--- a/src/HOL/List.thy Wed Aug 04 19:09:58 2004 +0200
+++ b/src/HOL/List.thy Wed Aug 04 19:10:45 2004 +0200
@@ -36,6 +36,7 @@
zip :: "'a list => 'b list => ('a * 'b) list"
upt :: "nat => nat => nat list" ("(1[_../_'(])")
remdups :: "'a list => 'a list"
+ remove1 :: "'a => 'a list => 'a list"
null:: "'a list => bool"
"distinct":: "'a list => bool"
replicate :: "nat => 'a => 'a list"
@@ -172,6 +173,9 @@
"remdups [] = []"
"remdups (x#xs) = (if x : set xs then remdups xs else x # remdups xs)"
primrec
+"remove1 x [] = []"
+"remove1 x (y#xs) = (if x=y then xs else y # remove1 x xs)"
+primrec
replicate_0: "replicate 0 x = []"
replicate_Suc: "replicate (Suc n) x = x # replicate n x"
defs
@@ -487,6 +491,31 @@
"(EX xs. ys = map f xs) = (ALL y : set ys. EX x. y = f x)"
by(induct ys, auto)
+lemma map_eq_imp_length_eq:
+ "!!xs. map f xs = map f ys ==> length xs = length ys"
+apply (induct ys)
+ apply simp
+apply(simp (no_asm_use))
+apply clarify
+apply(simp (no_asm_use))
+apply fast
+done
+
+lemma map_inj_on:
+ "[| map f xs = map f ys; inj_on f (set xs Un set ys) |]
+ ==> xs = ys"
+apply(frule map_eq_imp_length_eq)
+apply(rotate_tac -1)
+apply(induct rule:list_induct2)
+ apply simp
+apply(simp)
+apply (blast intro:sym)
+done
+
+lemma inj_on_map_eq_map:
+ "inj_on f (set xs Un set ys) \<Longrightarrow> (map f xs = map f ys) = (xs = ys)"
+by(blast dest:map_inj_on)
+
lemma map_injective:
"!!xs. map f xs = map f ys ==> inj f ==> xs = ys"
by (induct ys) (auto dest!:injD)
@@ -513,6 +542,15 @@
lemma map_fun_upd [simp]: "y \<notin> set xs \<Longrightarrow> map (f(y:=v)) xs = map f xs"
by (induct xs) auto
+lemma map_fst_zip[simp]:
+ "length xs = length ys \<Longrightarrow> map fst (zip xs ys) = xs"
+by (induct rule:list_induct2, simp_all)
+
+lemma map_snd_zip[simp]:
+ "length xs = length ys \<Longrightarrow> map snd (zip xs ys) = ys"
+by (induct rule:list_induct2, simp_all)
+
+
subsection {* @{text rev} *}
lemma rev_append [simp]: "rev (xs @ ys) = rev ys @ rev xs"
@@ -829,6 +867,9 @@
declare take_Cons [simp del] and drop_Cons [simp del]
+lemma take_Suc: "xs ~= [] ==> take (Suc n) xs = hd xs # take n (tl xs)"
+by(clarsimp simp add:neq_Nil_conv)
+
lemma drop_Suc: "drop (Suc n) xs = drop n (tl xs)"
by(cases xs, simp_all)
@@ -899,6 +940,18 @@
apply (case_tac xs, auto)
done
+lemma take_eq_Nil[simp]: "!!n. (take n xs = []) = (n = 0 \<or> xs = [])"
+apply(induct xs)
+ apply simp
+apply(simp add:take_Cons split:nat.split)
+done
+
+lemma drop_eq_Nil[simp]: "!!n. (drop n xs = []) = (length xs <= n)"
+apply(induct xs)
+apply simp
+apply(simp add:drop_Cons split:nat.split)
+done
+
lemma take_map: "!!xs. take n (map f xs) = map f (take n xs)"
apply (induct n, auto)
apply (case_tac xs, auto)
@@ -966,6 +1019,13 @@
apply simp_all
done
+lemma take_hd_drop:
+ "!!n. n < length xs \<Longrightarrow> take n xs @ [hd (drop n xs)] = take (n+1) xs"
+apply(induct xs)
+apply simp
+apply(simp add:drop_Cons split:nat.split)
+done
+
subsection {* @{text takeWhile} and @{text dropWhile} *}
@@ -1367,10 +1427,10 @@
apply (erule_tac x = "Suc j" in allE, simp)
done
-lemma distinct_card: "distinct xs \<Longrightarrow> card (set xs) = size xs"
+lemma distinct_card: "distinct xs ==> card (set xs) = size xs"
by (induct xs) auto
-lemma card_distinct: "card (set xs) = size xs \<Longrightarrow> distinct xs"
+lemma card_distinct: "card (set xs) = size xs ==> distinct xs"
proof (induct xs)
case Nil thus ?case by simp
next
@@ -1388,6 +1448,44 @@
qed
qed
+lemma inj_on_setI: "distinct(map f xs) ==> inj_on f (set xs)"
+apply(induct xs)
+ apply simp
+apply fastsimp
+done
+
+lemma inj_on_set_conv:
+ "distinct xs \<Longrightarrow> inj_on f (set xs) = distinct(map f xs)"
+apply(induct xs)
+ apply simp
+apply fastsimp
+done
+
+
+subsection {* @{text remove1} *}
+
+lemma set_remove1_subset: "set(remove1 x xs) <= set xs"
+apply(induct xs)
+ apply simp
+apply simp
+apply blast
+done
+
+lemma [simp]: "distinct xs ==> set(remove1 x xs) = set xs - {x}"
+apply(induct xs)
+ apply simp
+apply simp
+apply blast
+done
+
+lemma notin_set_remove1[simp]: "x ~: set xs ==> x ~: set(remove1 y xs)"
+apply(insert set_remove1_subset)
+apply fast
+done
+
+lemma distinct_remove1[simp]: "distinct xs ==> distinct(remove1 x xs)"
+by (induct xs) simp_all
+
subsection {* @{text replicate} *}
--- a/src/HOL/Map.thy Wed Aug 04 19:09:58 2004 +0200
+++ b/src/HOL/Map.thy Wed Aug 04 19:10:45 2004 +0200
@@ -173,6 +173,18 @@
subsection {* @{term map_of} *}
+lemma map_of_zip_is_None[simp]:
+ "length xs = length ys \<Longrightarrow> (map_of (zip xs ys) x = None) = (x \<notin> set xs)"
+by (induct rule:list_induct2, simp_all)
+
+lemma finite_range_map_of: "finite (range (map_of xys))"
+apply (induct_tac xys)
+apply (simp_all (no_asm) add: image_constant)
+apply (rule finite_subset)
+prefer 2 apply assumption
+apply auto
+done
+
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y --> (k,y):set xs"
by (induct_tac "xs", auto)
@@ -193,14 +205,6 @@
apply (induct_tac "xs", auto)
done
-lemma finite_range_map_of: "finite (range (map_of l))"
-apply (induct_tac "l")
-apply (simp_all (no_asm) add: image_constant)
-apply (rule finite_subset)
-prefer 2 apply assumption
-apply auto
-done
-
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)"
by (induct_tac "xs", auto)
@@ -433,6 +437,10 @@
apply(auto simp del:fun_upd_apply)
done
+lemma dom_map_of_zip[simp]: "[| length xs = length ys; distinct xs |] ==>
+ dom(map_of(zip xs ys)) = set xs"
+by(induct rule: list_induct2, simp_all)
+
lemma finite_dom_map_of: "finite (dom (map_of l))"
apply (unfold dom_def)
apply (induct_tac "l")