removed dead theory Relation_Power
authorhaftmann
Fri, 29 May 2009 17:27:00 +0200
changeset 31294 79a40605efce
parent 31293 198eae6f5a35
child 31295 956592c2c701
removed dead theory Relation_Power
src/HOL/Relation_Power.thy
--- a/src/HOL/Relation_Power.thy	Thu May 28 22:54:57 2009 -0700
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,154 +0,0 @@
-(*  Title:      HOL/Relation_Power.thy
-    Author:     Tobias Nipkow
-    Copyright   1996  TU Muenchen
-*)
-
-header{*Powers of Relations and Functions*}
-
-theory Relation_Power
-imports Power Transitive_Closure Plain
-begin
-
-consts funpower :: "('a \<Rightarrow> 'b) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'b" (infixr "^^" 80)
-
-overloading
-  relpow \<equiv> "funpower \<Colon> ('a \<times> 'a) set \<Rightarrow> nat \<Rightarrow> ('a \<times> 'a) set"
-begin
-
-text {* @{text "R ^^ n = R O ... O R"}, the n-fold composition of @{text R} *}
-
-primrec relpow where
-    "(R \<Colon> ('a \<times> 'a) set) ^^ 0 = Id"
-  | "(R \<Colon> ('a \<times> 'a) set) ^^ Suc n = R O (R ^^ n)"
-
-end
-
-overloading
-  funpow \<equiv> "funpower \<Colon> ('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
-begin
-
-text {* @{text "f ^^ n = f o ... o f"}, the n-fold composition of @{text f} *}
-
-primrec funpow where
-    "(f \<Colon> 'a \<Rightarrow> 'a) ^^ 0 = id"
-  | "(f \<Colon> 'a \<Rightarrow> 'a) ^^ Suc n = f o (f ^^ n)"
-
-end
-
-primrec fun_pow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a" where
-    "fun_pow 0 f = id"
-  | "fun_pow (Suc n) f = f o fun_pow n f"
-
-lemma funpow_fun_pow [code unfold]:
-  "f ^^ n = fun_pow n f"
-  unfolding funpow_def fun_pow_def ..
-
-lemma funpow_add:
-  "f ^^ (m + n) = f ^^ m o f ^^ n"
-  by (induct m) simp_all
-
-lemma funpow_swap1:
-  "f ((f ^^ n) x) = (f ^^ n) (f x)"
-proof -
-  have "f ((f ^^ n) x) = (f ^^ (n+1)) x" unfolding One_nat_def by simp
-  also have "\<dots>  = (f ^^ n o f ^^ 1) x" by (simp only: funpow_add)
-  also have "\<dots> = (f ^^ n) (f x)" unfolding One_nat_def by simp
-  finally show ?thesis .
-qed
-
-lemma rel_pow_1 [simp]:
-  fixes R :: "('a * 'a) set"
-  shows "R ^^ 1 = R"
-  by simp
-
-lemma rel_pow_0_I: 
-  "(x, x) \<in> R ^^ 0"
-  by simp
-
-lemma rel_pow_Suc_I:
-  "(x, y) \<in>  R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
-  by auto
-
-lemma rel_pow_Suc_I2:
-  "(x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ n \<Longrightarrow> (x, z) \<in> R ^^ Suc n"
-  by (induct n arbitrary: z) (simp, fastsimp)
-
-lemma rel_pow_0_E:
-  "(x, y) \<in> R ^^ 0 \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> P"
-  by simp
-
-lemma rel_pow_Suc_E:
-  "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<And>y. (x, y) \<in> R ^^ n \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P) \<Longrightarrow> P"
-  by auto
-
-lemma rel_pow_E:
-  "(x, z) \<in>  R ^^ n \<Longrightarrow>  (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
-   \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in>  R ^^ m \<Longrightarrow> (y, z) \<in> R \<Longrightarrow> P)
-   \<Longrightarrow> P"
-  by (cases n) auto
-
-lemma rel_pow_Suc_D2:
-  "(x, z) \<in> R ^^ Suc n \<Longrightarrow> (\<exists>y. (x, y) \<in> R \<and> (y, z) \<in> R ^^ n)"
-  apply (induct n arbitrary: x z)
-   apply (blast intro: rel_pow_0_I elim: rel_pow_0_E rel_pow_Suc_E)
-  apply (blast intro: rel_pow_Suc_I elim: rel_pow_0_E rel_pow_Suc_E)
-  done
-
-lemma rel_pow_Suc_D2':
-  "\<forall>x y z. (x, y) \<in> R ^^ n \<and> (y, z) \<in> R \<longrightarrow> (\<exists>w. (x, w) \<in> R \<and> (w, z) \<in> R ^^ n)"
-  by (induct n) (simp_all, blast)
-
-lemma rel_pow_E2:
-  "(x, z) \<in> R ^^ n \<Longrightarrow>  (n = 0 \<Longrightarrow> x = z \<Longrightarrow> P)
-     \<Longrightarrow> (\<And>y m. n = Suc m \<Longrightarrow> (x, y) \<in> R \<Longrightarrow> (y, z) \<in> R ^^ m \<Longrightarrow> P)
-   \<Longrightarrow> P"
-  apply (cases n, simp)
-  apply (cut_tac n=nat and R=R in rel_pow_Suc_D2', simp, blast)
-  done
-
-lemma rtrancl_imp_UN_rel_pow:
-  "p \<in> R^* \<Longrightarrow> p \<in> (\<Union>n. R ^^ n)"
-  apply (cases p) apply (simp only:)
-  apply (erule rtrancl_induct)
-   apply (blast intro: rel_pow_0_I rel_pow_Suc_I)+
-  done
-
-lemma rel_pow_imp_rtrancl:
-  "p \<in> R ^^ n \<Longrightarrow> p \<in> R^*"
-  apply (induct n arbitrary: p)
-  apply (simp_all only: split_tupled_all)
-   apply (blast intro: rtrancl_refl elim: rel_pow_0_E)
-  apply (blast elim: rel_pow_Suc_E intro: rtrancl_into_rtrancl)
-  done
-
-lemma rtrancl_is_UN_rel_pow:
-  "R^* = (UN n. R ^^ n)"
-  by (blast intro: rtrancl_imp_UN_rel_pow rel_pow_imp_rtrancl)
-
-lemma trancl_power:
-  "x \<in> r^+ = (\<exists>n > 0. x \<in> r ^^ n)"
-  apply (cases x)
-  apply simp
-  apply (rule iffI)
-   apply (drule tranclD2)
-   apply (clarsimp simp: rtrancl_is_UN_rel_pow)
-   apply (rule_tac x="Suc x" in exI)
-   apply (clarsimp simp: rel_comp_def)
-   apply fastsimp
-  apply clarsimp
-  apply (case_tac n, simp)
-  apply clarsimp
-  apply (drule rel_pow_imp_rtrancl)
-  apply fastsimp
-  done
-
-lemma single_valued_rel_pow:
-  fixes R :: "('a * 'a) set"
-  shows "single_valued R \<Longrightarrow> single_valued (R ^^ n)"
-  apply (induct n arbitrary: R)
-  apply simp_all
-  apply (rule single_valuedI)
-  apply (fast dest: single_valuedD elim: rel_pow_Suc_E)
-  done
-
-end