disable floor_minus and ceiling_minus [simp]
authorhuffman
Thu, 26 Feb 2009 06:21:31 -0800
changeset 30102 799b687e4aac
parent 30098 896fed07349e
child 30103 32effb2a8168
disable floor_minus and ceiling_minus [simp]
src/HOL/Archimedean_Field.thy
src/HOL/RComplete.thy
--- a/src/HOL/Archimedean_Field.thy	Wed Feb 25 11:30:46 2009 -0800
+++ b/src/HOL/Archimedean_Field.thy	Thu Feb 26 06:21:31 2009 -0800
@@ -391,10 +391,10 @@
 
 subsection {* Negation *}
 
-lemma floor_minus [simp]: "floor (- x) = - ceiling x"
+lemma floor_minus: "floor (- x) = - ceiling x"
   unfolding ceiling_def by simp
 
-lemma ceiling_minus [simp]: "ceiling (- x) = - floor x"
+lemma ceiling_minus: "ceiling (- x) = - floor x"
   unfolding ceiling_def by simp
 
 end
--- a/src/HOL/RComplete.thy	Wed Feb 25 11:30:46 2009 -0800
+++ b/src/HOL/RComplete.thy	Thu Feb 26 06:21:31 2009 -0800
@@ -501,13 +501,13 @@
 unfolding real_of_nat_def by simp
 
 lemma floor_minus_real_of_nat [simp]: "floor (- real (n::nat)) = - int n"
-unfolding real_of_nat_def by simp
+unfolding real_of_nat_def by (simp add: floor_minus)
 
 lemma floor_real_of_int [simp]: "floor (real (n::int)) = n"
 unfolding real_of_int_def by simp
 
 lemma floor_minus_real_of_int [simp]: "floor (- real (n::int)) = - n"
-unfolding real_of_int_def by simp
+unfolding real_of_int_def by (simp add: floor_minus)
 
 lemma real_lb_ub_int: " \<exists>n::int. real n \<le> r & r < real (n+1)"
 unfolding real_of_int_def by (rule floor_exists)