Added Locales Tutorial.
authorballarin
Fri, 16 Apr 2004 11:35:44 +0200 (2004-04-16)
changeset 14586 7b8d56b4ac60
parent 14585 6cf696e5ef7f
child 14587 3966c5c6035d
Added Locales Tutorial.
doc-src/Locales/IsaMakefile
doc-src/Locales/Locales/Locales.thy
doc-src/Locales/Locales/ROOT.ML
doc-src/Locales/Locales/document/root.bib
doc-src/Locales/Locales/document/root.tex
doc-src/Locales/Locales/generated/Locales.tex
doc-src/Locales/Locales/generated/isabelle.sty
doc-src/Locales/Locales/generated/isabellesym.sty
doc-src/Locales/Locales/generated/pdfsetup.sty
doc-src/Locales/Locales/generated/root.bib
doc-src/Locales/Locales/generated/root.tex
doc-src/Locales/Locales/generated/session.tex
doc-src/Locales/Makefile
doc-src/Locales/locales.tex
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/IsaMakefile	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,33 @@
+
+## targets
+
+default: Locales
+images:
+test: Locales
+
+all: images test
+
+
+## global settings
+
+SRC = $(ISABELLE_HOME)/src
+OUT = $(ISABELLE_OUTPUT)
+LOG = $(OUT)/log
+USEDIR = $(ISATOOL) usedir -i true -d "" -D generated
+
+
+## Locales
+
+Locales: $(LOG)/HOL-Locales.gz
+
+HOL:
+	@cd $(SRC)/HOL; $(ISATOOL) make HOL
+
+$(LOG)/HOL-Locales.gz: $(OUT)/HOL Locales/ROOT.ML Locales/Locales.thy
+	@$(USEDIR) $(OUT)/HOL Locales
+
+
+## clean
+
+clean:
+	@rm -f $(LOG)/HOL-Locales.gz
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/Locales.thy	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,1173 @@
+(*
+  Title:  Locales in Isabelle/Isar
+  Id:	  $Id$
+  Author: Clemens Ballarin, started 31 January 2003
+  Copyright (c) 2003 by Clemens Ballarin
+*)
+
+(*<*)
+theory Locales = Main:
+
+ML_setup {* print_mode := "type_brackets" :: !print_mode; *}
+(*>*)
+
+section {* Overview *}
+
+text {*
+  Locales are an extension of the Isabelle proof assistant.  They
+  provide support for modular reasoning. Locales were initially
+  developed by Kamm\"uller~\cite{Kammuller2000} to support reasoning
+  in abstract algebra, but are applied also in other domains --- for
+  example, bytecode verification~\cite{Klein2003}.
+
+  Kamm\"uller's original design, implemented in Isabelle99, provides, in
+  addition to
+  means for declaring locales, a set of ML functions that were used
+  along with ML tactics in a proof.  In the meantime, the input format
+  for proof in Isabelle has changed and users write proof
+  scripts in ML only rarely if at all.  Two new proof styles are
+  available, and can
+  be used interchangeably: linear proof scripts that closely resemble ML
+  tactics, and the structured Isar proof language by
+  Wenzel~\cite{Wenzel2002a}.  Subsequently, Wenzel re-implemented
+  locales for
+  the new proof format.  The implementation, available with
+  Isabelle2003, constitutes a complete re-design and exploits that
+  both Isar and locales are based on the notion of context,
+  and thus locales are seen as a natural extension of Isar.
+  Nevertheless, locales can also be used with proof scripts:
+  their use does not require a deep understanding of the structured
+  Isar proof style.
+
+  At the same time, Wenzel considerably extended locales.  The most
+  important addition are locale expressions, which allow to combine
+  locales more freely.  Previously only
+  linear inheritance was possible.  Now locales support multiple
+  inheritance through a normalisation algorithm.  New are also
+  structures, which provide special syntax for locale parameters that
+  represent algebraic structures.
+
+  Unfortunately, Wenzel provided only an implementation but hardly any
+  documentation.  Besides providing documentation, the present paper
+  is a high-level description of locales, and in particular locale
+  expressions.  It is meant as a first step towards the semantics of
+  locales, and also as a base for comparing locales with module concepts
+  in other provers.  It also constitutes the base for future
+  extensions of locales in Isabelle.
+  The description was derived mainly by experimenting
+  with locales and partially also by inspecting the code.
+
+  The main contribution of the author of the present paper is the
+  abstract description of Wenzel's version of locales, and in
+  particular of the normalisation algorithm for locale expressions (see
+  Section~\ref{sec-normal-forms}).  Contributions to the
+  implementation are confined to bug fixes and to provisions that
+  enable the use of locales with linear proof scripts.
+
+  Concepts are introduced along with examples, so that the text can be
+  used as tutorial.  It is assumed that the reader is somewhat
+  familiar with Isabelle proof scripts.  Examples have been phrased as
+  structured
+  Isar proofs.  However, in order to understand the key concepts,
+  including locales expressions and their normalisation, detailed
+  knowledge of Isabelle is not necessary. 
+
+\nocite{Nipkow2003,Wenzel2002b,Wenzel2003}
+*}
+
+section {* Locales: Beyond Proof Contexts *}
+
+text {*
+  In tactic-based provers the application of a sequence of proof
+  tactics leads to a proof state.  This state is usually hard to
+  predict from looking at the tactic script, unless one replays the
+  proof step-by-step.  The structured proof language Isar is
+  different.  It is additionally based on \emph{proof contexts},
+  which are directly visible in Isar scripts, and since tactic
+  sequences tend to be short, this commonly leads to clearer proof
+  scripts.
+
+  Goals are stated with the \textbf{theorem}
+  command.  This is followed by a proof.  When discharging a goal
+  requires an elaborate argument
+  (rather than the application of a single tactic) a new context
+  may be entered (\textbf{proof}).  Inside the context, variables may
+  be fixed (\textbf{fix}), assumptions made (\textbf{assume}) and
+  intermediate goals stated (\textbf{have}) and proved.  The
+  assumptions must be dischargeable by premises of the surrounding
+  goal, and once this goal has been proved (\textbf{show}) the proof context
+  can be closed (\textbf{qed}). Contexts inherit from surrounding
+  contexts, but it is not possible
+  to export from them (with exception of the proved goal);
+  they ``disappear'' after the closing \textbf{qed}.
+  Facts may have attributes --- for example, identifying them as
+  default to the simplifier or classical reasoner.
+
+  Locales extend proof contexts in various ways:
+  \begin{itemize}
+  \item
+    Locales are usually \emph{named}.  This makes them persistent.
+  \item
+    Fixed variables may have \emph{syntax}.
+  \item
+    It is possible to \emph{add} and \emph{export} facts.
+  \item
+    Locales can be combined and modified with \emph{locale
+    expressions}.
+  \end{itemize}
+  The Locales facility extends the Isar language: it provides new ways
+  of stating and managing facts, but it does not modify the language
+  for proofs.  Its purpose is to support writing modular proofs.
+*}
+
+section {* Simple Locales *}
+
+subsection {* Syntax and Terminology *}
+
+text {*
+  The grammar of Isar is extended by commands for locales as shown in
+  Figure~\ref{fig-grammar}.
+  A key concept, introduced by Wenzel, is that
+  locales are (internally) lists
+  of \emph{context elements}.  There are four kinds, identified
+  by the keywords \textbf{fixes}, \textbf{assumes}, \textbf{defines} and
+  \textbf{notes}.
+
+  \begin{figure}
+  \hrule
+  \vspace{2ex}
+  \begin{small}
+  \begin{tabular}{l>$c<$l}
+  \textit{attr-name} & ::=
+  & \textit{name} $|$ \textit{attribute} $|$
+    \textit{name} \textit{attribute} \\
+
+  \textit{locale-expr}  & ::= 
+  & \textit{locale-expr1} ( ``\textbf{+}'' \textit{locale-expr1} )$^*$ \\
+  \textit{locale-expr1} & ::=
+  & ( \textit{qualified-name} $|$
+    ``\textbf{(}'' \textit{locale-expr} ``\textbf{)}'' )
+    ( \textit{name} $|$ ``\textbf{\_}'' )$^*$ \\
+
+  \textit{fixes} & ::=
+  & \textit{name} [ ``\textbf{::}'' \textit{type} ]
+    [ ``\textbf{(}'' \textbf{structure} ``\textbf{)}'' $|$
+    \textit{mixfix} ] \\
+  \textit{assumes} & ::=
+  & [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
+  \textit{defines} & ::=
+  & [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
+  \textit{notes} & ::=
+  & [ \textit{attr-name} ``\textbf{=}'' ]
+    ( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\
+
+  \textit{element} & ::=
+  & \textbf{fixes} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ \\
+  & |
+  & \textbf{assumes} \textit{assumes} ( \textbf{and} \textit{assumes} )$^*$ \\
+  & |
+  & \textbf{defines} \textit{defines} ( \textbf{and} \textit{defines} )$^*$ \\
+  & |
+  & \textbf{notes} \textit{notes} ( \textbf{and} \textit{notes} )$^*$ \\
+  & | & \textbf{includes} \textit{locale-expr} \\
+
+  \textit{locale} & ::=
+  & \textit{element}$^+$ \\
+  & | & \textit{locale-expr} [ ``\textbf{+}'' \textit{element}$^+$ ] \\
+
+  \textit{in-target} & ::=
+  & ``\textbf{(}'' \textbf{in} \textit{qualified-name} ``\textbf{)}'' \\
+
+  \textit{theorem} & ::= & ( \textbf{theorem} $|$ \textbf{lemma} $|$
+    \textbf{corollary} ) [ \textit{in-target} ] [ \textit{attr-name} ] \\
+
+  \textit{theory-level} & ::= & \ldots \\
+  & | & \textbf{locale} \textit{name} [ ``\textbf{=}''
+    \textit{locale} ] \\
+  % note: legacy "locale (open)" omitted.
+  & | & ( \textbf{theorems} $|$ \textbf{lemmas} ) \\
+  & & [ \textit{in-target} ] [ \textit{attr-name} ``\textbf{=}'' ]
+    ( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\
+  & | & \textbf{declare} [ \textit{in-target} ] ( \textit{qualified-name}
+    [ \textit{attribute} ] )$^+$ \\
+  & | & \textit{theorem} \textit{proposition} \textit{proof} \\
+  & | & \textit{theorem} \textit{element}$^*$
+    \textbf{shows} \textit{proposition} \textit{proof} \\
+  & | & \textbf{print\_locale} \textit{locale} \\
+  & | & \textbf{print\_locales}
+  \end{tabular}
+  \end{small}
+  \vspace{2ex}
+  \hrule
+  \caption{Locales extend the grammar of Isar.}
+  \label{fig-grammar}
+  \end{figure}
+
+  At the theory level --- that is, at the outer syntactic level of an
+  Isabelle input file --- \textbf{locale} declares a named
+  locale.  Other kinds of locales,
+  locale expressions and unnamed locales, will be introduced later.  When
+  declaring a named locale, it is possible to \emph{import} another
+  named locale, or indeed several ones by importing a locale
+  expression.  The second part of the declaration, also optional,
+  consists of a number of context element declarations.  Here, a fifth
+  kind, \textbf{includes}, is available.
+
+  A number of Isar commands have an additional, optional \emph{target}
+  argument, which always refers to a named locale.  These commands
+  are \textbf{theorem} (together with \textbf{lemma} and
+  \textbf{corollary}),  \textbf{theorems} (and
+  \textbf{lemmas}), and \textbf{declare}.  The effect of specifying a target is
+  that these commands focus on the specified locale, not the
+  surrounding theory.  Commands that are used to
+  prove new theorems will add them not to the theory, but to the
+  locale.  Similarly, \textbf{declare} modifies attributes of theorems
+  that belong to the specified target.  Additionally, for
+  \textbf{theorem} (and related commands), theorems stored in the target
+  can be used in the associated proof scripts.
+
+  The Locales package permits a \emph{long goals format} for
+  propositions stated with \textbf{theorem} (and friends).  While
+  normally a goal is just a formula, a long goal is a list of context
+  elements, followed by the keyword \textbf{shows}, followed by the
+  formula.  Roughly speaking, the context elements are
+  (additional) premises.  For an example, see
+  Section~\ref{sec-includes}.  The list of context elements in a long goal
+  is also called \emph{unnamed locale}.
+
+  Finally, there are two commands to inspect locales when working in
+  interactive mode: \textbf{print\_locales} prints the names of all
+  targets
+  visible in the current theory, \textbf{print\_locale} outputs the
+  elements of a named locale or locale expression.
+
+  The following presentation will use notation of
+  Isabelle's meta logic, hence a few sentences to explain this.
+  The logical
+  primitives are universal quantification (@{text "\<And>"}), entailment
+  (@{text "\<Longrightarrow>"}) and equality (@{text "\<equiv>"}).  Variables (not bound
+  variables) are sometimes preceded by a question mark.  The logic is
+  typed.  Type variables are denoted by @{text "'a"}, @{text "'b"}
+  etc., and @{text "\<Rightarrow>"} is the function type.  Double brackets @{text
+  "\<lbrakk>"} and @{text "\<rbrakk>"} are used to abbreviate nested entailment.
+*}
+
+subsection {* Parameters, Assumptions and Facts *}
+
+text {*
+  From a logical point of view a \emph{context} is a formula schema of
+  the form
+\[
+  @{text "\<And>x\<^sub>1\<dots>x\<^sub>n. \<lbrakk> C\<^sub>1; \<dots> ;C\<^sub>m \<rbrakk> \<Longrightarrow> \<dots>"}
+\]
+  The variables $@{text "x\<^sub>1"}, \ldots, @{text "x\<^sub>n"}$ are
+  called \emph{parameters}, the premises $@{text "C\<^sub>1"}, \ldots,
+  @{text "C\<^sub>n"}$ \emph{assumptions}.  A formula @{text "F"}
+  holds in this context if
+\begin{equation}
+\label{eq-fact-in-context}
+  @{text "\<And>x\<^sub>1\<dots>x\<^sub>n. \<lbrakk> C\<^sub>1; \<dots> ;C\<^sub>m \<rbrakk> \<Longrightarrow> F"}
+\end{equation}
+  is valid.  The formula is called a \emph{fact} of the context.
+
+  A locale allows fixing the parameters @{text
+  "x\<^sub>1, \<dots>, x\<^sub>n"} and making the assumptions @{text
+  "C\<^sub>1, \<dots>, C\<^sub>m"}.  This implicitly builds the context in
+  which the formula @{text "F"} can be established.
+  Parameters of a locale correspond to the context element
+  \textbf{fixes}, and assumptions may be declared with
+  \textbf{assumes}.  Using these context elements one can define
+  the specification of semigroups.
+*}
+
+locale semi =
+  fixes prod :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<cdot>" 70)
+  assumes assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
+
+text {*
+  The parameter @{term prod} has a
+  syntax annotation allowing the infix ``@{text "\<cdot>"}'' in the
+  assumption of associativity.  Parameters may have arbitrary mixfix
+  syntax, like constants.  In the example, the type of @{term prod} is
+  specified explicitly.  This is not necessary.  If no type is
+  specified, a most general type is inferred simultaneously for all
+  parameters, taking into account all assumptions (and type
+  specifications of parameters, if present).%
+\footnote{Type inference also takes into account definitions and
+  import, as introduced later.}
+
+  Free variables in assumptions are implicitly universally quantified,
+  unless they are parameters.  Hence the context defined by the locale
+  @{term "semi"} is
+\[
+  @{text "\<And>prod. \<lbrakk> \<And>x y z. prod (prod x y) z = prod x (prod y z)
+  \<rbrakk> \<Longrightarrow> \<dots>"}
+\]
+  The locale can be extended to commutative semigroups.
+*}
+
+locale comm_semi = semi +
+  assumes comm: "x \<cdot> y = y \<cdot> x"
+
+text {*
+  This locale \emph{imports} all elements of @{term "semi"}.  The
+  latter locale is called the import of @{term "comm_semi"}. The
+  definition adds commutativity, hence its context is
+\begin{align*%
+}
+  @{text "\<And>prod. \<lbrakk> "} & 
+  @{text "\<And>x y z. prod (prod x y) z = prod x (prod y z);"} \\
+  & @{text "\<And>x y. prod x y = prod y x \<rbrakk> \<Longrightarrow> \<dots>"}
+\end{align*%
+}
+  One may now derive facts --- for example, left-commutativity --- in
+  the context of @{term "comm_semi"} by specifying this locale as
+  target, and by referring to the names of the assumptions @{text
+  assoc} and @{text comm} in the proof.
+*}
+
+theorem (in comm_semi) lcomm:
+  "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
+proof -
+  have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by (simp add: assoc)
+  also have "\<dots> = (y \<cdot> x) \<cdot> z" by (simp add: comm)
+  also have "\<dots> = y \<cdot> (x \<cdot> z)" by (simp add: assoc)
+  finally show ?thesis .
+qed
+
+text {*
+  In this equational Isar proof, ``@{text "\<dots>"}'' refers to the
+  right hand side of the preceding equation.
+  After the proof is finished, the fact @{text "lcomm"} is added to
+  the locale @{term "comm_semi"}.  This is done by adding a
+  \textbf{notes} element to the internal representation of the locale,
+  as explained the next section.
+*}
+
+subsection {* Locale Predicates and the Internal Representation of
+  Locales *}
+
+text {*
+\label{sec-locale-predicates}
+  In mathematical texts, often arbitrary but fixed objects with
+  certain properties are considered --- for instance, an arbitrary but
+  fixed group $G$ --- with the purpose of establishing facts valid for
+  any group.  These facts are subsequently used on other objects that
+  also have these properties.
+
+  Locales permit the same style of reasoning.  Exporting a fact $F$
+  generalises the fixed parameters and leads to a (valid) formula of the
+  form of equation~(\ref{eq-fact-in-context}).  If a locale has many
+  assumptions
+  (possibly accumulated through a number of imports) this formula can
+  become large and cumbersome.  Therefore, Wenzel introduced 
+  predicates that abbreviate the assumptions of locales.  These
+  predicates are not confined to the locale but are visible in the
+  surrounding theory.
+
+  The definition of the locale @{term semi} generates the \emph{locale
+  predicate} @{term semi} over the type of the parameter @{term prod},
+  hence the predicate's type is @{typ "(['a, 'a] \<Rightarrow> 'a)
+  \<Rightarrow> bool"}.  Its
+  definition is
+\begin{equation}
+  \tag*{@{thm [source] semi_def}:} @{thm semi_def}.
+\end{equation}
+  In the case where the locale has no import, the generated
+  predicate abbreviates all assumptions and is over the parameters
+  that occur in these assumptions.
+
+  The situation is more complicated when a locale extends
+  another locale, as is the case for @{term comm_semi}.  Two
+  predicates are defined.  The predicate
+  @{term comm_semi_axioms} corresponds to the new assumptions and is
+  called \emph{delta predicate}, the locale
+  predicate @{term comm_semi} captures the content of all the locale,
+  including the import.
+  If a locale has neither assumptions nor import, no predicate is
+  defined.  If a locale has import but no assumptions, only the locale
+  predicate is defined.
+*}
+(*<*)
+ML_setup {*
+  val [comm_semi_ax1, comm_semi_ax2] = thms "comm_semi.axioms";
+  bind_thm ("comm_semi_ax1", comm_semi_ax1);
+  bind_thm ("comm_semi_ax2", comm_semi_ax2);
+*}
+(*>*)
+text {*
+  The Locales package generates a number of theorems for locale and
+  delta predicates.  All predicates have a definition and an
+  introduction rule.  Locale predicates that are defined in terms of
+  other predicates (which is the case if and only if the locale has
+  import) also have a number of elimination rules (called
+  \emph{axioms}).  All generated theorems for the predicates of the
+  locales @{text semi} and @{text comm_semi} are shown in
+  Figures~\ref{fig-theorems-semi} and~\ref{fig-theorems-comm-semi},
+  respectively.
+  \begin{figure}
+  \hrule
+  \vspace{2ex}
+  Theorems generated for the predicate @{term semi}.
+  \begin{gather}
+    \tag*{@{thm [source] semi_def}:} @{thm semi_def} \\
+    \tag*{@{thm [source] semi.intro}:} @{thm semi.intro}
+  \end{gather}
+  \hrule
+  \caption{Theorems for the locale predicate @{term "semi"}.}
+  \label{fig-theorems-semi}
+  \end{figure}
+
+  \begin{figure}[h]
+  \hrule
+  \vspace{2ex}
+  Theorems generated for the predicate @{term "comm_semi_axioms"}.
+  \begin{gather}
+    \tag*{@{thm [source] comm_semi_axioms_def}:} @{thm
+    comm_semi_axioms_def} \\                        
+    \tag*{@{thm [source] comm_semi_axioms.intro}:} @{thm
+    comm_semi_axioms.intro}                       
+  \end{gather}
+  Theorems generated for the predicate @{term "comm_semi"}.
+  \begin{gather}
+    \tag*{@{thm [source] comm_semi_def}:} @{thm
+    comm_semi_def} \\                          
+    \tag*{@{thm [source] comm_semi.intro}:} @{thm
+    comm_semi.intro} \\
+    \tag*{@{thm [source] comm_semi.axioms}:} \mbox{} \\
+    \notag @{thm comm_semi_ax1} \\
+    \notag @{thm comm_semi_ax2}               
+  \end{gather} 
+  \hrule
+  \caption{Theorems for the predicates @{term "comm_semi_axioms"} and
+    @{term "comm_semi"}.}
+  \label{fig-theorems-comm-semi}
+  \end{figure}
+  Note that the theorems generated by a locale
+  definition may be inspected immediately after the definition in the
+  Proof General interface \cite{Aspinall2000} of Isabelle through
+  the menu item ``Isabelle/Isar$>$Show me $\ldots>$Theorems''.
+
+  Locale and delta predicates are used also in the internal
+  representation of locales as lists of context elements.  While all
+  \textbf{fixes} in a
+  declaration generate internal \textbf{fixes}, all assumptions
+  of one locale declaration contribute to one internal \textbf{assumes}
+  element.  The internal representation of @{term semi} is
+\[
+\begin{array}{ll}
+  \textbf{fixes} & @{text prod} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"}
+    (\textbf{infixl} @{text [quotes] "\<cdot>"} 70) \\
+  \textbf{assumes} & @{text [quotes] "semi prod"} \\
+  \textbf{notes} & @{text assoc}: @{text [quotes] "?x \<cdot> ?y \<cdot> ?z = ?x \<cdot> (?y \<cdot>
+    ?z)"}
+\end{array}
+\]
+  and the internal representation of @{text [quotes] comm_semi} is
+\begin{equation}
+\label{eq-comm-semi}
+\begin{array}{ll}
+  \textbf{fixes} & @{text prod} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"}
+    ~(\textbf{infixl}~@{text [quotes] "\<cdot>"}~70) \\
+  \textbf{assumes} & @{text [quotes] "semi prod"} \\
+  \textbf{notes} & @{text assoc}: @{text [quotes] "?x \<cdot> ?y \<cdot> ?z = ?x \<cdot> (?y \<cdot>
+    ?z)"} \\
+  \textbf{assumes} & @{text [quotes] "comm_semi_axioms prod"} \\
+  \textbf{notes} & @{text comm}: @{text [quotes] "?x \<cdot> ?y = ?y \<cdot> ?x"} \\
+  \textbf{notes} & @{text lcomm}: @{text [quotes] "?x \<cdot> (?y \<cdot> ?z) = ?y \<cdot> (?x \<cdot>
+    ?z)"}
+\end{array}
+\end{equation}
+  The \textbf{notes} elements store facts of the
+  locales.  The facts @{text assoc} and @{text comm} were added
+  during the declaration of the locales.  They stem from assumptions,
+  which are trivially facts.  The fact @{text lcomm} was
+  added later, after finishing the proof in the respective
+  \textbf{theorem} command above.
+
+  By using \textbf{notes} in a declaration, facts can be added
+  to a locale directly.  Of course, these must be theorems.
+  Typical use of this feature includes adding theorems that are not
+  usually used as a default rewrite rules by the simplifier to the
+  simpset of the locale by a \textbf{notes} element with the attribute
+  @{text "[simp]"}.  This way it is also possible to add specialised
+  versions of
+  theorems to a locale by instantiating locale parameters for unknowns
+  or locale assumptions for premises.
+*}
+
+subsection {* Definitions *}
+
+text {*
+  Definitions were available in Kamm\"uller's version of Locales, and
+  they are in Wenzel's.  
+  The context element \textbf{defines} adds a definition of the form
+  @{text "p x\<^sub>1 \<dots> x\<^sub>n \<equiv> t"} as an assumption, where @{term p} is a
+  parameter of the locale (possibly an imported parameter), and @{text
+  t} a term that may contain the @{text "x\<^sub>i"}.  The parameter may
+  neither occur in a previous \textbf{assumes} or \textbf{defines}
+  element, nor on the right hand side of the definition.  Hence
+  recursion is not allowed.
+  The parameter may, however, occur in subsequent \textbf{assumes} and
+  on the right hand side of subsequent \textbf{defines}.  We call
+  @{term p} \emph{defined parameter}.
+*}
+
+locale semi2 = semi +
+  fixes rprod (infixl "\<odot>" 70)
+  defines rprod_def: "rprod x y \<equiv> y \<cdot> x "
+
+text {*
+  This locale extends @{term semi} by a second binary operation @{text
+  [quotes] \<odot>} that is like @{text [quotes] \<cdot>} but with
+  reversed arguments.  The
+  definition of the locale generates the predicate @{term semi2},
+  which is equivalent to @{text semi}, but no @{term "semi2_axioms"}.
+  The difference between \textbf{assumes} and \textbf{defines} lies in
+  the way parameters are treated on export.
+*}
+
+subsection {* Export *}
+
+text {*
+  A fact is exported out
+  of a locale by generalising over the parameters and adding
+  assumptions as premises.  For brevity of the exported theorems,
+  locale predicates are used.  Exported facts are referenced by
+  writing qualified names consisting of the locale name and the fact name ---
+  for example,
+\begin{equation}
+  \tag*{@{thm [source] semi.assoc}:} @{thm semi.assoc}.
+\end{equation}
+  Defined parameters receive special treatment.  Instead of adding a
+  premise for the definition, the definition is unfolded in the
+  exported theorem.  In order to illustrate this we prove that the
+  reverse operation @{text [quotes] \<odot>} defined in the locale
+  @{text semi2} is also associative.
+*}
+
+theorem (in semi2) r_assoc: "(x \<odot> y) \<odot> z = x \<odot> (y \<odot> z)"
+  by (simp only: rprod_def assoc)                                    
+
+text {*
+  The exported fact is
+\begin{equation}
+  \tag*{@{thm [source] semi2.r_assoc}:} @{thm semi2.r_assoc}.
+\end{equation}
+  The defined parameter is not present but is replaced by its
+  definition.  Note that the definition itself is not exported, hence
+  there is no @{text "semi2.rprod_def"}.%
+\footnote{The definition could alternatively be exported using a
+  let-construct if there was one in Isabelle's meta-logic.  Let is
+  usually defined in object-logics.}
+*}
+
+section {* Locale Expressions *}
+
+text {*
+  Locale expressions provide a simple language for combining
+  locales.  They are an effective means of building complex
+  specifications from simple ones.  Locale expressions are the main
+  innovation of the version of Locales discussed here.  Locale
+  expressions are also reason for introducing locale predicates.
+*}
+
+subsection {* Rename and Merge *}
+
+text {*
+  The grammar of locale expressions is part of the grammar in
+  Figure~\ref{fig-grammar}.  Locale names are locale
+  expressions, and
+  further expressions are obtained by \emph{rename} and \emph{merge}.
+\begin{description}
+\item[Rename.]
+  The locale expression $e\: q_1 \ldots q_n$ denotes
+  the locale of $e$ where pa\-ra\-me\-ters, in the order in
+  which they are fixed, are renamed to $q_1$ to $q_n$.
+  The expression is only well-formed if $n$ does not
+  exceed the number of parameters of $e$.  Underscores denote
+  parameters that are not renamed.
+  Parameters whose names are changed lose mixfix syntax,
+  and there is currently no way to re-equip them with such.
+\item[Merge.]
+  The locale expression $e_1 + e_2$ denotes
+  the locale obtained by merging the locales of $e_1$
+  and $e_2$.  This locale contains the context elements
+  of $e_1$, followed by the context elements of $e_2$.
+
+  In actual fact, the semantics of the merge operation
+  is more complicated.  If $e_1$ and $e_2$ are expressions containing
+  the same name, followed by
+  identical parameter lists, then the merge of both will contain
+  the elements of those locales only once.  Details are explained in
+  Section~\ref{sec-normal-forms} below.
+
+  The merge operation is associative but not commutative.  The latter
+  is because parameters of $e_1$ appear
+  before parameters of $e_2$ in the composite expression.
+\end{description}
+
+  Rename can be used if a different parameter name seems more
+  appropriate --- for example, when moving from groups to rings, a
+  parameter @{text G} representing the group could be changed to
+  @{text R}.  Besides of this stylistic use, renaming is important in
+  combination with merge.  Both operations are used in the following
+  specification of semigroup homomorphisms.
+*}
+
+locale semi_hom = comm_semi sum + comm_semi +
+  fixes hom
+  assumes hom: "hom (sum x y) = hom x \<cdot> hom y"
+
+text {*
+  This locale defines a context with three parameters @{text "sum"},
+  @{text "prod"} and @{text "hom"}.  Only the second parameter has
+  mixfix syntax.  The first two are associative operations,
+  the first of type @{typ "['a, 'a] \<Rightarrow> 'a"}, the second of
+  type @{typ "['b, 'b] \<Rightarrow> 'b"}.  
+
+  How are facts that are imported via a locale expression identified?
+  Facts are always introduced in a named locale (either in the
+  locale's declaration, or by using the locale as target in
+  \textbf{theorem}), and their names are
+  qualified by the parameter names of this locale.
+  Hence the full name of associativity in @{text "semi"} is
+  @{text "prod.assoc"}.  Renaming parameters of a target also renames
+  the qualifier of facts.  Hence, associativity of @{text "sum"} is
+  @{text "sum.assoc"}.  Several parameters are separated by
+  underscores in qualifiers.  For example, the full name of the fact
+  @{text "hom"} in the locale @{text "semi_hom"} is @{text
+  "sum_prod_hom.hom"}.
+
+  The following example is quite artificial, it illustrates the use of
+  facts, though.
+*}
+
+theorem (in semi_hom) "hom x \<cdot> (hom y \<cdot> hom z) = hom (sum x (sum y z))"
+proof -
+  have "hom x \<cdot> (hom y \<cdot> hom z) = hom y \<cdot> (hom x \<cdot> hom z)"
+    by (simp add: prod.lcomm)
+  also have "\<dots> = hom (sum y (sum x z))" by (simp add: hom)
+  also have "\<dots> = hom (sum x (sum y z))" by (simp add: sum.lcomm)
+  finally show ?thesis .
+qed
+
+text {*
+  Importing via a locale expression imports all facts of
+  the imported locales, hence both @{text "sum.lcomm"} and @{text
+  "prod.lcomm"} are
+  available in @{text "hom_semi"}.  The import is dynamic --- that is,
+  whenever facts are added to a locale, they automatically
+  become available in subsequent \textbf{theorem} commands that use
+  the locale as a target, or a locale importing the locale.
+*}
+
+subsection {* Normal Forms *}
+
+text_raw {*
+\label{sec-normal-forms}
+\newcommand{\I}{\mathcal{I}}
+\newcommand{\F}{\mathcal{F}}
+\newcommand{\N}{\mathcal{N}}
+\newcommand{\C}{\mathcal{C}}
+\newcommand{\App}{\mathbin{\overline{@}}}
+*}
+
+text {*
+  Locale expressions are interpreted in a two-step process.  First, an
+  expression is normalised, then it is converted to a list of context
+  elements.
+
+  Normal forms are based on \textbf{locale} declarations.  These
+  consist of an import section followed by a list of context
+  elements.  Let $\I(l)$ denote the locale expression imported by
+  locale $l$.  If $l$ has no import then $\I(l) = \varepsilon$.
+  Likewise, let $\F(l)$ denote the list of context elements, also
+  called the \emph{context fragment} of $l$.  Note that $\F(l)$
+  contains only those context elements that are stated in the
+  declaration of $l$, not imported ones.
+
+\paragraph{Example 1.}  Consider the locales @{text semi} and @{text
+  "comm_semi"}.  We have $\I(@{text semi}) = \varepsilon$ and
+  $\I(@{text "comm_semi"}) = @{text semi}$, and the context fragments
+  are
+\begin{align*%
+}
+  \F(@{text semi}) & = \left[
+\begin{array}{ll}
+  \textbf{fixes} & @{text prod} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"}
+    ~(\textbf{infixl}~@{text [quotes] "\<cdot>"}~70) \\
+  \textbf{assumes} & @{text [quotes] "semi prod"} \\
+  \textbf{notes} & @{text assoc}: @{text  [quotes]"?x \<cdot> ?y \<cdot> ?z = ?x \<cdot> (?y \<cdot>
+    ?z)"}
+\end{array} \right], \\
+  \F(@{text "comm_semi"}) & = \left[
+\begin{array}{ll}
+  \textbf{assumes} & @{text [quotes] "comm_semi_axioms prod"} \\
+  \textbf{notes} & @{text comm}: @{text [quotes] "?x \<cdot> ?y = ?y \<cdot> ?x"} \\
+  \textbf{notes} & @{text lcomm}: @{text [quotes] "?x \<cdot> (?y \<cdot> ?z) = ?y \<cdot> (?x \<cdot>
+    ?z)"}
+\end{array} \right].
+\end{align*%
+}
+  Let $\pi_0(\F(l))$ denote the list of parameters defined in the
+  \textbf{fixes} elements of $\F(l)$ in the order of their occurrence.
+  The list of parameters of a locale expression $\pi(e)$ is defined as
+  follows:
+\begin{align*%
+}
+  \pi(l) & = \pi(\I(l)) \App \pi_0(\F(l)) \text{, for named locale $l$.} \\
+  \pi(e\: q_1 \ldots q_n) & = \text{$[q_1, \ldots, q_n, p_{n+1}, \ldots,
+    p_{m}]$, where $\pi(e) = [p_1, \ldots, p_m]$.} \\
+  \pi(e_1 + e_2) & = \pi(e_1) \App \pi(e_2)
+\end{align*%
+}
+  The operation $\App$ concatenates two lists but omits elements from
+  the second list that are also present in the first list.
+  It is not possible to rename more parameters than there
+  are present in an expression --- that is, $n \le m$ --- otherwise
+  the renaming is illegal.  If $q_i
+  = \_$ then the $i$th entry of the resulting list is $p_i$.
+
+  In the normalisation phase, imports of named locales are unfolded, and
+  renames and merges are recursively propagated to the imported locale
+  expressions.  The result is a list of locale names, each with a full
+  list of parameters, where locale names occurring with the same parameter
+  list twice are removed.  Let $\N$ denote normalisation.  It is defined
+  by these equations:
+\begin{align*%
+}
+  \N(l) & = \N(\I(l)) \App [l\:\pi(l)] \text{, for named locale $l$.} \\
+  \N(e\: q_1 \ldots q_n) & = \N(e)\:[q_1 \ldots q_n/\pi(e)] \\
+  \N(e_1 + e_2) & = \N(e_1) \App \N(e_2)
+\end{align*%
+}
+  Normalisation yields a list of \emph{identifiers}.  An identifier
+  consists of a locale name and a (possibly empty) list of parameters.
+
+  In the second phase, the list of identifiers $\N(e)$ is converted to
+  a list of context elements $\C(e)$ by converting each identifier to
+  a list of context elements, and flattening the obtained list.
+  Conversion of the identifier $l\:q_1 \ldots q_n$ yields the list of
+  context elements $\F(l)$, but with the following modifications:
+\begin{itemize}
+\item
+  Rename the parameter in the $i$th \textbf{fixes} element of $\F(l)$
+  to $q_i$, $i = 1, \ldots, n$.  If the parameter name is actually
+  changed then delete the syntax annotation.  Renaming a parameter may
+  also change its type.
+\item
+  Perform the same renamings on all occurrences of parameters (fixed
+  variables) in \textbf{assumes}, \textbf{defines} and \textbf{notes}
+  elements.
+\item
+  Qualify names of facts by $q_1\_\ldots\_q_n$.
+\end{itemize}
+  The locale expression is \emph{well-formed} if it contains no
+  illegal renamings and the following conditions on $\C(e)$ hold,
+  otherwise the expression is rejected:
+\begin{itemize}
+\item Parameters in \textbf{fixes} are distinct;
+\item Free variables in \textbf{assumes} and
+  \textbf{defines} occur in preceding \textbf{fixes};%
+\footnote{This restriction is relaxed for contexts obtained with
+  \textbf{includes}, see Section~\ref{sec-includes}.}
+\item Parameters defined in \textbf{defines} must neither occur in
+  preceding \textbf{assumes} nor \textbf{defines}.
+\end{itemize}
+*}
+
+subsection {* Examples *}
+
+text {*
+\paragraph{Example 2.}
+  We obtain the context fragment $\C(@{text "comm_semi"})$ of the
+  locale @{text "comm_semi"}.  First, the parameters are computed.
+\begin{align*%
+}
+  \pi(@{text "semi"}) & = [@{text prod}] \\
+  \pi(@{text "comm_semi"}) & = \pi(@{text "semi"}) \App []
+     = [@{text prod}]
+\end{align*%
+}
+  Next, the normal form of the locale expression
+  @{text "comm_semi"} is obtained.
+\begin{align*%
+}
+  \N(@{text "semi"}) & = [@{text semi} @{text prod}] \\
+  \N(@{text "comm_semi"}) & = \N(@{text "semi"}) \App
+       [@{text "comm_semi prod"}]
+   = [@{text "semi prod"}, @{text "comm_semi prod"}]
+\end{align*%
+}
+  Converting this to a list of context elements leads to the
+  list~(\ref{eq-comm-semi}) shown in
+  Section~\ref{sec-locale-predicates}, but with fact names qualified
+  by @{text prod} --- for example, @{text "prod.assoc"}.
+  Qualification was omitted to keep the presentation simple.
+  Isabelle's scoping rules identify the most recent fact with
+  qualified name $x.a$ when a fact with name $a$ is requested.
+
+\paragraph{Example 3.}
+  The locale expression @{text "comm_semi sum"} involves
+  renaming.  Computing parameters yields $\pi(@{text "comm_semi sum"})
+  = [@{text sum}]$, the normal form is
+\begin{align*%
+}
+  \N(@{text "comm_semi sum"}) & =
+  \N(@{text "comm_semi"})[@{text sum}/@{text prod}] =
+  [@{text "semi sum"}, @{text "comm_semi sum"}]
+\end{align*%
+}
+  and the list of context elements
+\[
+\begin{array}{ll}
+  \textbf{fixes} & @{text sum} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"} \\
+  \textbf{assumes} & @{text [quotes] "semi sum"} \\
+  \textbf{notes} & @{text sum.assoc}: @{text [quotes] "sum (sum ?x ?y) ?z
+    = sum ?x (sum ?y ?z)"} \\
+  \textbf{assumes} & @{text [quotes] "comm_semi_axioms sum"} \\
+  \textbf{notes} & @{text sum.comm}: @{text [quotes] "sum ?x ?y = sum
+    ?y ?x"} \\
+  \textbf{notes} & @{text sum.lcomm}: @{text [quotes] "sum ?x (sum ?y ?z)
+    = sum ?y (sum ?x ?z)"}
+\end{array}
+\]
+
+\paragraph{Example 4.}
+  The context defined by the locale @{text "semi_hom"} involves
+  merging two copies of @{text "comm_semi"}.  We obtain the parameter
+  list and normal form:
+\begin{align*%
+}
+  \pi(@{text "semi_hom"}) & = \pi(@{text "comm_semi sum"} +
+       @{text "comm_semi"}) \App [@{text hom}] \\
+     & = (\pi(@{text "comm_semi sum"}) \App \pi(@{text "comm_semi"}))
+       \App [@{text hom}] \\
+     & = ([@{text sum}] \App [@{text prod}]) \App [@{text hom}]
+     = [@{text sum}, @{text prod}, @{text hom}] \\
+  \N(@{text "semi_hom"}) & =
+       \N(@{text "comm_semi sum"} + @{text "comm_semi"}) \App \\
+     & \phantom{==}
+       [@{text "semi_hom sum prod hom"}] \\
+     & = (\N(@{text "comm_semi sum"}) \App \N(@{text "comm_semi"})) \App \\
+     & \phantom{==}
+       [@{text "semi_hom sum prod hom"}] \\
+     & = ([@{text "semi sum"}, @{text "comm_semi sum"}] \App %\\
+%     & \phantom{==}
+       [@{text "semi prod"}, @{text "comm_semi prod"}]) \App \\
+     & \phantom{==}
+       [@{text "semi_hom sum prod hom"}] \\
+     & = [@{text "semi sum"}, @{text "comm_semi sum"},
+       @{text "semi prod"}, @{text "comm_semi prod"}, \\
+     & \phantom{==}
+       @{text "semi_hom sum prod hom"}].
+\end{align*%
+}
+  Hence $\C(@{text "semi_hom"})$, shown below, is again well-formed.
+\[
+\begin{array}{ll}
+  \textbf{fixes} & @{text sum} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"} \\
+  \textbf{assumes} & @{text [quotes] "semi sum"} \\
+  \textbf{notes} & @{text sum.assoc}: @{text [quotes] "sum (sum ?x ?y) ?z
+    = sum ?x (sum ?y ?z)"} \\
+  \textbf{assumes} & @{text [quotes] "comm_semi_axioms sum"} \\
+  \textbf{notes} & @{text sum.comm}: @{text [quotes] "sum ?x ?y = sum ?y ?x"} \\
+  \textbf{notes} & @{text sum.lcomm}: @{text [quotes] "sum ?x (sum ?y ?z)
+    = sum ?y (sum ?x ?z)"} \\
+  \textbf{fixes} & @{text prod} :: @{typ [quotes] "['b, 'b] \<Rightarrow> 'b"}
+    ~(\textbf{infixl}~@{text [quotes] "\<cdot>"}~70) \\
+  \textbf{assumes} & @{text [quotes] "semi prod"} \\
+  \textbf{notes} & @{text prod.assoc}: @{text [quotes] "?x \<cdot> ?y \<cdot> ?z = ?x \<cdot> (?y \<cdot>
+    ?z)"} \\
+  \textbf{assumes} & @{text [quotes] "comm_semi_axioms prod"} \\
+  \textbf{notes} & @{text prod.comm}: @{text [quotes] "?x \<cdot> ?y = ?y \<cdot> ?x"} \\
+  \textbf{notes} & @{text prod.lcomm}: @{text [quotes] "?x \<cdot> (?y \<cdot> ?z) = ?y \<cdot> (?x \<cdot>
+    ?z)"} \\
+  \textbf{fixes} & @{text hom} :: @{typ [quotes] "'a \<Rightarrow> 'b"} \\
+  \textbf{assumes} & @{text [quotes] "semi_hom_axioms sum"} \\
+  \textbf{notes} & @{text "sum_prod_hom.hom"}:
+    @{text "hom (sum x y) = hom x \<cdot> hom y"}
+\end{array}
+\]
+
+\paragraph{Example 5.}
+  In this example, a locale expression leading to a list of context
+  elements that is not well-defined is encountered, and it is illustrated
+  how normalisation deals with multiple inheritance.
+  Consider the specification of monads (in the algebraic sense)
+  and monoids.
+*}
+
+locale monad =
+  fixes prod :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<cdot>" 70) and one :: 'a ("\<one>" 100)
+  assumes l_one: "\<one> \<cdot> x = x" and r_one: "x \<cdot> \<one> = x"
+
+text {*
+  Monoids are both semigroups and monads and one would want to
+  specify them as locale expression @{text "semi + monad"}.
+  Unfortunately, this expression is not well-formed.  Its normal form
+\begin{align*%
+}
+  \N(@{text "monad"}) & = [@{text "monad prod"}] \\
+  \N(@{text "semi"}+@{text "monad"}) & =
+       \N(@{text "semi"}) \App \N(@{text "monad"})
+     = [@{text "semi prod"}, @{text "monad prod"}]
+\end{align*%
+}
+  leads to a list containing the context element
+\[
+  \textbf{fixes}~@{text prod} :: @{typ [quotes] "['a, 'a] \<Rightarrow> 'a"}
+    ~(\textbf{infixl}~@{text [quotes] "\<cdot>"}~70)
+\]
+  twice and thus violating the first criterion of well-formedness.  To
+  avoid this problem, one can
+  introduce a new locale @{text magma} with the sole purpose of fixing the
+  parameter and defining its syntax.  The specifications of semigroup
+  and monad are changed so that they import @{text magma}.
+*}
+
+locale magma = fixes prod (infixl "\<cdot>" 70)
+
+locale semi' = magma + assumes assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)"
+locale monad' = magma + fixes one ("\<one>" 100)
+  assumes l_one: "\<one> \<cdot> x = x" and r_one: "x \<cdot> \<one> = x"
+
+text {*
+  Normalisation now yields
+\begin{align*%
+}
+  \N(@{text "semi' + monad'"}) & =
+       \N(@{text "semi'"}) \App \N(@{text "monad'"}) \\
+     & = (\N(@{text magma}) \App [@{text "semi' prod"}]) \App
+         (\N(@{text magma}) \App [@{text "monad' prod"}]) \\
+     & = [@{text "magma prod"}, @{text "semi' prod"}] \App
+         [@{text "magma prod"}, @{text "monad' prod"}]) \\
+     & = [@{text "magma prod"}, @{text "semi' prod"},
+          @{text "monad' prod"}]
+\end{align*%
+}
+  where the second occurrence of @{text "magma prod"} is eliminated.
+  The reader is encouraged to check, using the \textbf{print\_locale}
+  command, that the list of context elements generated from this is
+  indeed well-formed.
+
+  It follows that importing
+  parameters is more flexible than fixing them using a context element.
+  The Locale package provides the predefined locale @{term var} that
+  can be used to import parameters if no
+  particular mixfix syntax is required.
+  Its definition is
+\begin{center}
+  \textbf{locale} \textit{var} = \textbf{fixes} @{text "x_"}
+\end{center}
+   The use of the internal variable @{text "x_"}
+  enforces that the parameter is renamed before being used, because
+  internal variables may not occur in the input syntax.
+*}
+
+subsection {* Includes *}
+
+text {*
+\label{sec-includes}
+  The context element \textbf{includes} takes a locale expression $e$
+  as argument.  It can occur at any point in a locale declaration, and
+  it adds $\C(e)$ to the current context.
+
+  If \textbf{includes} $e$ appears as context element in the
+  declaration of a named locale $l$, the included context is only
+  visible in subsequent context elements, but it is not propagated to
+  $l$.  That is, if $l$ is later used as a target, context elements
+  from $\C(e)$ are not added to the context.  Although it is
+  conceivable that this mechanism could be used to add only selected
+  facts from $e$ to $l$ (with \textbf{notes} elements following
+  \textbf{includes} $e$), currently no useful applications of this are
+  known.
+
+  The more common use of \textbf{includes} $e$ is in long goals, where it
+  adds, like a target, locale context to the proof context.  Unlike
+  with targets, the proved theorem is not stored
+  in the locale.  Instead, it is exported immediately.
+*}
+
+theorem lcomm2:
+  includes comm_semi shows "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)"
+proof -
+  have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by (simp add: assoc)
+  also have "\<dots> = (y \<cdot> x) \<cdot> z" by (simp add: comm)
+  also have "\<dots> = y \<cdot> (x \<cdot> z)" by (simp add: assoc)
+  finally show ?thesis .
+qed
+
+text {*
+  This proof is identical to the proof of @{text lcomm}.  The use of
+  \textbf{includes} provides the same context and facts as when using
+  @{term comm_semi} as target.  On the other hand, @{thm [source]
+  lcomm2} is not added as a fact to the locale @{term comm_semi}, but
+  is directly visible in the theory.  The theorem is
+\[
+  @{thm lcomm2}.
+\]
+  Note that it is possible to
+  combine a target and (several) \textbf{includes} in a goal statement, thus
+  using contexts of several locales but storing the theorem in only
+  one of them.
+*}
+
+section {* Structures *}
+
+text {*
+\label{sec-structures}
+  The specifications of semigroups and monoids that served as examples
+  in previous sections modelled each operation of an algebraic
+  structure as a single parameter.  This is rather inconvenient for
+  structures with many operations, and also unnatural.  In accordance
+  to mathematical texts, one would rather fix two groups instead of
+  two sets of operations.
+
+  The approach taken in Isabelle is to encode algebraic structures
+  with suitable types (in Isabelle/HOL usually records).  An issue to
+  be addressed by
+  locales is syntax for algebraic structures.  This is the purpose of
+  the \textbf{(structure)} annotation in \textbf{fixes}, introduced by
+  Wenzel.  We illustrate this, independently of record types, with a
+  different formalisation of semigroups.
+
+  Let @{text "'a semi_type"} be a not further specified type that
+  represents semigroups over the carrier type @{typ "'a"}.  Let @{text
+  "s_op"} be an operation that maps an object of @{text "'a semi_type"} to
+  a binary operation.
+*}
+
+typedecl 'a semi_type
+consts s_op :: "['a semi_type, 'a, 'a] \<Rightarrow> 'a" (infixl "\<star>\<index>" 70)
+
+text {*
+  Although @{text "s_op"} is a ternary operation, it is declared
+  infix.  The syntax annotation contains the token  @{text \<index>}
+  (\verb.\<index>.), which refers to the first argument.  This syntax is only
+  effective in the context of a locale, and only if the first argument
+  is a
+  \emph{structural} parameter --- that is, a parameter with annotation
+  \textbf{(structure)}.  The token has the effect of replacing the
+  parameter with a subscripted number, the index of the structural
+  parameter in the locale.  This replacement takes place both for
+  printing and
+  parsing.  Subscripted $1$ for the first structural
+  parameter may be omitted, as in this specification of semigroups with
+  structures:
+*}
+
+locale comm_semi' =
+  fixes G :: "'a semi_type" (structure)
+  assumes assoc: "(x \<star> y) \<star> z = x \<star> (y \<star> z)" and comm: "x \<star> y = y \<star> x"
+
+text {*
+  Here @{text "x \<star> y"} is equivalent to @{text "x \<star>\<^sub>1 y"} and
+  abbreviates @{term "s_op G x y"}.  A specification of homomorphisms
+  requires a second structural parameter.
+*}
+
+locale semi'_hom = comm_semi' + comm_semi' H +
+  fixes hom
+  assumes hom: "hom (x \<star> y) = hom x \<star>\<^sub>2 hom y"
+
+text {*
+  The parameter @{text H} is defined in the second \textbf{fixes}
+  element of $\C(@{term "semi'_comm"})$. Hence @{text "\<star>\<^sub>2"}
+  abbreviates @{term "s_op H x y"}.  The same construction can be done
+  with records instead of an \textit{ad-hoc} type.  In general, the
+  $i$th structural parameter is addressed by index $i$.  Only the
+  index $1$ may be omitted.  *}
+
+record 'a semi = prod :: "['a, 'a] \<Rightarrow> 'a" (infixl "\<bullet>\<index>" 70)
+
+text {*
+  This declares the types @{typ "'a semi"} and  @{typ "('a, 'b)
+  semi_scheme"}.  The latter is an extensible record, where the second
+  type argument is the type of the extension field.  For details on
+  records, see \cite{NipkowEtAl2002} Chapter~8.3.
+*}
+
+locale semi_w_records = struct G +
+  assumes assoc: "(x \<bullet> y) \<bullet> z = x \<bullet> (y \<bullet> z)"
+
+text {*
+  The type @{typ "('a, 'b) semi_scheme"} is inferred for the parameter @{term
+  G}.  Using subtyping on records, the specification can be extended
+  to groups easily.
+*}
+
+record 'a group = "'a semi" +
+  one :: "'a" ("l\<index>" 100)
+  inv :: "'a \<Rightarrow> 'a" ("inv\<index> _" [81] 80)
+locale group_w_records = semi_w_records +
+  assumes l_one: "l \<bullet> x = x" and l_inv: "inv x \<bullet> x = l"
+
+text {*
+ Finally, the predefined locale
+\begin{center}
+  \textbf{locale} \textit{struct} = \textbf{fixes} @{text "S_"}
+    \textbf{(structure)}.
+\end{center}
+  is analogous to @{text "var"}.  
+  More examples on the use of structures, including groups, rings and
+  polynomials can be found in the Isabelle distribution in the
+  session HOL-Algebra.
+*}
+
+section {* Conclusions and Outlook *}
+
+text {*
+  Locales provide a simple means of modular reasoning.  They allow to
+  abbreviate frequently occurring context statements and maintain facts
+  valid in these contexts.  Importantly, using structures, they allow syntax to be
+  effective only in certain contexts, and thus to mimic common
+  practice in mathematics, where notation is chosen very flexibly.
+  This is also known as literate formalisation \cite{Bailey1998}.
+  Locale expressions allow to duplicate and merge
+  specifications.  This is a necessity, for example, when reasoning about
+  homomorphisms.  Normalisation makes it possible to deal with
+  diamond-shaped inheritance structures, and generally with directed
+  acyclic graphs.  The combination of locales with record
+  types in higher-order logic provides an effective means for
+  specifying algebraic structures: locale import and record subtyping
+  provide independent hierarchies for specifications and structure
+  elements.  Rich examples for this can be found in
+  the Isabelle distribution in the session HOL-Algebra.
+
+  The primary reason for writing this report was to provide a better
+  understanding of locales in Isar.  Wenzel provided hardly any
+  documentation, with the exception of \cite{Wenzel2002b}.  The
+  present report should make it easier for users of Isabelle to take
+  advantage of locales.
+
+  The report is also a base for future extensions.  These include
+  improved syntax for structures.  Identifying them by numbers seems
+  unnatural and can be confusing if more than two structures are
+  involved --- for example, when reasoning about universal
+  properties --- and numbering them by order of occurrence seems
+  arbitrary.  Another desirable feature is \emph{instantiation}.  One
+  may, in the course of a theory development, construct objects that
+  fulfil the specification of a locale.  These objects are possibly
+  defined in the context of another locale.  Instantiation should make it
+  simple to specialise abstract facts for the object under
+  consideration and to use the specified facts.
+
+  A detailed comparison of locales with module systems in type theory
+  has not been undertaken yet, but could be beneficial.  For example,
+  a module system for Coq has recently been presented by Chrzaszcz
+  \cite{Chrzaszcz2003}.  While the
+  latter usually constitute extensions of the calculus, locales are
+  a rather thin layer that does not change Isabelle's meta logic.
+  Locales mainly manage specifications and facts.  Functors, like
+  the constructor for polynomial rings, remain objects of the
+  logic.
+
+  \textbf{Acknowledgements.}  Lawrence C.\ Paulson and Norbert
+  Schirmer made useful comments on a draft of this paper.
+*}
+                                
+(*<*)
+end
+(*>*)
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/ROOT.ML	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,6 @@
+(*
+  no_document use_thy "ThisTheory";
+  use_thy "ThatTheory";
+*)
+
+use_thy "Locales";
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/document/root.bib	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,154 @@
+@phdthesis{Bailey1998,
+  author = "Anthony Bailey",
+  title = "The machine-checked literate formalisation of algebra in type theory",
+  school = "University of Manchester",
+  month = jan,
+  year = 1998,
+  available = { CB }
+}
+
+@phdthesis{Kammuller1999a,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Reasoning in {Isabelle}",
+  school = "University of Cambridge, Computer Laboratory",
+  note = "Available as Technical Report No. 470.",
+  month = aug,
+  year = 1999,
+  available = { CB }
+}
+
+% TYPES 98
+
+@inproceedings{Kammuller1999b,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Structures as Dependent Types in {Isabelle}",
+  pages = "121--132",
+  crossref = "AltenkirchEtAl1999",
+  available = { CB }
+}
+
+@proceedings{AltenkirchEtAl1999,
+  editor = "Thorsten Altenkirch and Wolfgang Naraschewski and Bernhard Reus",
+  title = "Types for Proofs and Programs: International Workshop, {TYPES} '98, {Kloster Irsee, Germany, March 27--31, 1998}, Selected Papers",
+  booktitle = "TYPES '98",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 1657,
+  year = 1999
+}
+% CADE-17
+
+@inproceedings{Kammuller2000,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Reasoning in {Isabelle}",
+  pages = "99--114",
+  crossref = "McAllester2000",
+  available = { CB }
+}
+
+@proceedings{McAllester2000,
+  editor = "David McAllester",
+  title = "17th International Conference on Automated Deduction, Pittsburgh, PA, USA, June 17--20, 2000: Proceedings",
+  booktitle = "CADE 17",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 1831,
+  year = 2000
+}
+
+@book{NipkowEtAl2002,
+  author = "Tobias Nipkow and Lawrence C. Paulson and Markus Wenzel",
+  title = "{Isabelle/HOL}: A Proof Assistant for Higher-Order Logic",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2283,
+  year = 2002,
+  available = { CB }
+}
+
+% TYPES 2002
+
+@inproceedings{Nipkow2003,
+  author = "Tobias Nipkow",
+  title = "Structured Proofs in {Isar/HOL}",
+  pages = "259--278",
+  crossref = "GeuversWiedijk2003"
+}
+
+@proceedings{GeuversWiedijk2003,
+  editor = "H. Geuvers and F. Wiedijk",
+  title = "Types for Proofs and Programs (TYPES 2002)",
+  booktitle = "TYPES 2002",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2646,
+  year = 2003
+}
+
+@phdthesis{Wenzel2002a,
+  author = "Markus Wenzel",
+  title = "{Isabelle/Isar} --- a versatile environment for human-readable formal proof documents",
+  school = "Technische Universit{\"a}t M{\"u}nchen",
+  note = "Electronically published as http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.",
+  year = 2002
+}
+
+@unpublished{Wenzel2002b,
+  author = "Markus Wenzel",
+  title = "Using locales in {Isabelle/Isar}",
+  note = "Part of the Isabelle2003 distribution, file src/HOL/ex/Locales.thy.  Distribution of Isabelle available at http://isabelle.in.tum.de",
+  year = 2002
+}
+
+@unpublished{Wenzel2003,
+  author = "Markus Wenzel",
+  title = "The {Isabelle/Isar} Reference Manual",
+  note = "Part of the Isabelle2003 distribution, available at http://isabelle.in.tum.de",
+  year = 2003
+}
+
+% TPHOLs 2003
+
+@inproceedings{Chrzaszcz2003,
+  author = "Jacek Chrzaszcz",
+  title = "Implementing Modules in the {Coq} System",
+  pages = "270--286",
+  crossref = "BasinWolff2003",
+  available = { CB }
+}
+
+@proceedings{BasinWolff2003,
+  editor = "David Basin and Burkhart Wolff",
+  title = "Theorem proving in higher order logics: 16th International Conference, TPHOLs 2003, Rome, Italy, September 2003: proceedings",
+  booktitle = "TPHOLs 2003",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2758,
+  year = 2003
+}
+
+@PhdThesis{Klein2003,
+  author = "Gerwin Klein",
+  title = "Verified Java Bytecode Verification",
+  school = "Institut f{\"u}r Informatik, Technische Universit{\"a}t M{\"u}nchen",
+  year = 2003
+}
+
+% TACAS 2000
+
+@inproceedings{Aspinall2000,
+  author = "David Aspinall",
+  title = "Proof General: A Generic Tool for Proof Development",
+  pages = "38--42",
+  crossref = "GrafSchwartzbach2000"
+}
+
+@proceedings{GrafSchwartzbach2000,
+  editor    = {Susanne Graf and Michael I. Schwartzbach},
+  title     = {Tools and Algorithms for Construction and Analysis of Systems, 6th International Conference, TACAS 2000, Berlin, Germany, March 25 -- April 2, 2000, Proceedings},
+  booktitle     = "TACAS 2000",
+  publisher = {Springer},
+  series    = {LNCS},
+  number    = {1785},
+  year      = {2000},
+}
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/document/root.tex	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,48 @@
+\documentclass[leqno]{article}
+\usepackage{isabelle,isabellesym}
+
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{array}
+
+% this should be the last package used
+\usepackage{pdfsetup}
+
+\urlstyle{rm}
+\isabellestyle{tt}
+%\renewcommand{\isacharunderscore}{\_}%
+% the latter is not necessary with \isabellestyle{tt}
+
+\begin{document}
+
+\title{Locales and Locale Expressions in Isabelle/Isar}
+\author{Clemens Ballarin \\
+  Fakult\"at f\"ur Informatik \\ Technische Universit\"at M\"unchen \\
+  85748 Garching, Germany \\
+  ballarin@in.tum.de}
+\date{}
+
+\maketitle
+
+\begin{abstract}
+  Locales provide a module system for the Isabelle proof assistant.
+  Recently, locales have been ported to the new Isar format for
+  structured proofs.  At the same time, they have been extended by
+  locale expressions, a language for composing locale specifications,
+  and by structures, which provide syntax for algebraic structures.
+  The present paper presents both and is suitable as a tutorial to
+  locales in Isar, because it covers both basics and recent
+  extensions, and contains many examples.
+\end{abstract}
+
+%\tableofcontents
+
+\parindent 0pt\parskip 0.5ex
+
+% include generated text of all theories
+\input{session}
+
+\bibliographystyle{plain}
+\bibliography{root}
+
+\end{document}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/Locales.tex	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,1221 @@
+%
+\begin{isabellebody}%
+\def\isabellecontext{Locales}%
+\isanewline
+\isamarkupfalse%
+\isamarkupfalse%
+%
+\isamarkupsection{Overview%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Locales are an extension of the Isabelle proof assistant.  They
+  provide support for modular reasoning. Locales were initially
+  developed by Kamm\"uller~\cite{Kammuller2000} to support reasoning
+  in abstract algebra, but are applied also in other domains --- for
+  example, bytecode verification~\cite{Klein2003}.
+
+  Kamm\"uller's original design, implemented in Isabelle99, provides, in
+  addition to
+  means for declaring locales, a set of ML functions that were used
+  along with ML tactics in a proof.  In the meantime, the input format
+  for proof in Isabelle has changed and users write proof
+  scripts in ML only rarely if at all.  Two new proof styles are
+  available, and can
+  be used interchangeably: linear proof scripts that closely resemble ML
+  tactics, and the structured Isar proof language by
+  Wenzel~\cite{Wenzel2002a}.  Subsequently, Wenzel re-implemented
+  locales for
+  the new proof format.  The implementation, available with
+  Isabelle2003, constitutes a complete re-design and exploits that
+  both Isar and locales are based on the notion of context,
+  and thus locales are seen as a natural extension of Isar.
+  Nevertheless, locales can also be used with proof scripts:
+  their use does not require a deep understanding of the structured
+  Isar proof style.
+
+  At the same time, Wenzel considerably extended locales.  The most
+  important addition are locale expressions, which allow to combine
+  locales more freely.  Previously only
+  linear inheritance was possible.  Now locales support multiple
+  inheritance through a normalisation algorithm.  New are also
+  structures, which provide special syntax for locale parameters that
+  represent algebraic structures.
+
+  Unfortunately, Wenzel provided only an implementation but hardly any
+  documentation.  Besides providing documentation, the present paper
+  is a high-level description of locales, and in particular locale
+  expressions.  It is meant as a first step towards the semantics of
+  locales, and also as a base for comparing locales with module concepts
+  in other provers.  It also constitutes the base for future
+  extensions of locales in Isabelle.
+  The description was derived mainly by experimenting
+  with locales and partially also by inspecting the code.
+
+  The main contribution of the author of the present paper is the
+  abstract description of Wenzel's version of locales, and in
+  particular of the normalisation algorithm for locale expressions (see
+  Section~\ref{sec-normal-forms}).  Contributions to the
+  implementation are confined to bug fixes and to provisions that
+  enable the use of locales with linear proof scripts.
+
+  Concepts are introduced along with examples, so that the text can be
+  used as tutorial.  It is assumed that the reader is somewhat
+  familiar with Isabelle proof scripts.  Examples have been phrased as
+  structured
+  Isar proofs.  However, in order to understand the key concepts,
+  including locales expressions and their normalisation, detailed
+  knowledge of Isabelle is not necessary. 
+
+\nocite{Nipkow2003,Wenzel2002b,Wenzel2003}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Locales: Beyond Proof Contexts%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+In tactic-based provers the application of a sequence of proof
+  tactics leads to a proof state.  This state is usually hard to
+  predict from looking at the tactic script, unless one replays the
+  proof step-by-step.  The structured proof language Isar is
+  different.  It is additionally based on \emph{proof contexts},
+  which are directly visible in Isar scripts, and since tactic
+  sequences tend to be short, this commonly leads to clearer proof
+  scripts.
+
+  Goals are stated with the \textbf{theorem}
+  command.  This is followed by a proof.  When discharging a goal
+  requires an elaborate argument
+  (rather than the application of a single tactic) a new context
+  may be entered (\textbf{proof}).  Inside the context, variables may
+  be fixed (\textbf{fix}), assumptions made (\textbf{assume}) and
+  intermediate goals stated (\textbf{have}) and proved.  The
+  assumptions must be dischargeable by premises of the surrounding
+  goal, and once this goal has been proved (\textbf{show}) the proof context
+  can be closed (\textbf{qed}). Contexts inherit from surrounding
+  contexts, but it is not possible
+  to export from them (with exception of the proved goal);
+  they ``disappear'' after the closing \textbf{qed}.
+  Facts may have attributes --- for example, identifying them as
+  default to the simplifier or classical reasoner.
+
+  Locales extend proof contexts in various ways:
+  \begin{itemize}
+  \item
+    Locales are usually \emph{named}.  This makes them persistent.
+  \item
+    Fixed variables may have \emph{syntax}.
+  \item
+    It is possible to \emph{add} and \emph{export} facts.
+  \item
+    Locales can be combined and modified with \emph{locale
+    expressions}.
+  \end{itemize}
+  The Locales facility extends the Isar language: it provides new ways
+  of stating and managing facts, but it does not modify the language
+  for proofs.  Its purpose is to support writing modular proofs.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Simple Locales%
+}
+\isamarkuptrue%
+%
+\isamarkupsubsection{Syntax and Terminology%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The grammar of Isar is extended by commands for locales as shown in
+  Figure~\ref{fig-grammar}.
+  A key concept, introduced by Wenzel, is that
+  locales are (internally) lists
+  of \emph{context elements}.  There are four kinds, identified
+  by the keywords \textbf{fixes}, \textbf{assumes}, \textbf{defines} and
+  \textbf{notes}.
+
+  \begin{figure}
+  \hrule
+  \vspace{2ex}
+  \begin{small}
+  \begin{tabular}{l>$c<$l}
+  \textit{attr-name} & ::=
+  & \textit{name} $|$ \textit{attribute} $|$
+    \textit{name} \textit{attribute} \\
+
+  \textit{locale-expr}  & ::= 
+  & \textit{locale-expr1} ( ``\textbf{+}'' \textit{locale-expr1} )$^*$ \\
+  \textit{locale-expr1} & ::=
+  & ( \textit{qualified-name} $|$
+    ``\textbf{(}'' \textit{locale-expr} ``\textbf{)}'' )
+    ( \textit{name} $|$ ``\textbf{\_}'' )$^*$ \\
+
+  \textit{fixes} & ::=
+  & \textit{name} [ ``\textbf{::}'' \textit{type} ]
+    [ ``\textbf{(}'' \textbf{structure} ``\textbf{)}'' $|$
+    \textit{mixfix} ] \\
+  \textit{assumes} & ::=
+  & [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
+  \textit{defines} & ::=
+  & [ \textit{attr-name} ``\textbf{:}'' ] \textit{proposition} \\
+  \textit{notes} & ::=
+  & [ \textit{attr-name} ``\textbf{=}'' ]
+    ( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\
+
+  \textit{element} & ::=
+  & \textbf{fixes} \textit{fixes} ( \textbf{and} \textit{fixes} )$^*$ \\
+  & |
+  & \textbf{assumes} \textit{assumes} ( \textbf{and} \textit{assumes} )$^*$ \\
+  & |
+  & \textbf{defines} \textit{defines} ( \textbf{and} \textit{defines} )$^*$ \\
+  & |
+  & \textbf{notes} \textit{notes} ( \textbf{and} \textit{notes} )$^*$ \\
+  & | & \textbf{includes} \textit{locale-expr} \\
+
+  \textit{locale} & ::=
+  & \textit{element}$^+$ \\
+  & | & \textit{locale-expr} [ ``\textbf{+}'' \textit{element}$^+$ ] \\
+
+  \textit{in-target} & ::=
+  & ``\textbf{(}'' \textbf{in} \textit{qualified-name} ``\textbf{)}'' \\
+
+  \textit{theorem} & ::= & ( \textbf{theorem} $|$ \textbf{lemma} $|$
+    \textbf{corollary} ) [ \textit{in-target} ] [ \textit{attr-name} ] \\
+
+  \textit{theory-level} & ::= & \ldots \\
+  & | & \textbf{locale} \textit{name} [ ``\textbf{=}''
+    \textit{locale} ] \\
+  % note: legacy "locale (open)" omitted.
+  & | & ( \textbf{theorems} $|$ \textbf{lemmas} ) \\
+  & & [ \textit{in-target} ] [ \textit{attr-name} ``\textbf{=}'' ]
+    ( \textit{qualified-name} [ \textit{attribute} ] )$^+$ \\
+  & | & \textbf{declare} [ \textit{in-target} ] ( \textit{qualified-name}
+    [ \textit{attribute} ] )$^+$ \\
+  & | & \textit{theorem} \textit{proposition} \textit{proof} \\
+  & | & \textit{theorem} \textit{element}$^*$
+    \textbf{shows} \textit{proposition} \textit{proof} \\
+  & | & \textbf{print\_locale} \textit{locale} \\
+  & | & \textbf{print\_locales}
+  \end{tabular}
+  \end{small}
+  \vspace{2ex}
+  \hrule
+  \caption{Locales extend the grammar of Isar.}
+  \label{fig-grammar}
+  \end{figure}
+
+  At the theory level --- that is, at the outer syntactic level of an
+  Isabelle input file --- \textbf{locale} declares a named
+  locale.  Other kinds of locales,
+  locale expressions and unnamed locales, will be introduced later.  When
+  declaring a named locale, it is possible to \emph{import} another
+  named locale, or indeed several ones by importing a locale
+  expression.  The second part of the declaration, also optional,
+  consists of a number of context element declarations.  Here, a fifth
+  kind, \textbf{includes}, is available.
+
+  A number of Isar commands have an additional, optional \emph{target}
+  argument, which always refers to a named locale.  These commands
+  are \textbf{theorem} (together with \textbf{lemma} and
+  \textbf{corollary}),  \textbf{theorems} (and
+  \textbf{lemmas}), and \textbf{declare}.  The effect of specifying a target is
+  that these commands focus on the specified locale, not the
+  surrounding theory.  Commands that are used to
+  prove new theorems will add them not to the theory, but to the
+  locale.  Similarly, \textbf{declare} modifies attributes of theorems
+  that belong to the specified target.  Additionally, for
+  \textbf{theorem} (and related commands), theorems stored in the target
+  can be used in the associated proof scripts.
+
+  The Locales package permits a \emph{long goals format} for
+  propositions stated with \textbf{theorem} (and friends).  While
+  normally a goal is just a formula, a long goal is a list of context
+  elements, followed by the keyword \textbf{shows}, followed by the
+  formula.  Roughly speaking, the context elements are
+  (additional) premises.  For an example, see
+  Section~\ref{sec-includes}.  The list of context elements in a long goal
+  is also called \emph{unnamed locale}.
+
+  Finally, there are two commands to inspect locales when working in
+  interactive mode: \textbf{print\_locales} prints the names of all
+  targets
+  visible in the current theory, \textbf{print\_locale} outputs the
+  elements of a named locale or locale expression.
+
+  The following presentation will use notation of
+  Isabelle's meta logic, hence a few sentences to explain this.
+  The logical
+  primitives are universal quantification (\isa{{\isasymAnd}}), entailment
+  (\isa{{\isasymLongrightarrow}}) and equality (\isa{{\isasymequiv}}).  Variables (not bound
+  variables) are sometimes preceded by a question mark.  The logic is
+  typed.  Type variables are denoted by \isa{{\isacharprime}a}, \isa{{\isacharprime}b}
+  etc., and \isa{{\isasymRightarrow}} is the function type.  Double brackets \isa{{\isasymlbrakk}} and \isa{{\isasymrbrakk}} are used to abbreviate nested entailment.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Parameters, Assumptions and Facts%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+From a logical point of view a \emph{context} is a formula schema of
+  the form
+\[
+  \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}{\isasymdots}x\isactrlsub n{\isachardot}\ {\isasymlbrakk}\ C\isactrlsub {\isadigit{1}}{\isacharsemicolon}\ {\isasymdots}\ {\isacharsemicolon}C\isactrlsub m\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymdots}}
+\]
+  The variables $\isa{x\isactrlsub {\isadigit{1}}}, \ldots, \isa{x\isactrlsub n}$ are
+  called \emph{parameters}, the premises $\isa{C\isactrlsub {\isadigit{1}}}, \ldots,
+  \isa{C\isactrlsub n}$ \emph{assumptions}.  A formula \isa{F}
+  holds in this context if
+\begin{equation}
+\label{eq-fact-in-context}
+  \isa{{\isasymAnd}x\isactrlsub {\isadigit{1}}{\isasymdots}x\isactrlsub n{\isachardot}\ {\isasymlbrakk}\ C\isactrlsub {\isadigit{1}}{\isacharsemicolon}\ {\isasymdots}\ {\isacharsemicolon}C\isactrlsub m\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ F}
+\end{equation}
+  is valid.  The formula is called a \emph{fact} of the context.
+
+  A locale allows fixing the parameters \isa{x\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ x\isactrlsub n} and making the assumptions \isa{C\isactrlsub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ C\isactrlsub m}.  This implicitly builds the context in
+  which the formula \isa{F} can be established.
+  Parameters of a locale correspond to the context element
+  \textbf{fixes}, and assumptions may be declared with
+  \textbf{assumes}.  Using these context elements one can define
+  the specification of semigroups.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ semi\ {\isacharequal}\isanewline
+\ \ \isakeyword{fixes}\ prod\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymcdot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ \ \isakeyword{assumes}\ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymcdot}\ y{\isacharparenright}\ {\isasymcdot}\ z\ {\isacharequal}\ x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+The parameter \isa{prod} has a
+  syntax annotation allowing the infix ``\isa{{\isasymcdot}}'' in the
+  assumption of associativity.  Parameters may have arbitrary mixfix
+  syntax, like constants.  In the example, the type of \isa{prod} is
+  specified explicitly.  This is not necessary.  If no type is
+  specified, a most general type is inferred simultaneously for all
+  parameters, taking into account all assumptions (and type
+  specifications of parameters, if present).%
+\footnote{Type inference also takes into account definitions and
+  import, as introduced later.}
+
+  Free variables in assumptions are implicitly universally quantified,
+  unless they are parameters.  Hence the context defined by the locale
+  \isa{semi} is
+\[
+  \isa{{\isasymAnd}prod{\isachardot}\ {\isasymlbrakk}\ {\isasymAnd}x\ y\ z{\isachardot}\ prod\ {\isacharparenleft}prod\ x\ y{\isacharparenright}\ z\ {\isacharequal}\ prod\ x\ {\isacharparenleft}prod\ y\ z{\isacharparenright}\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymdots}}
+\]
+  The locale can be extended to commutative semigroups.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ comm{\isacharunderscore}semi\ {\isacharequal}\ semi\ {\isacharplus}\isanewline
+\ \ \isakeyword{assumes}\ comm{\isacharcolon}\ {\isachardoublequote}x\ {\isasymcdot}\ y\ {\isacharequal}\ y\ {\isasymcdot}\ x{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+This locale \emph{imports} all elements of \isa{semi}.  The
+  latter locale is called the import of \isa{comm{\isacharunderscore}semi}. The
+  definition adds commutativity, hence its context is
+\begin{align*%
+}
+  \isa{{\isasymAnd}prod{\isachardot}\ {\isasymlbrakk}} & 
+  \isa{{\isasymAnd}x\ y\ z{\isachardot}\ prod\ {\isacharparenleft}prod\ x\ y{\isacharparenright}\ z\ {\isacharequal}\ prod\ x\ {\isacharparenleft}prod\ y\ z{\isacharparenright}{\isacharsemicolon}} \\
+  & \isa{{\isasymAnd}x\ y{\isachardot}\ prod\ x\ y\ {\isacharequal}\ prod\ y\ x\ {\isasymrbrakk}\ {\isasymLongrightarrow}\ {\isasymdots}}
+\end{align*%
+}
+  One may now derive facts --- for example, left-commutativity --- in
+  the context of \isa{comm{\isacharunderscore}semi} by specifying this locale as
+  target, and by referring to the names of the assumptions \isa{assoc} and \isa{comm} in the proof.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{theorem}\ {\isacharparenleft}\isakeyword{in}\ comm{\isacharunderscore}semi{\isacharparenright}\ lcomm{\isacharcolon}\isanewline
+\ \ {\isachardoublequote}x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}\ {\isacharequal}\ y\ {\isasymcdot}\ {\isacharparenleft}x\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
+\isacommand{proof}\ {\isacharminus}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymcdot}\ y{\isacharparenright}\ {\isasymcdot}\ z{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymcdot}\ x{\isacharparenright}\ {\isasymcdot}\ z{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ comm{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ y\ {\isasymcdot}\ {\isacharparenleft}x\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{finally}\ \isamarkupfalse%
+\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse%
+\isacommand{{\isachardot}}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+In this equational Isar proof, ``\isa{{\isasymdots}}'' refers to the
+  right hand side of the preceding equation.
+  After the proof is finished, the fact \isa{lcomm} is added to
+  the locale \isa{comm{\isacharunderscore}semi}.  This is done by adding a
+  \textbf{notes} element to the internal representation of the locale,
+  as explained the next section.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Locale Predicates and the Internal Representation of
+  Locales%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\label{sec-locale-predicates}
+  In mathematical texts, often arbitrary but fixed objects with
+  certain properties are considered --- for instance, an arbitrary but
+  fixed group $G$ --- with the purpose of establishing facts valid for
+  any group.  These facts are subsequently used on other objects that
+  also have these properties.
+
+  Locales permit the same style of reasoning.  Exporting a fact $F$
+  generalises the fixed parameters and leads to a (valid) formula of the
+  form of equation~(\ref{eq-fact-in-context}).  If a locale has many
+  assumptions
+  (possibly accumulated through a number of imports) this formula can
+  become large and cumbersome.  Therefore, Wenzel introduced 
+  predicates that abbreviate the assumptions of locales.  These
+  predicates are not confined to the locale but are visible in the
+  surrounding theory.
+
+  The definition of the locale \isa{semi} generates the \emph{locale
+  predicate} \isa{semi} over the type of the parameter \isa{prod},
+  hence the predicate's type is \isa{{\isacharparenleft}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isacharparenright}\ {\isasymRightarrow}\ bool}.  Its
+  definition is
+\begin{equation}
+  \tag*{\isa{semi{\isacharunderscore}def}:} \isa{semi\ {\isacharquery}prod\ {\isasymequiv}\ {\isasymforall}x\ y\ z{\isachardot}\ {\isacharquery}prod\ {\isacharparenleft}{\isacharquery}prod\ x\ y{\isacharparenright}\ z\ {\isacharequal}\ {\isacharquery}prod\ x\ {\isacharparenleft}{\isacharquery}prod\ y\ z{\isacharparenright}}.
+\end{equation}
+  In the case where the locale has no import, the generated
+  predicate abbreviates all assumptions and is over the parameters
+  that occur in these assumptions.
+
+  The situation is more complicated when a locale extends
+  another locale, as is the case for \isa{comm{\isacharunderscore}semi}.  Two
+  predicates are defined.  The predicate
+  \isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms} corresponds to the new assumptions and is
+  called \emph{delta predicate}, the locale
+  predicate \isa{comm{\isacharunderscore}semi} captures the content of all the locale,
+  including the import.
+  If a locale has neither assumptions nor import, no predicate is
+  defined.  If a locale has import but no assumptions, only the locale
+  predicate is defined.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+The Locales package generates a number of theorems for locale and
+  delta predicates.  All predicates have a definition and an
+  introduction rule.  Locale predicates that are defined in terms of
+  other predicates (which is the case if and only if the locale has
+  import) also have a number of elimination rules (called
+  \emph{axioms}).  All generated theorems for the predicates of the
+  locales \isa{semi} and \isa{comm{\isacharunderscore}semi} are shown in
+  Figures~\ref{fig-theorems-semi} and~\ref{fig-theorems-comm-semi},
+  respectively.
+  \begin{figure}
+  \hrule
+  \vspace{2ex}
+  Theorems generated for the predicate \isa{semi}.
+  \begin{gather}
+    \tag*{\isa{semi{\isacharunderscore}def}:} \isa{semi\ {\isacharquery}prod\ {\isasymequiv}\ {\isasymforall}x\ y\ z{\isachardot}\ {\isacharquery}prod\ {\isacharparenleft}{\isacharquery}prod\ x\ y{\isacharparenright}\ z\ {\isacharequal}\ {\isacharquery}prod\ x\ {\isacharparenleft}{\isacharquery}prod\ y\ z{\isacharparenright}} \\
+    \tag*{\isa{semi{\isachardot}intro}:} \isa{{\isacharparenleft}{\isasymAnd}x\ y\ z{\isachardot}\ {\isacharquery}prod\ {\isacharparenleft}{\isacharquery}prod\ x\ y{\isacharparenright}\ z\ {\isacharequal}\ {\isacharquery}prod\ x\ {\isacharparenleft}{\isacharquery}prod\ y\ z{\isacharparenright}{\isacharparenright}\ {\isasymLongrightarrow}\ semi\ {\isacharquery}prod}
+  \end{gather}
+  \hrule
+  \caption{Theorems for the locale predicate \isa{semi}.}
+  \label{fig-theorems-semi}
+  \end{figure}
+
+  \begin{figure}[h]
+  \hrule
+  \vspace{2ex}
+  Theorems generated for the predicate \isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms}.
+  \begin{gather}
+    \tag*{\isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms{\isacharunderscore}def}:} \isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms\ {\isacharquery}prod\ {\isasymequiv}\ {\isasymforall}x\ y{\isachardot}\ {\isacharquery}prod\ x\ y\ {\isacharequal}\ {\isacharquery}prod\ y\ x} \\                        
+    \tag*{\isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms{\isachardot}intro}:} \isa{{\isacharparenleft}{\isasymAnd}x\ y{\isachardot}\ {\isacharquery}prod\ x\ y\ {\isacharequal}\ {\isacharquery}prod\ y\ x{\isacharparenright}\ {\isasymLongrightarrow}\ comm{\isacharunderscore}semi{\isacharunderscore}axioms\ {\isacharquery}prod}                       
+  \end{gather}
+  Theorems generated for the predicate \isa{comm{\isacharunderscore}semi}.
+  \begin{gather}
+    \tag*{\isa{comm{\isacharunderscore}semi{\isacharunderscore}def}:} \isa{comm{\isacharunderscore}semi\ {\isacharquery}prod\ {\isasymequiv}\ semi\ {\isacharquery}prod\ {\isasymand}\ comm{\isacharunderscore}semi{\isacharunderscore}axioms\ {\isacharquery}prod} \\                          
+    \tag*{\isa{comm{\isacharunderscore}semi{\isachardot}intro}:} \isa{{\isasymlbrakk}semi\ {\isacharquery}prod{\isacharsemicolon}\ comm{\isacharunderscore}semi{\isacharunderscore}axioms\ {\isacharquery}prod{\isasymrbrakk}\ {\isasymLongrightarrow}\ comm{\isacharunderscore}semi\ {\isacharquery}prod} \\
+    \tag*{\isa{comm{\isacharunderscore}semi{\isachardot}axioms}:} \mbox{} \\
+    \notag \isa{comm{\isacharunderscore}semi\ {\isacharquery}prod\ {\isasymLongrightarrow}\ semi\ {\isacharquery}prod} \\
+    \notag \isa{comm{\isacharunderscore}semi\ {\isacharquery}prod\ {\isasymLongrightarrow}\ comm{\isacharunderscore}semi{\isacharunderscore}axioms\ {\isacharquery}prod}               
+  \end{gather} 
+  \hrule
+  \caption{Theorems for the predicates \isa{comm{\isacharunderscore}semi{\isacharunderscore}axioms} and
+    \isa{comm{\isacharunderscore}semi}.}
+  \label{fig-theorems-comm-semi}
+  \end{figure}
+  Note that the theorems generated by a locale
+  definition may be inspected immediately after the definition in the
+  Proof General interface \cite{Aspinall2000} of Isabelle through
+  the menu item ``Isabelle/Isar$>$Show me $\ldots>$Theorems''.
+
+  Locale and delta predicates are used also in the internal
+  representation of locales as lists of context elements.  While all
+  \textbf{fixes} in a
+  declaration generate internal \textbf{fixes}, all assumptions
+  of one locale declaration contribute to one internal \textbf{assumes}
+  element.  The internal representation of \isa{semi} is
+\[
+\begin{array}{ll}
+  \textbf{fixes} & \isa{prod} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}}
+    (\textbf{infixl} \isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}} 70) \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{assoc}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z\ {\isacharequal}\ {\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}}
+\end{array}
+\]
+  and the internal representation of \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isachardoublequote}} is
+\begin{equation}
+\label{eq-comm-semi}
+\begin{array}{ll}
+  \textbf{fixes} & \isa{prod} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}}
+    ~(\textbf{infixl}~\isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}}~70) \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{assoc}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z\ {\isacharequal}\ {\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isacharunderscore}axioms\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{comm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}x{\isachardoublequote}} \\
+  \textbf{notes} & \isa{lcomm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}}
+\end{array}
+\end{equation}
+  The \textbf{notes} elements store facts of the
+  locales.  The facts \isa{assoc} and \isa{comm} were added
+  during the declaration of the locales.  They stem from assumptions,
+  which are trivially facts.  The fact \isa{lcomm} was
+  added later, after finishing the proof in the respective
+  \textbf{theorem} command above.
+
+  By using \textbf{notes} in a declaration, facts can be added
+  to a locale directly.  Of course, these must be theorems.
+  Typical use of this feature includes adding theorems that are not
+  usually used as a default rewrite rules by the simplifier to the
+  simpset of the locale by a \textbf{notes} element with the attribute
+  \isa{{\isacharbrackleft}simp{\isacharbrackright}}.  This way it is also possible to add specialised
+  versions of
+  theorems to a locale by instantiating locale parameters for unknowns
+  or locale assumptions for premises.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Definitions%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Definitions were available in Kamm\"uller's version of Locales, and
+  they are in Wenzel's.  
+  The context element \textbf{defines} adds a definition of the form
+  \isa{p\ x\isactrlsub {\isadigit{1}}\ {\isasymdots}\ x\isactrlsub n\ {\isasymequiv}\ t} as an assumption, where \isa{p} is a
+  parameter of the locale (possibly an imported parameter), and \isa{t} a term that may contain the \isa{x\isactrlsub i}.  The parameter may
+  neither occur in a previous \textbf{assumes} or \textbf{defines}
+  element, nor on the right hand side of the definition.  Hence
+  recursion is not allowed.
+  The parameter may, however, occur in subsequent \textbf{assumes} and
+  on the right hand side of subsequent \textbf{defines}.  We call
+  \isa{p} \emph{defined parameter}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ semi{\isadigit{2}}\ {\isacharequal}\ semi\ {\isacharplus}\isanewline
+\ \ \isakeyword{fixes}\ rprod\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymodot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ \ \isakeyword{defines}\ rprod{\isacharunderscore}def{\isacharcolon}\ {\isachardoublequote}rprod\ x\ y\ {\isasymequiv}\ y\ {\isasymcdot}\ x\ {\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+This locale extends \isa{semi} by a second binary operation \isa{{\isachardoublequote}{\isasymodot}{\isachardoublequote}} that is like \isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}} but with
+  reversed arguments.  The
+  definition of the locale generates the predicate \isa{semi{\isadigit{2}}},
+  which is equivalent to \isa{semi}, but no \isa{semi{\isadigit{2}}{\isacharunderscore}axioms}.
+  The difference between \textbf{assumes} and \textbf{defines} lies in
+  the way parameters are treated on export.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Export%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+A fact is exported out
+  of a locale by generalising over the parameters and adding
+  assumptions as premises.  For brevity of the exported theorems,
+  locale predicates are used.  Exported facts are referenced by
+  writing qualified names consisting of the locale name and the fact name ---
+  for example,
+\begin{equation}
+  \tag*{\isa{semi{\isachardot}assoc}:} \isa{semi\ {\isacharquery}prod\ {\isasymLongrightarrow}\ {\isacharquery}prod\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}x\ {\isacharquery}y{\isacharparenright}\ {\isacharquery}z\ {\isacharequal}\ {\isacharquery}prod\ {\isacharquery}x\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}}.
+\end{equation}
+  Defined parameters receive special treatment.  Instead of adding a
+  premise for the definition, the definition is unfolded in the
+  exported theorem.  In order to illustrate this we prove that the
+  reverse operation \isa{{\isachardoublequote}{\isasymodot}{\isachardoublequote}} defined in the locale
+  \isa{semi{\isadigit{2}}} is also associative.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{theorem}\ {\isacharparenleft}\isakeyword{in}\ semi{\isadigit{2}}{\isacharparenright}\ r{\isacharunderscore}assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymodot}\ y{\isacharparenright}\ {\isasymodot}\ z\ {\isacharequal}\ x\ {\isasymodot}\ {\isacharparenleft}y\ {\isasymodot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ only{\isacharcolon}\ rprod{\isacharunderscore}def\ assoc{\isacharparenright}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+The exported fact is
+\begin{equation}
+  \tag*{\isa{semi{\isadigit{2}}{\isachardot}r{\isacharunderscore}assoc}:} \isa{semi{\isadigit{2}}\ {\isacharquery}prod\ {\isasymLongrightarrow}\ {\isacharquery}prod\ {\isacharquery}z\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}y\ {\isacharquery}x{\isacharparenright}\ {\isacharequal}\ {\isacharquery}prod\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}z\ {\isacharquery}y{\isacharparenright}\ {\isacharquery}x}.
+\end{equation}
+  The defined parameter is not present but is replaced by its
+  definition.  Note that the definition itself is not exported, hence
+  there is no \isa{semi{\isadigit{2}}{\isachardot}rprod{\isacharunderscore}def}.%
+\footnote{The definition could alternatively be exported using a
+  let-construct if there was one in Isabelle's meta-logic.  Let is
+  usually defined in object-logics.}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Locale Expressions%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Locale expressions provide a simple language for combining
+  locales.  They are an effective means of building complex
+  specifications from simple ones.  Locale expressions are the main
+  innovation of the version of Locales discussed here.  Locale
+  expressions are also reason for introducing locale predicates.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Rename and Merge%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+The grammar of locale expressions is part of the grammar in
+  Figure~\ref{fig-grammar}.  Locale names are locale
+  expressions, and
+  further expressions are obtained by \emph{rename} and \emph{merge}.
+\begin{description}
+\item[Rename.]
+  The locale expression $e\: q_1 \ldots q_n$ denotes
+  the locale of $e$ where pa\-ra\-me\-ters, in the order in
+  which they are fixed, are renamed to $q_1$ to $q_n$.
+  The expression is only well-formed if $n$ does not
+  exceed the number of parameters of $e$.  Underscores denote
+  parameters that are not renamed.
+  Parameters whose names are changed lose mixfix syntax,
+  and there is currently no way to re-equip them with such.
+\item[Merge.]
+  The locale expression $e_1 + e_2$ denotes
+  the locale obtained by merging the locales of $e_1$
+  and $e_2$.  This locale contains the context elements
+  of $e_1$, followed by the context elements of $e_2$.
+
+  In actual fact, the semantics of the merge operation
+  is more complicated.  If $e_1$ and $e_2$ are expressions containing
+  the same name, followed by
+  identical parameter lists, then the merge of both will contain
+  the elements of those locales only once.  Details are explained in
+  Section~\ref{sec-normal-forms} below.
+
+  The merge operation is associative but not commutative.  The latter
+  is because parameters of $e_1$ appear
+  before parameters of $e_2$ in the composite expression.
+\end{description}
+
+  Rename can be used if a different parameter name seems more
+  appropriate --- for example, when moving from groups to rings, a
+  parameter \isa{G} representing the group could be changed to
+  \isa{R}.  Besides of this stylistic use, renaming is important in
+  combination with merge.  Both operations are used in the following
+  specification of semigroup homomorphisms.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ semi{\isacharunderscore}hom\ {\isacharequal}\ comm{\isacharunderscore}semi\ sum\ {\isacharplus}\ comm{\isacharunderscore}semi\ {\isacharplus}\isanewline
+\ \ \isakeyword{fixes}\ hom\isanewline
+\ \ \isakeyword{assumes}\ hom{\isacharcolon}\ {\isachardoublequote}hom\ {\isacharparenleft}sum\ x\ y{\isacharparenright}\ {\isacharequal}\ hom\ x\ {\isasymcdot}\ hom\ y{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+This locale defines a context with three parameters \isa{sum},
+  \isa{prod} and \isa{hom}.  Only the second parameter has
+  mixfix syntax.  The first two are associative operations,
+  the first of type \isa{{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a}, the second of
+  type \isa{{\isacharbrackleft}{\isacharprime}b{\isacharcomma}\ {\isacharprime}b{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}b}.  
+
+  How are facts that are imported via a locale expression identified?
+  Facts are always introduced in a named locale (either in the
+  locale's declaration, or by using the locale as target in
+  \textbf{theorem}), and their names are
+  qualified by the parameter names of this locale.
+  Hence the full name of associativity in \isa{semi} is
+  \isa{prod{\isachardot}assoc}.  Renaming parameters of a target also renames
+  the qualifier of facts.  Hence, associativity of \isa{sum} is
+  \isa{sum{\isachardot}assoc}.  Several parameters are separated by
+  underscores in qualifiers.  For example, the full name of the fact
+  \isa{hom} in the locale \isa{semi{\isacharunderscore}hom} is \isa{sum{\isacharunderscore}prod{\isacharunderscore}hom{\isachardot}hom}.
+
+  The following example is quite artificial, it illustrates the use of
+  facts, though.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{theorem}\ {\isacharparenleft}\isakeyword{in}\ semi{\isacharunderscore}hom{\isacharparenright}\ {\isachardoublequote}hom\ x\ {\isasymcdot}\ {\isacharparenleft}hom\ y\ {\isasymcdot}\ hom\ z{\isacharparenright}\ {\isacharequal}\ hom\ {\isacharparenleft}sum\ x\ {\isacharparenleft}sum\ y\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
+\isacommand{proof}\ {\isacharminus}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}hom\ x\ {\isasymcdot}\ {\isacharparenleft}hom\ y\ {\isasymcdot}\ hom\ z{\isacharparenright}\ {\isacharequal}\ hom\ y\ {\isasymcdot}\ {\isacharparenleft}hom\ x\ {\isasymcdot}\ hom\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\ \ \ \ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ prod{\isachardot}lcomm{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ hom\ {\isacharparenleft}sum\ y\ {\isacharparenleft}sum\ x\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ hom{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ hom\ {\isacharparenleft}sum\ x\ {\isacharparenleft}sum\ y\ z{\isacharparenright}{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ sum{\isachardot}lcomm{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{finally}\ \isamarkupfalse%
+\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse%
+\isacommand{{\isachardot}}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Importing via a locale expression imports all facts of
+  the imported locales, hence both \isa{sum{\isachardot}lcomm} and \isa{prod{\isachardot}lcomm} are
+  available in \isa{hom{\isacharunderscore}semi}.  The import is dynamic --- that is,
+  whenever facts are added to a locale, they automatically
+  become available in subsequent \textbf{theorem} commands that use
+  the locale as a target, or a locale importing the locale.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Normal Forms%
+}
+\isamarkuptrue%
+%
+\label{sec-normal-forms}
+\newcommand{\I}{\mathcal{I}}
+\newcommand{\F}{\mathcal{F}}
+\newcommand{\N}{\mathcal{N}}
+\newcommand{\C}{\mathcal{C}}
+\newcommand{\App}{\mathbin{\overline{@}}}
+%
+\begin{isamarkuptext}%
+Locale expressions are interpreted in a two-step process.  First, an
+  expression is normalised, then it is converted to a list of context
+  elements.
+
+  Normal forms are based on \textbf{locale} declarations.  These
+  consist of an import section followed by a list of context
+  elements.  Let $\I(l)$ denote the locale expression imported by
+  locale $l$.  If $l$ has no import then $\I(l) = \varepsilon$.
+  Likewise, let $\F(l)$ denote the list of context elements, also
+  called the \emph{context fragment} of $l$.  Note that $\F(l)$
+  contains only those context elements that are stated in the
+  declaration of $l$, not imported ones.
+
+\paragraph{Example 1.}  Consider the locales \isa{semi} and \isa{comm{\isacharunderscore}semi}.  We have $\I(\isa{semi}) = \varepsilon$ and
+  $\I(\isa{comm{\isacharunderscore}semi}) = \isa{semi}$, and the context fragments
+  are
+\begin{align*%
+}
+  \F(\isa{semi}) & = \left[
+\begin{array}{ll}
+  \textbf{fixes} & \isa{prod} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}}
+    ~(\textbf{infixl}~\isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}}~70) \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{assoc}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z\ {\isacharequal}\ {\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}}
+\end{array} \right], \\
+  \F(\isa{comm{\isacharunderscore}semi}) & = \left[
+\begin{array}{ll}
+  \textbf{assumes} & \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isacharunderscore}axioms\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{comm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}x{\isachardoublequote}} \\
+  \textbf{notes} & \isa{lcomm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}}
+\end{array} \right].
+\end{align*%
+}
+  Let $\pi_0(\F(l))$ denote the list of parameters defined in the
+  \textbf{fixes} elements of $\F(l)$ in the order of their occurrence.
+  The list of parameters of a locale expression $\pi(e)$ is defined as
+  follows:
+\begin{align*%
+}
+  \pi(l) & = \pi(\I(l)) \App \pi_0(\F(l)) \text{, for named locale $l$.} \\
+  \pi(e\: q_1 \ldots q_n) & = \text{$[q_1, \ldots, q_n, p_{n+1}, \ldots,
+    p_{m}]$, where $\pi(e) = [p_1, \ldots, p_m]$.} \\
+  \pi(e_1 + e_2) & = \pi(e_1) \App \pi(e_2)
+\end{align*%
+}
+  The operation $\App$ concatenates two lists but omits elements from
+  the second list that are also present in the first list.
+  It is not possible to rename more parameters than there
+  are present in an expression --- that is, $n \le m$ --- otherwise
+  the renaming is illegal.  If $q_i
+  = \_$ then the $i$th entry of the resulting list is $p_i$.
+
+  In the normalisation phase, imports of named locales are unfolded, and
+  renames and merges are recursively propagated to the imported locale
+  expressions.  The result is a list of locale names, each with a full
+  list of parameters, where locale names occurring with the same parameter
+  list twice are removed.  Let $\N$ denote normalisation.  It is defined
+  by these equations:
+\begin{align*%
+}
+  \N(l) & = \N(\I(l)) \App [l\:\pi(l)] \text{, for named locale $l$.} \\
+  \N(e\: q_1 \ldots q_n) & = \N(e)\:[q_1 \ldots q_n/\pi(e)] \\
+  \N(e_1 + e_2) & = \N(e_1) \App \N(e_2)
+\end{align*%
+}
+  Normalisation yields a list of \emph{identifiers}.  An identifier
+  consists of a locale name and a (possibly empty) list of parameters.
+
+  In the second phase, the list of identifiers $\N(e)$ is converted to
+  a list of context elements $\C(e)$ by converting each identifier to
+  a list of context elements, and flattening the obtained list.
+  Conversion of the identifier $l\:q_1 \ldots q_n$ yields the list of
+  context elements $\F(l)$, but with the following modifications:
+\begin{itemize}
+\item
+  Rename the parameter in the $i$th \textbf{fixes} element of $\F(l)$
+  to $q_i$, $i = 1, \ldots, n$.  If the parameter name is actually
+  changed then delete the syntax annotation.  Renaming a parameter may
+  also change its type.
+\item
+  Perform the same renamings on all occurrences of parameters (fixed
+  variables) in \textbf{assumes}, \textbf{defines} and \textbf{notes}
+  elements.
+\item
+  Qualify names of facts by $q_1\_\ldots\_q_n$.
+\end{itemize}
+  The locale expression is \emph{well-formed} if it contains no
+  illegal renamings and the following conditions on $\C(e)$ hold,
+  otherwise the expression is rejected:
+\begin{itemize}
+\item Parameters in \textbf{fixes} are distinct;
+\item Free variables in \textbf{assumes} and
+  \textbf{defines} occur in preceding \textbf{fixes};%
+\footnote{This restriction is relaxed for contexts obtained with
+  \textbf{includes}, see Section~\ref{sec-includes}.}
+\item Parameters defined in \textbf{defines} must neither occur in
+  preceding \textbf{assumes} nor \textbf{defines}.
+\end{itemize}%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Examples%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\paragraph{Example 2.}
+  We obtain the context fragment $\C(\isa{comm{\isacharunderscore}semi})$ of the
+  locale \isa{comm{\isacharunderscore}semi}.  First, the parameters are computed.
+\begin{align*%
+}
+  \pi(\isa{semi}) & = [\isa{prod}] \\
+  \pi(\isa{comm{\isacharunderscore}semi}) & = \pi(\isa{semi}) \App []
+     = [\isa{prod}]
+\end{align*%
+}
+  Next, the normal form of the locale expression
+  \isa{comm{\isacharunderscore}semi} is obtained.
+\begin{align*%
+}
+  \N(\isa{semi}) & = [\isa{semi} \isa{prod}] \\
+  \N(\isa{comm{\isacharunderscore}semi}) & = \N(\isa{semi}) \App
+       [\isa{comm{\isacharunderscore}semi\ prod}]
+   = [\isa{semi\ prod}, \isa{comm{\isacharunderscore}semi\ prod}]
+\end{align*%
+}
+  Converting this to a list of context elements leads to the
+  list~(\ref{eq-comm-semi}) shown in
+  Section~\ref{sec-locale-predicates}, but with fact names qualified
+  by \isa{prod} --- for example, \isa{prod{\isachardot}assoc}.
+  Qualification was omitted to keep the presentation simple.
+  Isabelle's scoping rules identify the most recent fact with
+  qualified name $x.a$ when a fact with name $a$ is requested.
+
+\paragraph{Example 3.}
+  The locale expression \isa{comm{\isacharunderscore}semi\ sum} involves
+  renaming.  Computing parameters yields $\pi(\isa{comm{\isacharunderscore}semi\ sum})
+  = [\isa{sum}]$, the normal form is
+\begin{align*%
+}
+  \N(\isa{comm{\isacharunderscore}semi\ sum}) & =
+  \N(\isa{comm{\isacharunderscore}semi})[\isa{sum}/\isa{prod}] =
+  [\isa{semi\ sum}, \isa{comm{\isacharunderscore}semi\ sum}]
+\end{align*%
+}
+  and the list of context elements
+\[
+\begin{array}{ll}
+  \textbf{fixes} & \isa{sum} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ sum{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}assoc}: \isa{{\isachardoublequote}sum\ {\isacharparenleft}sum\ {\isacharquery}x\ {\isacharquery}y{\isacharparenright}\ {\isacharquery}z\ {\isacharequal}\ sum\ {\isacharquery}x\ {\isacharparenleft}sum\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isacharunderscore}axioms\ sum{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}comm}: \isa{{\isachardoublequote}sum\ {\isacharquery}x\ {\isacharquery}y\ {\isacharequal}\ sum\ {\isacharquery}y\ {\isacharquery}x{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}lcomm}: \isa{{\isachardoublequote}sum\ {\isacharquery}x\ {\isacharparenleft}sum\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ sum\ {\isacharquery}y\ {\isacharparenleft}sum\ {\isacharquery}x\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}}
+\end{array}
+\]
+
+\paragraph{Example 4.}
+  The context defined by the locale \isa{semi{\isacharunderscore}hom} involves
+  merging two copies of \isa{comm{\isacharunderscore}semi}.  We obtain the parameter
+  list and normal form:
+\begin{align*%
+}
+  \pi(\isa{semi{\isacharunderscore}hom}) & = \pi(\isa{comm{\isacharunderscore}semi\ sum} +
+       \isa{comm{\isacharunderscore}semi}) \App [\isa{hom}] \\
+     & = (\pi(\isa{comm{\isacharunderscore}semi\ sum}) \App \pi(\isa{comm{\isacharunderscore}semi}))
+       \App [\isa{hom}] \\
+     & = ([\isa{sum}] \App [\isa{prod}]) \App [\isa{hom}]
+     = [\isa{sum}, \isa{prod}, \isa{hom}] \\
+  \N(\isa{semi{\isacharunderscore}hom}) & =
+       \N(\isa{comm{\isacharunderscore}semi\ sum} + \isa{comm{\isacharunderscore}semi}) \App \\
+     & \phantom{==}
+       [\isa{semi{\isacharunderscore}hom\ sum\ prod\ hom}] \\
+     & = (\N(\isa{comm{\isacharunderscore}semi\ sum}) \App \N(\isa{comm{\isacharunderscore}semi})) \App \\
+     & \phantom{==}
+       [\isa{semi{\isacharunderscore}hom\ sum\ prod\ hom}] \\
+     & = ([\isa{semi\ sum}, \isa{comm{\isacharunderscore}semi\ sum}] \App %\\
+%     & \phantom{==}
+       [\isa{semi\ prod}, \isa{comm{\isacharunderscore}semi\ prod}]) \App \\
+     & \phantom{==}
+       [\isa{semi{\isacharunderscore}hom\ sum\ prod\ hom}] \\
+     & = [\isa{semi\ sum}, \isa{comm{\isacharunderscore}semi\ sum},
+       \isa{semi\ prod}, \isa{comm{\isacharunderscore}semi\ prod}, \\
+     & \phantom{==}
+       \isa{semi{\isacharunderscore}hom\ sum\ prod\ hom}].
+\end{align*%
+}
+  Hence $\C(\isa{semi{\isacharunderscore}hom})$, shown below, is again well-formed.
+\[
+\begin{array}{ll}
+  \textbf{fixes} & \isa{sum} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ sum{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}assoc}: \isa{{\isachardoublequote}sum\ {\isacharparenleft}sum\ {\isacharquery}x\ {\isacharquery}y{\isacharparenright}\ {\isacharquery}z\ {\isacharequal}\ sum\ {\isacharquery}x\ {\isacharparenleft}sum\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isacharunderscore}axioms\ sum{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}comm}: \isa{{\isachardoublequote}sum\ {\isacharquery}x\ {\isacharquery}y\ {\isacharequal}\ sum\ {\isacharquery}y\ {\isacharquery}x{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isachardot}lcomm}: \isa{{\isachardoublequote}sum\ {\isacharquery}x\ {\isacharparenleft}sum\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ sum\ {\isacharquery}y\ {\isacharparenleft}sum\ {\isacharquery}x\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{fixes} & \isa{prod} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}b{\isacharcomma}\ {\isacharprime}b{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}b{\isachardoublequote}}
+    ~(\textbf{infixl}~\isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}}~70) \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{prod{\isachardot}assoc}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z\ {\isacharequal}\ {\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}comm{\isacharunderscore}semi{\isacharunderscore}axioms\ prod{\isachardoublequote}} \\
+  \textbf{notes} & \isa{prod{\isachardot}comm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}y\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharquery}x{\isachardoublequote}} \\
+  \textbf{notes} & \isa{prod{\isachardot}lcomm}: \isa{{\isachardoublequote}{\isacharquery}x\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}y\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ {\isacharquery}y\ {\isasymcdot}\ {\isacharparenleft}{\isacharquery}x\ {\isasymcdot}\ {\isacharquery}z{\isacharparenright}{\isachardoublequote}} \\
+  \textbf{fixes} & \isa{hom} :: \isa{{\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}b{\isachardoublequote}} \\
+  \textbf{assumes} & \isa{{\isachardoublequote}semi{\isacharunderscore}hom{\isacharunderscore}axioms\ sum{\isachardoublequote}} \\
+  \textbf{notes} & \isa{sum{\isacharunderscore}prod{\isacharunderscore}hom{\isachardot}hom}:
+    \isa{hom\ {\isacharparenleft}sum\ x\ y{\isacharparenright}\ {\isacharequal}\ hom\ x\ {\isasymcdot}\ hom\ y}
+\end{array}
+\]
+
+\paragraph{Example 5.}
+  In this example, a locale expression leading to a list of context
+  elements that is not well-defined is encountered, and it is illustrated
+  how normalisation deals with multiple inheritance.
+  Consider the specification of monads (in the algebraic sense)
+  and monoids.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ monad\ {\isacharequal}\isanewline
+\ \ \isakeyword{fixes}\ prod\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymcdot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\ \isakeyword{and}\ one\ {\isacharcolon}{\isacharcolon}\ {\isacharprime}a\ {\isacharparenleft}{\isachardoublequote}{\isasymone}{\isachardoublequote}\ {\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ \ \isakeyword{assumes}\ l{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymcdot}\ x\ {\isacharequal}\ x{\isachardoublequote}\ \isakeyword{and}\ r{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}x\ {\isasymcdot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Monoids are both semigroups and monads and one would want to
+  specify them as locale expression \isa{semi\ {\isacharplus}\ monad}.
+  Unfortunately, this expression is not well-formed.  Its normal form
+\begin{align*%
+}
+  \N(\isa{monad}) & = [\isa{monad\ prod}] \\
+  \N(\isa{semi}+\isa{monad}) & =
+       \N(\isa{semi}) \App \N(\isa{monad})
+     = [\isa{semi\ prod}, \isa{monad\ prod}]
+\end{align*%
+}
+  leads to a list containing the context element
+\[
+  \textbf{fixes}~\isa{prod} :: \isa{{\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}}
+    ~(\textbf{infixl}~\isa{{\isachardoublequote}{\isasymcdot}{\isachardoublequote}}~70)
+\]
+  twice and thus violating the first criterion of well-formedness.  To
+  avoid this problem, one can
+  introduce a new locale \isa{magma} with the sole purpose of fixing the
+  parameter and defining its syntax.  The specifications of semigroup
+  and monad are changed so that they import \isa{magma}.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ magma\ {\isacharequal}\ \isakeyword{fixes}\ prod\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymcdot}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isanewline
+\isamarkupfalse%
+\isacommand{locale}\ semi{\isacharprime}\ {\isacharequal}\ magma\ {\isacharplus}\ \isakeyword{assumes}\ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymcdot}\ y{\isacharparenright}\ {\isasymcdot}\ z\ {\isacharequal}\ x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
+\isacommand{locale}\ monad{\isacharprime}\ {\isacharequal}\ magma\ {\isacharplus}\ \isakeyword{fixes}\ one\ {\isacharparenleft}{\isachardoublequote}{\isasymone}{\isachardoublequote}\ {\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ \ \isakeyword{assumes}\ l{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}{\isasymone}\ {\isasymcdot}\ x\ {\isacharequal}\ x{\isachardoublequote}\ \isakeyword{and}\ r{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}x\ {\isasymcdot}\ {\isasymone}\ {\isacharequal}\ x{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Normalisation now yields
+\begin{align*%
+}
+  \N(\isa{semi{\isacharprime}\ {\isacharplus}\ monad{\isacharprime}}) & =
+       \N(\isa{semi{\isacharprime}}) \App \N(\isa{monad{\isacharprime}}) \\
+     & = (\N(\isa{magma}) \App [\isa{semi{\isacharprime}\ prod}]) \App
+         (\N(\isa{magma}) \App [\isa{monad{\isacharprime}\ prod}]) \\
+     & = [\isa{magma\ prod}, \isa{semi{\isacharprime}\ prod}] \App
+         [\isa{magma\ prod}, \isa{monad{\isacharprime}\ prod}]) \\
+     & = [\isa{magma\ prod}, \isa{semi{\isacharprime}\ prod},
+          \isa{monad{\isacharprime}\ prod}]
+\end{align*%
+}
+  where the second occurrence of \isa{magma\ prod} is eliminated.
+  The reader is encouraged to check, using the \textbf{print\_locale}
+  command, that the list of context elements generated from this is
+  indeed well-formed.
+
+  It follows that importing
+  parameters is more flexible than fixing them using a context element.
+  The Locale package provides the predefined locale \isa{var} that
+  can be used to import parameters if no
+  particular mixfix syntax is required.
+  Its definition is
+\begin{center}
+  \textbf{locale} \textit{var} = \textbf{fixes} \isa{x{\isacharunderscore}}
+\end{center}
+   The use of the internal variable \isa{x{\isacharunderscore}}
+  enforces that the parameter is renamed before being used, because
+  internal variables may not occur in the input syntax.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsubsection{Includes%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\label{sec-includes}
+  The context element \textbf{includes} takes a locale expression $e$
+  as argument.  It can occur at any point in a locale declaration, and
+  it adds $\C(e)$ to the current context.
+
+  If \textbf{includes} $e$ appears as context element in the
+  declaration of a named locale $l$, the included context is only
+  visible in subsequent context elements, but it is not propagated to
+  $l$.  That is, if $l$ is later used as a target, context elements
+  from $\C(e)$ are not added to the context.  Although it is
+  conceivable that this mechanism could be used to add only selected
+  facts from $e$ to $l$ (with \textbf{notes} elements following
+  \textbf{includes} $e$), currently no useful applications of this are
+  known.
+
+  The more common use of \textbf{includes} $e$ is in long goals, where it
+  adds, like a target, locale context to the proof context.  Unlike
+  with targets, the proved theorem is not stored
+  in the locale.  Instead, it is exported immediately.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{theorem}\ lcomm{\isadigit{2}}{\isacharcolon}\isanewline
+\ \ \isakeyword{includes}\ comm{\isacharunderscore}semi\ \isakeyword{shows}\ {\isachardoublequote}x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}\ {\isacharequal}\ y\ {\isasymcdot}\ {\isacharparenleft}x\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\isanewline
+\isamarkupfalse%
+\isacommand{proof}\ {\isacharminus}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}x\ {\isasymcdot}\ {\isacharparenleft}y\ {\isasymcdot}\ z{\isacharparenright}\ {\isacharequal}\ {\isacharparenleft}x\ {\isasymcdot}\ y{\isacharparenright}\ {\isasymcdot}\ z{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ {\isacharparenleft}y\ {\isasymcdot}\ x{\isacharparenright}\ {\isasymcdot}\ z{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ comm{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{also}\ \isamarkupfalse%
+\isacommand{have}\ {\isachardoublequote}{\isasymdots}\ {\isacharequal}\ y\ {\isasymcdot}\ {\isacharparenleft}x\ {\isasymcdot}\ z{\isacharparenright}{\isachardoublequote}\ \isamarkupfalse%
+\isacommand{by}\ {\isacharparenleft}simp\ add{\isacharcolon}\ assoc{\isacharparenright}\isanewline
+\ \ \isamarkupfalse%
+\isacommand{finally}\ \isamarkupfalse%
+\isacommand{show}\ {\isacharquery}thesis\ \isamarkupfalse%
+\isacommand{{\isachardot}}\isanewline
+\isamarkupfalse%
+\isacommand{qed}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+This proof is identical to the proof of \isa{lcomm}.  The use of
+  \textbf{includes} provides the same context and facts as when using
+  \isa{comm{\isacharunderscore}semi} as target.  On the other hand, \isa{lcomm{\isadigit{2}}} is not added as a fact to the locale \isa{comm{\isacharunderscore}semi}, but
+  is directly visible in the theory.  The theorem is
+\[
+  \isa{comm{\isacharunderscore}semi\ {\isacharquery}prod\ {\isasymLongrightarrow}\ {\isacharquery}prod\ {\isacharquery}x\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}y\ {\isacharquery}z{\isacharparenright}\ {\isacharequal}\ {\isacharquery}prod\ {\isacharquery}y\ {\isacharparenleft}{\isacharquery}prod\ {\isacharquery}x\ {\isacharquery}z{\isacharparenright}}.
+\]
+  Note that it is possible to
+  combine a target and (several) \textbf{includes} in a goal statement, thus
+  using contexts of several locales but storing the theorem in only
+  one of them.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Structures%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+\label{sec-structures}
+  The specifications of semigroups and monoids that served as examples
+  in previous sections modelled each operation of an algebraic
+  structure as a single parameter.  This is rather inconvenient for
+  structures with many operations, and also unnatural.  In accordance
+  to mathematical texts, one would rather fix two groups instead of
+  two sets of operations.
+
+  The approach taken in Isabelle is to encode algebraic structures
+  with suitable types (in Isabelle/HOL usually records).  An issue to
+  be addressed by
+  locales is syntax for algebraic structures.  This is the purpose of
+  the \textbf{(structure)} annotation in \textbf{fixes}, introduced by
+  Wenzel.  We illustrate this, independently of record types, with a
+  different formalisation of semigroups.
+
+  Let \isa{{\isacharprime}a\ semi{\isacharunderscore}type} be a not further specified type that
+  represents semigroups over the carrier type \isa{{\isacharprime}a}.  Let \isa{s{\isacharunderscore}op} be an operation that maps an object of \isa{{\isacharprime}a\ semi{\isacharunderscore}type} to
+  a binary operation.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{typedecl}\ {\isacharprime}a\ semi{\isacharunderscore}type\isanewline
+\isamarkupfalse%
+\isacommand{consts}\ s{\isacharunderscore}op\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a\ semi{\isacharunderscore}type{\isacharcomma}\ {\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymstar}{\isasymindex}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Although \isa{s{\isacharunderscore}op} is a ternary operation, it is declared
+  infix.  The syntax annotation contains the token  \isa{{\isasymindex}}
+  (\verb.\<index>.), which refers to the first argument.  This syntax is only
+  effective in the context of a locale, and only if the first argument
+  is a
+  \emph{structural} parameter --- that is, a parameter with annotation
+  \textbf{(structure)}.  The token has the effect of replacing the
+  parameter with a subscripted number, the index of the structural
+  parameter in the locale.  This replacement takes place both for
+  printing and
+  parsing.  Subscripted $1$ for the first structural
+  parameter may be omitted, as in this specification of semigroups with
+  structures:%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ comm{\isacharunderscore}semi{\isacharprime}\ {\isacharequal}\isanewline
+\ \ \isakeyword{fixes}\ G\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ semi{\isacharunderscore}type{\isachardoublequote}\ {\isacharparenleft}\isakeyword{structure}{\isacharparenright}\isanewline
+\ \ \isakeyword{assumes}\ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymstar}\ y{\isacharparenright}\ {\isasymstar}\ z\ {\isacharequal}\ x\ {\isasymstar}\ {\isacharparenleft}y\ {\isasymstar}\ z{\isacharparenright}{\isachardoublequote}\ \isakeyword{and}\ comm{\isacharcolon}\ {\isachardoublequote}x\ {\isasymstar}\ y\ {\isacharequal}\ y\ {\isasymstar}\ x{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Here \isa{x\ {\isasymstar}\ y} is equivalent to \isa{x\ {\isasymstar}\isactrlsub {\isadigit{1}}\ y} and
+  abbreviates \isa{s{\isacharunderscore}op\ G\ x\ y}.  A specification of homomorphisms
+  requires a second structural parameter.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ semi{\isacharprime}{\isacharunderscore}hom\ {\isacharequal}\ comm{\isacharunderscore}semi{\isacharprime}\ {\isacharplus}\ comm{\isacharunderscore}semi{\isacharprime}\ H\ {\isacharplus}\isanewline
+\ \ \isakeyword{fixes}\ hom\isanewline
+\ \ \isakeyword{assumes}\ hom{\isacharcolon}\ {\isachardoublequote}hom\ {\isacharparenleft}x\ {\isasymstar}\ y{\isacharparenright}\ {\isacharequal}\ hom\ x\ {\isasymstar}\isactrlsub {\isadigit{2}}\ hom\ y{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+The parameter \isa{H} is defined in the second \textbf{fixes}
+  element of $\C(\isa{semi{\isacharprime}{\isacharunderscore}comm})$. Hence \isa{{\isasymstar}\isactrlsub {\isadigit{2}}}
+  abbreviates \isa{s{\isacharunderscore}op\ H\ x\ y}.  The same construction can be done
+  with records instead of an \textit{ad-hoc} type.  In general, the
+  $i$th structural parameter is addressed by index $i$.  Only the
+  index $1$ may be omitted.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{record}\ {\isacharprime}a\ semi\ {\isacharequal}\ prod\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharbrackleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}a{\isacharbrackright}\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}\isakeyword{infixl}\ {\isachardoublequote}{\isasymbullet}{\isasymindex}{\isachardoublequote}\ {\isadigit{7}}{\isadigit{0}}{\isacharparenright}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+This declares the types \isa{{\isacharprime}a\ semi} and  \isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}b{\isacharparenright}\ semi{\isacharunderscore}scheme}.  The latter is an extensible record, where the second
+  type argument is the type of the extension field.  For details on
+  records, see \cite{NipkowEtAl2002} Chapter~8.3.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{locale}\ semi{\isacharunderscore}w{\isacharunderscore}records\ {\isacharequal}\ struct\ G\ {\isacharplus}\isanewline
+\ \ \isakeyword{assumes}\ assoc{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}x\ {\isasymbullet}\ y{\isacharparenright}\ {\isasymbullet}\ z\ {\isacharequal}\ x\ {\isasymbullet}\ {\isacharparenleft}y\ {\isasymbullet}\ z{\isacharparenright}{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+The type \isa{{\isacharparenleft}{\isacharprime}a{\isacharcomma}\ {\isacharprime}b{\isacharparenright}\ semi{\isacharunderscore}scheme} is inferred for the parameter \isa{G}.  Using subtyping on records, the specification can be extended
+  to groups easily.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isacommand{record}\ {\isacharprime}a\ group\ {\isacharequal}\ {\isachardoublequote}{\isacharprime}a\ semi{\isachardoublequote}\ {\isacharplus}\isanewline
+\ \ one\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}{\isachardoublequote}l{\isasymindex}{\isachardoublequote}\ {\isadigit{1}}{\isadigit{0}}{\isadigit{0}}{\isacharparenright}\isanewline
+\ \ inv\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}{\isacharprime}a\ {\isasymRightarrow}\ {\isacharprime}a{\isachardoublequote}\ {\isacharparenleft}{\isachardoublequote}inv{\isasymindex}\ {\isacharunderscore}{\isachardoublequote}\ {\isacharbrackleft}{\isadigit{8}}{\isadigit{1}}{\isacharbrackright}\ {\isadigit{8}}{\isadigit{0}}{\isacharparenright}\isanewline
+\isamarkupfalse%
+\isacommand{locale}\ group{\isacharunderscore}w{\isacharunderscore}records\ {\isacharequal}\ semi{\isacharunderscore}w{\isacharunderscore}records\ {\isacharplus}\isanewline
+\ \ \isakeyword{assumes}\ l{\isacharunderscore}one{\isacharcolon}\ {\isachardoublequote}l\ {\isasymbullet}\ x\ {\isacharequal}\ x{\isachardoublequote}\ \isakeyword{and}\ l{\isacharunderscore}inv{\isacharcolon}\ {\isachardoublequote}inv\ x\ {\isasymbullet}\ x\ {\isacharequal}\ l{\isachardoublequote}\isamarkupfalse%
+%
+\begin{isamarkuptext}%
+Finally, the predefined locale
+\begin{center}
+  \textbf{locale} \textit{struct} = \textbf{fixes} \isa{S{\isacharunderscore}}
+    \textbf{(structure)}.
+\end{center}
+  is analogous to \isa{var}.  
+  More examples on the use of structures, including groups, rings and
+  polynomials can be found in the Isabelle distribution in the
+  session HOL-Algebra.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+%
+\isamarkupsection{Conclusions and Outlook%
+}
+\isamarkuptrue%
+%
+\begin{isamarkuptext}%
+Locales provide a simple means of modular reasoning.  They allow to
+  abbreviate frequently occurring context statements and maintain facts
+  valid in these contexts.  Importantly, using structures, they allow syntax to be
+  effective only in certain contexts, and thus to mimic common
+  practice in mathematics, where notation is chosen very flexibly.
+  This is also known as literate formalisation \cite{Bailey1998}.
+  Locale expressions allow to duplicate and merge
+  specifications.  This is a necessity, for example, when reasoning about
+  homomorphisms.  Normalisation makes it possible to deal with
+  diamond-shaped inheritance structures, and generally with directed
+  acyclic graphs.  The combination of locales with record
+  types in higher-order logic provides an effective means for
+  specifying algebraic structures: locale import and record subtyping
+  provide independent hierarchies for specifications and structure
+  elements.  Rich examples for this can be found in
+  the Isabelle distribution in the session HOL-Algebra.
+
+  The primary reason for writing this report was to provide a better
+  understanding of locales in Isar.  Wenzel provided hardly any
+  documentation, with the exception of \cite{Wenzel2002b}.  The
+  present report should make it easier for users of Isabelle to take
+  advantage of locales.
+
+  The report is also a base for future extensions.  These include
+  improved syntax for structures.  Identifying them by numbers seems
+  unnatural and can be confusing if more than two structures are
+  involved --- for example, when reasoning about universal
+  properties --- and numbering them by order of occurrence seems
+  arbitrary.  Another desirable feature is \emph{instantiation}.  One
+  may, in the course of a theory development, construct objects that
+  fulfil the specification of a locale.  These objects are possibly
+  defined in the context of another locale.  Instantiation should make it
+  simple to specialise abstract facts for the object under
+  consideration and to use the specified facts.
+
+  A detailed comparison of locales with module systems in type theory
+  has not been undertaken yet, but could be beneficial.  For example,
+  a module system for Coq has recently been presented by Chrzaszcz
+  \cite{Chrzaszcz2003}.  While the
+  latter usually constitute extensions of the calculus, locales are
+  a rather thin layer that does not change Isabelle's meta logic.
+  Locales mainly manage specifications and facts.  Functors, like
+  the constructor for polynomial rings, remain objects of the
+  logic.
+
+  \textbf{Acknowledgements.}  Lawrence C.\ Paulson and Norbert
+  Schirmer made useful comments on a draft of this paper.%
+\end{isamarkuptext}%
+\isamarkuptrue%
+\isamarkupfalse%
+\end{isabellebody}%
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End:
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/isabelle.sty	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,168 @@
+%%
+%% Author: Markus Wenzel, TU Muenchen
+%% License: GPL (GNU GENERAL PUBLIC LICENSE)
+%%
+%% macros for Isabelle generated LaTeX output
+%%
+
+%%% Simple document preparation (based on theory token language and symbols)
+
+% isabelle environments
+
+\newcommand{\isabellecontext}{UNKNOWN}
+
+\newcommand{\isastyle}{\small\tt\slshape}
+\newcommand{\isastyleminor}{\small\tt\slshape}
+\newcommand{\isastylescript}{\footnotesize\tt\slshape}
+\newcommand{\isastyletext}{\normalsize\rm}
+\newcommand{\isastyletxt}{\rm}
+\newcommand{\isastylecmt}{\rm}
+
+%symbol markup -- \emph achieves decent spacing via italic corrections
+\newcommand{\isamath}[1]{\emph{$#1$}}
+\newcommand{\isatext}[1]{\emph{#1}}
+\newcommand{\isascriptstyle}{\def\isamath##1{##1}\def\isatext##1{\mbox{\isastylescript##1}}}
+\newcommand{\isactrlsub}[1]{\emph{\isascriptstyle${}\sb{#1}$}}
+\newcommand{\isactrlsup}[1]{\emph{\isascriptstyle${}\sp{#1}$}}
+\newcommand{\isactrlisub}[1]{\emph{\isascriptstyle${}\sb{#1}$}}
+\newcommand{\isactrlisup}[1]{\emph{\isascriptstyle${}\sp{#1}$}}
+\newcommand{\isactrlbold}[1]{{\bfseries\upshape\boldmath#1}}
+
+% somewhat hackish: spanning sub/super scripts (\<^bsub>..\<^esub>)
+\newcommand{\isactrlbsub}{%
+\def\isatext##1{\isastylescript##1}\begin{math}_\bgroup}
+\newcommand{\isactrlesub}{\egroup\end{math}}
+\newcommand{\isactrlbsup}{%
+\def\isatext##1{\isastylescript##1}\begin{math}^\bgroup}
+\newcommand{\isactrlesup}{\egroup\end{math}}
+
+\newdimen\isa@parindent\newdimen\isa@parskip
+
+\newenvironment{isabellebody}{%
+\isamarkuptrue\par%
+\isa@parindent\parindent\parindent0pt%
+\isa@parskip\parskip\parskip0pt%
+\isastyle}{\par}
+
+\newenvironment{isabelle}
+{\begin{trivlist}\begin{isabellebody}\item\relax}
+{\end{isabellebody}\end{trivlist}}
+
+\newcommand{\isa}[1]{\emph{\isastyleminor #1}}
+
+\newcommand{\isaindent}[1]{\hphantom{#1}}
+\newcommand{\isanewline}{\mbox{}\par\mbox{}}
+\newcommand{\isasep}{} % override with e.g. \renewcommand{\isasep}{\vspace{1ex}}
+\newcommand{\isadigit}[1]{#1}
+
+\chardef\isacharbang=`\!
+\chardef\isachardoublequote=`\"
+\chardef\isacharhash=`\#
+\chardef\isachardollar=`\$
+\chardef\isacharpercent=`\%
+\chardef\isacharampersand=`\&
+\chardef\isacharprime=`\'
+\chardef\isacharparenleft=`\(
+\chardef\isacharparenright=`\)
+\chardef\isacharasterisk=`\*
+\chardef\isacharplus=`\+
+\chardef\isacharcomma=`\,
+\chardef\isacharminus=`\-
+\chardef\isachardot=`\.
+\chardef\isacharslash=`\/
+\chardef\isacharcolon=`\:
+\chardef\isacharsemicolon=`\;
+\chardef\isacharless=`\<
+\chardef\isacharequal=`\=
+\chardef\isachargreater=`\>
+\chardef\isacharquery=`\?
+\chardef\isacharat=`\@
+\chardef\isacharbrackleft=`\[
+\chardef\isacharbackslash=`\\
+\chardef\isacharbrackright=`\]
+\chardef\isacharcircum=`\^
+\chardef\isacharunderscore=`\_
+\chardef\isacharbackquote=`\`
+\chardef\isacharbraceleft=`\{
+\chardef\isacharbar=`\|
+\chardef\isacharbraceright=`\}
+\chardef\isachartilde=`\~
+
+
+% keyword and section markup
+
+\newcommand{\isakeywordcharunderscore}{\_}
+\newcommand{\isakeyword}[1]
+{\emph{\bf\def\isachardot{.}\def\isacharunderscore{\isakeywordcharunderscore}%
+\def\isacharbraceleft{\{}\def\isacharbraceright{\}}#1}}
+\newcommand{\isacommand}[1]{\isakeyword{#1}}
+
+\newcommand{\isamarkupheader}[1]{\section{#1}}
+\newcommand{\isamarkupchapter}[1]{\chapter{#1}}
+\newcommand{\isamarkupsection}[1]{\section{#1}}
+\newcommand{\isamarkupsubsection}[1]{\subsection{#1}}
+\newcommand{\isamarkupsubsubsection}[1]{\subsubsection{#1}}
+\newcommand{\isamarkupsect}[1]{\section{#1}}
+\newcommand{\isamarkupsubsect}[1]{\subsection{#1}}
+\newcommand{\isamarkupsubsubsect}[1]{\subsubsection{#1}}
+
+\newif\ifisamarkup
+\newcommand{\isabeginpar}{\par\ifisamarkup\relax\else\medskip\fi}
+\newcommand{\isaendpar}{\par\medskip}
+\newenvironment{isapar}{\parindent\isa@parindent\parskip\isa@parskip\isabeginpar}{\isaendpar}
+\newenvironment{isamarkuptext}{\isastyletext\begin{isapar}}{\end{isapar}}
+\newenvironment{isamarkuptxt}{\isastyletxt\begin{isapar}}{\end{isapar}}
+\newcommand{\isamarkupcmt}[1]{{\isastylecmt--- #1}}
+
+
+% alternative styles
+
+\newcommand{\isabellestyle}{}
+\def\isabellestyle#1{\csname isabellestyle#1\endcsname}
+
+\newcommand{\isabellestylett}{%
+\renewcommand{\isastyle}{\small\tt}%
+\renewcommand{\isastyleminor}{\small\tt}%
+\renewcommand{\isastylescript}{\footnotesize\tt}%
+}
+\newcommand{\isabellestyleit}{%
+\renewcommand{\isastyle}{\small\it}%
+\renewcommand{\isastyleminor}{\it}%
+\renewcommand{\isastylescript}{\footnotesize\it}%
+\renewcommand{\isakeywordcharunderscore}{\mbox{-}}%
+\renewcommand{\isacharbang}{\isamath{!}}%
+\renewcommand{\isachardoublequote}{}%
+\renewcommand{\isacharhash}{\isamath{\#}}%
+\renewcommand{\isachardollar}{\isamath{\$}}%
+\renewcommand{\isacharpercent}{\isamath{\%}}%
+\renewcommand{\isacharampersand}{\isamath{\&}}%
+\renewcommand{\isacharprime}{\isamath{\mskip2mu{'}\mskip-2mu}}%
+\renewcommand{\isacharparenleft}{\isamath{(}}%
+\renewcommand{\isacharparenright}{\isamath{)}}%
+\renewcommand{\isacharasterisk}{\isamath{*}}%
+\renewcommand{\isacharplus}{\isamath{+}}%
+\renewcommand{\isacharcomma}{\isamath{\mathord,}}%
+\renewcommand{\isacharminus}{\isamath{-}}%
+\renewcommand{\isachardot}{\isamath{\mathord.}}%
+\renewcommand{\isacharslash}{\isamath{/}}%
+\renewcommand{\isacharcolon}{\isamath{\mathord:}}%
+\renewcommand{\isacharsemicolon}{\isamath{\mathord;}}%
+\renewcommand{\isacharless}{\isamath{<}}%
+\renewcommand{\isacharequal}{\isamath{=}}%
+\renewcommand{\isachargreater}{\isamath{>}}%
+\renewcommand{\isacharat}{\isamath{@}}%
+\renewcommand{\isacharbrackleft}{\isamath{[}}%
+\renewcommand{\isacharbrackright}{\isamath{]}}%
+\renewcommand{\isacharunderscore}{\mbox{-}}%
+\renewcommand{\isacharbraceleft}{\isamath{\{}}%
+\renewcommand{\isacharbar}{\isamath{\mid}}%
+\renewcommand{\isacharbraceright}{\isamath{\}}}%
+\renewcommand{\isachartilde}{\isamath{{}\sp{\sim}}}%
+}
+
+\newcommand{\isabellestylesl}{%
+\isabellestyleit%
+\renewcommand{\isastyle}{\small\sl}%
+\renewcommand{\isastyleminor}{\sl}%
+\renewcommand{\isastylescript}{\footnotesize\sl}%
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/isabellesym.sty	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,354 @@
+%%
+%% Author: Markus Wenzel, TU Muenchen
+%% License: GPL (GNU GENERAL PUBLIC LICENSE)
+%%
+%% definitions of standard Isabelle symbols
+%%
+
+% symbol definitions
+
+\newcommand{\isasymzero}{\isamath{\mathbf{0}}}  %requires amssym
+\newcommand{\isasymone}{\isamath{\mathbf{1}}}   %requires amssym
+\newcommand{\isasymtwo}{\isamath{\mathbf{2}}}   %requires amssym
+\newcommand{\isasymthree}{\isamath{\mathbf{3}}} %requires amssym
+\newcommand{\isasymfour}{\isamath{\mathbf{4}}}  %requires amssym
+\newcommand{\isasymfive}{\isamath{\mathbf{5}}}  %requires amssym
+\newcommand{\isasymsix}{\isamath{\mathbf{6}}}   %requires amssym
+\newcommand{\isasymseven}{\isamath{\mathbf{7}}} %requires amssym
+\newcommand{\isasymeight}{\isamath{\mathbf{8}}} %requires amssym
+\newcommand{\isasymnine}{\isamath{\mathbf{9}}}  %requires amssym
+\newcommand{\isasymA}{\isamath{\mathcal{A}}}
+\newcommand{\isasymB}{\isamath{\mathcal{B}}}
+\newcommand{\isasymC}{\isamath{\mathcal{C}}}
+\newcommand{\isasymD}{\isamath{\mathcal{D}}}
+\newcommand{\isasymE}{\isamath{\mathcal{E}}}
+\newcommand{\isasymF}{\isamath{\mathcal{F}}}
+\newcommand{\isasymG}{\isamath{\mathcal{G}}}
+\newcommand{\isasymH}{\isamath{\mathcal{H}}}
+\newcommand{\isasymI}{\isamath{\mathcal{I}}}
+\newcommand{\isasymJ}{\isamath{\mathcal{J}}}
+\newcommand{\isasymK}{\isamath{\mathcal{K}}}
+\newcommand{\isasymL}{\isamath{\mathcal{L}}}
+\newcommand{\isasymM}{\isamath{\mathcal{M}}}
+\newcommand{\isasymN}{\isamath{\mathcal{N}}}
+\newcommand{\isasymO}{\isamath{\mathcal{O}}}
+\newcommand{\isasymP}{\isamath{\mathcal{P}}}
+\newcommand{\isasymQ}{\isamath{\mathcal{Q}}}
+\newcommand{\isasymR}{\isamath{\mathcal{R}}}
+\newcommand{\isasymS}{\isamath{\mathcal{S}}}
+\newcommand{\isasymT}{\isamath{\mathcal{T}}}
+\newcommand{\isasymU}{\isamath{\mathcal{U}}}
+\newcommand{\isasymV}{\isamath{\mathcal{V}}}
+\newcommand{\isasymW}{\isamath{\mathcal{W}}}
+\newcommand{\isasymX}{\isamath{\mathcal{X}}}
+\newcommand{\isasymY}{\isamath{\mathcal{Y}}}
+\newcommand{\isasymZ}{\isamath{\mathcal{Z}}}
+\newcommand{\isasyma}{\isamath{\mathrm{a}}}
+\newcommand{\isasymb}{\isamath{\mathrm{b}}}
+\newcommand{\isasymc}{\isamath{\mathrm{c}}}
+\newcommand{\isasymd}{\isamath{\mathrm{d}}}
+\newcommand{\isasyme}{\isamath{\mathrm{e}}}
+\newcommand{\isasymf}{\isamath{\mathrm{f}}}
+\newcommand{\isasymg}{\isamath{\mathrm{g}}}
+\newcommand{\isasymh}{\isamath{\mathrm{h}}}
+\newcommand{\isasymi}{\isamath{\mathrm{i}}}
+\newcommand{\isasymj}{\isamath{\mathrm{j}}}
+\newcommand{\isasymk}{\isamath{\mathrm{k}}}
+\newcommand{\isasyml}{\isamath{\mathrm{l}}}
+\newcommand{\isasymm}{\isamath{\mathrm{m}}}
+\newcommand{\isasymn}{\isamath{\mathrm{n}}}
+\newcommand{\isasymo}{\isamath{\mathrm{o}}}
+\newcommand{\isasymp}{\isamath{\mathrm{p}}}
+\newcommand{\isasymq}{\isamath{\mathrm{q}}}
+\newcommand{\isasymr}{\isamath{\mathrm{r}}}
+\newcommand{\isasyms}{\isamath{\mathrm{s}}}
+\newcommand{\isasymt}{\isamath{\mathrm{t}}}
+\newcommand{\isasymu}{\isamath{\mathrm{u}}}
+\newcommand{\isasymv}{\isamath{\mathrm{v}}}
+\newcommand{\isasymw}{\isamath{\mathrm{w}}}
+\newcommand{\isasymx}{\isamath{\mathrm{x}}}
+\newcommand{\isasymy}{\isamath{\mathrm{y}}}
+\newcommand{\isasymz}{\isamath{\mathrm{z}}}
+\newcommand{\isasymAA}{\isamath{\mathfrak{A}}}  %requires eufrak
+\newcommand{\isasymBB}{\isamath{\mathfrak{B}}}  %requires eufrak
+\newcommand{\isasymCC}{\isamath{\mathfrak{C}}}  %requires eufrak
+\newcommand{\isasymDD}{\isamath{\mathfrak{D}}}  %requires eufrak
+\newcommand{\isasymEE}{\isamath{\mathfrak{E}}}  %requires eufrak
+\newcommand{\isasymFF}{\isamath{\mathfrak{F}}}  %requires eufrak
+\newcommand{\isasymGG}{\isamath{\mathfrak{G}}}  %requires eufrak
+\newcommand{\isasymHH}{\isamath{\mathfrak{H}}}  %requires eufrak
+\newcommand{\isasymII}{\isamath{\mathfrak{I}}}  %requires eufrak
+\newcommand{\isasymJJ}{\isamath{\mathfrak{J}}}  %requires eufrak
+\newcommand{\isasymKK}{\isamath{\mathfrak{K}}}  %requires eufrak
+\newcommand{\isasymLL}{\isamath{\mathfrak{L}}}  %requires eufrak
+\newcommand{\isasymMM}{\isamath{\mathfrak{M}}}  %requires eufrak
+\newcommand{\isasymNN}{\isamath{\mathfrak{N}}}  %requires eufrak
+\newcommand{\isasymOO}{\isamath{\mathfrak{O}}}  %requires eufrak
+\newcommand{\isasymPP}{\isamath{\mathfrak{P}}}  %requires eufrak
+\newcommand{\isasymQQ}{\isamath{\mathfrak{Q}}}  %requires eufrak
+\newcommand{\isasymRR}{\isamath{\mathfrak{R}}}  %requires eufrak
+\newcommand{\isasymSS}{\isamath{\mathfrak{S}}}  %requires eufrak
+\newcommand{\isasymTT}{\isamath{\mathfrak{T}}}  %requires eufrak
+\newcommand{\isasymUU}{\isamath{\mathfrak{U}}}  %requires eufrak
+\newcommand{\isasymVV}{\isamath{\mathfrak{V}}}  %requires eufrak
+\newcommand{\isasymWW}{\isamath{\mathfrak{W}}}  %requires eufrak
+\newcommand{\isasymXX}{\isamath{\mathfrak{X}}}  %requires eufrak
+\newcommand{\isasymYY}{\isamath{\mathfrak{Y}}}  %requires eufrak
+\newcommand{\isasymZZ}{\isamath{\mathfrak{Z}}}  %requires eufrak
+\newcommand{\isasymaa}{\isamath{\mathfrak{a}}}  %requires eufrak
+\newcommand{\isasymbb}{\isamath{\mathfrak{b}}}  %requires eufrak
+\newcommand{\isasymcc}{\isamath{\mathfrak{c}}}  %requires eufrak
+\newcommand{\isasymdd}{\isamath{\mathfrak{d}}}  %requires eufrak
+\newcommand{\isasymee}{\isamath{\mathfrak{e}}}  %requires eufrak
+\newcommand{\isasymff}{\isamath{\mathfrak{f}}}  %requires eufrak
+\newcommand{\isasymgg}{\isamath{\mathfrak{g}}}  %requires eufrak
+\newcommand{\isasymhh}{\isamath{\mathfrak{h}}}  %requires eufrak
+\newcommand{\isasymii}{\isamath{\mathfrak{i}}}  %requires eufrak
+\newcommand{\isasymjj}{\isamath{\mathfrak{j}}}  %requires eufrak
+\newcommand{\isasymkk}{\isamath{\mathfrak{k}}}  %requires eufrak
+\newcommand{\isasymll}{\isamath{\mathfrak{l}}}  %requires eufrak
+\newcommand{\isasymmm}{\isamath{\mathfrak{m}}}  %requires eufrak
+\newcommand{\isasymnn}{\isamath{\mathfrak{n}}}  %requires eufrak
+\newcommand{\isasymoo}{\isamath{\mathfrak{o}}}  %requires eufrak
+\newcommand{\isasympp}{\isamath{\mathfrak{p}}}  %requires eufrak
+\newcommand{\isasymqq}{\isamath{\mathfrak{q}}}  %requires eufrak
+\newcommand{\isasymrr}{\isamath{\mathfrak{r}}}  %requires eufrak
+\newcommand{\isasymss}{\isamath{\mathfrak{s}}}  %requires eufrak
+\newcommand{\isasymtt}{\isamath{\mathfrak{t}}}  %requires eufrak
+\newcommand{\isasymuu}{\isamath{\mathfrak{u}}}  %requires eufrak
+\newcommand{\isasymvv}{\isamath{\mathfrak{v}}}  %requires eufrak
+\newcommand{\isasymww}{\isamath{\mathfrak{w}}}  %requires eufrak
+\newcommand{\isasymxx}{\isamath{\mathfrak{x}}}  %requires eufrak
+\newcommand{\isasymyy}{\isamath{\mathfrak{y}}}  %requires eufrak
+\newcommand{\isasymzz}{\isamath{\mathfrak{z}}}  %requires eufrak
+\newcommand{\isasymalpha}{\isamath{\alpha}}
+\newcommand{\isasymbeta}{\isamath{\beta}}
+\newcommand{\isasymgamma}{\isamath{\gamma}}
+\newcommand{\isasymdelta}{\isamath{\delta}}
+\newcommand{\isasymepsilon}{\isamath{\varepsilon}}
+\newcommand{\isasymzeta}{\isamath{\zeta}}
+\newcommand{\isasymeta}{\isamath{\eta}}
+\newcommand{\isasymtheta}{\isamath{\vartheta}}
+\newcommand{\isasymiota}{\isamath{\iota}}
+\newcommand{\isasymkappa}{\isamath{\kappa}}
+\newcommand{\isasymlambda}{\isamath{\lambda}}
+\newcommand{\isasymmu}{\isamath{\mu}}
+\newcommand{\isasymnu}{\isamath{\nu}}
+\newcommand{\isasymxi}{\isamath{\xi}}
+\newcommand{\isasympi}{\isamath{\pi}}
+\newcommand{\isasymrho}{\isamath{\varrho}}
+\newcommand{\isasymsigma}{\isamath{\sigma}}
+\newcommand{\isasymtau}{\isamath{\tau}}
+\newcommand{\isasymupsilon}{\isamath{\upsilon}}
+\newcommand{\isasymphi}{\isamath{\varphi}}
+\newcommand{\isasymchi}{\isamath{\chi}}
+\newcommand{\isasympsi}{\isamath{\psi}}
+\newcommand{\isasymomega}{\isamath{\omega}}
+\newcommand{\isasymGamma}{\isamath{\Gamma}}
+\newcommand{\isasymDelta}{\isamath{\Delta}}
+\newcommand{\isasymTheta}{\isamath{\Theta}}
+\newcommand{\isasymLambda}{\isamath{\Lambda}}
+\newcommand{\isasymXi}{\isamath{\Xi}}
+\newcommand{\isasymPi}{\isamath{\Pi}}
+\newcommand{\isasymSigma}{\isamath{\Sigma}}
+\newcommand{\isasymUpsilon}{\isamath{\Upsilon}}
+\newcommand{\isasymPhi}{\isamath{\Phi}}
+\newcommand{\isasymPsi}{\isamath{\Psi}}
+\newcommand{\isasymOmega}{\isamath{\Omega}}
+\newcommand{\isasymbool}{\isamath{\mathrm{I}\mkern-3.8mu\mathrm{B}}}
+\newcommand{\isasymcomplex}{\isamath{\mathrm{C}\mkern-15mu{\phantom{\mathrm{t}}\vrule}\mkern9mu}}
+\newcommand{\isasymnat}{\isamath{\mathrm{I}\mkern-3.8mu\mathrm{N}}}
+\newcommand{\isasymrat}{\isamath{\mathrm{Q}\mkern-16mu{\phantom{\mathrm{t}}\vrule}\mkern10mu}}
+\newcommand{\isasymreal}{\isamath{\mathrm{I}\mkern-3.8mu\mathrm{R}}}
+\newcommand{\isasymint}{\isamath{\mathsf{Z}\mkern-7.5mu\mathsf{Z}}}
+\newcommand{\isasymleftarrow}{\isamath{\leftarrow}}
+\newcommand{\isasymlongleftarrow}{\isamath{\longleftarrow}}
+\newcommand{\isasymrightarrow}{\isamath{\rightarrow}}
+\newcommand{\isasymlongrightarrow}{\isamath{\longrightarrow}}
+\newcommand{\isasymLeftarrow}{\isamath{\Leftarrow}}
+\newcommand{\isasymLongleftarrow}{\isamath{\Longleftarrow}}
+\newcommand{\isasymRightarrow}{\isamath{\Rightarrow}}
+\newcommand{\isasymLongrightarrow}{\isamath{\Longrightarrow}}
+\newcommand{\isasymleftrightarrow}{\isamath{\leftrightarrow}}
+\newcommand{\isasymlongleftrightarrow}{\isamath{\longleftrightarrow}}
+\newcommand{\isasymLeftrightarrow}{\isamath{\Leftrightarrow}}
+\newcommand{\isasymLongleftrightarrow}{\isamath{\Longleftrightarrow}}
+\newcommand{\isasymmapsto}{\isamath{\mapsto}}
+\newcommand{\isasymlongmapsto}{\isamath{\longmapsto}}
+\newcommand{\isasymmidarrow}{\isamath{\relbar}}
+\newcommand{\isasymMidarrow}{\isamath{\Relbar}}
+\newcommand{\isasymhookleftarrow}{\isamath{\hookleftarrow}}
+\newcommand{\isasymhookrightarrow}{\isamath{\hookrightarrow}}
+\newcommand{\isasymleftharpoondown}{\isamath{\leftharpoondown}}
+\newcommand{\isasymrightharpoondown}{\isamath{\rightharpoondown}}
+\newcommand{\isasymleftharpoonup}{\isamath{\leftharpoonup}}
+\newcommand{\isasymrightharpoonup}{\isamath{\rightharpoonup}}
+\newcommand{\isasymrightleftharpoons}{\isamath{\rightleftharpoons}}
+\newcommand{\isasymleadsto}{\isamath{\leadsto}}  %requires amssym
+\newcommand{\isasymup}{\isamath{\uparrow}}
+\newcommand{\isasymUp}{\isamath{\Uparrow}}
+\newcommand{\isasymdown}{\isamath{\downarrow}}
+\newcommand{\isasymDown}{\isamath{\Downarrow}}
+\newcommand{\isasymupdown}{\isamath{\updownarrow}}
+\newcommand{\isasymUpdown}{\isamath{\Updownarrow}}
+\newcommand{\isasymlangle}{\isamath{\langle}}
+\newcommand{\isasymrangle}{\isamath{\rangle}}
+\newcommand{\isasymlceil}{\isamath{\lceil}}
+\newcommand{\isasymrceil}{\isamath{\rceil}}
+\newcommand{\isasymlfloor}{\isamath{\lfloor}}
+\newcommand{\isasymrfloor}{\isamath{\rfloor}}
+\newcommand{\isasymlparr}{\isamath{\mathopen{(\mkern-3mu\mid}}}
+\newcommand{\isasymrparr}{\isamath{\mathclose{\mid\mkern-3mu)}}}
+\newcommand{\isasymlbrakk}{\isamath{\mathopen{\lbrack\mkern-3mu\lbrack}}}
+\newcommand{\isasymrbrakk}{\isamath{\mathclose{\rbrack\mkern-3mu\rbrack}}}
+\newcommand{\isasymlbrace}{\isamath{\mathopen{\lbrace\mkern-4.5mu\mid}}}
+\newcommand{\isasymrbrace}{\isamath{\mathclose{\mid\mkern-4.5mu\rbrace}}}
+\newcommand{\isasymguillemotleft}{\isatext{\flqq}}  %requires babel 
+\newcommand{\isasymguillemotright}{\isatext{\frqq}}  %requires babel 
+\newcommand{\isasymColon}{\isamath{\mathrel{::}}}
+\newcommand{\isasymnot}{\isamath{\neg}}
+\newcommand{\isasymbottom}{\isamath{\bot}}
+\newcommand{\isasymtop}{\isamath{\top}}
+\newcommand{\isasymand}{\isamath{\wedge}}
+\newcommand{\isasymAnd}{\isamath{\bigwedge}}
+\newcommand{\isasymor}{\isamath{\vee}}
+\newcommand{\isasymOr}{\isamath{\bigvee}}
+\newcommand{\isasymforall}{\isamath{\forall\,}}
+\newcommand{\isasymexists}{\isamath{\exists\,}}
+\newcommand{\isasymbox}{\isamath{\Box}}  %requires amssym
+\newcommand{\isasymdiamond}{\isamath{\Diamond}}  %requires amssym
+\newcommand{\isasymturnstile}{\isamath{\vdash}}
+\newcommand{\isasymTurnstile}{\isamath{\models}}
+\newcommand{\isasymtturnstile}{\isamath{\vdash\!\!\!\vdash}}
+\newcommand{\isasymTTurnstile}{\isamath{\mid\!\models}}
+\newcommand{\isasymstileturn}{\isamath{\dashv}}
+\newcommand{\isasymsurd}{\isamath{\surd}}
+\newcommand{\isasymle}{\isamath{\le}}
+\newcommand{\isasymge}{\isamath{\ge}}
+\newcommand{\isasymlless}{\isamath{\ll}}
+\newcommand{\isasymggreater}{\isamath{\gg}}
+\newcommand{\isasymlesssim}{\isamath{\lesssim}}  %requires amssymb
+\newcommand{\isasymgreatersim}{\isamath{\gtrsim}}  %requires amssymb
+\newcommand{\isasymlessapprox}{\isamath{\lessapprox}}  %requires amssymb
+\newcommand{\isasymgreaterapprox}{\isamath{\gtrapprox}}  %requires amssymb
+\newcommand{\isasymin}{\isamath{\in}}
+\newcommand{\isasymnotin}{\isamath{\notin}}
+\newcommand{\isasymsubset}{\isamath{\subset}}
+\newcommand{\isasymsupset}{\isamath{\supset}}
+\newcommand{\isasymsubseteq}{\isamath{\subseteq}}
+\newcommand{\isasymsupseteq}{\isamath{\supseteq}}
+\newcommand{\isasymsqsubset}{\isamath{\sqsubset}}
+\newcommand{\isasymsqsupset}{\isamath{\sqsupset}}  %requires amssym
+\newcommand{\isasymsqsubseteq}{\isamath{\sqsubseteq}}
+\newcommand{\isasymsqsupseteq}{\isamath{\sqsupseteq}}
+\newcommand{\isasyminter}{\isamath{\cap}}
+\newcommand{\isasymInter}{\isamath{\bigcap\,}}
+\newcommand{\isasymunion}{\isamath{\cup}}
+\newcommand{\isasymUnion}{\isamath{\bigcup\,}}
+\newcommand{\isasymsqunion}{\isamath{\sqcup}}
+\newcommand{\isasymSqunion}{\isamath{\bigsqcup\,}}
+\newcommand{\isasymsqinter}{\isamath{\sqcap}}
+\newcommand{\isasymSqinter}{\isamath{\bigsqcap\,}}  %requires masmath
+\newcommand{\isasymuplus}{\isamath{\uplus}}
+\newcommand{\isasymUplus}{\isamath{\biguplus\,}}
+\newcommand{\isasymnoteq}{\isamath{\not=}}
+\newcommand{\isasymsim}{\isamath{\sim}}
+\newcommand{\isasymdoteq}{\isamath{\doteq}}
+\newcommand{\isasymsimeq}{\isamath{\simeq}}
+\newcommand{\isasymapprox}{\isamath{\approx}}
+\newcommand{\isasymasymp}{\isamath{\asymp}}
+\newcommand{\isasymcong}{\isamath{\cong}}
+\newcommand{\isasymsmile}{\isamath{\smile}}
+\newcommand{\isasymequiv}{\isamath{\equiv}}
+\newcommand{\isasymfrown}{\isamath{\frown}}
+\newcommand{\isasympropto}{\isamath{\propto}}
+\newcommand{\isasymbowtie}{\isamath{\bowtie}}
+\newcommand{\isasymprec}{\isamath{\prec}}
+\newcommand{\isasymsucc}{\isamath{\succ}}
+\newcommand{\isasympreceq}{\isamath{\preceq}}
+\newcommand{\isasymsucceq}{\isamath{\succeq}}
+\newcommand{\isasymparallel}{\isamath{\parallel}}
+\newcommand{\isasymbar}{\isamath{\mid}}
+\newcommand{\isasymplusminus}{\isamath{\pm}}
+\newcommand{\isasymminusplus}{\isamath{\mp}}
+\newcommand{\isasymtimes}{\isamath{\times}}
+\newcommand{\isasymdiv}{\isamath{\div}}
+\newcommand{\isasymcdot}{\isamath{\cdot}}
+\newcommand{\isasymstar}{\isamath{\star}}
+\newcommand{\isasymbullet}{\boldmath\isamath{\mathchoice{\displaystyle{\cdot}}{\textstyle{\cdot}}{\scriptstyle{\bullet}}{\scriptscriptstyle{\bullet}}}}
+\newcommand{\isasymcirc}{\isamath{\circ}}
+\newcommand{\isasymdagger}{\isamath{\dagger}}
+\newcommand{\isasymddagger}{\isamath{\ddagger}}
+\newcommand{\isasymlhd}{\isamath{\lhd}}
+\newcommand{\isasymrhd}{\isamath{\rhd}}
+\newcommand{\isasymunlhd}{\isamath{\unlhd}}
+\newcommand{\isasymunrhd}{\isamath{\unrhd}}
+\newcommand{\isasymtriangleleft}{\isamath{\triangleleft}}
+\newcommand{\isasymtriangleright}{\isamath{\triangleright}}
+\newcommand{\isasymtriangle}{\isamath{\triangle}}
+\newcommand{\isasymtriangleq}{\isamath{\triangleq}}  %requires amssymb
+\newcommand{\isasymoplus}{\isamath{\oplus}}
+\newcommand{\isasymOplus}{\isamath{\bigoplus\,}}
+\newcommand{\isasymotimes}{\isamath{\otimes}}
+\newcommand{\isasymOtimes}{\isamath{\bigotimes\,}}
+\newcommand{\isasymodot}{\isamath{\odot}}
+\newcommand{\isasymOdot}{\isamath{\bigodot\,}}
+\newcommand{\isasymominus}{\isamath{\ominus}}
+\newcommand{\isasymoslash}{\isamath{\oslash}}
+\newcommand{\isasymdots}{\isamath{\dots}}
+\newcommand{\isasymcdots}{\isamath{\cdots}}
+\newcommand{\isasymSum}{\isamath{\sum\,}}
+\newcommand{\isasymProd}{\isamath{\prod\,}}
+\newcommand{\isasymCoprod}{\isamath{\coprod\,}}
+\newcommand{\isasyminfinity}{\isamath{\infty}}
+\newcommand{\isasymintegral}{\isamath{\int\,}}
+\newcommand{\isasymointegral}{\isamath{\oint\,}}
+\newcommand{\isasymclubsuit}{\isamath{\clubsuit}}
+\newcommand{\isasymdiamondsuit}{\isamath{\diamondsuit}}
+\newcommand{\isasymheartsuit}{\isamath{\heartsuit}}
+\newcommand{\isasymspadesuit}{\isamath{\spadesuit}}
+\newcommand{\isasymaleph}{\isamath{\aleph}}
+\newcommand{\isasymemptyset}{\isamath{\emptyset}}
+\newcommand{\isasymnabla}{\isamath{\nabla}}
+\newcommand{\isasympartial}{\isamath{\partial}}
+\newcommand{\isasymRe}{\isamath{\Re}}
+\newcommand{\isasymIm}{\isamath{\Im}}
+\newcommand{\isasymflat}{\isamath{\flat}}
+\newcommand{\isasymnatural}{\isamath{\natural}}
+\newcommand{\isasymsharp}{\isamath{\sharp}}
+\newcommand{\isasymangle}{\isamath{\angle}}
+\newcommand{\isasymcopyright}{\isatext{\rm\copyright}}
+\newcommand{\isasymregistered}{\isatext{\rm\textregistered}}
+\newcommand{\isasymhyphen}{\isatext{\rm-}}
+\newcommand{\isasyminverse}{\isamath{{}^{-1}}}
+\newcommand{\isasymonesuperior}{\isamath{\mathonesuperior}}  %requires latin1
+\newcommand{\isasymonequarter}{\isatext{\rm\textonequarter}}  %requires latin1
+\newcommand{\isasymtwosuperior}{\isamath{\mathtwosuperior}}  %requires latin1
+\newcommand{\isasymonehalf}{\isatext{\rm\textonehalf}}  %requires latin1
+\newcommand{\isasymthreesuperior}{\isamath{\maththreesuperior}}  %requires latin1
+\newcommand{\isasymthreequarters}{\isatext{\rm\textthreequarters}}  %requires latin1
+\newcommand{\isasymordfeminine}{\isatext{\rm\textordfeminine}}
+\newcommand{\isasymordmasculine}{\isatext{\rm\textordmasculine}}
+\newcommand{\isasymsection}{\isatext{\rm\S}}
+\newcommand{\isasymparagraph}{\isatext{\rm\P}}
+\newcommand{\isasymexclamdown}{\isatext{\rm\textexclamdown}}
+\newcommand{\isasymquestiondown}{\isatext{\rm\textquestiondown}}
+\newcommand{\isasymeuro}{\isatext{\textgreek{\euro}}}  %requires greek babel
+\newcommand{\isasympounds}{\isamath{\pounds}}
+\newcommand{\isasymyen}{\isatext{\yen}}  %requires amssymb
+\newcommand{\isasymcent}{\isatext{\textcent}}  %requires textcomp
+\newcommand{\isasymcurrency}{\isatext{\textcurrency}} %requires textcomp
+\newcommand{\isasymdegree}{\isatext{\rm\textdegree}}  %requires latin1
+\newcommand{\isasymamalg}{\isamath{\amalg}}
+\newcommand{\isasymmho}{\isamath{\mho}}  %requires amssym
+\newcommand{\isasymlozenge}{\isamath{\lozenge}}  %requires amssym
+\newcommand{\isasymJoin}{\isamath{\Join}}  %requires amssym
+\newcommand{\isasymwp}{\isamath{\wp}}
+\newcommand{\isasymwrong}{\isamath{\wr}}
+\newcommand{\isasymstruct}{\isamath{\diamond}}
+\newcommand{\isasymacute}{\isatext{\'\relax}}
+\newcommand{\isasymindex}{\isatext{\i}}
+\newcommand{\isasymdieresis}{\isatext{\"\relax}}
+\newcommand{\isasymcedilla}{\isatext{\c\relax}}
+\newcommand{\isasymhungarumlaut}{\isatext{\H\relax}}
+\newcommand{\isasymspacespace}{\isamath{~~}}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/pdfsetup.sty	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,12 @@
+%%
+%% Author: Markus Wenzel, TU Muenchen
+%% License: GPL (GNU GENERAL PUBLIC LICENSE)
+%%
+%% smart url or hyperref setup
+%%
+
+\@ifundefined{pdfoutput}
+{\usepackage{url}}
+{\usepackage{color}\definecolor{darkblue}{rgb}{0,0,0.5}
+  \usepackage[pdftex,a4paper,colorlinks=true,linkcolor=darkblue,citecolor=darkblue,filecolor=darkblue,pagecolor=darkblue,urlcolor=darkblue]{hyperref}
+  \IfFileExists{thumbpdf.sty}{\usepackage{thumbpdf}}{}}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/root.bib	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,154 @@
+@phdthesis{Bailey1998,
+  author = "Anthony Bailey",
+  title = "The machine-checked literate formalisation of algebra in type theory",
+  school = "University of Manchester",
+  month = jan,
+  year = 1998,
+  available = { CB }
+}
+
+@phdthesis{Kammuller1999a,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Reasoning in {Isabelle}",
+  school = "University of Cambridge, Computer Laboratory",
+  note = "Available as Technical Report No. 470.",
+  month = aug,
+  year = 1999,
+  available = { CB }
+}
+
+% TYPES 98
+
+@inproceedings{Kammuller1999b,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Structures as Dependent Types in {Isabelle}",
+  pages = "121--132",
+  crossref = "AltenkirchEtAl1999",
+  available = { CB }
+}
+
+@proceedings{AltenkirchEtAl1999,
+  editor = "Thorsten Altenkirch and Wolfgang Naraschewski and Bernhard Reus",
+  title = "Types for Proofs and Programs: International Workshop, {TYPES} '98, {Kloster Irsee, Germany, March 27--31, 1998}, Selected Papers",
+  booktitle = "TYPES '98",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 1657,
+  year = 1999
+}
+% CADE-17
+
+@inproceedings{Kammuller2000,
+  author = "Florian Kamm{\"u}ller",
+  title = "Modular Reasoning in {Isabelle}",
+  pages = "99--114",
+  crossref = "McAllester2000",
+  available = { CB }
+}
+
+@proceedings{McAllester2000,
+  editor = "David McAllester",
+  title = "17th International Conference on Automated Deduction, Pittsburgh, PA, USA, June 17--20, 2000: Proceedings",
+  booktitle = "CADE 17",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 1831,
+  year = 2000
+}
+
+@book{NipkowEtAl2002,
+  author = "Tobias Nipkow and Lawrence C. Paulson and Markus Wenzel",
+  title = "{Isabelle/HOL}: A Proof Assistant for Higher-Order Logic",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2283,
+  year = 2002,
+  available = { CB }
+}
+
+% TYPES 2002
+
+@inproceedings{Nipkow2003,
+  author = "Tobias Nipkow",
+  title = "Structured Proofs in {Isar/HOL}",
+  pages = "259--278",
+  crossref = "GeuversWiedijk2003"
+}
+
+@proceedings{GeuversWiedijk2003,
+  editor = "H. Geuvers and F. Wiedijk",
+  title = "Types for Proofs and Programs (TYPES 2002)",
+  booktitle = "TYPES 2002",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2646,
+  year = 2003
+}
+
+@phdthesis{Wenzel2002a,
+  author = "Markus Wenzel",
+  title = "{Isabelle/Isar} --- a versatile environment for human-readable formal proof documents",
+  school = "Technische Universit{\"a}t M{\"u}nchen",
+  note = "Electronically published as http://tumb1.biblio.tu-muenchen.de/publ/diss/in/2002/wenzel.html.",
+  year = 2002
+}
+
+@unpublished{Wenzel2002b,
+  author = "Markus Wenzel",
+  title = "Using locales in {Isabelle/Isar}",
+  note = "Part of the Isabelle2003 distribution, file src/HOL/ex/Locales.thy.  Distribution of Isabelle available at http://isabelle.in.tum.de",
+  year = 2002
+}
+
+@unpublished{Wenzel2003,
+  author = "Markus Wenzel",
+  title = "The {Isabelle/Isar} Reference Manual",
+  note = "Part of the Isabelle2003 distribution, available at http://isabelle.in.tum.de",
+  year = 2003
+}
+
+% TPHOLs 2003
+
+@inproceedings{Chrzaszcz2003,
+  author = "Jacek Chrzaszcz",
+  title = "Implementing Modules in the {Coq} System",
+  pages = "270--286",
+  crossref = "BasinWolff2003",
+  available = { CB }
+}
+
+@proceedings{BasinWolff2003,
+  editor = "David Basin and Burkhart Wolff",
+  title = "Theorem proving in higher order logics: 16th International Conference, TPHOLs 2003, Rome, Italy, September 2003: proceedings",
+  booktitle = "TPHOLs 2003",
+  publisher = "Springer",
+  series = "LNCS",
+  number = 2758,
+  year = 2003
+}
+
+@PhdThesis{Klein2003,
+  author = "Gerwin Klein",
+  title = "Verified Java Bytecode Verification",
+  school = "Institut f{\"u}r Informatik, Technische Universit{\"a}t M{\"u}nchen",
+  year = 2003
+}
+
+% TACAS 2000
+
+@inproceedings{Aspinall2000,
+  author = "David Aspinall",
+  title = "Proof General: A Generic Tool for Proof Development",
+  pages = "38--42",
+  crossref = "GrafSchwartzbach2000"
+}
+
+@proceedings{GrafSchwartzbach2000,
+  editor    = {Susanne Graf and Michael I. Schwartzbach},
+  title     = {Tools and Algorithms for Construction and Analysis of Systems, 6th International Conference, TACAS 2000, Berlin, Germany, March 25 -- April 2, 2000, Proceedings},
+  booktitle     = "TACAS 2000",
+  publisher = {Springer},
+  series    = {LNCS},
+  number    = {1785},
+  year      = {2000},
+}
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/root.tex	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,48 @@
+\documentclass[leqno]{article}
+\usepackage{isabelle,isabellesym}
+
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{array}
+
+% this should be the last package used
+\usepackage{pdfsetup}
+
+\urlstyle{rm}
+\isabellestyle{tt}
+%\renewcommand{\isacharunderscore}{\_}%
+% the latter is not necessary with \isabellestyle{tt}
+
+\begin{document}
+
+\title{Locales and Locale Expressions in Isabelle/Isar}
+\author{Clemens Ballarin \\
+  Fakult\"at f\"ur Informatik \\ Technische Universit\"at M\"unchen \\
+  85748 Garching, Germany \\
+  ballarin@in.tum.de}
+\date{}
+
+\maketitle
+
+\begin{abstract}
+  Locales provide a module system for the Isabelle proof assistant.
+  Recently, locales have been ported to the new Isar format for
+  structured proofs.  At the same time, they have been extended by
+  locale expressions, a language for composing locale specifications,
+  and by structures, which provide syntax for algebraic structures.
+  The present paper presents both and is suitable as a tutorial to
+  locales in Isar, because it covers both basics and recent
+  extensions, and contains many examples.
+\end{abstract}
+
+%\tableofcontents
+
+\parindent 0pt\parskip 0.5ex
+
+% include generated text of all theories
+\input{session}
+
+\bibliographystyle{plain}
+\bibliography{root}
+
+\end{document}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Locales/generated/session.tex	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,6 @@
+\input{Locales.tex}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: "root"
+%%% End:
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/Makefile	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,40 @@
+#
+# $Id$
+#
+
+## targets
+
+default: dvi
+
+## paths
+
+TEXPATH = Locales/generated/:
+
+## dependencies
+
+include ../Makefile.in
+
+NAME = locales
+
+FILES = locales.tex Locales/generated/root.bib \
+  Locales/generated/session.tex Locales/generated/Locales.tex \
+  Locales/generated/isabelle.sty Locales/generated/isabellesym.sty \
+  Locales/generated/pdfsetup.sty 
+
+dvi: $(NAME).dvi
+
+$(NAME).dvi: $(FILES)
+	env TEXINPUTS=$(TEXPATH) $(LATEX) $(NAME)
+	env BIBINPUTS=$(TEXPATH) $(BIBTEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(LATEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(LATEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(LATEX) $(NAME)
+
+pdf: $(NAME).pdf
+
+$(NAME).pdf: $(FILES)
+	env TEXINPUTS=$(TEXPATH) $(PDFLATEX) $(NAME)
+	env BIBINPUTS=$(TEXPATH) $(BIBTEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(PDFLATEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(PDFLATEX) $(NAME)
+	env TEXINPUTS=$(TEXPATH) $(PDFLATEX) $(NAME)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Locales/locales.tex	Fri Apr 16 11:35:44 2004 +0200
@@ -0,0 +1,48 @@
+\documentclass[leqno]{article}
+\usepackage{isabelle,isabellesym}
+
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage{array}
+
+% this should be the last package used
+\usepackage{pdfsetup}
+
+\urlstyle{rm}
+\isabellestyle{tt}
+%\renewcommand{\isacharunderscore}{\_}%
+% the latter is not necessary with \isabellestyle{tt}
+
+\begin{document}
+
+\title{Locales and Locale Expressions in Isabelle/Isar}
+\author{Clemens Ballarin \\
+  Fakult\"at f\"ur Informatik \\ Technische Universit\"at M\"unchen \\
+  85748 Garching, Germany \\
+  ballarin@in.tum.de}
+\date{}
+
+\maketitle
+
+\begin{abstract}
+  Locales provide a module system for the Isabelle proof assistant.
+  Recently, locales have been ported to the new Isar format for
+  structured proofs.  At the same time, they have been extended by
+  locale expressions, a language for composing locale specifications,
+  and by structures, which provide syntax for algebraic structures.
+  The present paper presents both and is suitable as a tutorial to
+  locales in Isar, because it covers both basics and recent
+  extensions, and contains many examples.
+\end{abstract}
+
+%\tableofcontents
+
+\parindent 0pt\parskip 0.5ex
+
+% include generated text of all theories
+\input{session}
+
+\bibliographystyle{plain}
+\bibliography{root}
+
+\end{document}