @x175 (= $x19 $x173)) $x173)))
-(let (($x343 (or (not $x173) $x339)))
-(let ((@x344 ((_ |quant-inst| |uu$|) $x343)))
-(let ((?x255 (|of_nat$| ?x32)))
-(let ((?x340 (+ 1 ?x255)))
-(let ((?x341 (|nat$| ?x340)))
-(let (($x345 (= ?x325 ?x341)))
-(let (($x85 (forall ((?v0 |Nat$|) )(!(let ((?x7 (|fun_app$| |uu$| ?v0)))
-(= ?x7 (|nat$| (+ 1 (|of_nat$| ?v0))))) :pattern ( (|fun_app$| |uu$| ?v0) )))
-))
-(let ((?x7 (|fun_app$| |uu$| ?0)))
-(let (($x82 (= ?x7 (|nat$| (+ 1 (|of_nat$| ?0))))))
-(let (($x14 (forall ((?v0 |Nat$|) )(!(let ((?x7 (|fun_app$| |uu$| ?v0)))
-(= ?x7 (|nat$| (+ (|of_nat$| ?v0) 1)))) :pattern ( (|fun_app$| |uu$| ?v0) )))
-))
-(let ((@x81 (monotonicity (rewrite (= (+ (|of_nat$| ?0) 1) (+ 1 (|of_nat$| ?0)))) (= (|nat$| (+ (|of_nat$| ?0) 1)) (|nat$| (+ 1 (|of_nat$| ?0)))))))
-(let ((@x84 (monotonicity @x81 (= (= ?x7 (|nat$| (+ (|of_nat$| ?0) 1))) $x82))))
-(let ((@x146 (|mp~| (mp (asserted $x14) (|quant-intro| @x84 (= $x14 $x85)) $x85) (|nnf-pos| (refl (|~| $x82 $x82)) (|~| $x85 $x85)) $x85)))
-(let (($x348 (or (not $x85) $x345)))
-(let ((@x349 ((_ |quant-inst| (|nat$| 1)) $x348)))
-(let ((?x404 (|of_nat$| ?x341)))
-(let ((?x454 (|nat$| ?x404)))
-(let (($x455 (= ?x454 ?x341)))
-(let (($x188 (forall ((?v0 |Nat$|) )(!(= (|nat$| (|of_nat$| ?v0)) ?v0) :pattern ( (|of_nat$| ?v0) )))
-))
-(let (($x44 (forall ((?v0 |Nat$|) )(= (|nat$| (|of_nat$| ?v0)) ?v0))
-))
-(let ((@x190 (refl (= (= (|nat$| (|of_nat$| ?0)) ?0) (= (|nat$| (|of_nat$| ?0)) ?0)))))
-(let ((@x160 (refl (|~| (= (|nat$| (|of_nat$| ?0)) ?0) (= (|nat$| (|of_nat$| ?0)) ?0)))))
-(let ((@x193 (mp (|mp~| (asserted $x44) (|nnf-pos| @x160 (|~| $x44 $x44)) $x44) (|quant-intro| @x190 (= $x44 $x188)) $x188)))
-(let (($x461 (or (not $x188) $x455)))
-(let ((@x462 ((_ |quant-inst| (|nat$| ?x340)) $x461)))
-(let ((?x415 (* (~ 1) ?x404)))
-(let ((?x416 (+ ?x255 ?x415)))
-(let (($x432 (<= ?x416 (~ 1))))
-(let (($x414 (= ?x416 (~ 1))))
-(let (($x407 (>= ?x255 (~ 1))))
-(let (($x401 (>= ?x255 1)))
-(let (($x256 (= ?x255 1)))
-(let (($x195 (forall ((?v0 Int) )(!(let (($x49 (= (|of_nat$| (|nat$| ?v0)) ?v0)))
-(let (($x103 (>= ?v0 0)))
-(let (($x104 (not $x103)))
-(or $x104 $x49)))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x110 (forall ((?v0 Int) )(let (($x49 (= (|of_nat$| (|nat$| ?v0)) ?v0)))
-(let (($x103 (>= ?v0 0)))
-(let (($x104 (not $x103)))
-(or $x104 $x49)))))
-))
-(let (($x49 (= (|of_nat$| (|nat$| ?0)) ?0)))
-(let (($x103 (>= ?0 0)))
-(let (($x104 (not $x103)))
-(let (($x107 (or $x104 $x49)))
-(let (($x51 (forall ((?v0 Int) )(let (($x49 (= (|of_nat$| (|nat$| ?v0)) ?v0)))
-(let (($x46 (<= 0 ?v0)))
-(=> $x46 $x49))))
-))
-(let (($x98 (forall ((?v0 Int) )(let (($x49 (= (|of_nat$| (|nat$| ?v0)) ?v0)))
-(or (not (<= 0 ?v0)) $x49)))
-))
-(let ((@x106 (monotonicity (rewrite (= (<= 0 ?0) $x103)) (= (not (<= 0 ?0)) $x104))))
-(let ((@x112 (|quant-intro| (monotonicity @x106 (= (or (not (<= 0 ?0)) $x49) $x107)) (= $x98 $x110))))
-(let ((@x97 (rewrite (= (=> (<= 0 ?0) $x49) (or (not (<= 0 ?0)) $x49)))))
-(let ((@x115 (mp (asserted $x51) (trans (|quant-intro| @x97 (= $x51 $x98)) @x112 (= $x51 $x110)) $x110)))
-(let ((@x200 (mp (|mp~| @x115 (|nnf-pos| (refl (|~| $x107 $x107)) (|~| $x110 $x110)) $x110) (|quant-intro| (refl (= $x107 $x107)) (= $x110 $x195)) $x195)))
-(let (($x235 (not $x195)))
-(let (($x271 (or $x235 $x256)))
-(let ((@x225 (rewrite (= (not true) false))))
-(let ((@x259 (rewrite (= (>= 1 0) true))))
-(let ((@x263 (trans (monotonicity @x259 (= (not (>= 1 0)) (not true))) @x225 (= (not (>= 1 0)) false))))
-(let ((@x266 (monotonicity @x263 (= (or (not (>= 1 0)) $x256) (or false $x256)))))
-(let ((@x270 (trans @x266 (rewrite (= (or false $x256) $x256)) (= (or (not (>= 1 0)) $x256) $x256))))
-(let ((@x275 (monotonicity @x270 (= (or $x235 (or (not (>= 1 0)) $x256)) $x271))))
-(let ((@x278 (trans @x275 (rewrite (= $x271 $x271)) (= (or $x235 (or (not (>= 1 0)) $x256)) $x271))))
-(let ((@x279 (mp ((_ |quant-inst| 1) (or $x235 (or (not (>= 1 0)) $x256))) @x278 $x271)))
-(let ((@x477 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x256) $x401)) (|unit-resolution| @x279 @x200 $x256) $x401)))
-(let (($x410 (not $x407)))
-(let (($x421 (or $x235 $x410 $x414)))
-(let (($x405 (= ?x404 ?x340)))
-(let (($x402 (>= ?x340 0)))
-(let (($x403 (not $x402)))
-(let (($x406 (or $x403 $x405)))
-(let (($x422 (or $x235 $x406)))
-(let ((@x420 (monotonicity (monotonicity (rewrite (= $x402 $x407)) (= $x403 $x410)) (rewrite (= $x405 $x414)) (= $x406 (or $x410 $x414)))))
-(let ((@x430 (trans (monotonicity @x420 (= $x422 (or $x235 (or $x410 $x414)))) (rewrite (= (or $x235 (or $x410 $x414)) $x421)) (= $x422 $x421))))
-(let ((@x431 (mp ((_ |quant-inst| (+ 1 ?x255)) $x422) @x430 $x421)))
-(let ((@x482 (|unit-resolution| @x431 @x200 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x401) $x407)) @x477 $x407) $x414)))
-(let (($x433 (>= ?x416 (~ 1))))
-(let (($x400 (<= ?x255 1)))
-(let ((@x492 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x256) $x400)) (|unit-resolution| @x279 @x200 $x256) $x400)))
-(let ((@x494 ((_ |th-lemma| arith eq-propagate -1 -1 1 1) @x477 @x492 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x414) $x433)) @x482 $x433) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x414) $x432)) @x482 $x432) (= ?x404 2))))
-(let ((@x502 (trans (monotonicity (symm @x494 (= 2 ?x404)) (= ?x37 ?x454)) (|unit-resolution| @x462 @x193 $x455) (= ?x37 ?x341))))
-(let ((@x504 (trans @x502 (symm (|unit-resolution| @x349 @x146 $x345) (= ?x341 ?x325)) (= ?x37 ?x325))))
-(let ((@x506 (monotonicity @x504 (symm (|unit-resolution| @x344 @x178 $x339) (= |nil$| ?x326)) (= ?x38 ?x327))))
-(let ((@x510 (trans @x506 (symm (|unit-resolution| @x332 @x186 $x328) (= ?x327 ?x208)) (= ?x38 ?x208))))
-(let ((?x216 (|of_nat$| ?x31)))
-(let ((?x329 (+ 1 ?x216)))
-(let ((?x330 (|nat$| ?x329)))
-(let ((?x207 (|fun_app$| |uu$| ?x31)))
-(let (($x333 (= ?x207 ?x330)))
-(let (($x337 (or (not $x85) $x333)))
-(let ((@x338 ((_ |quant-inst| (|nat$| 0)) $x337)))
-(let ((?x350 (|of_nat$| ?x330)))
-(let ((?x452 (|nat$| ?x350)))
-(let (($x453 (= ?x452 ?x330)))
-(let (($x457 (or (not $x188) $x453)))
-(let ((@x458 ((_ |quant-inst| (|nat$| ?x329)) $x457)))
-(let ((?x362 (* (~ 1) ?x350)))
-(let ((?x363 (+ ?x216 ?x362)))
-(let (($x379 (<= ?x363 (~ 1))))
-(let (($x361 (= ?x363 (~ 1))))
-(let (($x354 (>= ?x216 (~ 1))))
-(let (($x335 (>= ?x216 0)))
-(let (($x217 (= ?x216 0)))
-(let (($x236 (or $x235 $x217)))
-(let ((@x220 (rewrite (= (>= 0 0) true))))
-(let ((@x227 (trans (monotonicity @x220 (= (not (>= 0 0)) (not true))) @x225 (= (not (>= 0 0)) false))))
-(let ((@x230 (monotonicity @x227 (= (or (not (>= 0 0)) $x217) (or false $x217)))))
-(let ((@x234 (trans @x230 (rewrite (= (or false $x217) $x217)) (= (or (not (>= 0 0)) $x217) $x217))))
-(let ((@x240 (monotonicity @x234 (= (or $x235 (or (not (>= 0 0)) $x217)) $x236))))
-(let ((@x243 (trans @x240 (rewrite (= $x236 $x236)) (= (or $x235 (or (not (>= 0 0)) $x217)) $x236))))
-(let ((@x244 (mp ((_ |quant-inst| 0) (or $x235 (or (not (>= 0 0)) $x217))) @x243 $x236)))
-(let ((@x517 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x217) $x335)) (|unit-resolution| @x244 @x200 $x217) $x335)))
-(let (($x357 (not $x354)))
-(let (($x368 (or $x235 $x357 $x361)))
-(let (($x351 (= ?x350 ?x329)))
-(let (($x346 (>= ?x329 0)))
-(let (($x347 (not $x346)))
-(let (($x352 (or $x347 $x351)))
-(let (($x369 (or $x235 $x352)))
-(let ((@x367 (monotonicity (monotonicity (rewrite (= $x346 $x354)) (= $x347 $x357)) (rewrite (= $x351 $x361)) (= $x352 (or $x357 $x361)))))
-(let ((@x377 (trans (monotonicity @x367 (= $x369 (or $x235 (or $x357 $x361)))) (rewrite (= (or $x235 (or $x357 $x361)) $x368)) (= $x369 $x368))))
-(let ((@x378 (mp ((_ |quant-inst| (+ 1 ?x216)) $x369) @x377 $x368)))
-(let ((@x522 (|unit-resolution| @x378 @x200 (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x335) $x354)) @x517 $x354) $x361)))
-(let (($x380 (>= ?x363 (~ 1))))
-(let (($x334 (<= ?x216 0)))
-(let ((@x532 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x217) $x334)) (|unit-resolution| @x244 @x200 $x217) $x334)))
-(let ((@x534 ((_ |th-lemma| arith eq-propagate -1 -1 1 1) @x517 @x532 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x361) $x380)) @x522 $x380) (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x361) $x379)) @x522 $x379) (= ?x350 1))))
-(let ((@x542 (trans (monotonicity (symm @x534 (= 1 ?x350)) (= ?x32 ?x452)) (|unit-resolution| @x458 @x193 $x453) (= ?x32 ?x330))))
-(let ((@x544 (trans @x542 (symm (|unit-resolution| @x338 @x146 $x333) (= ?x330 ?x207)) (= ?x32 ?x207))))
-(let ((@x549 (symm (monotonicity @x544 @x510 (= ?x39 (|cons$| ?x207 ?x208))) (= (|cons$| ?x207 ?x208) ?x39))))
-(let ((?x209 (|cons$| ?x207 ?x208)))
-(let (($x210 (= ?x35 ?x209)))
-(let (($x214 (or $x213 $x210)))
-(let ((@x215 ((_ |quant-inst| |uu$| (|nat$| 0) (|cons$| ?x32 |nil$|)) $x214)))
-(let (($x41 (not $x40)))
-(let ((@x91 (asserted $x41)))
-(|unit-resolution| @x91 (trans (|unit-resolution| @x215 @x186 $x210) @x549 $x40) false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let (($x29 (forall ((?v0 A$) )(p$ ?v0))
+))
+(let (($x30 (not $x29)))
+(let (($x31 (or $x29 $x30)))
+(let (($x32 (not $x31)))
+(let ((@x42 (trans (monotonicity (rewrite (= $x31 true)) (= $x32 (not true))) (rewrite (= (not true) false)) (= $x32 false))))
+(mp (asserted $x32) @x42 false))))))))
 
-516b38db52977db0759f7a2fb4ee2c61d2623ab0 11 0
-unsat
-((set-logic AUFLIA)
-(proof
-(let (($x7 (forall ((?v0 |A$|) )(|p$| ?v0))
-))
-(let (($x8 (not $x7)))
-(let (($x9 (or $x7 $x8)))
-(let (($x10 (not $x9)))
-(let ((@x40 (trans (monotonicity (rewrite (= $x9 true)) (= $x10 (not true))) (rewrite (= (not true) false)) (= $x10 false))))
-(mp (asserted $x10) @x40 false))))))))
-
-120a595aca724e41775e5a997277b8d456a7e9fe 183 0
+d75b1250831c7be693f7d73dc2069f59a82284f3 190 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x24 (|nat$| 6)))
-(let ((?x17 (|nat$| 4)))
-(let ((?x18 (|dec_10$| ?x17)))
-(let ((?x19 (|of_nat$| ?x18)))
-(let ((?x20 (* 4 ?x19)))
-(let ((?x21 (|nat$| ?x20)))
-(let ((?x22 (|dec_10$| ?x21)))
-(let (($x25 (= ?x22 ?x24)))
-(let ((?x348 (|of_nat$| ?x24)))
-(let ((?x393 (+ (~ 10) ?x348)))
-(let ((?x394 (|nat$| ?x393)))
-(let ((?x395 (|dec_10$| ?x394)))
-(let (($x390 (>= ?x348 10)))
-(let ((?x396 (ite $x390 ?x395 ?x24)))
-(let (($x403 (= ?x24 ?x396)))
-(let (($x404 (not $x390)))
-(let (($x398 (<= ?x348 6)))
-(let (($x349 (= ?x348 6)))
-(let (($x188 (forall ((?v0 Int) )(!(let ((?x33 (|nat$| ?v0)))
-(let ((?x34 (|of_nat$| ?x33)))
-(let (($x35 (= ?x34 ?v0)))
-(let (($x114 (>= ?v0 0)))
-(let (($x115 (not $x114)))
-(or $x115 $x35)))))) :pattern ( (|nat$| ?v0) )))
-))
-(let (($x121 (forall ((?v0 Int) )(let ((?x33 (|nat$| ?v0)))
-(let ((?x34 (|of_nat$| ?x33)))
-(let (($x35 (= ?x34 ?v0)))
-(let (($x114 (>= ?v0 0)))
-(let (($x115 (not $x114)))
-(or $x115 $x35)))))))
-))
-(let ((?x33 (|nat$| ?0)))
-(let ((?x34 (|of_nat$| ?x33)))
-(let (($x35 (= ?x34 ?0)))
-(let (($x114 (>= ?0 0)))
-(let (($x115 (not $x114)))
-(let (($x118 (or $x115 $x35)))
-(let (($x37 (forall ((?v0 Int) )(let ((?x33 (|nat$| ?v0)))
-(let ((?x34 (|of_nat$| ?x33)))
-(let (($x35 (= ?x34 ?v0)))
-(let (($x32 (<= 0 ?v0)))
-(=> $x32 $x35))))))
-))
-(let (($x109 (forall ((?v0 Int) )(let ((?x33 (|nat$| ?v0)))
-(let ((?x34 (|of_nat$| ?x33)))
-(let (($x35 (= ?x34 ?v0)))
-(or (not (<= 0 ?v0)) $x35)))))
-))
-(let ((@x117 (monotonicity (rewrite (= (<= 0 ?0) $x114)) (= (not (<= 0 ?0)) $x115))))
-(let ((@x123 (|quant-intro| (monotonicity @x117 (= (or (not (<= 0 ?0)) $x35) $x118)) (= $x109 $x121))))
-(let ((@x108 (rewrite (= (=> (<= 0 ?0) $x35) (or (not (<= 0 ?0)) $x35)))))
-(let ((@x126 (mp (asserted $x37) (trans (|quant-intro| @x108 (= $x37 $x109)) @x123 (= $x37 $x121)) $x121)))
-(let ((@x193 (mp (|mp~| @x126 (|nnf-pos| (refl (|~| $x118 $x118)) (|~| $x121 $x121)) $x121) (|quant-intro| (refl (= $x118 $x118)) (= $x121 $x188)) $x188)))
-(let (($x274 (not $x188)))
-(let (($x364 (or $x274 $x349)))
-(let ((@x352 (rewrite (= (>= 6 0) true))))
-(let ((@x356 (trans (monotonicity @x352 (= (not (>= 6 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 6 0)) false))))
-(let ((@x359 (monotonicity @x356 (= (or (not (>= 6 0)) $x349) (or false $x349)))))
-(let ((@x363 (trans @x359 (rewrite (= (or false $x349) $x349)) (= (or (not (>= 6 0)) $x349) $x349))))
-(let ((@x368 (monotonicity @x363 (= (or $x274 (or (not (>= 6 0)) $x349)) $x364))))
-(let ((@x371 (trans @x368 (rewrite (= $x364 $x364)) (= (or $x274 (or (not (>= 6 0)) $x349)) $x364))))
-(let ((@x372 (mp ((_ |quant-inst| 6) (or $x274 (or (not (>= 6 0)) $x349))) @x371 $x364)))
-(let ((@x422 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x349) $x398)) (|unit-resolution| @x372 @x193 $x349) $x398)))
-(let ((@x427 (|unit-resolution| (|def-axiom| (or $x390 $x403)) (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x398) $x404)) @x422 $x404) $x403)))
-(let ((?x389 (|dec_10$| ?x24)))
-(let (($x397 (= ?x389 ?x396)))
-(let (($x175 (forall ((?v0 |Nat$|) )(!(let ((?x69 (|dec_10$| (|nat$| (+ (~ 10) (|of_nat$| ?v0))))))
-(let ((?x88 (ite (>= (|of_nat$| ?v0) 10) ?x69 ?v0)))
-(let ((?x6 (|dec_10$| ?v0)))
-(= ?x6 ?x88)))) :pattern ( (|dec_10$| ?v0) ) :pattern ( (|of_nat$| ?v0) )))
-))
-(let (($x96 (forall ((?v0 |Nat$|) )(let ((?x69 (|dec_10$| (|nat$| (+ (~ 10) (|of_nat$| ?v0))))))
-(let ((?x88 (ite (>= (|of_nat$| ?v0) 10) ?x69 ?v0)))
-(let ((?x6 (|dec_10$| ?v0)))
-(= ?x6 ?x88)))))
-))
-(let ((?x69 (|dec_10$| (|nat$| (+ (~ 10) (|of_nat$| ?0))))))
-(let ((?x88 (ite (>= (|of_nat$| ?0) 10) ?x69 ?0)))
-(let ((?x6 (|dec_10$| ?0)))
-(let (($x93 (= ?x6 ?x88)))
-(let (($x15 (forall ((?v0 |Nat$|) )(let ((?x7 (|of_nat$| ?v0)))
-(let (($x9 (< ?x7 10)))
-(let ((?x6 (|dec_10$| ?v0)))
-(= ?x6 (ite $x9 ?v0 (|dec_10$| (|nat$| (- ?x7 10)))))))))
-))
-(let (($x78 (forall ((?v0 |Nat$|) )(let ((?x69 (|dec_10$| (|nat$| (+ (~ 10) (|of_nat$| ?v0))))))
-(let ((?x7 (|of_nat$| ?v0)))
-(let (($x9 (< ?x7 10)))
-(let ((?x72 (ite $x9 ?v0 ?x69)))
-(let ((?x6 (|dec_10$| ?v0)))
-(= ?x6 ?x72)))))))
-))
-(let ((?x7 (|of_nat$| ?0)))
-(let (($x9 (< ?x7 10)))
-(let ((?x72 (ite $x9 ?0 ?x69)))
-(let ((@x87 (monotonicity (rewrite (= $x9 (not (>= ?x7 10)))) (= ?x72 (ite (not (>= ?x7 10)) ?0 ?x69)))))
-(let ((@x92 (trans @x87 (rewrite (= (ite (not (>= ?x7 10)) ?0 ?x69) ?x88)) (= ?x72 ?x88))))
-(let ((@x98 (|quant-intro| (monotonicity @x92 (= (= ?x6 ?x72) $x93)) (= $x78 $x96))))
-(let (($x75 (= ?x6 ?x72)))
-(let ((@x68 (monotonicity (rewrite (= (- ?x7 10) (+ (~ 10) ?x7))) (= (|nat$| (- ?x7 10)) (|nat$| (+ (~ 10) ?x7))))))
-(let ((@x74 (monotonicity (monotonicity @x68 (= (|dec_10$| (|nat$| (- ?x7 10))) ?x69)) (= (ite $x9 ?0 (|dec_10$| (|nat$| (- ?x7 10)))) ?x72))))
-(let ((@x77 (monotonicity @x74 (= (= ?x6 (ite $x9 ?0 (|dec_10$| (|nat$| (- ?x7 10))))) $x75))))
-(let ((@x101 (mp (asserted $x15) (trans (|quant-intro| @x77 (= $x15 $x78)) @x98 (= $x15 $x96)) $x96)))
-(let ((@x180 (mp (|mp~| @x101 (|nnf-pos| (refl (|~| $x93 $x93)) (|~| $x96 $x96)) $x96) (|quant-intro| (refl (= $x93 $x93)) (= $x96 $x175)) $x175)))
-(let (($x209 (not $x175)))
-(let (($x400 (or $x209 $x397)))
-(let ((@x401 ((_ |quant-inst| (|nat$| 6)) $x400)))
-(let ((?x200 (|of_nat$| ?x17)))
-(let ((?x383 (* (~ 1) ?x200)))
-(let ((?x384 (+ ?x19 ?x383)))
-(let (($x385 (<= ?x384 0)))
-(let (($x382 (= ?x19 ?x200)))
-(let ((?x202 (+ (~ 10) ?x200)))
-(let ((?x203 (|nat$| ?x202)))
-(let ((?x204 (|dec_10$| ?x203)))
-(let (($x201 (>= ?x200 10)))
-(let ((?x205 (ite $x201 ?x204 ?x17)))
-(let (($x213 (= ?x17 ?x205)))
-(let (($x214 (not $x201)))
-(let (($x284 (<= ?x200 4)))
-(let (($x256 (= ?x200 4)))
-(let (($x275 (or $x274 $x256)))
-(let ((@x259 (rewrite (= (>= 4 0) true))))
-(let ((@x266 (trans (monotonicity @x259 (= (not (>= 4 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 4 0)) false))))
-(let ((@x269 (monotonicity @x266 (= (or (not (>= 4 0)) $x256) (or false $x256)))))
-(let ((@x273 (trans @x269 (rewrite (= (or false $x256) $x256)) (= (or (not (>= 4 0)) $x256) $x256))))
-(let ((@x279 (monotonicity @x273 (= (or $x274 (or (not (>= 4 0)) $x256)) $x275))))
-(let ((@x282 (trans @x279 (rewrite (= $x275 $x275)) (= (or $x274 (or (not (>= 4 0)) $x256)) $x275))))
-(let ((@x283 (mp ((_ |quant-inst| 4) (or $x274 (or (not (>= 4 0)) $x256))) @x282 $x275)))
-(let ((@x433 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x256) $x284)) (|unit-resolution| @x283 @x193 $x256) $x284)))
-(let ((@x438 (|unit-resolution| (|def-axiom| (or $x201 $x213)) (|unit-resolution| ((_ |th-lemma| arith farkas 1 1) (or (not $x284) $x214)) @x433 $x214) $x213)))
-(let (($x206 (= ?x18 ?x205)))
-(let (($x210 (or $x209 $x206)))
-(let ((@x211 ((_ |quant-inst| (|nat$| 4)) $x210)))
-(let ((@x443 (trans (|unit-resolution| @x211 @x180 $x206) (symm @x438 (= ?x205 ?x17)) (= ?x18 ?x17))))
-(let ((@x448 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x382) $x385)) (monotonicity @x443 $x382) $x385)))
-(let (($x386 (>= ?x384 0)))
-(let ((@x451 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x382) $x386)) (monotonicity @x443 $x382) $x386)))
-(let (($x285 (>= ?x200 4)))
-(let ((@x454 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x256) $x285)) (|unit-resolution| @x283 @x193 $x256) $x285)))
-(let ((?x207 (|of_nat$| ?x21)))
-(let ((?x309 (* (~ 1) ?x207)))
-(let ((?x310 (+ ?x20 ?x309)))
-(let (($x325 (<= ?x310 0)))
-(let (($x307 (= ?x310 0)))
-(let (($x299 (>= ?x19 0)))
-(let ((@x459 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 1) (or $x299 (not $x285) (not $x386))) @x454 @x451 $x299)))
-(let (($x302 (not $x299)))
-(let (($x311 (or $x302 $x307)))
-(let (($x314 (or $x274 $x302 $x307)))
-(let (($x297 (= ?x207 ?x20)))
-(let (($x295 (>= ?x20 0)))
-(let (($x296 (not $x295)))
-(let (($x298 (or $x296 $x297)))
-(let (($x315 (or $x274 $x298)))
-(let ((@x313 (monotonicity (monotonicity (rewrite (= $x295 $x299)) (= $x296 $x302)) (rewrite (= $x297 $x307)) (= $x298 $x311))))
-(let ((@x323 (trans (monotonicity @x313 (= $x315 (or $x274 $x311))) (rewrite (= (or $x274 $x311) $x314)) (= $x315 $x314))))
-(let ((@x324 (mp ((_ |quant-inst| (* 4 ?x19)) $x315) @x323 $x314)))
-(let ((@x465 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x307) $x325)) (|unit-resolution| (|unit-resolution| @x324 @x193 $x311) @x459 $x307) $x325)))
-(let (($x326 (>= ?x310 0)))
-(let ((@x468 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x307) $x326)) (|unit-resolution| (|unit-resolution| @x324 @x193 $x311) @x459 $x307) $x326)))
-(let ((@x472 (monotonicity ((_ |th-lemma| arith eq-propagate 1 1 -4 -4 -4 -4) @x468 @x465 @x454 @x433 @x451 @x448 (= (+ (~ 10) ?x207) 6)) (= (|nat$| (+ (~ 10) ?x207)) ?x24))))
-(let ((?x219 (+ (~ 10) ?x207)))
-(let ((?x220 (|nat$| ?x219)))
-(let ((?x221 (|dec_10$| ?x220)))
-(let (($x208 (>= ?x207 10)))
-(let ((?x222 (ite $x208 ?x221 ?x21)))
-(let (($x228 (= ?x221 ?x222)))
-(let ((@x476 (|unit-resolution| ((_ |th-lemma| arith assign-bounds 1 4 4) (or $x208 (not $x325) (not $x285) (not $x386))) @x454 @x465 @x451 $x208)))
-(let ((@x480 (symm (|unit-resolution| (|def-axiom| (or (not $x208) $x228)) @x476 $x228) (= ?x222 ?x221))))
-(let (($x223 (= ?x22 ?x222)))
-(let (($x226 (or $x209 $x223)))
-(let ((@x227 ((_ |quant-inst| (|nat$| ?x20)) $x226)))
-(let ((@x488 (trans (trans (|unit-resolution| @x227 @x180 $x223) @x480 (= ?x22 ?x221)) (monotonicity @x472 (= ?x221 ?x389)) (= ?x22 ?x389))))
-(let ((@x491 (trans (trans @x488 (|unit-resolution| @x401 @x180 $x397) (= ?x22 ?x396)) (symm @x427 (= ?x396 ?x24)) $x25)))
-(let (($x26 (not $x25)))
-(let ((@x102 (asserted $x26)))
-(|unit-resolution| @x102 @x491 false))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x87 (nat$ 6)))
+(let ((?x80 (nat$ 4)))
+(let ((?x81 (dec_10$ ?x80)))
+(let ((?x82 (of_nat$ ?x81)))
+(let ((?x83 (* 4 ?x82)))
+(let ((?x84 (nat$ ?x83)))
+(let ((?x85 (dec_10$ ?x84)))
+(let (($x88 (= ?x85 ?x87)))
+(let ((?x461 (dec_10$ ?x87)))
+(let (($x421 (= ?x461 ?x87)))
+(let ((?x487 (of_nat$ ?x87)))
+(let ((?x464 (+ (- 10) ?x487)))
+(let ((?x447 (nat$ ?x464)))
+(let ((?x389 (dec_10$ ?x447)))
+(let (($x448 (= ?x461 ?x389)))
+(let (($x460 (>= ?x487 10)))
+(let (($x449 (ite $x460 $x448 $x421)))
+(let (($x602 (forall ((?v0 Nat$) )(!(let ((?x29 (of_nat$ ?v0)))
+(let (($x60 (>= ?x29 10)))
+(ite $x60 (= (dec_10$ ?v0) (dec_10$ (nat$ (+ (- 10) ?x29)))) (= (dec_10$ ?v0) ?v0)))) :pattern ( (of_nat$ ?v0) ) :pattern ( (dec_10$ ?v0) )))
+))
+(let (($x180 (forall ((?v0 Nat$) )(let ((?x29 (of_nat$ ?v0)))
+(let (($x60 (>= ?x29 10)))
+(ite $x60 (= (dec_10$ ?v0) (dec_10$ (nat$ (+ (- 10) ?x29)))) (= (dec_10$ ?v0) ?v0)))))
+))
+(let ((?x29 (of_nat$ ?0)))
+(let (($x60 (>= ?x29 10)))
+(let (($x177 (ite $x60 (= (dec_10$ ?0) (dec_10$ (nat$ (+ (- 10) ?x29)))) (= (dec_10$ ?0) ?0))))
+(let (($x73 (forall ((?v0 Nat$) )(let ((?x46 (dec_10$ (nat$ (+ (- 10) (of_nat$ ?v0))))))
+(let ((?x29 (of_nat$ ?v0)))
+(let (($x60 (>= ?x29 10)))
+(let ((?x65 (ite $x60 ?x46 ?v0)))
+(let ((?x28 (dec_10$ ?v0)))
+(= ?x28 ?x65)))))))
+))
+(let ((?x46 (dec_10$ (nat$ (+ (- 10) ?x29)))))
+(let ((?x65 (ite $x60 ?x46 ?0)))
+(let ((?x28 (dec_10$ ?0)))
+(let (($x70 (= ?x28 ?x65)))
+(let (($x37 (forall ((?v0 Nat$) )(let ((?x29 (of_nat$ ?v0)))
+(let (($x31 (< ?x29 10)))
+(let ((?x28 (dec_10$ ?v0)))
+(= ?x28 (ite $x31 ?v0 (dec_10$ (nat$ (- ?x29 10)))))))))
+))
+(let (($x55 (forall ((?v0 Nat$) )(let ((?x46 (dec_10$ (nat$ (+ (- 10) (of_nat$ ?v0))))))
+(let ((?x29 (of_nat$ ?v0)))
+(let (($x31 (< ?x29 10)))
+(let ((?x49 (ite $x31 ?v0 ?x46)))
+(let ((?x28 (dec_10$ ?v0)))
+(= ?x28 ?x49)))))))
+))
+(let ((@x64 (monotonicity (rewrite (= (< ?x29 10) (not $x60))) (= (ite (< ?x29 10) ?0 ?x46) (ite (not $x60) ?0 ?x46)))))
+(let ((@x69 (trans @x64 (rewrite (= (ite (not $x60) ?0 ?x46) ?x65)) (= (ite (< ?x29 10) ?0 ?x46) ?x65))))
+(let ((@x72 (monotonicity @x69 (= (= ?x28 (ite (< ?x29 10) ?0 ?x46)) $x70))))
+(let (($x31 (< ?x29 10)))
+(let ((?x49 (ite $x31 ?0 ?x46)))
+(let (($x52 (= ?x28 ?x49)))
+(let ((@x45 (monotonicity (rewrite (= (- ?x29 10) (+ (- 10) ?x29))) (= (nat$ (- ?x29 10)) (nat$ (+ (- 10) ?x29))))))
+(let ((@x51 (monotonicity (monotonicity @x45 (= (dec_10$ (nat$ (- ?x29 10))) ?x46)) (= (ite $x31 ?0 (dec_10$ (nat$ (- ?x29 10)))) ?x49))))
+(let ((@x54 (monotonicity @x51 (= (= ?x28 (ite $x31 ?0 (dec_10$ (nat$ (- ?x29 10))))) $x52))))
+(let ((@x77 (trans (quant-intro @x54 (= $x37 $x55)) (quant-intro @x72 (= $x55 $x73)) (= $x37 $x73))))
+(let ((@x161 (mp~ (mp (asserted $x37) @x77 $x73) (nnf-pos (refl (~ $x70 $x70)) (~ $x73 $x73)) $x73)))
+(let ((@x183 (mp @x161 (quant-intro (rewrite (= $x70 $x177)) (= $x73 $x180)) $x180)))
+(let ((@x607 (mp @x183 (quant-intro (refl (= $x177 $x177)) (= $x180 $x602)) $x602)))
+(let (($x256 (not $x602)))
+(let (($x452 (or $x256 $x449)))
+(let ((@x420 ((_ quant-inst (nat$ 6)) $x452)))
+(let (($x385 (not $x460)))
+(let (($x450 (<= ?x487 6)))
+(let (($x488 (= ?x487 6)))
+(let (($x616 (forall ((?v0 Int) )(!(let ((?x97 (nat$ ?v0)))
+(let ((?x98 (of_nat$ ?x97)))
+(let (($x99 (= ?x98 ?v0)))
+(let (($x112 (>= ?v0 0)))
+(let (($x113 (not $x112)))
+(or $x113 $x99)))))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x119 (forall ((?v0 Int) )(let ((?x97 (nat$ ?v0)))
+(let ((?x98 (of_nat$ ?x97)))
+(let (($x99 (= ?x98 ?v0)))
+(let (($x112 (>= ?v0 0)))
+(let (($x113 (not $x112)))
+(or $x113 $x99)))))))
+))
+(let ((?x97 (nat$ ?0)))
+(let ((?x98 (of_nat$ ?x97)))
+(let (($x99 (= ?x98 ?0)))
+(let (($x112 (>= ?0 0)))
+(let (($x113 (not $x112)))
+(let (($x116 (or $x113 $x99)))
+(let (($x101 (forall ((?v0 Int) )(let ((?x97 (nat$ ?v0)))
+(let ((?x98 (of_nat$ ?x97)))
+(let (($x99 (= ?x98 ?v0)))
+(let (($x96 (<= 0 ?v0)))
+(=> $x96 $x99))))))
+))
+(let (($x107 (forall ((?v0 Int) )(let ((?x97 (nat$ ?v0)))
+(let ((?x98 (of_nat$ ?x97)))
+(let (($x99 (= ?x98 ?v0)))
+(or (not (<= 0 ?v0)) $x99)))))
+))
+(let ((@x115 (monotonicity (rewrite (= (<= 0 ?0) $x112)) (= (not (<= 0 ?0)) $x113))))
+(let ((@x121 (quant-intro (monotonicity @x115 (= (or (not (<= 0 ?0)) $x99) $x116)) (= $x107 $x119))))
+(let ((@x106 (rewrite (= (=> (<= 0 ?0) $x99) (or (not (<= 0 ?0)) $x99)))))
+(let ((@x124 (mp (asserted $x101) (trans (quant-intro @x106 (= $x101 $x107)) @x121 (= $x101 $x119)) $x119)))
+(let ((@x621 (mp (mp~ @x124 (nnf-pos (refl (~ $x116 $x116)) (~ $x119 $x119)) $x119) (quant-intro (refl (= $x116 $x116)) (= $x119 $x616)) $x616)))
+(let (($x544 (not $x616)))
+(let (($x480 (or $x544 $x488)))
+(let ((@x491 (rewrite (= (>= 6 0) true))))
+(let ((@x495 (trans (monotonicity @x491 (= (not (>= 6 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 6 0)) false))))
+(let ((@x475 (monotonicity @x495 (= (or (not (>= 6 0)) $x488) (or false $x488)))))
+(let ((@x479 (trans @x475 (rewrite (= (or false $x488) $x488)) (= (or (not (>= 6 0)) $x488) $x488))))
+(let ((@x465 (monotonicity @x479 (= (or $x544 (or (not (>= 6 0)) $x488)) $x480))))
+(let ((@x468 (trans @x465 (rewrite (= $x480 $x480)) (= (or $x544 (or (not (>= 6 0)) $x488)) $x480))))
+(let ((@x469 (mp ((_ quant-inst 6) (or $x544 (or (not (>= 6 0)) $x488))) @x468 $x480)))
+(let ((@x415 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x488) $x450)) (unit-resolution @x469 @x621 $x488) $x450)))
+(let ((@x386 (unit-resolution (def-axiom (or (not $x449) $x460 $x421)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x450) $x385)) @x415 $x385) (unit-resolution @x420 @x607 $x449) $x421)))
+(let ((?x251 (of_nat$ ?x80)))
+(let ((?x454 (* (- 1) ?x251)))
+(let ((?x455 (+ ?x82 ?x454)))
+(let (($x456 (<= ?x455 0)))
+(let (($x453 (= ?x82 ?x251)))
+(let (($x238 (= ?x81 ?x80)))
+(let ((?x233 (+ (- 10) ?x251)))
+(let ((?x575 (nat$ ?x233)))
+(let ((?x236 (dec_10$ ?x575)))
+(let (($x237 (= ?x81 ?x236)))
+(let (($x252 (>= ?x251 10)))
+(let (($x239 (ite $x252 $x237 $x238)))
+(let (($x578 (or $x256 $x239)))
+(let ((@x579 ((_ quant-inst (nat$ 4)) $x578)))
+(let (($x581 (not $x252)))
+(let (($x380 (<= ?x251 4)))
+(let (($x563 (= ?x251 4)))
+(let (($x545 (or $x544 $x563)))
+(let ((@x566 (rewrite (= (>= 4 0) true))))
+(let ((@x558 (trans (monotonicity @x566 (= (not (>= 4 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 4 0)) false))))
+(let ((@x398 (monotonicity @x558 (= (or (not (>= 4 0)) $x563) (or false $x563)))))
+(let ((@x543 (trans @x398 (rewrite (= (or false $x563) $x563)) (= (or (not (>= 4 0)) $x563) $x563))))
+(let ((@x549 (monotonicity @x543 (= (or $x544 (or (not (>= 4 0)) $x563)) $x545))))
+(let ((@x377 (trans @x549 (rewrite (= $x545 $x545)) (= (or $x544 (or (not (>= 4 0)) $x563)) $x545))))
+(let ((@x379 (mp ((_ quant-inst 4) (or $x544 (or (not (>= 4 0)) $x563))) @x377 $x545)))
+(let ((@x393 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x563) $x380)) (unit-resolution @x379 @x621 $x563) $x380)))
+(let ((@x367 (unit-resolution (def-axiom (or (not $x239) $x252 $x238)) (unit-resolution ((_ th-lemma arith farkas 1 1) (or (not $x380) $x581)) @x393 $x581) (unit-resolution @x579 @x607 $x239) $x238)))
+(let ((@x215 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x453) $x456)) (monotonicity @x367 $x453) $x456)))
+(let (($x457 (>= ?x455 0)))
+(let ((@x376 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x453) $x457)) (monotonicity @x367 $x453) $x457)))
+(let (($x536 (>= ?x251 4)))
+(let ((@x362 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x563) $x536)) (unit-resolution @x379 @x621 $x563) $x536)))
+(let ((?x576 (of_nat$ ?x84)))
+(let ((?x439 (* (- 1) ?x576)))
+(let ((?x440 (+ ?x83 ?x439)))
+(let (($x517 (<= ?x440 0)))
+(let (($x438 (= ?x440 0)))
+(let (($x532 (>= ?x82 0)))
+(let ((@x354 (unit-resolution ((_ th-lemma arith assign-bounds 1 1) (or $x532 (not $x536) (not $x457))) @x362 @x376 $x532)))
+(let (($x434 (not $x532)))
+(let (($x533 (or $x434 $x438)))
+(let (($x522 (or $x544 $x434 $x438)))
+(let (($x530 (= ?x576 ?x83)))
+(let (($x529 (>= ?x83 0)))
+(let (($x433 (not $x529)))
+(let (($x531 (or $x433 $x530)))
+(let (($x523 (or $x544 $x531)))
+(let ((@x535 (monotonicity (monotonicity (rewrite (= $x529 $x532)) (= $x433 $x434)) (rewrite (= $x530 $x438)) (= $x531 $x533))))
+(let ((@x528 (trans (monotonicity @x535 (= $x523 (or $x544 $x533))) (rewrite (= (or $x544 $x533) $x522)) (= $x523 $x522))))
+(let ((@x516 (mp ((_ quant-inst (* 4 ?x82)) $x523) @x528 $x522)))
+(let ((@x351 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x438) $x517)) (unit-resolution (unit-resolution @x516 @x621 $x533) @x354 $x438) $x517)))
+(let (($x518 (>= ?x440 0)))
+(let ((@x345 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x438) $x518)) (unit-resolution (unit-resolution @x516 @x621 $x533) @x354 $x438) $x518)))
+(let ((@x349 (monotonicity ((_ th-lemma arith eq-propagate 1 1 -4 -4 -4 -4) @x345 @x351 @x362 @x393 @x376 @x215 (= (+ (- 10) ?x576) 6)) (= (nat$ (+ (- 10) ?x576)) ?x87))))
+(let ((?x574 (+ (- 10) ?x576)))
+(let ((?x278 (nat$ ?x574)))
+(let ((?x292 (dec_10$ ?x278)))
+(let (($x293 (= ?x85 ?x292)))
+(let (($x294 (= ?x85 ?x84)))
+(let (($x577 (>= ?x576 10)))
+(let (($x295 (ite $x577 $x293 $x294)))
+(let (($x568 (or $x256 $x295)))
+(let ((@x299 ((_ quant-inst (nat$ ?x83)) $x568)))
+(let ((@x336 (unit-resolution ((_ th-lemma arith assign-bounds 1 4 4) (or $x577 (not $x517) (not $x536) (not $x457))) @x362 @x351 @x376 $x577)))
+(let ((@x337 (unit-resolution (def-axiom (or (not $x295) (not $x577) $x293)) @x336 (unit-resolution @x299 @x607 $x295) $x293)))
+(let ((@x323 (trans (trans @x337 (monotonicity @x349 (= ?x292 ?x461)) (= ?x85 ?x461)) @x386 $x88)))
+(let (($x89 (not $x88)))
+(let ((@x90 (asserted $x89)))
+(unit-resolution @x90 @x323 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-a25b64a8f04cffe57bd9a525d4bad154c19d2b20 310 0
+28f9e3a56fce77e7784b19fdbe43fc5b9f9bc5b0 336 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x42 (|map$| |uu$| |xs$|)))
-(let ((?x43 (|eval_dioph$| |ks$| ?x42)))
-(let ((?x145 (* (~ 1) ?x43)))
-(let ((?x146 (+ |l$| ?x145)))
-(let ((?x149 (|div$| ?x146 2)))
-(let ((?x47 (|map$| |uua$| |xs$|)))
-(let ((?x48 (|eval_dioph$| |ks$| ?x47)))
-(let ((?x769 (+ ?x48 (* (~ 1) ?x149))))
-(let (($x771 (>= ?x769 0)))
-(let ((?x452 (* (~ 1) |l$|)))
-(let ((?x39 (|eval_dioph$| |ks$| |xs$|)))
-(let ((?x776 (+ ?x39 ?x452)))
-(let (($x778 (>= ?x776 0)))
-(let (($x41 (= ?x39 |l$|)))
-(let (($x152 (= ?x48 ?x149)))
-(let (($x362 (not $x152)))
-(let ((?x45 (|mod$| |l$| 2)))
-(let ((?x44 (|mod$| ?x43 2)))
-(let (($x46 (= ?x44 ?x45)))
-(let (($x361 (not $x46)))
-(let (($x363 (or $x361 $x362)))
-(let ((?x730 (div ?x43 2)))
-(let ((?x913 (* (~ 1) ?x730)))
-(let ((?x685 (mod ?x43 2)))
-(let ((?x712 (* (~ 1) ?x685)))
-(let ((?x645 (div |l$| 2)))
-(let ((?x671 (* (~ 1) ?x645)))
-(let ((?x599 (mod |l$| 2)))
-(let ((?x626 (* (~ 1) ?x599)))
-(let ((?x656 (* (~ 1) ?x48)))
-(let (($x737 (>= (+ |l$| ?x44 ?x656 ?x626 ?x671 ?x712 ?x913) 1)))
-(let ((?x658 (* (~ 2) ?x645)))
-(let ((?x659 (+ |l$| ?x626 ?x658)))
-(let (($x657 (= ?x659 0)))
-(let ((@x108 (|true-axiom| true)))
-(let ((@x945 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x657) (>= ?x659 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x657)) @x108 $x657) (>= ?x659 0))))
-(let ((?x627 (+ ?x45 ?x626)))
-(let (($x628 (= ?x627 0)))
-(let (($x418 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x83 (mod ?v0 ?v1)))
-(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x273 (mod ?x227 ?x230)))
-(let ((?x279 (* (~ 1) ?x273)))
-(let (($x248 (<= ?v1 0)))
-(let ((?x299 (ite $x248 ?x279 ?x83)))
-(let (($x72 (= ?v1 0)))
-(let ((?x304 (ite $x72 ?v0 ?x299)))
-(let ((?x82 (|mod$| ?v0 ?v1)))
-(= ?x82 ?x304))))))))))) :pattern ( (|mod$| ?v0 ?v1) )))
-))
-(let (($x310 (forall ((?v0 Int) (?v1 Int) )(let ((?x83 (mod ?v0 ?v1)))
-(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x273 (mod ?x227 ?x230)))
-(let ((?x279 (* (~ 1) ?x273)))
-(let (($x248 (<= ?v1 0)))
-(let ((?x299 (ite $x248 ?x279 ?x83)))
-(let (($x72 (= ?v1 0)))
-(let ((?x304 (ite $x72 ?v0 ?x299)))
-(let ((?x82 (|mod$| ?v0 ?v1)))
-(= ?x82 ?x304))))))))))))
-))
-(let ((?x83 (mod ?1 ?0)))
-(let ((?x230 (* (~ 1) ?0)))
-(let ((?x227 (* (~ 1) ?1)))
-(let ((?x273 (mod ?x227 ?x230)))
-(let ((?x279 (* (~ 1) ?x273)))
-(let (($x248 (<= ?0 0)))
-(let ((?x299 (ite $x248 ?x279 ?x83)))
-(let (($x72 (= ?0 0)))
-(let ((?x304 (ite $x72 ?1 ?x299)))
-(let ((?x82 (|mod$| ?1 ?0)))
-(let (($x307 (= ?x82 ?x304)))
-(let (($x89 (forall ((?v0 Int) (?v1 Int) )(let (($x72 (= ?v1 0)))
-(let ((?x87 (ite $x72 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
-(let ((?x82 (|mod$| ?v0 ?v1)))
-(= ?x82 ?x87)))))
-))
-(let (($x293 (forall ((?v0 Int) (?v1 Int) )(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x273 (mod ?x227 ?x230)))
-(let ((?x279 (* (~ 1) ?x273)))
-(let ((?x83 (mod ?v0 ?v1)))
-(let (($x73 (< 0 ?v1)))
-(let ((?x284 (ite $x73 ?x83 ?x279)))
-(let (($x72 (= ?v1 0)))
-(let ((?x287 (ite $x72 ?v0 ?x284)))
-(let ((?x82 (|mod$| ?v0 ?v1)))
-(= ?x82 ?x287))))))))))))
-))
-(let ((@x298 (monotonicity (rewrite (= (< 0 ?0) (not $x248))) (= (ite (< 0 ?0) ?x83 ?x279) (ite (not $x248) ?x83 ?x279)))))
-(let ((@x303 (trans @x298 (rewrite (= (ite (not $x248) ?x83 ?x279) ?x299)) (= (ite (< 0 ?0) ?x83 ?x279) ?x299))))
-(let ((@x306 (monotonicity @x303 (= (ite $x72 ?1 (ite (< 0 ?0) ?x83 ?x279)) ?x304))))
-(let ((@x309 (monotonicity @x306 (= (= ?x82 (ite $x72 ?1 (ite (< 0 ?0) ?x83 ?x279))) $x307))))
-(let (($x73 (< 0 ?0)))
-(let ((?x284 (ite $x73 ?x83 ?x279)))
-(let ((?x287 (ite $x72 ?1 ?x284)))
-(let (($x290 (= ?x82 ?x287)))
-(let (($x291 (= (= ?x82 (ite $x72 ?1 (ite $x73 ?x83 (- (mod (- ?1) (- ?0)))))) $x290)))
-(let ((@x275 (monotonicity (rewrite (= (- ?1) ?x227)) (rewrite (= (- ?0) ?x230)) (= (mod (- ?1) (- ?0)) ?x273))))
-(let ((@x283 (trans (monotonicity @x275 (= (- (mod (- ?1) (- ?0))) (- ?x273))) (rewrite (= (- ?x273) ?x279)) (= (- (mod (- ?1) (- ?0))) ?x279))))
-(let ((@x286 (monotonicity @x283 (= (ite $x73 ?x83 (- (mod (- ?1) (- ?0)))) ?x284))))
-(let ((@x289 (monotonicity @x286 (= (ite $x72 ?1 (ite $x73 ?x83 (- (mod (- ?1) (- ?0))))) ?x287))))
-(let ((@x314 (trans (|quant-intro| (monotonicity @x289 $x291) (= $x89 $x293)) (|quant-intro| @x309 (= $x293 $x310)) (= $x89 $x310))))
-(let ((@x360 (|mp~| (mp (asserted $x89) @x314 $x310) (|nnf-pos| (refl (|~| $x307 $x307)) (|~| $x310 $x310)) $x310)))
-(let ((@x423 (mp @x360 (|quant-intro| (refl (= $x307 $x307)) (= $x310 $x418)) $x418)))
-(let (($x633 (not $x418)))
-(let (($x634 (or $x633 $x628)))
-(let (($x440 (<= 2 0)))
-(let ((?x600 (ite $x440 (* (~ 1) (mod ?x452 (* (~ 1) 2))) ?x599)))
-(let (($x439 (= 2 0)))
-(let ((?x601 (ite $x439 |l$| ?x600)))
-(let (($x602 (= ?x45 ?x601)))
-(let ((@x457 (rewrite (= (* (~ 1) 2) (~ 2)))))
-(let ((@x608 (monotonicity (monotonicity @x457 (= (mod ?x452 (* (~ 1) 2)) (mod ?x452 (~ 2)))) (= (* (~ 1) (mod ?x452 (* (~ 1) 2))) (* (~ 1) (mod ?x452 (~ 2)))))))
-(let ((@x451 (rewrite (= $x440 false))))
-(let ((@x611 (monotonicity @x451 @x608 (= ?x600 (ite false (* (~ 1) (mod ?x452 (~ 2))) ?x599)))))
-(let ((@x615 (trans @x611 (rewrite (= (ite false (* (~ 1) (mod ?x452 (~ 2))) ?x599) ?x599)) (= ?x600 ?x599))))
-(let ((@x449 (rewrite (= $x439 false))))
-(let ((@x622 (trans (monotonicity @x449 @x615 (= ?x601 (ite false |l$| ?x599))) (rewrite (= (ite false |l$| ?x599) ?x599)) (= ?x601 ?x599))))
-(let ((@x632 (trans (monotonicity @x622 (= $x602 (= ?x45 ?x599))) (rewrite (= (= ?x45 ?x599) $x628)) (= $x602 $x628))))
-(let ((@x641 (trans (monotonicity @x632 (= (or $x633 $x602) $x634)) (rewrite (= $x634 $x634)) (= (or $x633 $x602) $x634))))
-(let ((@x950 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x628) (>= ?x627 0))) (|unit-resolution| (mp ((_ |quant-inst| |l$| 2) (or $x633 $x602)) @x641 $x634) @x423 $x628) (>= ?x627 0))))
-(let (($x1021 (not $x778)))
-(let (($x777 (<= ?x776 0)))
-(let (($x770 (<= ?x769 0)))
-(let (($x364 (not $x363)))
-(let ((@x741 (hypothesis $x364)))
-(let ((@x1018 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x362 $x770)) (|unit-resolution| (|def-axiom| (or $x363 $x152)) @x741 $x152) $x770)))
-(let ((?x520 (+ |l$| ?x145 (* (~ 2) (div ?x146 2)) (* (~ 1) (mod (+ |l$| ?x43) 2)))))
-(let (($x517 (= ?x520 0)))
-(let ((@x876 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x517) (>= ?x520 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x517)) @x108 $x517) (>= ?x520 0))))
-(let ((?x584 (* (~ 2) ?x48)))
-(let ((?x585 (+ ?x39 ?x145 ?x584)))
-(let (($x586 (= ?x585 0)))
-(let (($x384 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(!(let ((?x24 (|eval_dioph$| ?v0 ?v1)))
-(let ((?x136 (+ ?x24 (* (~ 1) (|eval_dioph$| ?v0 (|map$| |uu$| ?v1))) (* (~ 2) (|eval_dioph$| ?v0 (|map$| |uua$| ?v1))))))
-(= ?x136 0))) :pattern ( (|eval_dioph$| ?v0 (|map$| |uu$| ?v1)) ) :pattern ( (|eval_dioph$| ?v0 (|map$| |uua$| ?v1)) )))
-))
-(let (($x138 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(let ((?x24 (|eval_dioph$| ?v0 ?v1)))
-(let ((?x136 (+ ?x24 (* (~ 1) (|eval_dioph$| ?v0 (|map$| |uu$| ?v1))) (* (~ 2) (|eval_dioph$| ?v0 (|map$| |uua$| ?v1))))))
-(= ?x136 0))))
-))
-(let ((?x24 (|eval_dioph$| ?1 ?0)))
-(let ((?x136 (+ ?x24 (* (~ 1) (|eval_dioph$| ?1 (|map$| |uu$| ?0))) (* (~ 2) (|eval_dioph$| ?1 (|map$| |uua$| ?0))))))
-(let (($x132 (= ?x136 0)))
-(let (($x36 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(let ((?x24 (|eval_dioph$| ?v0 ?v1)))
-(let ((?x27 (|eval_dioph$| ?v0 (|map$| |uu$| ?v1))))
-(let ((?x34 (+ (* (|eval_dioph$| ?v0 (|map$| |uua$| ?v1)) 2) ?x27)))
-(= ?x34 ?x24)))))
-))
-(let (($x127 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(let ((?x24 (|eval_dioph$| ?v0 ?v1)))
-(let ((?x32 (|eval_dioph$| ?v0 (|map$| |uua$| ?v1))))
-(let ((?x113 (* 2 ?x32)))
-(let ((?x27 (|eval_dioph$| ?v0 (|map$| |uu$| ?v1))))
-(let ((?x119 (+ ?x27 ?x113)))
-(= ?x119 ?x24)))))))
-))
-(let ((?x32 (|eval_dioph$| ?1 (|map$| |uua$| ?0))))
-(let ((?x113 (* 2 ?x32)))
-(let ((?x27 (|eval_dioph$| ?1 (|map$| |uu$| ?0))))
-(let ((?x119 (+ ?x27 ?x113)))
-(let (($x124 (= ?x119 ?x24)))
-(let ((@x118 (monotonicity (rewrite (= (* ?x32 2) ?x113)) (= (+ (* ?x32 2) ?x27) (+ ?x113 ?x27)))))
-(let ((@x123 (trans @x118 (rewrite (= (+ ?x113 ?x27) ?x119)) (= (+ (* ?x32 2) ?x27) ?x119))))
-(let ((@x129 (|quant-intro| (monotonicity @x123 (= (= (+ (* ?x32 2) ?x27) ?x24) $x124)) (= $x36 $x127))))
-(let ((@x142 (trans @x129 (|quant-intro| (rewrite (= $x124 $x132)) (= $x127 $x138)) (= $x36 $x138))))
-(let ((@x335 (|mp~| (mp (asserted $x36) @x142 $x138) (|nnf-pos| (refl (|~| $x132 $x132)) (|~| $x138 $x138)) $x138)))
-(let ((@x389 (mp @x335 (|quant-intro| (refl (= $x132 $x132)) (= $x138 $x384)) $x384)))
-(let ((@x883 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x586) (<= ?x585 0))) (|unit-resolution| ((_ |quant-inst| |ks$| |xs$|) (or (not $x384) $x586)) @x389 $x586) (<= ?x585 0))))
-(let ((?x479 (+ ?x149 (* (~ 1) (div ?x146 2)))))
-(let (($x480 (= ?x479 0)))
-(let (($x411 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x74 (div ?v0 ?v1)))
-(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x233 (div ?x227 ?x230)))
-(let (($x248 (<= ?v1 0)))
-(let ((?x255 (ite $x248 ?x233 ?x74)))
-(let (($x72 (= ?v1 0)))
-(let ((?x71 (|div$| ?v0 ?v1)))
-(= ?x71 (ite $x72 0 ?x255)))))))))) :pattern ( (|div$| ?v0 ?v1) )))
-))
-(let (($x266 (forall ((?v0 Int) (?v1 Int) )(let ((?x74 (div ?v0 ?v1)))
-(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x233 (div ?x227 ?x230)))
-(let (($x248 (<= ?v1 0)))
-(let ((?x255 (ite $x248 ?x233 ?x74)))
-(let (($x72 (= ?v1 0)))
-(let ((?x71 (|div$| ?v0 ?v1)))
-(= ?x71 (ite $x72 0 ?x255)))))))))))
-))
-(let ((?x71 (|div$| ?1 ?0)))
-(let (($x263 (= ?x71 (ite $x72 0 (ite $x248 (div ?x227 ?x230) (div ?1 ?0))))))
-(let (($x81 (forall ((?v0 Int) (?v1 Int) )(let (($x72 (= ?v1 0)))
-(let ((?x79 (ite $x72 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1))))))
-(let ((?x71 (|div$| ?v0 ?v1)))
-(= ?x71 ?x79)))))
-))
-(let (($x245 (forall ((?v0 Int) (?v1 Int) )(let ((?x230 (* (~ 1) ?v1)))
-(let ((?x227 (* (~ 1) ?v0)))
-(let ((?x233 (div ?x227 ?x230)))
-(let ((?x74 (div ?v0 ?v1)))
-(let (($x73 (< 0 ?v1)))
-(let ((?x236 (ite $x73 ?x74 ?x233)))
-(let (($x72 (= ?v1 0)))
-(let ((?x239 (ite $x72 0 ?x236)))
-(let ((?x71 (|div$| ?v0 ?v1)))
-(= ?x71 ?x239)))))))))))
-))
-(let ((?x233 (div ?x227 ?x230)))
-(let ((?x74 (div ?1 ?0)))
-(let ((?x236 (ite $x73 ?x74 ?x233)))
-(let ((?x239 (ite $x72 0 ?x236)))
-(let (($x242 (= ?x71 ?x239)))
-(let ((@x254 (monotonicity (rewrite (= $x73 (not $x248))) (= ?x236 (ite (not $x248) ?x74 ?x233)))))
-(let ((@x259 (trans @x254 (rewrite (= (ite (not $x248) ?x74 ?x233) (ite $x248 ?x233 ?x74))) (= ?x236 (ite $x248 ?x233 ?x74)))))
-(let ((@x265 (monotonicity (monotonicity @x259 (= ?x239 (ite $x72 0 (ite $x248 ?x233 ?x74)))) (= $x242 $x263))))
-(let (($x243 (= (= ?x71 (ite $x72 0 (ite $x73 ?x74 (div (- ?1) (- ?0))))) $x242)))
-(let ((@x235 (monotonicity (rewrite (= (- ?1) ?x227)) (rewrite (= (- ?0) ?x230)) (= (div (- ?1) (- ?0)) ?x233))))
-(let ((@x241 (monotonicity (monotonicity @x235 (= (ite $x73 ?x74 (div (- ?1) (- ?0))) ?x236)) (= (ite $x72 0 (ite $x73 ?x74 (div (- ?1) (- ?0)))) ?x239))))
-(let ((@x270 (trans (|quant-intro| (monotonicity @x241 $x243) (= $x81 $x245)) (|quant-intro| @x265 (= $x245 $x266)) (= $x81 $x266))))
-(let ((@x355 (|mp~| (mp (asserted $x81) @x270 $x266) (|nnf-pos| (refl (|~| $x263 $x263)) (|~| $x266 $x266)) $x266)))
-(let ((@x416 (mp @x355 (|quant-intro| (refl (= $x263 $x263)) (= $x266 $x411)) $x411)))
-(let (($x486 (or (not $x411) $x480)))
-(let ((?x444 (div ?x146 2)))
-(let ((?x445 (ite $x440 (div (* (~ 1) ?x146) (* (~ 1) 2)) ?x444)))
-(let ((?x446 (ite $x439 0 ?x445)))
-(let (($x447 (= ?x149 ?x446)))
-(let ((@x460 (monotonicity (rewrite (= (* (~ 1) ?x146) (+ ?x452 ?x43))) @x457 (= (div (* (~ 1) ?x146) (* (~ 1) 2)) (div (+ ?x452 ?x43) (~ 2))))))
-(let ((@x463 (monotonicity @x451 @x460 (= ?x445 (ite false (div (+ ?x452 ?x43) (~ 2)) ?x444)))))
-(let ((@x467 (trans @x463 (rewrite (= (ite false (div (+ ?x452 ?x43) (~ 2)) ?x444) ?x444)) (= ?x445 ?x444))))
-(let ((@x474 (trans (monotonicity @x449 @x467 (= ?x446 (ite false 0 ?x444))) (rewrite (= (ite false 0 ?x444) ?x444)) (= ?x446 ?x444))))
-(let ((@x484 (trans (monotonicity @x474 (= $x447 (= ?x149 ?x444))) (rewrite (= (= ?x149 ?x444) $x480)) (= $x447 $x480))))
-(let ((@x493 (trans (monotonicity @x484 (= (or (not $x411) $x447) $x486)) (rewrite (= $x486 $x486)) (= (or (not $x411) $x447) $x486))))
-(let ((@x885 (|unit-resolution| (mp ((_ |quant-inst| (+ |l$| ?x145) 2) (or (not $x411) $x447)) @x493 $x486) @x416 $x480)))
-(let ((@x889 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x480) (<= ?x479 0))) @x885 (<= ?x479 0))))
-(let ((@x892 (|unit-resolution| ((_ |th-lemma| arith) (or false (>= (mod (+ |l$| ?x43) 2) 0))) @x108 (>= (mod (+ |l$| ?x43) 2) 0))))
-(let ((@x893 ((_ |th-lemma| arith farkas 1 -2 -2 -1 1 1) @x892 @x889 (hypothesis $x770) @x883 (hypothesis (not $x777)) @x876 false)))
-(let (($x169 (not $x41)))
-(let (($x370 (= $x41 $x363)))
-(let ((@x369 (monotonicity (rewrite (= (and $x46 $x152) $x364)) (= (= $x169 (and $x46 $x152)) (= $x169 $x364)))))
-(let ((@x374 (trans @x369 (rewrite (= (= $x169 $x364) $x370)) (= (= $x169 (and $x46 $x152)) $x370))))
-(let (($x155 (and $x46 $x152)))
-(let (($x170 (= $x169 $x155)))
-(let (($x53 (= $x41 (and $x46 (= ?x48 (|div$| (- |l$| ?x43) 2))))))
-(let (($x54 (not $x53)))
-(let ((@x151 (monotonicity (rewrite (= (- |l$| ?x43) ?x146)) (= (|div$| (- |l$| ?x43) 2) ?x149))))
-(let ((@x157 (monotonicity (monotonicity @x151 (= (= ?x48 (|div$| (- |l$| ?x43) 2)) $x152)) (= (and $x46 (= ?x48 (|div$| (- |l$| ?x43) 2))) $x155))))
-(let ((@x165 (trans (monotonicity @x157 (= $x53 (= $x41 $x155))) (rewrite (= (= $x41 $x155) (= $x41 $x155))) (= $x53 (= $x41 $x155)))))
-(let ((@x174 (trans (monotonicity @x165 (= $x54 (not (= $x41 $x155)))) (rewrite (= (not (= $x41 $x155)) $x170)) (= $x54 $x170))))
-(let ((@x375 (mp (mp (asserted $x54) @x174 $x170) @x374 $x370)))
-(let ((@x438 (|unit-resolution| (|def-axiom| (or $x169 $x363 (not $x370))) @x375 (or $x169 $x363))))
-(let ((@x1025 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x41 (not $x777) $x1021)) (|unit-resolution| @x438 @x741 $x169) (or (not $x777) $x1021))))
-(let ((@x1026 (|unit-resolution| @x1025 (|unit-resolution| (lemma @x893 (or $x777 (not $x770))) @x1018 $x777) $x1021)))
-(let ((@x1029 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x361 (>= (+ ?x44 (* (~ 1) ?x45)) 0))) (|unit-resolution| (|def-axiom| (or $x363 $x46)) @x741 $x46) (>= (+ ?x44 (* (~ 1) ?x45)) 0))))
-(let ((?x744 (+ ?x43 ?x712 (* (~ 2) ?x730))))
-(let (($x742 (= ?x744 0)))
-(let ((@x1032 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x742) (>= ?x744 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x742)) @x108 $x742) (>= ?x744 0))))
-(let ((?x713 (+ ?x44 ?x712)))
-(let (($x714 (= ?x713 0)))
-(let (($x719 (or $x633 $x714)))
-(let ((?x686 (ite $x440 (* (~ 1) (mod ?x145 (* (~ 1) 2))) ?x685)))
-(let ((?x687 (ite $x439 ?x43 ?x686)))
-(let (($x688 (= ?x44 ?x687)))
-(let ((@x694 (monotonicity (monotonicity @x457 (= (mod ?x145 (* (~ 1) 2)) (mod ?x145 (~ 2)))) (= (* (~ 1) (mod ?x145 (* (~ 1) 2))) (* (~ 1) (mod ?x145 (~ 2)))))))
-(let ((@x697 (monotonicity @x451 @x694 (= ?x686 (ite false (* (~ 1) (mod ?x145 (~ 2))) ?x685)))))
-(let ((@x701 (trans @x697 (rewrite (= (ite false (* (~ 1) (mod ?x145 (~ 2))) ?x685) ?x685)) (= ?x686 ?x685))))
-(let ((@x708 (trans (monotonicity @x449 @x701 (= ?x687 (ite false ?x43 ?x685))) (rewrite (= (ite false ?x43 ?x685) ?x685)) (= ?x687 ?x685))))
-(let ((@x718 (trans (monotonicity @x708 (= $x688 (= ?x44 ?x685))) (rewrite (= (= ?x44 ?x685) $x714)) (= $x688 $x714))))
-(let ((@x726 (trans (monotonicity @x718 (= (or $x633 $x688) $x719)) (rewrite (= $x719 $x719)) (= (or $x633 $x688) $x719))))
-(let ((@x1035 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x714) (>= ?x713 0))) (|unit-resolution| (mp ((_ |quant-inst| (|eval_dioph$| |ks$| ?x42) 2) (or $x633 $x688)) @x726 $x719) @x423 $x714) (>= ?x713 0))))
-(let ((@x992 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x586) (>= ?x585 0))) (|unit-resolution| ((_ |quant-inst| |ks$| |xs$|) (or (not $x384) $x586)) @x389 $x586) (>= ?x585 0))))
-(let ((?x773 (+ ?x44 (* (~ 1) ?x45))))
-(let (($x774 (<= ?x773 0)))
-(let ((@x1010 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x361 $x774)) (|unit-resolution| (|def-axiom| (or $x363 $x46)) @x741 $x46) $x774)))
-(let ((@x1014 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x362 $x771)) (|unit-resolution| (|def-axiom| (or $x363 $x152)) @x741 $x152) $x771)))
-(let ((@x963 (|unit-resolution| ((_ |th-lemma| arith) (or false (not (>= (mod (+ |l$| ?x43) 2) 2)))) @x108 (not (>= (mod (+ |l$| ?x43) 2) 2)))))
-(let ((@x748 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x628) (<= ?x627 0))) (|unit-resolution| (mp ((_ |quant-inst| |l$| 2) (or $x633 $x602)) @x641 $x634) @x423 $x628) (<= ?x627 0))))
-(let ((@x932 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x742) (<= ?x744 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x742)) @x108 $x742) (<= ?x744 0))))
-(let ((@x852 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x657) (<= ?x659 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x657)) @x108 $x657) (<= ?x659 0))))
-(let ((@x937 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x714) (<= ?x713 0))) (|unit-resolution| (mp ((_ |quant-inst| (|eval_dioph$| |ks$| ?x42) 2) (or $x633 $x688)) @x726 $x719) @x423 $x714) (<= ?x713 0))))
-(let ((@x954 (hypothesis $x771)))
-(let ((@x957 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x480) (>= ?x479 0))) @x885 (>= ?x479 0))))
-(let ((@x960 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x517) (<= ?x520 0))) (|unit-resolution| ((_ |th-lemma| arith) (or false $x517)) @x108 $x517) (<= ?x520 0))))
-(let ((@x515 ((_ |th-lemma| arith farkas 1 -2 -2 -2 1 1 1 1 1 1) @x960 @x957 @x954 (hypothesis $x737) @x937 @x852 @x932 (hypothesis $x774) @x748 @x963 false)))
-(let ((@x1015 (|unit-resolution| (lemma @x515 (or (not $x737) (not $x771) (not $x774))) @x1014 @x1010 (not $x737))))
-(let ((@x1037 (|unit-resolution| @x1015 ((_ |th-lemma| arith) @x992 @x1035 @x1032 @x1029 @x1026 @x950 @x945 $x737) false)))
-(let ((@x1038 (lemma @x1037 $x363)))
-(let ((@x434 (|unit-resolution| (|def-axiom| (or $x41 $x364 (not $x370))) @x375 (or $x41 $x364))))
-(let ((@x1120 (|unit-resolution| @x434 @x1038 $x41)))
-(let ((@x1125 ((_ |th-lemma| arith farkas 2 2 1 1 1 1) (hypothesis (not $x771)) @x889 @x892 @x876 @x883 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x169 $x778)) @x1120 $x778) false)))
-(let ((@x1048 ((_ |th-lemma| arith farkas -1 1 1 -2 -2 1) @x992 (|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x169 $x777)) @x1120 $x777) @x960 @x957 (hypothesis (not $x770)) @x963 false)))
-(let ((?x587 (|mod$| ?x39 2)))
-(let (($x588 (= ?x587 ?x44)))
-(let (($x377 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(!(= (|mod$| (|eval_dioph$| ?v0 ?v1) 2) (|mod$| (|eval_dioph$| ?v0 (|map$| |uu$| ?v1)) 2)) :pattern ( (|eval_dioph$| ?v0 (|map$| |uu$| ?v1)) )))
-))
-(let (($x30 (forall ((?v0 |Int_list$|) (?v1 |Nat_list$|) )(= (|mod$| (|eval_dioph$| ?v0 ?v1) 2) (|mod$| (|eval_dioph$| ?v0 (|map$| |uu$| ?v1)) 2)))
-))
-(let (($x29 (= (|mod$| ?x24 2) (|mod$| ?x27 2))))
-(let ((@x330 (|mp~| (asserted $x30) (|nnf-pos| (refl (|~| $x29 $x29)) (|~| $x30 $x30)) $x30)))
-(let ((@x382 (mp @x330 (|quant-intro| (refl (= $x29 $x29)) (= $x30 $x377)) $x377)))
-(let ((@x1104 (symm (|unit-resolution| ((_ |quant-inst| |ks$| |xs$|) (or (not $x377) $x588)) @x382 $x588) (= ?x44 ?x587))))
-(let ((@x763 (|unit-resolution| (hypothesis $x361) (trans @x1104 (monotonicity @x1120 (= ?x587 ?x45)) $x46) false)))
-(let ((@x1050 (|unit-resolution| (|unit-resolution| (|def-axiom| (or $x364 $x361 $x362)) @x1038 $x363) (lemma @x763 $x46) $x362)))
-(|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or $x152 (not $x770) (not $x771))) @x1050 (lemma @x1048 $x770) (lemma @x1125 $x771) false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x102 (mod$ l$ 2)))
+(let ((?x99 (map$ uu$ xs$)))
+(let ((?x100 (eval_dioph$ ks$ ?x99)))
+(let ((?x101 (mod$ ?x100 2)))
+(let (($x103 (= ?x101 ?x102)))
+(let ((?x96 (eval_dioph$ ks$ xs$)))
+(let (($x98 (= ?x96 l$)))
+(let ((?x113 (* (- 1) ?x100)))
+(let ((?x114 (+ l$ ?x113)))
+(let ((?x117 (div$ ?x114 2)))
+(let ((?x104 (map$ uua$ xs$)))
+(let ((?x105 (eval_dioph$ ks$ ?x104)))
+(let (($x120 (= ?x105 ?x117)))
+(let (($x364 (not $x120)))
+(let (($x363 (not $x103)))
+(let (($x365 (or $x363 $x364)))
+(let ((?x849 (div ?x96 2)))
+(let ((?x1076 (* (- 1) ?x849)))
+(let ((?x804 (mod ?x96 2)))
+(let ((?x831 (* (- 1) ?x804)))
+(let ((?x621 (mod l$ 2)))
+(let ((?x648 (* (- 1) ?x621)))
+(let (($x1078 (>= (+ l$ ?x102 ?x648 (* (- 1) (div l$ 2)) ?x831 ?x1076) 1)))
+(let ((?x475 (* (- 1) l$)))
+(let ((?x798 (+ ?x96 ?x475)))
+(let (($x800 (>= ?x798 0)))
+(let (($x874 (not $x800)))
+(let (($x799 (<= ?x798 0)))
+(let ((?x791 (+ ?x105 (* (- 1) ?x117))))
+(let (($x792 (<= ?x791 0)))
+(let (($x366 (not $x365)))
+(let ((@x583 (hypothesis $x366)))
+(let ((@x577 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x364 $x792)) (unit-resolution (def-axiom (or $x365 $x120)) @x583 $x120) $x792)))
+(let ((?x542 (+ l$ ?x113 (* (- 2) (div ?x114 2)) (* (- 1) (mod (+ l$ ?x100) 2)))))
+(let (($x548 (>= ?x542 0)))
+(let (($x539 (= ?x542 0)))
+(let ((@x26 (true-axiom true)))
+(let ((@x898 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x539) $x548)) (unit-resolution ((_ th-lemma arith) (or false $x539)) @x26 $x539) $x548)))
+(let ((?x606 (* (- 2) ?x105)))
+(let ((?x607 (+ ?x96 ?x113 ?x606)))
+(let (($x614 (<= ?x607 0)))
+(let (($x608 (= ?x607 0)))
+(let (($x386 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(!(let ((?x48 (eval_dioph$ ?v0 ?v1)))
+(let ((?x86 (+ ?x48 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1))))))
+(= ?x86 0))) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) ) :pattern ( (eval_dioph$ ?v0 (map$ uua$ ?v1)) )))
+))
+(let (($x88 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(let ((?x48 (eval_dioph$ ?v0 ?v1)))
+(let ((?x86 (+ ?x48 (* (- 1) (eval_dioph$ ?v0 (map$ uu$ ?v1))) (* (- 2) (eval_dioph$ ?v0 (map$ uua$ ?v1))))))
+(= ?x86 0))))
+))
+(let ((?x48 (eval_dioph$ ?1 ?0)))
+(let ((?x86 (+ ?x48 (* (- 1) (eval_dioph$ ?1 (map$ uu$ ?0))) (* (- 2) (eval_dioph$ ?1 (map$ uua$ ?0))))))
+(let (($x82 (= ?x86 0)))
+(let (($x61 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(let ((?x48 (eval_dioph$ ?v0 ?v1)))
+(let ((?x51 (eval_dioph$ ?v0 (map$ uu$ ?v1))))
+(let ((?x59 (+ (* (eval_dioph$ ?v0 (map$ uua$ ?v1)) 2) ?x51)))
+(= ?x59 ?x48)))))
+))
+(let (($x77 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(let ((?x48 (eval_dioph$ ?v0 ?v1)))
+(let ((?x57 (eval_dioph$ ?v0 (map$ uua$ ?v1))))
+(let ((?x63 (* 2 ?x57)))
+(let ((?x51 (eval_dioph$ ?v0 (map$ uu$ ?v1))))
+(let ((?x69 (+ ?x51 ?x63)))
+(= ?x69 ?x48)))))))
+))
+(let ((?x57 (eval_dioph$ ?1 (map$ uua$ ?0))))
+(let ((?x63 (* 2 ?x57)))
+(let ((?x51 (eval_dioph$ ?1 (map$ uu$ ?0))))
+(let ((?x69 (+ ?x51 ?x63)))
+(let (($x74 (= ?x69 ?x48)))
+(let ((@x68 (monotonicity (rewrite (= (* ?x57 2) ?x63)) (= (+ (* ?x57 2) ?x51) (+ ?x63 ?x51)))))
+(let ((@x73 (trans @x68 (rewrite (= (+ ?x63 ?x51) ?x69)) (= (+ (* ?x57 2) ?x51) ?x69))))
+(let ((@x79 (quant-intro (monotonicity @x73 (= (= (+ (* ?x57 2) ?x51) ?x48) $x74)) (= $x61 $x77))))
+(let ((@x92 (trans @x79 (quant-intro (rewrite (= $x74 $x82)) (= $x77 $x88)) (= $x61 $x88))))
+(let ((@x337 (mp~ (mp (asserted $x61) @x92 $x88) (nnf-pos (refl (~ $x82 $x82)) (~ $x88 $x88)) $x88)))
+(let ((@x391 (mp @x337 (quant-intro (refl (= $x82 $x82)) (= $x88 $x386)) $x386)))
+(let (($x612 (or (not $x386) $x608)))
+(let ((@x613 ((_ quant-inst ks$ xs$) $x612)))
+(let ((@x905 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x608) $x614)) (unit-resolution @x613 @x391 $x608) $x614)))
+(let ((?x502 (+ ?x117 (* (- 1) (div ?x114 2)))))
+(let (($x519 (<= ?x502 0)))
+(let (($x503 (= ?x502 0)))
+(let (($x413 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x212 (div ?v0 ?v1)))
+(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x227 (div ?x221 ?x224)))
+(let (($x242 (<= ?v1 0)))
+(let ((?x249 (ite $x242 ?x227 ?x212)))
+(let (($x210 (= ?v1 0)))
+(let ((?x209 (div$ ?v0 ?v1)))
+(= ?x209 (ite $x210 0 ?x249)))))))))) :pattern ( (div$ ?v0 ?v1) )))
+))
+(let (($x260 (forall ((?v0 Int) (?v1 Int) )(let ((?x212 (div ?v0 ?v1)))
+(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x227 (div ?x221 ?x224)))
+(let (($x242 (<= ?v1 0)))
+(let ((?x249 (ite $x242 ?x227 ?x212)))
+(let (($x210 (= ?v1 0)))
+(let ((?x209 (div$ ?v0 ?v1)))
+(= ?x209 (ite $x210 0 ?x249)))))))))))
+))
+(let ((?x212 (div ?1 ?0)))
+(let ((?x224 (* (- 1) ?0)))
+(let ((?x221 (* (- 1) ?1)))
+(let ((?x227 (div ?x221 ?x224)))
+(let (($x242 (<= ?0 0)))
+(let ((?x249 (ite $x242 ?x227 ?x212)))
+(let (($x210 (= ?0 0)))
+(let ((?x209 (div$ ?1 ?0)))
+(let (($x257 (= ?x209 (ite $x210 0 ?x249))))
+(let (($x219 (forall ((?v0 Int) (?v1 Int) )(let (($x210 (= ?v1 0)))
+(let ((?x217 (ite $x210 0 (ite (< 0 ?v1) (div ?v0 ?v1) (div (- ?v0) (- ?v1))))))
+(let ((?x209 (div$ ?v0 ?v1)))
+(= ?x209 ?x217)))))
+))
+(let (($x239 (forall ((?v0 Int) (?v1 Int) )(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x227 (div ?x221 ?x224)))
+(let ((?x212 (div ?v0 ?v1)))
+(let (($x211 (< 0 ?v1)))
+(let ((?x230 (ite $x211 ?x212 ?x227)))
+(let (($x210 (= ?v1 0)))
+(let ((?x233 (ite $x210 0 ?x230)))
+(let ((?x209 (div$ ?v0 ?v1)))
+(= ?x209 ?x233)))))))))))
+))
+(let (($x211 (< 0 ?0)))
+(let ((?x230 (ite $x211 ?x212 ?x227)))
+(let ((?x233 (ite $x210 0 ?x230)))
+(let ((@x248 (monotonicity (rewrite (= $x211 (not $x242))) (= ?x230 (ite (not $x242) ?x212 ?x227)))))
+(let ((@x253 (trans @x248 (rewrite (= (ite (not $x242) ?x212 ?x227) ?x249)) (= ?x230 ?x249))))
+(let ((@x259 (monotonicity (monotonicity @x253 (= ?x233 (ite $x210 0 ?x249))) (= (= ?x209 ?x233) $x257))))
+(let (($x236 (= ?x209 ?x233)))
+(let (($x237 (= (= ?x209 (ite $x210 0 (ite $x211 ?x212 (div (- ?1) (- ?0))))) $x236)))
+(let ((@x229 (monotonicity (rewrite (= (- ?1) ?x221)) (rewrite (= (- ?0) ?x224)) (= (div (- ?1) (- ?0)) ?x227))))
+(let ((@x235 (monotonicity (monotonicity @x229 (= (ite $x211 ?x212 (div (- ?1) (- ?0))) ?x230)) (= (ite $x210 0 (ite $x211 ?x212 (div (- ?1) (- ?0)))) ?x233))))
+(let ((@x264 (trans (quant-intro (monotonicity @x235 $x237) (= $x219 $x239)) (quant-intro @x259 (= $x239 $x260)) (= $x219 $x260))))
+(let ((@x357 (mp~ (mp (asserted $x219) @x264 $x260) (nnf-pos (refl (~ $x257 $x257)) (~ $x260 $x260)) $x260)))
+(let ((@x418 (mp @x357 (quant-intro (refl (= $x257 $x257)) (= $x260 $x413)) $x413)))
+(let (($x509 (or (not $x413) $x503)))
+(let ((?x467 (div ?x114 2)))
+(let (($x463 (<= 2 0)))
+(let ((?x468 (ite $x463 (div (* (- 1) ?x114) (* (- 1) 2)) ?x467)))
+(let (($x462 (= 2 0)))
+(let ((?x469 (ite $x462 0 ?x468)))
+(let (($x470 (= ?x117 ?x469)))
+(let ((@x480 (rewrite (= (* (- 1) 2) (- 2)))))
+(let ((@x483 (monotonicity (rewrite (= (* (- 1) ?x114) (+ ?x475 ?x100))) @x480 (= (div (* (- 1) ?x114) (* (- 1) 2)) (div (+ ?x475 ?x100) (- 2))))))
+(let ((@x474 (rewrite (= $x463 false))))
+(let ((@x486 (monotonicity @x474 @x483 (= ?x468 (ite false (div (+ ?x475 ?x100) (- 2)) ?x467)))))
+(let ((@x490 (trans @x486 (rewrite (= (ite false (div (+ ?x475 ?x100) (- 2)) ?x467) ?x467)) (= ?x468 ?x467))))
+(let ((@x472 (rewrite (= $x462 false))))
+(let ((@x497 (trans (monotonicity @x472 @x490 (= ?x469 (ite false 0 ?x467))) (rewrite (= (ite false 0 ?x467) ?x467)) (= ?x469 ?x467))))
+(let ((@x507 (trans (monotonicity @x497 (= $x470 (= ?x117 ?x467))) (rewrite (= (= ?x117 ?x467) $x503)) (= $x470 $x503))))
+(let ((@x516 (trans (monotonicity @x507 (= (or (not $x413) $x470) $x509)) (rewrite (= $x509 $x509)) (= (or (not $x413) $x470) $x509))))
+(let ((@x907 (unit-resolution (mp ((_ quant-inst (+ l$ ?x113) 2) (or (not $x413) $x470)) @x516 $x509) @x418 $x503)))
+(let ((?x530 (mod (+ l$ ?x100) 2)))
+(let (($x570 (>= ?x530 0)))
+(let ((@x915 ((_ th-lemma arith farkas 1 -2 -2 -1 1 1) (unit-resolution ((_ th-lemma arith) (or false $x570)) @x26 $x570) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x519)) @x907 $x519) (hypothesis $x792) @x905 (hypothesis (not $x799)) @x898 false)))
+(let (($x137 (not $x98)))
+(let (($x372 (= $x98 $x365)))
+(let ((@x371 (monotonicity (rewrite (= (and $x103 $x120) $x366)) (= (= $x137 (and $x103 $x120)) (= $x137 $x366)))))
+(let ((@x376 (trans @x371 (rewrite (= (= $x137 $x366) $x372)) (= (= $x137 (and $x103 $x120)) $x372))))
+(let (($x123 (and $x103 $x120)))
+(let (($x138 (= $x137 $x123)))
+(let (($x110 (= $x98 (and $x103 (= ?x105 (div$ (- l$ ?x100) 2))))))
+(let (($x111 (not $x110)))
+(let ((@x119 (monotonicity (rewrite (= (- l$ ?x100) ?x114)) (= (div$ (- l$ ?x100) 2) ?x117))))
+(let ((@x125 (monotonicity (monotonicity @x119 (= (= ?x105 (div$ (- l$ ?x100) 2)) $x120)) (= (and $x103 (= ?x105 (div$ (- l$ ?x100) 2))) $x123))))
+(let ((@x133 (trans (monotonicity @x125 (= $x110 (= $x98 $x123))) (rewrite (= (= $x98 $x123) (= $x98 $x123))) (= $x110 (= $x98 $x123)))))
+(let ((@x142 (trans (monotonicity @x133 (= $x111 (not (= $x98 $x123)))) (rewrite (= (not (= $x98 $x123)) $x138)) (= $x111 $x138))))
+(let ((@x377 (mp (mp (asserted $x111) @x142 $x138) @x376 $x372)))
+(let ((@x449 (unit-resolution (def-axiom (or $x137 $x365 (not $x372))) @x377 (or $x137 $x365))))
+(let ((@x603 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x98 (not $x799) $x874)) (unit-resolution @x449 @x583 $x137) (or (not $x799) $x874))))
+(let ((@x604 (unit-resolution @x603 (unit-resolution (lemma @x915 (or $x799 (not $x792))) @x577 $x799) $x874)))
+(let ((?x649 (+ ?x102 ?x648)))
+(let (($x666 (>= ?x649 0)))
+(let (($x650 (= ?x649 0)))
+(let (($x420 (forall ((?v0 Int) (?v1 Int) )(!(let ((?x267 (mod ?v0 ?v1)))
+(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x275 (mod ?x221 ?x224)))
+(let ((?x281 (* (- 1) ?x275)))
+(let (($x242 (<= ?v1 0)))
+(let ((?x301 (ite $x242 ?x281 ?x267)))
+(let (($x210 (= ?v1 0)))
+(let ((?x306 (ite $x210 ?v0 ?x301)))
+(let ((?x266 (mod$ ?v0 ?v1)))
+(= ?x266 ?x306))))))))))) :pattern ( (mod$ ?v0 ?v1) )))
+))
+(let (($x312 (forall ((?v0 Int) (?v1 Int) )(let ((?x267 (mod ?v0 ?v1)))
+(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x275 (mod ?x221 ?x224)))
+(let ((?x281 (* (- 1) ?x275)))
+(let (($x242 (<= ?v1 0)))
+(let ((?x301 (ite $x242 ?x281 ?x267)))
+(let (($x210 (= ?v1 0)))
+(let ((?x306 (ite $x210 ?v0 ?x301)))
+(let ((?x266 (mod$ ?v0 ?v1)))
+(= ?x266 ?x306))))))))))))
+))
+(let ((?x267 (mod ?1 ?0)))
+(let ((?x275 (mod ?x221 ?x224)))
+(let ((?x281 (* (- 1) ?x275)))
+(let ((?x301 (ite $x242 ?x281 ?x267)))
+(let ((?x306 (ite $x210 ?1 ?x301)))
+(let ((?x266 (mod$ ?1 ?0)))
+(let (($x309 (= ?x266 ?x306)))
+(let (($x273 (forall ((?v0 Int) (?v1 Int) )(let (($x210 (= ?v1 0)))
+(let ((?x271 (ite $x210 ?v0 (ite (< 0 ?v1) (mod ?v0 ?v1) (- (mod (- ?v0) (- ?v1)))))))
+(let ((?x266 (mod$ ?v0 ?v1)))
+(= ?x266 ?x271)))))
+))
+(let (($x295 (forall ((?v0 Int) (?v1 Int) )(let ((?x224 (* (- 1) ?v1)))
+(let ((?x221 (* (- 1) ?v0)))
+(let ((?x275 (mod ?x221 ?x224)))
+(let ((?x281 (* (- 1) ?x275)))
+(let ((?x267 (mod ?v0 ?v1)))
+(let (($x211 (< 0 ?v1)))
+(let ((?x286 (ite $x211 ?x267 ?x281)))
+(let (($x210 (= ?v1 0)))
+(let ((?x289 (ite $x210 ?v0 ?x286)))
+(let ((?x266 (mod$ ?v0 ?v1)))
+(= ?x266 ?x289))))))))))))
+))
+(let ((@x300 (monotonicity (rewrite (= $x211 (not $x242))) (= (ite $x211 ?x267 ?x281) (ite (not $x242) ?x267 ?x281)))))
+(let ((@x305 (trans @x300 (rewrite (= (ite (not $x242) ?x267 ?x281) ?x301)) (= (ite $x211 ?x267 ?x281) ?x301))))
+(let ((@x311 (monotonicity (monotonicity @x305 (= (ite $x210 ?1 (ite $x211 ?x267 ?x281)) ?x306)) (= (= ?x266 (ite $x210 ?1 (ite $x211 ?x267 ?x281))) $x309))))
+(let ((?x286 (ite $x211 ?x267 ?x281)))
+(let ((?x289 (ite $x210 ?1 ?x286)))
+(let (($x292 (= ?x266 ?x289)))
+(let (($x293 (= (= ?x266 (ite $x210 ?1 (ite $x211 ?x267 (- (mod (- ?1) (- ?0)))))) $x292)))
+(let ((@x277 (monotonicity (rewrite (= (- ?1) ?x221)) (rewrite (= (- ?0) ?x224)) (= (mod (- ?1) (- ?0)) ?x275))))
+(let ((@x285 (trans (monotonicity @x277 (= (- (mod (- ?1) (- ?0))) (- ?x275))) (rewrite (= (- ?x275) ?x281)) (= (- (mod (- ?1) (- ?0))) ?x281))))
+(let ((@x288 (monotonicity @x285 (= (ite $x211 ?x267 (- (mod (- ?1) (- ?0)))) ?x286))))
+(let ((@x291 (monotonicity @x288 (= (ite $x210 ?1 (ite $x211 ?x267 (- (mod (- ?1) (- ?0))))) ?x289))))
+(let ((@x316 (trans (quant-intro (monotonicity @x291 $x293) (= $x273 $x295)) (quant-intro @x311 (= $x295 $x312)) (= $x273 $x312))))
+(let ((@x362 (mp~ (mp (asserted $x273) @x316 $x312) (nnf-pos (refl (~ $x309 $x309)) (~ $x312 $x312)) $x312)))
+(let ((@x425 (mp @x362 (quant-intro (refl (= $x309 $x309)) (= $x312 $x420)) $x420)))
+(let (($x655 (not $x420)))
+(let (($x656 (or $x655 $x650)))
+(let ((?x465 (* (- 1) 2)))
+(let ((?x616 (mod ?x475 ?x465)))
+(let ((?x617 (* (- 1) ?x616)))
+(let ((?x622 (ite $x463 ?x617 ?x621)))
+(let ((?x623 (ite $x462 l$ ?x622)))
+(let (($x624 (= ?x102 ?x623)))
+(let ((@x630 (monotonicity (monotonicity @x480 (= ?x616 (mod ?x475 (- 2)))) (= ?x617 (* (- 1) (mod ?x475 (- 2)))))))
+(let ((@x633 (monotonicity @x474 @x630 (= ?x622 (ite false (* (- 1) (mod ?x475 (- 2))) ?x621)))))
+(let ((@x637 (trans @x633 (rewrite (= (ite false (* (- 1) (mod ?x475 (- 2))) ?x621) ?x621)) (= ?x622 ?x621))))
+(let ((@x644 (trans (monotonicity @x472 @x637 (= ?x623 (ite false l$ ?x621))) (rewrite (= (ite false l$ ?x621) ?x621)) (= ?x623 ?x621))))
+(let ((@x654 (trans (monotonicity @x644 (= $x624 (= ?x102 ?x621))) (rewrite (= (= ?x102 ?x621) $x650)) (= $x624 $x650))))
+(let ((@x663 (trans (monotonicity @x654 (= (or $x655 $x624) $x656)) (rewrite (= $x656 $x656)) (= (or $x655 $x624) $x656))))
+(let ((@x664 (mp ((_ quant-inst l$ 2) (or $x655 $x624)) @x663 $x656)))
+(let ((@x921 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x650) $x666)) (unit-resolution @x664 @x425 $x650) $x666)))
+(let ((?x862 (* (- 2) ?x849)))
+(let ((?x863 (+ ?x96 ?x831 ?x862)))
+(let (($x869 (>= ?x863 0)))
+(let (($x861 (= ?x863 0)))
+(let ((@x924 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x861) $x869)) (unit-resolution ((_ th-lemma arith) (or false $x861)) @x26 $x861) $x869)))
+(let ((?x667 (div l$ 2)))
+(let ((?x680 (* (- 2) ?x667)))
+(let ((?x681 (+ l$ ?x648 ?x680)))
+(let (($x687 (>= ?x681 0)))
+(let (($x679 (= ?x681 0)))
+(let ((@x934 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x679) $x687)) (unit-resolution ((_ th-lemma arith) (or false $x679)) @x26 $x679) $x687)))
+(let ((?x609 (mod$ ?x96 2)))
+(let ((?x832 (+ ?x609 ?x831)))
+(let (($x833 (= ?x832 0)))
+(let (($x838 (or $x655 $x833)))
+(let ((?x801 (* (- 1) ?x96)))
+(let ((?x802 (mod ?x801 ?x465)))
+(let ((?x803 (* (- 1) ?x802)))
+(let ((?x805 (ite $x463 ?x803 ?x804)))
+(let ((?x806 (ite $x462 ?x96 ?x805)))
+(let (($x807 (= ?x609 ?x806)))
+(let ((@x813 (monotonicity (monotonicity @x480 (= ?x802 (mod ?x801 (- 2)))) (= ?x803 (* (- 1) (mod ?x801 (- 2)))))))
+(let ((@x816 (monotonicity @x474 @x813 (= ?x805 (ite false (* (- 1) (mod ?x801 (- 2))) ?x804)))))
+(let ((@x820 (trans @x816 (rewrite (= (ite false (* (- 1) (mod ?x801 (- 2))) ?x804) ?x804)) (= ?x805 ?x804))))
+(let ((@x827 (trans (monotonicity @x472 @x820 (= ?x806 (ite false ?x96 ?x804))) (rewrite (= (ite false ?x96 ?x804) ?x804)) (= ?x806 ?x804))))
+(let ((@x837 (trans (monotonicity @x827 (= $x807 (= ?x609 ?x804))) (rewrite (= (= ?x609 ?x804) $x833)) (= $x807 $x833))))
+(let ((@x845 (trans (monotonicity @x837 (= (or $x655 $x807) $x838)) (rewrite (= $x838 $x838)) (= (or $x655 $x807) $x838))))
+(let ((@x775 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x833) (>= ?x832 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x655 $x807)) @x845 $x838) @x425 $x833) (>= ?x832 0))))
+(let ((?x888 (* (- 1) ?x609)))
+(let ((?x889 (+ ?x102 ?x888)))
+(let (($x891 (>= ?x889 0)))
+(let (($x887 (= ?x102 ?x609)))
+(let (($x881 (= ?x101 ?x609)))
+(let (($x610 (= ?x609 ?x101)))
+(let (($x379 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(!(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)) :pattern ( (eval_dioph$ ?v0 (map$ uu$ ?v1)) )))
+))
+(let (($x54 (forall ((?v0 Int_list$) (?v1 Nat_list$) )(= (mod$ (eval_dioph$ ?v0 ?v1) 2) (mod$ (eval_dioph$ ?v0 (map$ uu$ ?v1)) 2)))
+))
+(let (($x53 (= (mod$ ?x48 2) (mod$ ?x51 2))))
+(let ((@x332 (mp~ (asserted $x54) (nnf-pos (refl (~ $x53 $x53)) (~ $x54 $x54)) $x54)))
+(let ((@x384 (mp @x332 (quant-intro (refl (= $x53 $x53)) (= $x54 $x379)) $x379)))
+(let (($x619 (or (not $x379) $x610)))
+(let ((@x620 ((_ quant-inst ks$ xs$) $x619)))
+(let ((@x965 (symm (unit-resolution (def-axiom (or $x365 $x103)) @x583 $x103) (= ?x102 ?x101))))
+(let ((@x962 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x887) $x891)) (trans @x965 (symm (unit-resolution @x620 @x384 $x610) $x881) $x887) $x891)))
+(let (($x890 (<= ?x889 0)))
+(let ((@x1023 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x887) $x890)) (trans @x965 (symm (unit-resolution @x620 @x384 $x610) $x881) $x887) $x890)))
+(let (($x793 (>= ?x791 0)))
+(let ((@x521 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x364 $x793)) (unit-resolution (def-axiom (or $x365 $x120)) @x583 $x120) $x793)))
+(let ((@x1085 (unit-resolution ((_ th-lemma arith) (or false (not (>= ?x530 2)))) @x26 (not (>= ?x530 2)))))
+(let (($x665 (<= ?x649 0)))
+(let ((@x767 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x650) $x665)) (unit-resolution @x664 @x425 $x650) $x665)))
+(let (($x868 (<= ?x863 0)))
+(let ((@x858 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x861) $x868)) (unit-resolution ((_ th-lemma arith) (or false $x861)) @x26 $x861) $x868)))
+(let (($x686 (<= ?x681 0)))
+(let ((@x1092 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x679) $x686)) (unit-resolution ((_ th-lemma arith) (or false $x679)) @x26 $x679) $x686)))
+(let ((@x1095 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x833) (<= ?x832 0))) (unit-resolution (mp ((_ quant-inst (eval_dioph$ ks$ xs$) 2) (or $x655 $x807)) @x845 $x838) @x425 $x833) (<= ?x832 0))))
+(let (($x615 (>= ?x607 0)))
+(let ((@x1100 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x608) $x615)) (unit-resolution @x613 @x391 $x608) $x615)))
+(let ((@x1104 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) (>= ?x502 0))) @x907 (>= ?x502 0))))
+(let ((@x1107 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x539) (<= ?x542 0))) (unit-resolution ((_ th-lemma arith) (or false $x539)) @x26 $x539) (<= ?x542 0))))
+(let ((@x1108 ((_ th-lemma arith farkas 1 -2 -2 -1 -2 1 1 1 1 1 1) @x1107 @x1104 (hypothesis $x793) @x1100 (hypothesis $x1078) (hypothesis $x890) @x1095 @x1092 @x858 @x767 @x1085 false)))
+(let ((@x576 (unit-resolution (lemma @x1108 (or (not $x1078) (not $x793) (not $x890))) @x521 @x1023 (not $x1078))))
+(let ((@x966 (unit-resolution @x576 ((_ th-lemma arith) @x962 @x775 @x934 @x924 @x921 @x604 $x1078) false)))
+(let ((@x967 (lemma @x966 $x365)))
+(let ((@x445 (unit-resolution (def-axiom (or $x98 $x366 (not $x372))) @x377 (or $x98 $x366))))
+(let ((@x586 (unit-resolution @x445 @x967 $x98)))
+(let ((@x1067 (trans (symm (unit-resolution @x620 @x384 $x610) $x881) (monotonicity @x586 (= ?x609 ?x102)) $x103)))
+(let (($x916 (not $x792)))
+(let ((@x950 ((_ th-lemma arith assign-bounds 1 -1/2 -1/2 1/2 -1/2) (or $x793 (not $x519) (not $x570) (not $x548) (not $x614) $x874))))
+(let ((@x951 (unit-resolution @x950 (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x503) $x519)) @x907 $x519) (unit-resolution ((_ th-lemma arith triangle-eq) (or $x137 $x800)) @x586 $x800) @x898 (unit-resolution ((_ th-lemma arith) (or false $x570)) @x26 $x570) @x905 $x793)))
+(let ((@x1040 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x120 $x916 (not $x793))) (hypothesis $x364) (or $x916 (not $x793)))))
+(let ((@x1060 ((_ th-lemma arith farkas -2 -2 1 -1 1 1) (unit-resolution @x1040 @x951 $x916) @x1104 @x1107 @x1100 (unit-resolution ((_ th-lemma arith triangle-eq) (or $x137 $x799)) @x586 $x799) @x1085 false)))
+(let ((@x569 (unit-resolution (unit-resolution (def-axiom (or $x366 $x363 $x364)) @x967 $x365) (lemma @x1060 $x120) $x363)))
+(unit-resolution @x569 @x1067 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
-d4d0e08ac1741a77a8448ec3a55e48fb2a240ee9 62 0
+d351417cb827933b8da0a8b279e29eee0719819b 64 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let ((?x32 (|collect$| |uu$|)))
-(let ((?x33 (|sup$| ?x32)))
-(let (($x38 (|less_eq$| ?x33 ?x33)))
-(let (($x39 (not $x38)))
-(let ((@x117 (asserted $x39)))
-(let ((?x34 (|collect$| |uua$|)))
-(let ((?x35 (|sup$| ?x34)))
-(let (($x37 (|less_eq$| ?x35 ?x33)))
-(let ((@x115 (asserted $x37)))
-(let (($x36 (|less_eq$| ?x33 ?x35)))
-(let ((@x114 (asserted $x36)))
-(let (($x159 (forall ((?v0 |A$|) (?v1 |A$|) (?v2 |A$|) )(!(let (($x29 (|less_eq$| ?v0 ?v2)))
-(let (($x27 (|less_eq$| ?v1 ?v2)))
-(let (($x136 (not $x27)))
-(let (($x26 (|less_eq$| ?v0 ?v1)))
-(let (($x135 (not $x26)))
-(or $x135 $x136 $x29)))))) :pattern ( (|less_eq$| ?v0 ?v1) (|less_eq$| ?v1 ?v2) )))
-))
-(let (($x154 (forall ((?v0 |A$|) (?v1 |A$|) (?v2 |A$|) )(let (($x29 (|less_eq$| ?v0 ?v2)))
-(let (($x27 (|less_eq$| ?v1 ?v2)))
-(let (($x136 (not $x27)))
-(let (($x26 (|less_eq$| ?v0 ?v1)))
-(let (($x135 (not $x26)))
-(or $x135 $x136 $x29)))))))
-))
-(let (($x29 (|less_eq$| ?2 ?0)))
-(let (($x27 (|less_eq$| ?1 ?0)))
-(let (($x136 (not $x27)))
-(let (($x26 (|less_eq$| ?2 ?1)))
-(let (($x135 (not $x26)))
-(let (($x149 (or $x135 $x136 $x29)))
-(let (($x111 (forall ((?v0 |A$|) (?v1 |A$|) (?v2 |A$|) )(let (($x29 (|less_eq$| ?v0 ?v2)))
-(let (($x27 (|less_eq$| ?v1 ?v2)))
-(let (($x26 (|less_eq$| ?v0 ?v1)))
-(let (($x28 (and $x26 $x27)))
-(let (($x106 (not $x28)))
-(or $x106 $x29)))))))
-))
-(let ((@x141 (monotonicity (rewrite (= (and $x26 $x27) (not (or $x135 $x136)))) (= (not (and $x26 $x27)) (not (not (or $x135 $x136)))))))
-(let ((@x145 (trans @x141 (rewrite (= (not (not (or $x135 $x136))) (or $x135 $x136))) (= (not (and $x26 $x27)) (or $x135 $x136)))))
-(let ((@x148 (monotonicity @x145 (= (or (not (and $x26 $x27)) $x29) (or (or $x135 $x136) $x29)))))
-(let ((@x153 (trans @x148 (rewrite (= (or (or $x135 $x136) $x29) $x149)) (= (or (not (and $x26 $x27)) $x29) $x149))))
-(let ((@x129 (refl (|~| (or (not (and $x26 $x27)) $x29) (or (not (and $x26 $x27)) $x29)))))
-(let (($x31 (forall ((?v0 |A$|) (?v1 |A$|) (?v2 |A$|) )(let (($x29 (|less_eq$| ?v0 ?v2)))
-(let (($x27 (|less_eq$| ?v1 ?v2)))
-(let (($x26 (|less_eq$| ?v0 ?v1)))
-(let (($x28 (and $x26 $x27)))
-(=> $x28 $x29))))))
-))
-(let ((@x110 (rewrite (= (=> (and $x26 $x27) $x29) (or (not (and $x26 $x27)) $x29)))))
-(let ((@x132 (|mp~| (mp (asserted $x31) (|quant-intro| @x110 (= $x31 $x111)) $x111) (|nnf-pos| @x129 (|~| $x111 $x111)) $x111)))
-(let ((@x164 (mp (mp @x132 (|quant-intro| @x153 (= $x111 $x154)) $x154) (|quant-intro| (refl (= $x149 $x149)) (= $x154 $x159)) $x159)))
-(let (($x166 (not $x37)))
-(let (($x165 (not $x36)))
-(let (($x170 (not $x159)))
-(let (($x171 (or $x170 $x165 $x166 $x38)))
-(let ((@x176 (mp ((_ |quant-inst| (|sup$| ?x32) (|sup$| ?x34) (|sup$| ?x32)) (or $x170 (or $x165 $x166 $x38))) (rewrite (= (or $x170 (or $x165 $x166 $x38)) $x171)) $x171)))
-(|unit-resolution| @x176 @x164 @x114 @x115 @x117 false)))))))))))))))))))))))))))))))))))))
+(let ((?x108 (collect$ uu$)))
+(let ((?x109 (sup$ ?x108)))
+(let (($x117 (less_eq$ ?x109 ?x109)))
+(let (($x118 (not $x117)))
+(let ((@x119 (asserted $x118)))
+(let ((?x111 (collect$ uua$)))
+(let ((?x112 (sup$ ?x111)))
+(let (($x115 (less_eq$ ?x112 ?x109)))
+(let ((@x116 (asserted $x115)))
+(let (($x113 (less_eq$ ?x109 ?x112)))
+(let ((@x114 (asserted $x113)))
+(let (($x578 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(!(let (($x97 (less_eq$ ?v0 ?v2)))
+(let (($x95 (less_eq$ ?v1 ?v2)))
+(let (($x138 (not $x95)))
+(let (($x93 (less_eq$ ?v0 ?v1)))
+(let (($x137 (not $x93)))
+(or $x137 $x138 $x97)))))) :pattern ( (less_eq$ ?v0 ?v1) (less_eq$ ?v1 ?v2) )))
+))
+(let (($x156 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
+(let (($x95 (less_eq$ ?v1 ?v2)))
+(let (($x138 (not $x95)))
+(let (($x93 (less_eq$ ?v0 ?v1)))
+(let (($x137 (not $x93)))
+(or $x137 $x138 $x97)))))))
+))
+(let ((@x583 (trans (rewrite (= $x156 $x578)) (rewrite (= $x578 $x578)) (= $x156 $x578))))
+(let (($x105 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
+(let (($x95 (less_eq$ ?v1 ?v2)))
+(let (($x93 (less_eq$ ?v0 ?v1)))
+(let (($x96 (and $x93 $x95)))
+(let (($x101 (not $x96)))
+(or $x101 $x97)))))))
+))
+(let (($x97 (less_eq$ ?2 ?0)))
+(let (($x95 (less_eq$ ?1 ?0)))
+(let (($x138 (not $x95)))
+(let (($x93 (less_eq$ ?2 ?1)))
+(let (($x137 (not $x93)))
+(let (($x151 (or $x137 $x138 $x97)))
+(let (($x96 (and $x93 $x95)))
+(let (($x101 (not $x96)))
+(let (($x102 (or $x101 $x97)))
+(let ((@x143 (monotonicity (rewrite (= $x96 (not (or $x137 $x138)))) (= $x101 (not (not (or $x137 $x138)))))))
+(let ((@x147 (trans @x143 (rewrite (= (not (not (or $x137 $x138))) (or $x137 $x138))) (= $x101 (or $x137 $x138)))))
+(let ((@x155 (trans (monotonicity @x147 (= $x102 (or (or $x137 $x138) $x97))) (rewrite (= (or (or $x137 $x138) $x97) $x151)) (= $x102 $x151))))
+(let (($x99 (forall ((?v0 A$) (?v1 A$) (?v2 A$) )(let (($x97 (less_eq$ ?v0 ?v2)))
+(let (($x95 (less_eq$ ?v1 ?v2)))
+(let (($x93 (less_eq$ ?v0 ?v1)))
+(let (($x96 (and $x93 $x95)))
+(=> $x96 $x97))))))
+))
+(let ((@x110 (mp (asserted $x99) (quant-intro (rewrite (= (=> $x96 $x97) $x102)) (= $x99 $x105)) $x105)))
+(let ((@x159 (mp (mp~ @x110 (nnf-pos (refl (~ $x102 $x102)) (~ $x105 $x105)) $x105) (quant-intro @x155 (= $x105 $x156)) $x156)))
+(let ((@x584 (mp @x159 @x583 $x578)))
+(let (($x247 (not $x115)))
+(let (($x160 (not $x113)))
+(let (($x251 (not $x578)))
+(let (($x252 (or $x251 $x160 $x247 $x117)))
+(let ((@x570 (mp ((_ quant-inst (sup$ ?x108) (sup$ ?x111) (sup$ ?x108)) (or $x251 (or $x160 $x247 $x117))) (rewrite (= (or $x251 (or $x160 $x247 $x117)) $x252)) $x252)))
+(unit-resolution @x570 @x584 @x114 @x116 @x119 false)))))))))))))))))))))))))))))))))))))))
 
-ce2ba5128c1bc3cef10c9328de9b15558b908319 25 0
+5a12a7134fe0a0d7becdd33ab1e66b9929fb9200 25 0
+unsat
+((set-logic AUFLIA)
+(proof
+(let (($x142 (pred$e 1)))
+(let (($x144 (not $x142)))
+(let ((@x145 (asserted $x144)))
+(let (($x615 (forall ((?v0 Int) )(!(pred$e ?v0) :pattern ( (pred$e ?v0) )))
+))
+(let (($x138 (forall ((?v0 Int) )(pred$e ?v0))
+))
+(let (($x127 (forall ((?v0 Int) )(let (($x125 (or (pred$d (cons$d ?v0 nil$d)) (not (pred$d (cons$d ?v0 nil$d))))))
+(let (($x119 (pred$e ?v0)))
+(and $x119 $x125))))
+))
+(let (($x119 (pred$e ?0)))
+(let (($x125 (or (pred$d (cons$d ?0 nil$d)) (not (pred$d (cons$d ?0 nil$d))))))
+(let (($x126 (and $x119 $x125)))
+(let ((@x133 (monotonicity (rewrite (= $x125 true)) (= $x126 (and $x119 true)))))
+(let ((@x140 (quant-intro (trans @x133 (rewrite (= (and $x119 true) $x119)) (= $x126 $x119)) (= $x127 $x138))))
+(let ((@x170 (mp~ (mp (asserted $x127) @x140 $x138) (nnf-pos (refl (~ $x119 $x119)) (~ $x138 $x138)) $x138)))
+(let ((@x620 (mp @x170 (quant-intro (refl (= $x119 $x119)) (= $x138 $x615)) $x615)))
+(let (($x257 (or (not $x615) $x142)))
+(let ((@x258 ((_ quant-inst 1) $x257)))
+(unit-resolution @x258 @x620 @x145 false))))))))))))))))))
+
+27dedd7bdd019ed24c64571c329ee3a3f8abfec6 170 0
 unsat
 ((set-logic AUFLIA)
 (proof
-(let (($x51 (|pred$e| 1)))
-(let (($x52 (not $x51)))
-(let ((@x142 (asserted $x52)))
-(let (($x198 (forall ((?v0 Int) )(!(|pred$e| ?v0) :pattern ( (|pred$e| ?v0) )))
-))
-(let (($x139 (forall ((?v0 Int) )(|pred$e| ?v0))
-))
-(let (($x49 (forall ((?v0 Int) )(let (($x47 (or (|pred$d| (|cons$d| ?v0 |nil$d|)) (not (|pred$d| (|cons$d| ?v0 |nil$d|))))))
-(let (($x42 (|pred$e| ?v0)))
-(and $x42 $x47))))
-))
-(let (($x42 (|pred$e| ?0)))
-(let (($x47 (or (|pred$d| (|cons$d| ?0 |nil$d|)) (not (|pred$d| (|cons$d| ?0 |nil$d|))))))
-(let (($x48 (and $x42 $x47)))
-(let ((@x134 (monotonicity (rewrite (= $x47 true)) (= $x48 (and $x42 true)))))
-(let ((@x141 (|quant-intro| (trans @x134 (rewrite (= (and $x42 true) $x42)) (= $x48 $x42)) (= $x49 $x139))))
-(let ((@x168 (|mp~| (mp (asserted $x49) @x141 $x139) (|nnf-pos| (refl (|~| $x42 $x42)) (|~| $x139 $x139)) $x139)))
-(let ((@x203 (mp @x168 (|quant-intro| (refl (= $x42 $x42)) (= $x139 $x198)) $x198)))
-(let (($x207 (or (not $x198) $x51)))
-(let ((@x208 ((_ |quant-inst| 1) $x207)))
-(|unit-resolution| @x208 @x203 @x142 false))))))))))))))))))
+(let ((?x209 (some$a true)))
+(let ((?x210 (g$b ?x209)))
+(let ((?x206 (some$ 3)))
+(let ((?x208 (g$ ?x206)))
+(let (($x211 (= ?x208 ?x210)))
+(let ((?x434 (cons$a true nil$a)))
+(let ((?x435 (g$c ?x434)))
+(let (($x406 (= ?x210 ?x435)))
+(let (($x768 (forall ((?v0 Bool) )(!(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))) :pattern ( (some$a ?v0) ) :pattern ( (cons$a ?v0 nil$a) )))
+))
+(let (($x43 (forall ((?v0 Bool) )(= (g$b (some$a ?v0)) (g$c (cons$a ?v0 nil$a))))
+))
+(let (($x42 (= (g$b (some$a ?0)) (g$c (cons$a ?0 nil$a)))))
+(let ((@x280 (mp~ (asserted $x43) (nnf-pos (refl (~ $x42 $x42)) (~ $x43 $x43)) $x43)))
+(let ((@x773 (mp @x280 (quant-intro (refl (= $x42 $x42)) (= $x43 $x768)) $x768)))
+(let (($x419 (or (not $x768) $x406)))
+(let ((@x752 ((_ quant-inst true) $x419)))
+(let ((?x720 (size$ ?x434)))
+(let (($x444 (= ?x435 ?x720)))
+(let (($x776 (forall ((?v0 Bool_list$) )(!(let ((?x61 (size$ ?v0)))
+(let ((?x60 (g$c ?v0)))
+(= ?x60 ?x61))) :pattern ( (g$c ?v0) ) :pattern ( (size$ ?v0) )))
+))
+(let (($x63 (forall ((?v0 Bool_list$) )(let ((?x61 (size$ ?v0)))
+(let ((?x60 (g$c ?v0)))
+(= ?x60 ?x61))))
+))
+(let ((@x780 (quant-intro (refl (= (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (= $x63 $x776))))
+(let ((@x306 (nnf-pos (refl (~ (= (g$c ?0) (size$ ?0)) (= (g$c ?0) (size$ ?0)))) (~ $x63 $x63))))
+(let ((@x781 (mp (mp~ (asserted $x63) @x306 $x63) @x780 $x776)))
+(let (($x711 (or (not $x776) $x444)))
+(let ((@x712 ((_ quant-inst (cons$a true nil$a)) $x711)))
+(let ((?x149 (size$ nil$a)))
+(let ((?x724 (of_nat$ ?x149)))
+(let ((?x710 (+ 1 ?x724)))
+(let ((?x713 (nat$ ?x710)))
+(let (($x714 (= ?x720 ?x713)))
+(let (($x819 (forall ((?v0 Bool) (?v1 Bool_list$) )(!(= (size$ (cons$a ?v0 ?v1)) (nat$ (+ 1 (of_nat$ (size$ ?v1))))) :pattern ( (cons$a ?v0 ?v1) )))
+))
+(let (($x177 (forall ((?v0 Bool) (?v1 Bool_list$) )(= (size$ (cons$a ?v0 ?v1)) (nat$ (+ 1 (of_nat$ (size$ ?v1))))))
+))
+(let (($x174 (= (size$ (cons$a ?1 ?0)) (nat$ (+ 1 (of_nat$ (size$ ?0)))))))
+(let (($x161 (forall ((?v0 Bool) (?v1 Bool_list$) )(= (size$ (cons$a ?v0 ?v1)) (nat$ (+ (of_nat$ (size$ ?v1)) (+ 0 1)))))
+))
+(let (($x160 (= (size$ (cons$a ?1 ?0)) (nat$ (+ (of_nat$ (size$ ?0)) (+ 0 1))))))
+(let (($x172 (= (nat$ (+ (of_nat$ (size$ ?0)) (+ 0 1))) (nat$ (+ 1 (of_nat$ (size$ ?0)))))))
+(let ((?x61 (size$ ?0)))
+(let ((?x157 (of_nat$ ?x61)))
+(let ((?x166 (+ 1 ?x157)))
+(let ((?x92 (+ 0 1)))
+(let ((?x158 (+ ?x157 ?x92)))
+(let ((@x170 (trans (monotonicity (rewrite (= ?x92 1)) (= ?x158 (+ ?x157 1))) (rewrite (= (+ ?x157 1) ?x166)) (= ?x158 ?x166))))
+(let ((@x179 (quant-intro (monotonicity (monotonicity @x170 $x172) (= $x160 $x174)) (= $x161 $x177))))
+(let ((@x323 (mp~ (mp (asserted $x161) @x179 $x177) (nnf-pos (refl (~ $x174 $x174)) (~ $x177 $x177)) $x177)))
+(let ((@x824 (mp @x323 (quant-intro (refl (= $x174 $x174)) (= $x177 $x819)) $x819)))
+(let (($x718 (or (not $x819) $x714)))
+(let ((@x556 ((_ quant-inst true nil$a) $x718)))
+(let ((?x153 (size$a nil$)))
+(let ((?x730 (of_nat$ ?x153)))
+(let (($x716 (<= ?x730 0)))
+(let (($x715 (= ?x730 0)))
+(let ((?x73 (nat$ 0)))
+(let ((?x748 (of_nat$ ?x73)))
+(let (($x412 (= ?x748 0)))
+(let (($x841 (forall ((?v0 Int) )(!(let (($x223 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x236 (>= ?v0 0)))
+(let (($x237 (not $x236)))
+(or $x237 $x223)))) :pattern ( (nat$ ?v0) )))
+))
+(let (($x243 (forall ((?v0 Int) )(let (($x223 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x236 (>= ?v0 0)))
+(let (($x237 (not $x236)))
+(or $x237 $x223)))))
+))
+(let (($x223 (= (of_nat$ (nat$ ?0)) ?0)))
+(let (($x236 (>= ?0 0)))
+(let (($x237 (not $x236)))
+(let (($x240 (or $x237 $x223)))
+(let (($x225 (forall ((?v0 Int) )(let (($x223 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(let (($x220 (<= 0 ?v0)))
+(=> $x220 $x223))))
+))
+(let (($x231 (forall ((?v0 Int) )(let (($x223 (= (of_nat$ (nat$ ?v0)) ?v0)))
+(or (not (<= 0 ?v0)) $x223)))
+))
+(let ((@x239 (monotonicity (rewrite (= (<= 0 ?0) $x236)) (= (not (<= 0 ?0)) $x237))))
+(let ((@x245 (quant-intro (monotonicity @x239 (= (or (not (<= 0 ?0)) $x223) $x240)) (= $x231 $x243))))
+(let ((@x230 (rewrite (= (=> (<= 0 ?0) $x223) (or (not (<= 0 ?0)) $x223)))))
+(let ((@x248 (mp (asserted $x225) (trans (quant-intro @x230 (= $x225 $x231)) @x245 (= $x225 $x243)) $x243)))
+(let ((@x846 (mp (mp~ @x248 (nnf-pos (refl (~ $x240 $x240)) (~ $x243 $x243)) $x243) (quant-intro (refl (= $x240 $x240)) (= $x243 $x841)) $x841)))
+(let (($x381 (not $x841)))
+(let (($x382 (or $x381 $x412)))
+(let ((@x733 (rewrite (= (>= 0 0) true))))
+(let ((@x736 (trans (monotonicity @x733 (= (not (>= 0 0)) (not true))) (rewrite (= (not true) false)) (= (not (>= 0 0)) false))))
+(let ((@x739 (monotonicity @x736 (= (or (not (>= 0 0)) $x412) (or false $x412)))))
+(let ((@x742 (trans @x739 (rewrite (= (or false $x412) $x412)) (= (or (not (>= 0 0)) $x412) $x412))))
+(let ((@x731 (monotonicity @x742 (= (or $x381 (or (not (>= 0 0)) $x412)) $x382))))
+(let ((@x450 (trans @x731 (rewrite (= $x382 $x382)) (= (or $x381 (or (not (>= 0 0)) $x412)) $x382))))
+(let ((@x451 (mp ((_ quant-inst 0) (or $x381 (or (not (>= 0 0)) $x412))) @x450 $x382)))
+(let ((@x621 (trans (monotonicity (asserted (= ?x153 ?x73)) (= ?x730 ?x748)) (unit-resolution @x451 @x846 $x412) $x715)))
+(let (($x557 (>= ?x730 0)))
+(let ((@x610 ((_ th-lemma arith eq-propagate -1 -1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x715) $x557)) @x621 $x557) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x715) $x716)) @x621 $x716) (= (+ 1 ?x730) 1))))
+(let (($x700 (<= ?x724 0)))
+(let (($x558 (= ?x724 0)))
+(let ((@x583 (trans (monotonicity (asserted (= ?x149 ?x73)) (= ?x724 ?x748)) (unit-resolution @x451 @x846 $x412) $x558)))
+(let (($x701 (>= ?x724 0)))
+(let ((@x559 ((_ th-lemma arith eq-propagate -1 -1) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x558) $x701)) @x583 $x701) (unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x558) $x700)) @x583 $x700) (= ?x710 1))))
+(let ((@x563 (trans @x559 (symm @x610 (= 1 (+ 1 ?x730))) (= ?x710 (+ 1 ?x730)))))
+(let ((@x539 (symm (monotonicity @x563 (= ?x713 (nat$ (+ 1 ?x730)))) (= (nat$ (+ 1 ?x730)) ?x713))))
+(let ((?x437 (+ 1 ?x730)))
+(let ((?x440 (nat$ ?x437)))
+(let ((?x431 (cons$ 3 nil$)))
+(let ((?x728 (size$a ?x431)))
+(let (($x719 (= ?x728 ?x440)))
+(let (($x826 (forall ((?v0 Int) (?v1 Int_list$) )(!(= (size$a (cons$ ?v0 ?v1)) (nat$ (+ 1 (of_nat$ (size$a ?v1))))) :pattern ( (cons$ ?v0 ?v1) )))
+))
+(let (($x202 (forall ((?v0 Int) (?v1 Int_list$) )(= (size$a (cons$ ?v0 ?v1)) (nat$ (+ 1 (of_nat$ (size$a ?v1))))))
+))
+(let (($x199 (= (size$a (cons$ ?1 ?0)) (nat$ (+ 1 (of_nat$ (size$a ?0)))))))
+(let (($x186 (forall ((?v0 Int) (?v1 Int_list$) )(= (size$a (cons$ ?v0 ?v1)) (nat$ (+ (of_nat$ (size$a ?v1)) (+ 0 1)))))
+))
+(let (($x185 (= (size$a (cons$ ?1 ?0)) (nat$ (+ (of_nat$ (size$a ?0)) ?x92)))))
+(let (($x197 (= (nat$ (+ (of_nat$ (size$a ?0)) ?x92)) (nat$ (+ 1 (of_nat$ (size$a ?0)))))))
+(let ((?x67 (size$a ?0)))
+(let ((?x181 (of_nat$ ?x67)))
+(let ((?x191 (+ 1 ?x181)))
+(let ((?x183 (+ ?x181 ?x92)))
+(let ((@x195 (trans (monotonicity (rewrite (= ?x92 1)) (= ?x183 (+ ?x181 1))) (rewrite (= (+ ?x181 1) ?x191)) (= ?x183 ?x191))))
+(let ((@x204 (quant-intro (monotonicity (monotonicity @x195 $x197) (= $x185 $x199)) (= $x186 $x202))))
+(let ((@x328 (mp~ (mp (asserted $x186) @x204 $x202) (nnf-pos (refl (~ $x199 $x199)) (~ $x202 $x202)) $x202)))
+(let ((@x831 (mp @x328 (quant-intro (refl (= $x199 $x199)) (= $x202 $x826)) $x826)))
+(let (($x722 (or (not $x826) $x719)))
+(let ((@x723 ((_ quant-inst 3 nil$) $x722)))
+(let ((?x432 (g$a ?x431)))
+(let (($x729 (= ?x432 ?x728)))
+(let (($x784 (forall ((?v0 Int_list$) )(!(let ((?x67 (size$a ?v0)))
+(let ((?x66 (g$a ?v0)))
+(= ?x66 ?x67))) :pattern ( (g$a ?v0) ) :pattern ( (size$a ?v0) )))
+))
+(let (($x69 (forall ((?v0 Int_list$) )(let ((?x67 (size$a ?v0)))
+(let ((?x66 (g$a ?v0)))
+(= ?x66 ?x67))))
+))
+(let ((@x788 (quant-intro (refl (= (= (g$a ?0) ?x67) (= (g$a ?0) ?x67))) (= $x69 $x784))))
+(let ((@x295 (nnf-pos (refl (~ (= (g$a ?0) ?x67) (= (g$a ?0) ?x67))) (~ $x69 $x69))))
+(let ((@x789 (mp (mp~ (asserted $x69) @x295 $x69) @x788 $x784)))
+(let (($x438 (or (not $x784) $x729)))
+(let ((@x439 ((_ quant-inst (cons$ 3 nil$)) $x438)))
+(let (($x433 (= ?x208 ?x432)))
+(let (($x760 (forall ((?v0 Int) )(!(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))) :pattern ( (some$ ?v0) ) :pattern ( (cons$ ?v0 nil$) )))
+))
+(let (($x34 (forall ((?v0 Int) )(= (g$ (some$ ?v0)) (g$a (cons$ ?v0 nil$))))
+))
+(let (($x33 (= (g$ (some$ ?0)) (g$a (cons$ ?0 nil$)))))
+(let ((@x297 (mp~ (asserted $x34) (nnf-pos (refl (~ $x33 $x33)) (~ $x34 $x34)) $x34)))
+(let ((@x765 (mp @x297 (quant-intro (refl (= $x33 $x33)) (= $x34 $x760)) $x760)))
+(let (($x750 (or (not $x760) $x433)))
+(let ((@x751 ((_ quant-inst 3) $x750)))
+(let ((@x550 (trans (unit-resolution @x751 @x765 $x433) (unit-resolution @x439 @x789 $x729) (= ?x208 ?x728))))
+(let ((@x554 (trans (trans @x550 (unit-resolution @x723 @x831 $x719) (= ?x208 ?x440)) @x539 (= ?x208 ?x713))))
+(let ((@x525 (trans @x554 (symm (unit-resolution @x556 @x824 $x714) (= ?x713 ?x720)) (= ?x208 ?x720))))
+(let ((@x527 (trans @x525 (symm (unit-resolution @x712 @x781 $x444) (= ?x720 ?x435)) (= ?x208 ?x435))))
+(let ((@x528 (trans @x527 (symm (unit-resolution @x752 @x773 $x406) (= ?x435 ?x210)) $x211)))
+(let (($x212 (not $x211)))
+(let ((@x213 (asserted $x212)))
+(unit-resolution @x213 @x528 false)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 
--- a/src/HOL/SMT_Examples/SMT_Examples.thy	Fri Apr 25 22:13:17 2014 +0200
+++ b/src/HOL/SMT_Examples/SMT_Examples.thy	Fri Apr 25 22:13:17 2014 +0200
@@ -230,7 +230,7 @@
   and "~x29 \<or> ~x58"
   and "~x28 \<or> ~x58"
   shows False
-  using assms by smt (* smt2 FIXME: THM 0 *)
+  using assms by smt2
 
 lemma "\<forall>x::int. P x \<longrightarrow> (\<forall>y::int. P x \<or> P y)"
   by smt2
@@ -238,13 +238,13 @@
 lemma
   assumes "(\<forall>x y. P x y = x)"
   shows "(\<exists>y. P x y) = P x c"
-  using assms by smt (* smt2 FIXME: Option *)
+  using assms by smt2
 
 lemma
   assumes "(\<forall>x y. P x y = x)"
   and "(\<forall>x. \<exists>y. P x y) = (\<forall>x. P x c)"
   shows "(EX y. P x y) = P x c"
-  using assms by smt (* smt2 FIXME: Option *)
+  using assms by smt2
 
 lemma
   assumes "if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)"
@@ -337,17 +337,13 @@
 lemma "~ (\<exists>x::int. False)" by smt2
 lemma "~ (\<exists>x::real. False)" by smt2
 
-lemma "\<exists>x::int. 0 < x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt (* smt2 FIXME: requires Z3 4.3.1 *)
+lemma "\<exists>x::int. 0 < x" by smt2
 
 lemma "\<exists>x::real. 0 < x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt (* smt2 FIXME: requires Z3 4.3.1 *)
+  using [[smt2_oracle=true]] (* no Z3 proof *)
+  by smt2
 
-lemma "\<forall>x::int. \<exists>y. y > x"
-  using [[smt_oracle=true]] (* no Z3 proof *)
-  by smt (* smt2 FIXME: requires Z3 4.3.1 *)
+lemma "\<forall>x::int. \<exists>y. y > x" by smt2
 
 lemma "\<forall>x y::int. (x = 0 \<and> y = 1) \<longrightarrow> x \<noteq> y" by smt2
 lemma "\<exists>x::int. \<forall>y. x < y \<longrightarrow> y < 0 \<or> y >= 0" by smt2
@@ -355,12 +351,12 @@
 lemma "\<forall>x y::int. (2 * x + 1) \<noteq> (2 * y)" by smt2
 lemma "\<forall>x y::int. x + y > 2 \<or> x + y = 2 \<or> x + y < 2" by smt2
 lemma "\<forall>x::int. if x > 0 then x + 1 > 0 else 1 > x" by smt2
-lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True"  by smt (* smt2 FIXME: requires Z3 4.3.1 *)
-lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt (* smt2 FIXME: requires Z3 4.3.1 *)
+lemma "if (ALL x::int. x < 0 \<or> x > 0) then False else True" by smt2
+lemma "(if (ALL x::int. x < 0 \<or> x > 0) then -1 else 3) > (0::int)" by smt2
 lemma "~ (\<exists>x y z::int. 4 * x + -6 * y = (1::int))" by smt2
 lemma "\<exists>x::int. \<forall>x y. 0 < x \<and> 0 < y \<longrightarrow> (0::int) < x + y" by smt2
 lemma "\<exists>u::int. \<forall>(x::int) y::real. 0 < x \<and> 0 < y \<longrightarrow> -1 < x" by smt2
-lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt (* smt2 FIXME: requires Z3 4.3.1 *)
+lemma "\<exists>x::int. (\<forall>y. y \<ge> x \<longrightarrow> y > 0) \<longrightarrow> x > 0" by smt2
 lemma "\<forall>x::int. SMT2.trigger [[SMT2.pat x]] (x < a \<longrightarrow> 2 * x < 2 * a)" by smt2
 lemma "\<forall>(a::int) b::int. 0 < b \<or> b < 1" by smt2
 
@@ -434,7 +430,7 @@
   by smt2
 
 lemma "id x = x \<and> id True = True"
-  by (smt id_def) (* smt2 FIXME: Option *)
+  by (smt2 id_def)
 
 lemma "i \<noteq> i1 \<and> i \<noteq> i2 \<Longrightarrow> ((f (i1 := v1)) (i2 := v2)) i = f i"
   using fun_upd_same fun_upd_apply by smt2
@@ -500,6 +496,6 @@
   g2: "g None = g []" and
   g3: "g xs = length xs"
 
-lemma "g (Some (3::int)) = g (Some True)" by (smt g1 g2 g3 list.size) (* smt2 FIXME: Option *)
+lemma "g (Some (3::int)) = g (Some True)" by (smt2 g1 g2 g3 list.size)
 
 end
--- a/src/HOL/SMT_Examples/SMT_Tests.thy	Fri Apr 25 22:13:17 2014 +0200
+++ b/src/HOL/SMT_Examples/SMT_Tests.thy	Fri Apr 25 22:13:17 2014 +0200
@@ -127,7 +127,7 @@
   "\<exists>x. P x \<longrightarrow> P a \<and> P b"
   "\<exists>x. (\<exists>y. P y) \<longrightarrow> P x"
   "(\<exists>x. Q \<longrightarrow> P x) \<longleftrightarrow> (Q \<longrightarrow> (\<exists>x. P x))"
-  oops (* smt2 FIXME: requires Z3 4.3.1 *)
+  by smt2+
 
 lemma
   "(\<not>(\<exists>x. P x)) \<longleftrightarrow> (\<forall>x. \<not> P x)"
@@ -135,7 +135,7 @@
   "(\<forall>x y. R x y = x) \<longrightarrow> (\<exists>y. R x y) = R x c"
   "(if P x then \<not>(\<exists>y. P y) else (\<forall>y. \<not>P y)) \<longrightarrow> P x \<longrightarrow> P y"
   "(\<forall>x y. R x y = x) \<and> (\<forall>x. \<exists>y. R x y) = (\<forall>x. R x c) \<longrightarrow> (\<exists>y. R x y) = R x c"
-  by smt+ (* smt2 FIXME: Option *)
+  by smt2+
 
 lemma
   "\<forall>x. \<exists>y. f x y = f x (g x)"
@@ -146,7 +146,7 @@
   "(\<exists>x. \<forall>y. P x \<longleftrightarrow> P y) \<longrightarrow> ((\<exists>x. P x) \<longleftrightarrow> (\<forall>y. P y))"
   "\<exists>z. P z \<longrightarrow> (\<forall>x. P x)"
   "(\<exists>y. \<forall>x. R x y) \<longrightarrow> (\<forall>x. \<exists>y. R x y)"
-  by smt+ (* smt2 FIXME: requires Z3 4.3.1 *)
+  by smt2+
 
 lemma
   "(\<exists>!x. P x) \<longrightarrow> (\<exists>x. P x)"
@@ -174,11 +174,13 @@
 
 lemma
   "a \<noteq> b \<and> a \<noteq> c \<and> b \<noteq> c \<and> (\<forall>x y. f x = f y \<longrightarrow> y = x) \<longrightarrow> f a \<noteq> f b"
+  using [[smt2_oracle=true]] (* FIXME: disable refine_inj_axiom in Z3 *)
   by smt2
 
 lemma
   "(\<forall>x y z. f x y = f x z \<longrightarrow> y = z) \<and> b \<noteq> c \<longrightarrow> f a b \<noteq> f a c"
   "(\<forall>x y z. f x y = f z y \<longrightarrow> x = z) \<and> a \<noteq> d \<longrightarrow> f a b \<noteq> f d b"
+  using [[smt2_oracle=true]] (* FIXME: disable refine_inj_axiom in Z3 *)
   by smt2+
 
 
@@ -248,7 +250,7 @@
   "(\<And>x y. h x y \<and> h y x) \<Longrightarrow> \<forall>x. h x x"
   "(p \<or> q) \<and> \<not>p \<Longrightarrow> q"
   "(a \<and> b) \<or> (c \<and> d) \<Longrightarrow> (a \<and> b) \<or> (c \<and> d)"
-  by smt+ (* smt2 FIXME: Option *)
+  by smt2+
 
 
 section {* Natural numbers *}
@@ -729,7 +731,7 @@
   "p = \<lparr> cx = 3, cy = 4, black = True \<rparr> \<longrightarrow>
      p \<lparr> black := True \<rparr> \<lparr> cx := 3 \<rparr> \<lparr> cy := 4 \<rparr> = p"
   using point.simps bw_point.simps
-  by smt+ (* smt2 FIXME: Option *)
+  by smt2+
 
 lemma
   "\<lparr> cx = 3, cy = 4, black = b \<rparr> \<lparr> black := w \<rparr> = \<lparr> cx = 3, cy = 4, black = w \<rparr>"
@@ -909,7 +911,6 @@
   by smt2+
 
 
-
 section {* Sets *}
 
 lemma Empty: "x \<notin> {}" by simp
--- a/src/HOL/SMT_Examples/SMT_Word_Examples.certs2	Fri Apr 25 22:13:17 2014 +0200
+++ b/src/HOL/SMT_Examples/SMT_Word_Examples.certs2	Fri Apr 25 22:13:17 2014 +0200
@@ -1,369 +1,369 @@
-d47653c43412ab1eb54730f2f5a4f4bdf44fcb5a 8 0
+ce41fb71f7c517682982b0f93f9e2ff5851420aa 8 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x36 (monotonicity (rewrite (= (bvneg (_ bv5 4)) (_ bv11 4))) (= (= (_ bv11 4) (bvneg (_ bv5 4))) (= (_ bv11 4) (_ bv11 4))))))
-(let ((@x40 (trans @x36 (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (= (_ bv11 4) (bvneg (_ bv5 4))) true))))
-(let ((@x47 (trans (monotonicity @x40 (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) false))))
-(mp (asserted (not (= (_ bv11 4) (bvneg (_ bv5 4))))) @x47 false))))))
+(let ((@x38 (monotonicity (rewrite (= (bvneg (_ bv5 4)) (_ bv11 4))) (= (= (_ bv11 4) (bvneg (_ bv5 4))) (= (_ bv11 4) (_ bv11 4))))))
+(let ((@x42 (trans @x38 (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (= (_ bv11 4) (bvneg (_ bv5 4))) true))))
+(let ((@x49 (trans (monotonicity @x42 (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (bvneg (_ bv5 4)))) false))))
+(mp (asserted (not (= (_ bv11 4) (bvneg (_ bv5 4))))) @x49 false))))))
 
-da258c2a22a4a00129b43deac09b90d379043340 7 0
+7325b3de463bba9b3acec049992ae8e3bd84095c 7 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x33 (monotonicity (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (not (= (_ bv11 4) (_ bv11 4))) (not true)))))
-(let ((@x37 (trans @x33 (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (_ bv11 4))) false))))
-(mp (asserted (not (= (_ bv11 4) (_ bv11 4)))) @x37 false)))))
+(let ((@x35 (monotonicity (rewrite (= (= (_ bv11 4) (_ bv11 4)) true)) (= (not (= (_ bv11 4) (_ bv11 4))) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= (_ bv11 4) (_ bv11 4))) false))))
+(mp (asserted (not (= (_ bv11 4) (_ bv11 4)))) @x39 false)))))
 
-f2b47b92988d2f0c1404b109b621ba9a6c2b9d1c 7 0
+23777227062fe10ce464941fc1e922676db603bc 7 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x36 (monotonicity (rewrite (= (bvult (_ bv23 8) (_ bv27 8)) true)) (= (not (bvult (_ bv23 8) (_ bv27 8))) (not true)))))
-(let ((@x40 (trans @x36 (rewrite (= (not true) false)) (= (not (bvult (_ bv23 8) (_ bv27 8))) false))))
-(mp (asserted (not (bvult (_ bv23 8) (_ bv27 8)))) @x40 false)))))
+(let ((@x38 (monotonicity (rewrite (= (bvult (_ bv23 8) (_ bv27 8)) true)) (= (not (bvult (_ bv23 8) (_ bv27 8))) (not true)))))
+(let ((@x42 (trans @x38 (rewrite (= (not true) false)) (= (not (bvult (_ bv23 8) (_ bv27 8))) false))))
+(mp (asserted (not (bvult (_ bv23 8) (_ bv27 8)))) @x42 false)))))
 
-1c22485fb98e3caa4d683df39ead427fc3568432 9 0
+3fd9c0547528aa1b8bae9f52b77a315328f9b96f 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x36 (monotonicity (rewrite (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) (= (_ bv6 5) (_ bv6 5))))))
-(let ((@x40 (trans @x36 (rewrite (= (= (_ bv6 5) (_ bv6 5)) true)) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) true))))
-(let ((@x43 (monotonicity @x40 (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (not true)))))
-(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) false))))
-(mp (asserted (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)))) @x47 false)))))))
+(let ((@x38 (monotonicity (rewrite (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) (= (_ bv6 5) (_ bv6 5))))))
+(let ((@x42 (trans @x38 (rewrite (= (= (_ bv6 5) (_ bv6 5)) true)) (= (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)) true))))
+(let ((@x45 (monotonicity @x42 (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) (not true)))))
+(let ((@x49 (trans @x45 (rewrite (= (not true) false)) (= (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5))) false))))
+(mp (asserted (not (= (bvadd (_ bv27 5) (_ bv11 5)) (_ bv6 5)))) @x49 false)))))))
 
-651f74a079a4aa15d5d621208d8e038db0369475 9 0
+666c4335f919bac608558e6bff8d2961e7974e97 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x36 (monotonicity (rewrite (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) (= (_ bv21 8) (_ bv21 8))))))
-(let ((@x40 (trans @x36 (rewrite (= (= (_ bv21 8) (_ bv21 8)) true)) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) true))))
-(let ((@x43 (monotonicity @x40 (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (not true)))))
-(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) false))))
-(mp (asserted (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)))) @x47 false)))))))
+(let ((@x38 (monotonicity (rewrite (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) (= (_ bv21 8) (_ bv21 8))))))
+(let ((@x42 (trans @x38 (rewrite (= (= (_ bv21 8) (_ bv21 8)) true)) (= (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)) true))))
+(let ((@x45 (monotonicity @x42 (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) (not true)))))
+(let ((@x49 (trans @x45 (rewrite (= (not true) false)) (= (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8))) false))))
+(mp (asserted (not (= (bvmul (_ bv7 8) (_ bv3 8)) (_ bv21 8)))) @x49 false)))))))
 
-eefb4f0a8b690f38fb11c31757b3209b40cfd1c5 9 0
+d1056c70663a614cd643028a7f6a9eac0e9c530f 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x41 (monotonicity (rewrite (= (bvsub (_ bv11 8) (_ bv27 8)) (_ bv240 8))) (rewrite (= (bvneg (_ bv16 8)) (_ bv240 8))) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) (= (_ bv240 8) (_ bv240 8))))))
-(let ((@x45 (trans @x41 (rewrite (= (= (_ bv240 8) (_ bv240 8)) true)) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) true))))
-(let ((@x48 (monotonicity @x45 (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) (not true)))))
-(let ((@x52 (trans @x48 (rewrite (= (not true) false)) (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) false))))
-(mp (asserted (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))))) @x52 false)))))))
+(let ((@x43 (monotonicity (rewrite (= (bvsub (_ bv11 8) (_ bv27 8)) (_ bv240 8))) (rewrite (= (bvneg (_ bv16 8)) (_ bv240 8))) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) (= (_ bv240 8) (_ bv240 8))))))
+(let ((@x47 (trans @x43 (rewrite (= (= (_ bv240 8) (_ bv240 8)) true)) (= (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))) true))))
+(let ((@x50 (monotonicity @x47 (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) (not true)))))
+(let ((@x54 (trans @x50 (rewrite (= (not true) false)) (= (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8)))) false))))
+(mp (asserted (not (= (bvsub (_ bv11 8) (_ bv27 8)) (bvneg (_ bv16 8))))) @x54 false)))))))
 
-e251dcc0ad168cb65c5bc1d32039c72ca2609bb3 7 0
+19c0dbd45ab3fc5b4fd54e1a565097dafc4b15aa 7 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x33 (monotonicity (rewrite (= (= (_ bv11 5) (_ bv11 5)) true)) (= (not (= (_ bv11 5) (_ bv11 5))) (not true)))))
-(let ((@x37 (trans @x33 (rewrite (= (not true) false)) (= (not (= (_ bv11 5) (_ bv11 5))) false))))
-(mp (asserted (not (= (_ bv11 5) (_ bv11 5)))) @x37 false)))))
+(let ((@x35 (monotonicity (rewrite (= (= (_ bv11 5) (_ bv11 5)) true)) (= (not (= (_ bv11 5) (_ bv11 5))) (not true)))))
+(let ((@x39 (trans @x35 (rewrite (= (not true) false)) (= (not (= (_ bv11 5) (_ bv11 5))) false))))
+(mp (asserted (not (= (_ bv11 5) (_ bv11 5)))) @x39 false)))))
 
-4f488dde65b4a70d1d31d589531d3445a9be689f 11 0
+287abeacd5cb5140a799c8f4f18a80225d062f81 11 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x40 (monotonicity (rewrite (= (bvneg (_ bv40 7)) (_ bv88 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvadd (_ bv88 7) (_ bv1 7))))))
-(let ((@x45 (trans @x40 (rewrite (= (bvadd (_ bv88 7) (_ bv1 7)) (_ bv89 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (_ bv89 7)))))
-(let ((@x50 (monotonicity @x45 (rewrite (= (bvneg (_ bv39 7)) (_ bv89 7))) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) (= (_ bv89 7) (_ bv89 7))))))
-(let ((@x54 (trans @x50 (rewrite (= (= (_ bv89 7) (_ bv89 7)) true)) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) true))))
-(let ((@x57 (monotonicity @x54 (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) (not true)))))
-(let ((@x61 (trans @x57 (rewrite (= (not true) false)) (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) false))))
-(mp (asserted (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))))) @x61 false)))))))))
+(let ((@x42 (monotonicity (rewrite (= (bvneg (_ bv40 7)) (_ bv88 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvadd (_ bv88 7) (_ bv1 7))))))
+(let ((@x47 (trans @x42 (rewrite (= (bvadd (_ bv88 7) (_ bv1 7)) (_ bv89 7))) (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (_ bv89 7)))))
+(let ((@x52 (monotonicity @x47 (rewrite (= (bvneg (_ bv39 7)) (_ bv89 7))) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) (= (_ bv89 7) (_ bv89 7))))))
+(let ((@x56 (trans @x52 (rewrite (= (= (_ bv89 7) (_ bv89 7)) true)) (= (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))) true))))
+(let ((@x59 (monotonicity @x56 (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) (not true)))))
+(let ((@x63 (trans @x59 (rewrite (= (not true) false)) (= (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7)))) false))))
+(mp (asserted (not (= (bvadd (bvneg (_ bv40 7)) (_ bv1 7)) (bvneg (_ bv39 7))))) @x63 false)))))))))
 
-2e53bd8b513a3dc9dee350d0d8b1c315cf2b2449 19 0
+040c6f02771b1c516b52571900cb6fa5a5aabb39 19 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x13 (bvadd |b$| |c$|)))
-(let ((?x14 (bvadd ?x13 |a$|)))
-(let ((?x8 (bvmul (_ bv2 32) |b$|)))
-(let ((?x9 (bvadd |a$| ?x8)))
-(let ((?x11 (bvadd ?x9 |c$|)))
-(let ((?x12 (bvsub ?x11 |b$|)))
-(let (($x15 (= ?x12 ?x14)))
-(let (($x16 (not $x15)))
-(let ((@x56 (rewrite (= (= (bvadd |a$| |b$| |c$|) (bvadd |a$| |b$| |c$|)) true))))
-(let ((@x46 (rewrite (= (bvsub (bvadd |a$| ?x8 |c$|) |b$|) (bvadd |a$| |b$| |c$|)))))
-(let ((@x44 (monotonicity (rewrite (= ?x11 (bvadd |a$| ?x8 |c$|))) (= ?x12 (bvsub (bvadd |a$| ?x8 |c$|) |b$|)))))
-(let ((@x54 (monotonicity (trans @x44 @x46 (= ?x12 (bvadd |a$| |b$| |c$|))) (rewrite (= ?x14 (bvadd |a$| |b$| |c$|))) (= $x15 (= (bvadd |a$| |b$| |c$|) (bvadd |a$| |b$| |c$|))))))
-(let ((@x61 (monotonicity (trans @x54 @x56 (= $x15 true)) (= $x16 (not true)))))
-(let ((@x65 (trans @x61 (rewrite (= (not true) false)) (= $x16 false))))
-(mp (asserted $x16) @x65 false)))))))))))))))))
+(let ((?x35 (bvadd b$ c$)))
+(let ((?x36 (bvadd ?x35 a$)))
+(let ((?x30 (bvmul (_ bv2 32) b$)))
+(let ((?x31 (bvadd a$ ?x30)))
+(let ((?x33 (bvadd ?x31 c$)))
+(let ((?x34 (bvsub ?x33 b$)))
+(let (($x37 (= ?x34 ?x36)))
+(let (($x38 (not $x37)))
+(let ((@x58 (rewrite (= (= (bvadd a$ b$ c$) (bvadd a$ b$ c$)) true))))
+(let ((@x48 (rewrite (= (bvsub (bvadd a$ ?x30 c$) b$) (bvadd a$ b$ c$)))))
+(let ((@x46 (monotonicity (rewrite (= ?x33 (bvadd a$ ?x30 c$))) (= ?x34 (bvsub (bvadd a$ ?x30 c$) b$)))))
+(let ((@x56 (monotonicity (trans @x46 @x48 (= ?x34 (bvadd a$ b$ c$))) (rewrite (= ?x36 (bvadd a$ b$ c$))) (= $x37 (= (bvadd a$ b$ c$) (bvadd a$ b$ c$))))))
+(let ((@x63 (monotonicity (trans @x56 @x58 (= $x37 true)) (= $x38 (not true)))))
+(let ((@x67 (trans @x63 (rewrite (= (not true) false)) (= $x38 false))))
+(mp (asserted $x38) @x67 false)))))))))))))))))
 
-570be43092e6421d4222501467362afbd680c2e2 18 0
+266542f0767de16755644d9ae6de01b4da6720d0 18 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x9 (bvmul (_ bv4 4) |x$|)))
-(let (($x10 (= ?x9 (_ bv4 4))))
-(let (($x41 (= (_ bv5 4) |x$|)))
-(let (($x54 (not (or (not $x41) (= (_ bv4 4) ?x9)))))
-(let ((@x46 (monotonicity (rewrite (= (= |x$| (_ bv5 4)) $x41)) (= (not (= |x$| (_ bv5 4))) (not $x41)))))
-(let ((@x53 (monotonicity @x46 (rewrite (= $x10 (= (_ bv4 4) ?x9))) (= (or (not (= |x$| (_ bv5 4))) $x10) (or (not $x41) (= (_ bv4 4) ?x9))))))
-(let (($x12 (not (=> (= |x$| (_ bv5 4)) $x10))))
-(let ((@x37 (rewrite (= (=> (= |x$| (_ bv5 4)) $x10) (or (not (= |x$| (_ bv5 4))) $x10)))))
-(let ((@x58 (trans (monotonicity @x37 (= $x12 (not (or (not (= |x$| (_ bv5 4))) $x10)))) (monotonicity @x53 (= (not (or (not (= |x$| (_ bv5 4))) $x10)) $x54)) (= $x12 $x54))))
-(let ((@x65 (monotonicity (|not-or-elim| (mp (asserted $x12) @x58 $x54) $x41) (= ?x9 (bvmul (_ bv4 4) (_ bv5 4))))))
-(let ((@x71 (monotonicity (trans @x65 (rewrite (= (bvmul (_ bv4 4) (_ bv5 4)) (_ bv4 4))) $x10) (= (= (_ bv4 4) ?x9) (= (_ bv4 4) (_ bv4 4))))))
-(let ((@x75 (trans @x71 (rewrite (= (= (_ bv4 4) (_ bv4 4)) true)) (= (= (_ bv4 4) ?x9) true))))
-(let ((@x82 (trans (monotonicity @x75 (= (not (= (_ bv4 4) ?x9)) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv4 4) ?x9)) false))))
-(mp (|not-or-elim| (mp (asserted $x12) @x58 $x54) (not (= (_ bv4 4) ?x9))) @x82 false))))))))))))))))
+(let ((?x31 (bvmul (_ bv4 4) x$)))
+(let (($x32 (= ?x31 (_ bv4 4))))
+(let (($x43 (= (_ bv5 4) x$)))
+(let (($x56 (not (or (not $x43) (= (_ bv4 4) ?x31)))))
+(let ((@x48 (monotonicity (rewrite (= (= x$ (_ bv5 4)) $x43)) (= (not (= x$ (_ bv5 4))) (not $x43)))))
+(let ((@x55 (monotonicity @x48 (rewrite (= $x32 (= (_ bv4 4) ?x31))) (= (or (not (= x$ (_ bv5 4))) $x32) (or (not $x43) (= (_ bv4 4) ?x31))))))
+(let (($x34 (not (=> (= x$ (_ bv5 4)) $x32))))
+(let ((@x39 (rewrite (= (=> (= x$ (_ bv5 4)) $x32) (or (not (= x$ (_ bv5 4))) $x32)))))
+(let ((@x60 (trans (monotonicity @x39 (= $x34 (not (or (not (= x$ (_ bv5 4))) $x32)))) (monotonicity @x55 (= (not (or (not (= x$ (_ bv5 4))) $x32)) $x56)) (= $x34 $x56))))
+(let ((@x67 (monotonicity (not-or-elim (mp (asserted $x34) @x60 $x56) $x43) (= ?x31 (bvmul (_ bv4 4) (_ bv5 4))))))
+(let ((@x73 (monotonicity (trans @x67 (rewrite (= (bvmul (_ bv4 4) (_ bv5 4)) (_ bv4 4))) $x32) (= (= (_ bv4 4) ?x31) (= (_ bv4 4) (_ bv4 4))))))
+(let ((@x77 (trans @x73 (rewrite (= (= (_ bv4 4) (_ bv4 4)) true)) (= (= (_ bv4 4) ?x31) true))))
+(let ((@x84 (trans (monotonicity @x77 (= (not (= (_ bv4 4) ?x31)) (not true))) (rewrite (= (not true) false)) (= (not (= (_ bv4 4) ?x31)) false))))
+(mp (not-or-elim (mp (asserted $x34) @x60 $x56) (not (= (_ bv4 4) ?x31))) @x84 false))))))))))))))))
 
-2538d74409c652fbc39d33a15f25d18c9bb179bf 9 0
+9137ccc15de2c1c931d3b46d1d69025a9741a669 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x35 (monotonicity (rewrite (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) (= (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)) (= (_ bv4 32) (_ bv4 32))))))
-(let ((@x39 (trans @x35 (rewrite (= (= (_ bv4 32) (_ bv4 32)) true)) (= (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) false))))
-(mp (asserted (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)))) @x46 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) (= (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)) (= (_ bv4 32) (_ bv4 32))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv4 32) (_ bv4 32)) true)) (= (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32))) false))))
+(mp (asserted (not (= (bvand (_ bv6 32) (_ bv5 32)) (_ bv4 32)))) @x48 false)))))))
 
-ea3351a199ecbca8cfc913892024d6ba767f41dc 9 0
+a0cc2e473d859a107afe1adc11b287b98facf0dc 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x35 (monotonicity (rewrite (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) (= (_ bv7 8) (_ bv7 8))))))
-(let ((@x39 (trans @x35 (rewrite (= (= (_ bv7 8) (_ bv7 8)) true)) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) false))))
-(mp (asserted (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)))) @x46 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) (= (_ bv7 8) (_ bv7 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv7 8) (_ bv7 8)) true)) (= (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8))) false))))
+(mp (asserted (not (= (bvor (_ bv6 8) (_ bv3 8)) (_ bv7 8)))) @x48 false)))))))
 
-a36393e9d24b671ce68aafbd67bbc7bcd4c32a9f 9 0
+e3aa830bf4137713f98d1be224746b07ab5dde9e 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x35 (monotonicity (rewrite (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) (= (_ bv15 8) (_ bv15 8))))))
-(let ((@x39 (trans @x35 (rewrite (= (= (_ bv15 8) (_ bv15 8)) true)) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) false))))
-(mp (asserted (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)))) @x46 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) (= (_ bv15 8) (_ bv15 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv15 8) (_ bv15 8)) true)) (= (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8))) false))))
+(mp (asserted (not (= (bvxor (_ bv240 8) (_ bv255 8)) (_ bv15 8)))) @x48 false)))))))
 
-48dba82ab628843121b1cc45b6a662d4282a5dfd 8 0
+860de692ca30ccc8528c0b8bf8e0107a887f31ca 8 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x34 (monotonicity (rewrite (= (bvnot (_ bv240 16)) (_ bv65295 16))) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) (= (_ bv65295 16) (_ bv65295 16))))))
-(let ((@x38 (trans @x34 (rewrite (= (= (_ bv65295 16) (_ bv65295 16)) true)) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) true))))
-(let ((@x45 (trans (monotonicity @x38 (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) (not true))) (rewrite (= (not true) false)) (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) false))))
-(mp (asserted (not (= (bvnot (_ bv240 16)) (_ bv65295 16)))) @x45 false))))))
+(let ((@x36 (monotonicity (rewrite (= (bvnot (_ bv240 16)) (_ bv65295 16))) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) (= (_ bv65295 16) (_ bv65295 16))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv65295 16) (_ bv65295 16)) true)) (= (= (bvnot (_ bv240 16)) (_ bv65295 16)) true))))
+(let ((@x47 (trans (monotonicity @x40 (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) (not true))) (rewrite (= (not true) false)) (= (not (= (bvnot (_ bv240 16)) (_ bv65295 16))) false))))
+(mp (asserted (not (= (bvnot (_ bv240 16)) (_ bv65295 16)))) @x47 false))))))
 
-ffdba93b71ca27a7275f33b87244eb12ceb5e9c2 9 0
+b09831d957da6fd7dc01ad2903ee64ea6163dd71 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x35 (monotonicity (rewrite (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) (= (_ bv2843 12) (_ bv2843 12))))))
-(let ((@x39 (trans @x35 (rewrite (= (= (_ bv2843 12) (_ bv2843 12)) true)) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) false))))
-(mp (asserted (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)))) @x46 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) (= (_ bv207 10) (_ bv207 10))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv207 10) (_ bv207 10)) true)) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) false))))
+(mp (asserted (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)))) @x48 false)))))))
 
-24677a2d05cd59ffe782bea3654e41f124fc1b93 9 0
+754c79ba46ed9ca6826e2bd89107d64a3bda946c 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x35 (monotonicity (rewrite (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) (= (_ bv207 10) (_ bv207 10))))))
-(let ((@x39 (trans @x35 (rewrite (= (= (_ bv207 10) (_ bv207 10)) true)) (= (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)) true))))
-(let ((@x42 (monotonicity @x39 (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) (not true)))))
-(let ((@x46 (trans @x42 (rewrite (= (not true) false)) (= (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10))) false))))
-(mp (asserted (not (= (concat (_ bv3 4) (_ bv15 6)) (_ bv207 10)))) @x46 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) (= (_ bv2843 12) (_ bv2843 12))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv2843 12) (_ bv2843 12)) true)) (= (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12))) false))))
+(mp (asserted (not (= (concat (_ bv11 4) (_ bv27 8)) (_ bv2843 12)))) @x48 false)))))))
 
-bf709bf2b13e6bf4f9668ad197c5d7a4ca581525 8 0
+ec3f2df20c6525ebf42f7503f7272036edb7945b 8 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x50 (monotonicity (rewrite (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) (= (_ bv3 2) (_ bv3 2))))))
-(let ((@x54 (trans @x50 (rewrite (= (= (_ bv3 2) (_ bv3 2)) true)) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) true))))
-(let ((@x61 (trans (monotonicity @x54 (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (not true))) (rewrite (= (not true) false)) (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) false))))
-(mp (asserted (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)))) @x61 false))))))
+(let ((@x36 (monotonicity (rewrite (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) (= (_ bv3 2) (_ bv3 2))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv3 2) (_ bv3 2)) true)) (= (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)) true))))
+(let ((@x47 (trans (monotonicity @x40 (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) (not true))) (rewrite (= (not true) false)) (= (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2))) false))))
+(mp (asserted (not (= ((_ extract 2 1) (_ bv6 4)) (_ bv3 2)))) @x47 false))))))
 
-f487669e8e249c60376443304a5a78c58eddd1cc 9 0
+7f259d911b25f4f07d4578393dfd19c111adf0a1 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x34 (monotonicity (rewrite (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) (= (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)) (= (_ bv10 10) (_ bv10 10))))))
-(let ((@x38 (trans @x34 (rewrite (= (= (_ bv10 10) (_ bv10 10)) true)) (= (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)) true))))
-(let ((@x41 (monotonicity @x38 (= (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) (not true)))))
-(let ((@x45 (trans @x41 (rewrite (= (not true) false)) (= (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) false))))
-(mp (asserted (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)))) @x45 false)))))))
+(let ((@x36 (monotonicity (rewrite (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) (= (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)) (= (_ bv10 10) (_ bv10 10))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv10 10) (_ bv10 10)) true)) (= (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10))) false))))
+(mp (asserted (not (= ((_ zero_extend 6) (_ bv10 4)) (_ bv10 10)))) @x47 false)))))))
 
-e6179d5000250fb81646a549216cd9ad7b2619a2 9 0
+cdeeacf51114f18ccd2f08e989ac540e7f6e65fe 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x34 (monotonicity (rewrite (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) (= (_ bv58 6) (_ bv58 6))))))
-(let ((@x38 (trans @x34 (rewrite (= (= (_ bv58 6) (_ bv58 6)) true)) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) true))))
-(let ((@x41 (monotonicity @x38 (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (not true)))))
-(let ((@x45 (trans @x41 (rewrite (= (not true) false)) (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) false))))
-(mp (asserted (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)))) @x45 false)))))))
+(let ((@x36 (monotonicity (rewrite (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) (= (_ bv58 6) (_ bv58 6))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv58 6) (_ bv58 6)) true)) (= (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6))) false))))
+(mp (asserted (not (= ((_ sign_extend 2) (_ bv10 4)) (_ bv58 6)))) @x47 false)))))))
 
-5ca573788c44ee26ee19907e7d9d9ec1635c9a5b 9 0
+a47b7af2f61edceb589d429fdc3caf416bf4289a 9 0
+unsat
+((set-logic <null>)
+(proof
+(let ((@x37 (monotonicity (rewrite (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) (= (_ bv6 8) (_ bv6 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv6 8) (_ bv6 8)) true)) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) false))))
+(mp (asserted (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)))) @x48 false)))))))
+
+b6c9268772e2e87691aac0285f81ee86c12fcbec 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x51 (monotonicity (rewrite (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) (= (_ bv76 8) (_ bv76 8))))))
-(let ((@x55 (trans @x51 (rewrite (= (= (_ bv76 8) (_ bv76 8)) true)) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) true))))
-(let ((@x58 (monotonicity @x55 (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (not true)))))
-(let ((@x62 (trans @x58 (rewrite (= (not true) false)) (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) false))))
-(mp (asserted (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)))) @x62 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) (= (_ bv76 8) (_ bv76 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv76 8) (_ bv76 8)) true)) (= (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8))) false))))
+(mp (asserted (not (= (bvshl (_ bv19 8) (_ bv2 8)) (_ bv76 8)))) @x48 false)))))))
 
-b4a2032ff1791888567d8f54fa94d95365cb3255 9 0
+9ab700e0dd6f49a60b128de87d210acc7f635d17 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x51 (monotonicity (rewrite (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) (= (_ bv6 8) (_ bv6 8))))))
-(let ((@x55 (trans @x51 (rewrite (= (= (_ bv6 8) (_ bv6 8)) true)) (= (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)) true))))
-(let ((@x58 (monotonicity @x55 (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) (not true)))))
-(let ((@x62 (trans @x58 (rewrite (= (not true) false)) (= (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8))) false))))
-(mp (asserted (not (= (bvlshr (_ bv25 8) (_ bv2 8)) (_ bv6 8)))) @x62 false)))))))
+(let ((@x37 (monotonicity (rewrite (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) (= (_ bv4 8) (_ bv4 8))))))
+(let ((@x41 (trans @x37 (rewrite (= (= (_ bv4 8) (_ bv4 8)) true)) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) true))))
+(let ((@x44 (monotonicity @x41 (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (not true)))))
+(let ((@x48 (trans @x44 (rewrite (= (not true) false)) (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) false))))
+(mp (asserted (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)))) @x48 false)))))))
 
-7a4f6966fce99a20413ba9068cef650098d5df66 9 0
+a99b8e8be40d80553ba4b11a508f78f6f4c87603 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x51 (monotonicity (rewrite (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) (= (_ bv4 8) (_ bv4 8))))))
-(let ((@x55 (trans @x51 (rewrite (= (= (_ bv4 8) (_ bv4 8)) true)) (= (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)) true))))
-(let ((@x58 (monotonicity @x55 (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) (not true)))))
-(let ((@x62 (trans @x58 (rewrite (= (not true) false)) (= (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8))) false))))
-(mp (asserted (not (= (bvashr (_ bv19 8) (_ bv2 8)) (_ bv4 8)))) @x62 false)))))))
+(let ((@x36 (monotonicity (rewrite (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) (= (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)) (= (_ bv9 4) (_ bv9 4))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv9 4) (_ bv9 4)) true)) (= (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) false))))
+(mp (asserted (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)))) @x47 false)))))))
 
-17e3ce1c7a7f4469b5b93e126887f9f5cc55a51d 9 0
+94eb73825d5572a2deeedb3cd9d62b002e25b9c9 17 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((@x50 (monotonicity (rewrite (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) (= (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)) (= (_ bv9 4) (_ bv9 4))))))
-(let ((@x54 (trans @x50 (rewrite (= (= (_ bv9 4) (_ bv9 4)) true)) (= (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)) true))))
-(let ((@x57 (monotonicity @x54 (= (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) (not true)))))
-(let ((@x61 (trans @x57 (rewrite (= (not true) false)) (= (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4))) false))))
-(mp (asserted (not (= ((_ rotate_right 2) (_ bv6 4)) (_ bv9 4)))) @x61 false)))))))
+(let ((?x31 (bvand x$ (_ bv255 16))))
+(let ((?x29 (bvand x$ (_ bv65280 16))))
+(let ((?x32 (bvor ?x29 ?x31)))
+(let (($x33 (= ?x32 x$)))
+(let (($x34 (not $x33)))
+(let ((@x59 (symm (commutativity (= (= x$ ?x32) $x33)) (= $x33 (= x$ ?x32)))))
+(let ((@x35 (asserted $x34)))
+(let ((@x63 (mp @x35 (monotonicity @x59 (= $x34 (not (= x$ ?x32)))) (not (= x$ ?x32)))))
+(let (($x52 (= x$ ?x32)))
+(let ((@x26 (true-axiom true)))
+(let (($x53 (or $x52 false false false false false false false false false false false false false false false false)))
+(let ((@x55 (unit-resolution ((_ th-lemma bv) $x53) @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 $x52)))
+(unit-resolution @x55 @x63 false)))))))))))))))
 
-070667ff72c73dc8cd9ebb50cc06803d9785fef4 9 0
-unsat
-((set-logic <null>)
-(proof
-(let ((@x50 (monotonicity (rewrite (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) (= (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)) (= (_ bv13 4) (_ bv13 4))))))
-(let ((@x54 (trans @x50 (rewrite (= (= (_ bv13 4) (_ bv13 4)) true)) (= (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)) true))))
-(let ((@x57 (monotonicity @x54 (= (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) (not true)))))
-(let ((@x61 (trans @x57 (rewrite (= (not true) false)) (= (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) false))))
-(mp (asserted (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)))) @x61 false)))))))
-
-222d5f4b74cc91bf83cca8b1b96f9cfe0f7db0f7 17 0
+1f7f153791a05b2fcd257d295cb279a51cb236cc 9 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x9 (bvand |x$| (_ bv255 16))))
-(let ((?x7 (bvand |x$| (_ bv65280 16))))
-(let ((?x10 (bvor ?x7 ?x9)))
-(let (($x11 (= ?x10 |x$|)))
-(let (($x12 (not $x11)))
-(let ((@x57 (symm (commutativity (= (= |x$| ?x10) $x11)) (= $x11 (= |x$| ?x10)))))
-(let ((@x33 (asserted $x12)))
-(let ((@x61 (mp @x33 (monotonicity @x57 (= $x12 (not (= |x$| ?x10)))) (not (= |x$| ?x10)))))
-(let (($x50 (= |x$| ?x10)))
-(let ((@x32 (|true-axiom| true)))
-(let (($x51 (or $x50 false false false false false false false false false false false false false false false false)))
-(let ((@x53 (|unit-resolution| ((_ |th-lemma| bv) $x51) @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 $x50)))
-(|unit-resolution| @x53 @x61 false)))))))))))))))
+(let ((@x36 (monotonicity (rewrite (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) (= (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)) (= (_ bv13 4) (_ bv13 4))))))
+(let ((@x40 (trans @x36 (rewrite (= (= (_ bv13 4) (_ bv13 4)) true)) (= (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)) true))))
+(let ((@x43 (monotonicity @x40 (= (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) (not true)))))
+(let ((@x47 (trans @x43 (rewrite (= (not true) false)) (= (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4))) false))))
+(mp (asserted (not (= ((_ rotate_left 1) (_ bv14 4)) (_ bv13 4)))) @x47 false)))))))
 
-f856dea62e897c0065d5a1827265d3ff37ee50c8 51 0
+85eff1077503d712336bf007dbc3d299f880dd8c 29 0
+unsat
+((set-logic <null>)
+(proof
+(let ((?x28 (bv2int$ (_ bv0 2))))
+(let (($x183 (<= ?x28 0)))
+(let (($x184 (not $x183)))
+(let (($x175 (forall ((?v0 (_ BitVec 2)) )(!(let ((?x47 (bv2int$ ?v0)))
+(let (($x53 (<= ?x47 0)))
+(not $x53))) :pattern ( (bv2int$ ?v0) )))
+))
+(let (($x57 (forall ((?v0 (_ BitVec 2)) )(let ((?x47 (bv2int$ ?v0)))
+(let (($x53 (<= ?x47 0)))
+(not $x53))))
+))
+(let ((@x177 (refl (= (not (<= (bv2int$ ?0) 0)) (not (<= (bv2int$ ?0) 0))))))
+(let ((@x112 (refl (~ (not (<= (bv2int$ ?0) 0)) (not (<= (bv2int$ ?0) 0))))))
+(let (($x49 (forall ((?v0 (_ BitVec 2)) )(let ((?x47 (bv2int$ ?v0)))
+(< 0 ?x47)))
+))
+(let ((@x56 (rewrite (= (< 0 (bv2int$ ?0)) (not (<= (bv2int$ ?0) 0))))))
+(let ((@x115 (mp~ (mp (asserted $x49) (quant-intro @x56 (= $x49 $x57)) $x57) (nnf-pos @x112 (~ $x57 $x57)) $x57)))
+(let ((@x180 (mp @x115 (quant-intro @x177 (= $x57 $x175)) $x175)))
+(let (($x187 (not $x175)))
+(let (($x188 (or $x187 $x184)))
+(let ((@x189 ((_ quant-inst (_ bv0 2)) $x188)))
+(let (($x29 (= ?x28 0)))
+(let ((@x30 (asserted $x29)))
+(unit-resolution ((_ th-lemma arith triangle-eq) (or (not $x29) $x183)) @x30 (unit-resolution @x189 @x180 $x184) false)))))))))))))))))))
+
+5257e6fa7cd9238326b5139a4fdf82173f5411bf 51 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x9 (bvand |w$| (_ bv255 16))))
-(let (($x10 (= ?x9 |w$|)))
-(let (($x62 (not $x10)))
-(let ((@x316 (symm (commutativity (= (= |w$| ?x9) $x10)) (= $x10 (= |w$| ?x9)))))
-(let (($x55 (not (or (bvule (_ bv256 16) |w$|) $x10))))
-(let ((@x47 (monotonicity (rewrite (= (bvult |w$| (_ bv256 16)) (not (bvule (_ bv256 16) |w$|)))) (= (not (bvult |w$| (_ bv256 16))) (not (not (bvule (_ bv256 16) |w$|)))))))
-(let ((@x51 (trans @x47 (rewrite (= (not (not (bvule (_ bv256 16) |w$|))) (bvule (_ bv256 16) |w$|))) (= (not (bvult |w$| (_ bv256 16))) (bvule (_ bv256 16) |w$|)))))
-(let ((@x54 (monotonicity @x51 (= (or (not (bvult |w$| (_ bv256 16))) $x10) (or (bvule (_ bv256 16) |w$|) $x10)))))
-(let ((@x57 (monotonicity @x54 (= (not (or (not (bvult |w$| (_ bv256 16))) $x10)) $x55))))
-(let (($x12 (not (=> (bvult |w$| (_ bv256 16)) $x10))))
-(let ((@x37 (rewrite (= (=> (bvult |w$| (_ bv256 16)) $x10) (or (not (bvult |w$| (_ bv256 16))) $x10)))))
-(let ((@x40 (monotonicity @x37 (= $x12 (not (or (not (bvult |w$| (_ bv256 16))) $x10))))))
-(let ((@x63 (|not-or-elim| (mp (asserted $x12) (trans @x40 @x57 (= $x12 $x55)) $x55) $x62)))
-(let ((@x320 (mp @x63 (monotonicity @x316 (= $x62 (not (= |w$| ?x9)))) (not (= |w$| ?x9)))))
-(let (($x298 (= |w$| ?x9)))
-(let (($x79 (= ((_ extract 15 15) |w$|) (_ bv1 1))))
-(let (($x262 (not $x79)))
-(let (($x72 (= ((_ extract 8 8) |w$|) (_ bv1 1))))
-(let (($x73 (= ((_ extract 9 9) |w$|) (_ bv1 1))))
-(let (($x80 (and $x73 $x72)))
-(let (($x81 (or $x73 $x72 $x80)))
-(let (($x74 (= ((_ extract 10 10) |w$|) (_ bv1 1))))
-(let (($x82 (and $x74 $x81)))
-(let (($x83 (or $x74 $x73 $x72 $x80 $x82)))
-(let (($x75 (= ((_ extract 11 11) |w$|) (_ bv1 1))))
-(let (($x84 (and $x75 $x83)))
-(let (($x85 (or $x75 $x74 $x73 $x72 $x80 $x82 $x84)))
-(let (($x76 (= ((_ extract 12 12) |w$|) (_ bv1 1))))
-(let (($x86 (and $x76 $x85)))
-(let (($x87 (or $x76 $x75 $x74 $x73 $x72 $x80 $x82 $x84 $x86)))
-(let (($x77 (= ((_ extract 13 13) |w$|) (_ bv1 1))))
-(let (($x88 (and $x77 $x87)))
-(let (($x89 (or $x77 $x76 $x75 $x74 $x73 $x72 $x80 $x82 $x84 $x86 $x88)))
-(let (($x78 (= ((_ extract 14 14) |w$|) (_ bv1 1))))
-(let (($x90 (and $x78 $x89)))
-(let (($x91 (or $x78 $x77 $x76 $x75 $x74 $x73 $x72 $x80 $x82 $x84 $x86 $x88 $x90)))
-(let (($x92 (and $x79 $x91)))
-(let (($x93 (or $x79 $x78 $x77 $x76 $x75 $x74 $x73 $x72 $x80 $x82 $x84 $x86 $x88 $x90 $x92)))
-(let (($x295 (not $x93)))
-(let (($x41 (bvule (_ bv256 16) |w$|)))
-(let (($x42 (not $x41)))
-(let ((@x61 (|not-or-elim| (mp (asserted $x12) (trans @x40 @x57 (= $x12 $x55)) $x55) $x42)))
-(let ((@x301 (|unit-resolution| ((_ |th-lemma| bv) (or $x41 $x295)) @x61 $x295)))
-(let ((@x32 (|true-axiom| true)))
-(let (($x310 (or $x298 false false false false false false false false $x72 $x73 $x74 $x75 $x76 $x77 $x78 $x79)))
-(let ((@x312 (|unit-resolution| ((_ |th-lemma| bv) $x310) @x32 @x32 @x32 @x32 @x32 @x32 @x32 @x32 (|unit-resolution| (|def-axiom| (or $x93 (not $x72))) @x301 (not $x72)) (|unit-resolution| (|def-axiom| (or $x93 (not $x73))) @x301 (not $x73)) (|unit-resolution| (|def-axiom| (or $x93 (not $x74))) @x301 (not $x74)) (|unit-resolution| (|def-axiom| (or $x93 (not $x75))) @x301 (not $x75)) (|unit-resolution| (|def-axiom| (or $x93 (not $x76))) @x301 (not $x76)) (|unit-resolution| (|def-axiom| (or $x93 (not $x77))) @x301 (not $x77)) (|unit-resolution| (|def-axiom| (or $x93 (not $x78))) @x301 (not $x78)) (|unit-resolution| (|def-axiom| (or $x93 $x262)) @x301 $x262) $x298)))
-(|unit-resolution| @x312 @x320 false)))))))))))))))))))))))))))))))))))))))))))))))))
+(let ((?x31 (bvand w$ (_ bv255 16))))
+(let (($x32 (= ?x31 w$)))
+(let (($x64 (not $x32)))
+(let ((@x318 (symm (commutativity (= (= w$ ?x31) $x32)) (= $x32 (= w$ ?x31)))))
+(let (($x57 (not (or (bvule (_ bv256 16) w$) $x32))))
+(let ((@x49 (monotonicity (rewrite (= (bvult w$ (_ bv256 16)) (not (bvule (_ bv256 16) w$)))) (= (not (bvult w$ (_ bv256 16))) (not (not (bvule (_ bv256 16) w$)))))))
+(let ((@x53 (trans @x49 (rewrite (= (not (not (bvule (_ bv256 16) w$))) (bvule (_ bv256 16) w$))) (= (not (bvult w$ (_ bv256 16))) (bvule (_ bv256 16) w$)))))
+(let ((@x56 (monotonicity @x53 (= (or (not (bvult w$ (_ bv256 16))) $x32) (or (bvule (_ bv256 16) w$) $x32)))))
+(let ((@x59 (monotonicity @x56 (= (not (or (not (bvult w$ (_ bv256 16))) $x32)) $x57))))
+(let (($x34 (not (=> (bvult w$ (_ bv256 16)) $x32))))
+(let ((@x39 (rewrite (= (=> (bvult w$ (_ bv256 16)) $x32) (or (not (bvult w$ (_ bv256 16))) $x32)))))
+(let ((@x42 (monotonicity @x39 (= $x34 (not (or (not (bvult w$ (_ bv256 16))) $x32))))))
+(let ((@x65 (not-or-elim (mp (asserted $x34) (trans @x42 @x59 (= $x34 $x57)) $x57) $x64)))
+(let ((@x322 (mp @x65 (monotonicity @x318 (= $x64 (not (= w$ ?x31)))) (not (= w$ ?x31)))))
+(let (($x300 (= w$ ?x31)))
+(let (($x81 (= ((_ extract 15 15) w$) (_ bv1 1))))
+(let (($x264 (not $x81)))
+(let (($x74 (= ((_ extract 8 8) w$) (_ bv1 1))))
+(let (($x75 (= ((_ extract 9 9) w$) (_ bv1 1))))
+(let (($x82 (and $x75 $x74)))
+(let (($x83 (or $x75 $x74 $x82)))
+(let (($x76 (= ((_ extract 10 10) w$) (_ bv1 1))))
+(let (($x84 (and $x76 $x83)))
+(let (($x85 (or $x76 $x75 $x74 $x82 $x84)))
+(let (($x77 (= ((_ extract 11 11) w$) (_ bv1 1))))
+(let (($x86 (and $x77 $x85)))
+(let (($x87 (or $x77 $x76 $x75 $x74 $x82 $x84 $x86)))
+(let (($x78 (= ((_ extract 12 12) w$) (_ bv1 1))))
+(let (($x88 (and $x78 $x87)))
+(let (($x89 (or $x78 $x77 $x76 $x75 $x74 $x82 $x84 $x86 $x88)))
+(let (($x79 (= ((_ extract 13 13) w$) (_ bv1 1))))
+(let (($x90 (and $x79 $x89)))
+(let (($x91 (or $x79 $x78 $x77 $x76 $x75 $x74 $x82 $x84 $x86 $x88 $x90)))
+(let (($x80 (= ((_ extract 14 14) w$) (_ bv1 1))))
+(let (($x92 (and $x80 $x91)))
+(let (($x93 (or $x80 $x79 $x78 $x77 $x76 $x75 $x74 $x82 $x84 $x86 $x88 $x90 $x92)))
+(let (($x94 (and $x81 $x93)))
+(let (($x95 (or $x81 $x80 $x79 $x78 $x77 $x76 $x75 $x74 $x82 $x84 $x86 $x88 $x90 $x92 $x94)))
+(let (($x297 (not $x95)))
+(let (($x43 (bvule (_ bv256 16) w$)))
+(let (($x44 (not $x43)))
+(let ((@x63 (not-or-elim (mp (asserted $x34) (trans @x42 @x59 (= $x34 $x57)) $x57) $x44)))
+(let ((@x303 (unit-resolution ((_ th-lemma bv) (or $x43 $x297)) @x63 $x297)))
+(let ((@x26 (true-axiom true)))
+(let (($x312 (or $x300 false false false false false false false false $x74 $x75 $x76 $x77 $x78 $x79 $x80 $x81)))
+(let ((@x314 (unit-resolution ((_ th-lemma bv) $x312) @x26 @x26 @x26 @x26 @x26 @x26 @x26 @x26 (unit-resolution (def-axiom (or $x95 (not $x74))) @x303 (not $x74)) (unit-resolution (def-axiom (or $x95 (not $x75))) @x303 (not $x75)) (unit-resolution (def-axiom (or $x95 (not $x76))) @x303 (not $x76)) (unit-resolution (def-axiom (or $x95 (not $x77))) @x303 (not $x77)) (unit-resolution (def-axiom (or $x95 (not $x78))) @x303 (not $x78)) (unit-resolution (def-axiom (or $x95 (not $x79))) @x303 (not $x79)) (unit-resolution (def-axiom (or $x95 (not $x80))) @x303 (not $x80)) (unit-resolution (def-axiom (or $x95 $x264)) @x303 $x264) $x300)))
+(unit-resolution @x314 @x322 false)))))))))))))))))))))))))))))))))))))))))))))))))
 
-39d6b3ac211187a764a365cb2d10eb3330116060 29 0
+24d6f4fed7bbcb314acc273e33b6c33e838be536 16 0
 unsat
 ((set-logic <null>)
 (proof
-(let ((?x6 (|bv2int$| (_ bv0 2))))
-(let (($x181 (<= ?x6 0)))
-(let (($x182 (not $x181)))
-(let (($x173 (forall ((?v0 (_ BitVec 2)) )(!(let ((?x22 (|bv2int$| ?v0)))
-(let (($x59 (<= ?x22 0)))
-(not $x59))) :pattern ( (|bv2int$| ?v0) )))
-))
-(let (($x63 (forall ((?v0 (_ BitVec 2)) )(let ((?x22 (|bv2int$| ?v0)))
-(let (($x59 (<= ?x22 0)))
-(not $x59))))
-))
-(let ((@x175 (refl (= (not (<= (|bv2int$| ?0) 0)) (not (<= (|bv2int$| ?0) 0))))))
-(let ((@x110 (refl (|~| (not (<= (|bv2int$| ?0) 0)) (not (<= (|bv2int$| ?0) 0))))))
-(let (($x24 (forall ((?v0 (_ BitVec 2)) )(let ((?x22 (|bv2int$| ?v0)))
-(< 0 ?x22)))
-))
-(let ((@x62 (rewrite (= (< 0 (|bv2int$| ?0)) (not (<= (|bv2int$| ?0) 0))))))
-(let ((@x113 (|mp~| (mp (asserted $x24) (|quant-intro| @x62 (= $x24 $x63)) $x63) (|nnf-pos| @x110 (|~| $x63 $x63)) $x63)))
-(let ((@x178 (mp @x113 (|quant-intro| @x175 (= $x63 $x173)) $x173)))
-(let (($x185 (not $x173)))
-(let (($x186 (or $x185 $x182)))
-(let ((@x187 ((_ |quant-inst| (_ bv0 2)) $x186)))
-(let (($x8 (= ?x6 0)))
-(let ((@x52 (asserted $x8)))
-(|unit-resolution| ((_ |th-lemma| arith triangle-eq) (or (not $x8) $x181)) @x52 (|unit-resolution| @x187 @x178 $x182) false)))))))))))))))))))
+(let ((?x32 (p$ true)))
+(let (($x29 (bvule (_ bv0 4) a$)))
+(let (($x30 (ite $x29 true false)))
+(let ((?x31 (p$ $x30)))
+(let (($x33 (= ?x31 ?x32)))
+(let (($x34 (not $x33)))
+(let ((@x52 (monotonicity (monotonicity (rewrite (= $x29 true)) (= (p$ $x29) ?x32)) (= (= (p$ $x29) ?x32) (= ?x32 ?x32)))))
+(let ((@x56 (trans @x52 (rewrite (= (= ?x32 ?x32) true)) (= (= (p$ $x29) ?x32) true))))
+(let ((@x63 (trans (monotonicity @x56 (= (not (= (p$ $x29) ?x32)) (not true))) (rewrite (= (not true) false)) (= (not (= (p$ $x29) ?x32)) false))))
+(let ((@x43 (monotonicity (monotonicity (rewrite (= $x30 $x29)) (= ?x31 (p$ $x29))) (= $x33 (= (p$ $x29) ?x32)))))
+(let ((@x46 (monotonicity @x43 (= $x34 (not (= (p$ $x29) ?x32))))))
+(mp (asserted $x34) (trans @x46 @x63 (= $x34 false)) false))))))))))))))
 
-f7db43c56c17d090679f2e9727e9eaa7cf84ab8d 16 0
-unsat
-((set-logic <null>)
-(proof
-(let ((?x10 (|p$| true)))
-(let (($x7 (bvule (_ bv0 4) |a$|)))
-(let (($x8 (ite $x7 true false)))
-(let ((?x9 (|p$| $x8)))
-(let (($x11 (= ?x9 ?x10)))
-(let (($x12 (not $x11)))
-(let ((@x50 (monotonicity (monotonicity (rewrite (= $x7 true)) (= (|p$| $x7) ?x10)) (= (= (|p$| $x7) ?x10) (= ?x10 ?x10)))))
-(let ((@x54 (trans @x50 (rewrite (= (= ?x10 ?x10) true)) (= (= (|p$| $x7) ?x10) true))))
-(let ((@x61 (trans (monotonicity @x54 (= (not (= (|p$| $x7) ?x10)) (not true))) (rewrite (= (not true) false)) (= (not (= (|p$| $x7) ?x10)) false))))
-(let ((@x41 (monotonicity (monotonicity (rewrite (= $x8 $x7)) (= ?x9 (|p$| $x7))) (= $x11 (= (|p$| $x7) ?x10)))))
-(let ((@x44 (monotonicity @x41 (= $x12 (not (= (|p$| $x7) ?x10))))))
-(mp (asserted $x12) (trans @x44 @x61 (= $x12 false)) false))))))))))))))
-