author | huffman |
Wed, 25 Feb 2009 07:14:33 -0800 | |
changeset 30094 | 83e864eb239f |
parent 30093 | ecb557b021b2 (diff) |
parent 30090 | 7b25295489b6 (current diff) |
child 30095 | c6e184561159 |
--- a/src/HOL/Nat.thy Wed Feb 25 11:49:05 2009 +0100 +++ b/src/HOL/Nat.thy Wed Feb 25 07:14:33 2009 -0800 @@ -280,6 +280,9 @@ lemma diff_add_0: "n - (n + m) = (0::nat)" by (induct n) simp_all +lemma diff_Suc_1 [simp]: "Suc n - 1 = n" + unfolding One_nat_def by simp + text {* Difference distributes over multiplication *} lemma diff_mult_distrib: "((m::nat) - n) * k = (m * k) - (n * k)"