author | nipkow |
Thu, 21 May 2020 22:06:15 +0200 | |
changeset 71852 | 76784f47c60f |
parent 71851 | 34ecb540a079 |
child 71853 | 30d92e668b52 |
src/HOL/Nat.thy | file | annotate | diff | comparison | revisions |
--- a/src/HOL/Nat.thy Wed May 20 19:43:39 2020 +0000 +++ b/src/HOL/Nat.thy Thu May 21 22:06:15 2020 +0200 @@ -906,9 +906,6 @@ lemma max_Suc2: "max m (Suc n) = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max m' n))" by (simp split: nat.split) -lemma max_0_iff: "max m n = (0::nat) \<longleftrightarrow> m = 0 \<and> n = 0" - by (fact max_nat.eq_neutr_iff) - lemma nat_mult_min_left: "min m n * q = min (m * q) (n * q)" for m n q :: nat by (simp add: min_def not_le)