merged
authorwenzelm
Wed, 25 Sep 2013 12:52:21 +0200
changeset 53874 7cec5a4d5532
parent 53871 a1a52423601f (current diff)
parent 53873 08594daabcd9 (diff)
child 53877 028ec3e310ec
merged
--- a/src/HOL/Library/Extended_Real.thy	Wed Sep 25 12:29:06 2013 +0200
+++ b/src/HOL/Library/Extended_Real.thy	Wed Sep 25 12:52:21 2013 +0200
@@ -24,23 +24,29 @@
 
 instantiation ereal :: uminus
 begin
-  fun uminus_ereal where
-    "- (ereal r) = ereal (- r)"
-  | "- PInfty = MInfty"
-  | "- MInfty = PInfty"
-  instance ..
+
+fun uminus_ereal where
+  "- (ereal r) = ereal (- r)"
+| "- PInfty = MInfty"
+| "- MInfty = PInfty"
+
+instance ..
+
 end
 
 instantiation ereal :: infinity
 begin
-  definition "(\<infinity>::ereal) = PInfty"
-  instance ..
+
+definition "(\<infinity>::ereal) = PInfty"
+instance ..
+
 end
 
 declare [[coercion "ereal :: real \<Rightarrow> ereal"]]
 
 lemma ereal_uminus_uminus[simp]:
-  fixes a :: ereal shows "- (- a) = a"
+  fixes a :: ereal
+  shows "- (- a) = a"
   by (cases a) simp_all
 
 lemma
@@ -59,7 +65,7 @@
 
 lemma [code_unfold]:
   "\<infinity> = PInfty"
-  "-PInfty = MInfty"
+  "- PInfty = MInfty"
   by simp_all
 
 lemma inj_ereal[simp]: "inj_on ereal A"
@@ -76,77 +82,97 @@
 lemmas ereal3_cases = ereal2_cases[case_product ereal_cases]
 
 lemma ereal_uminus_eq_iff[simp]:
-  fixes a b :: ereal shows "-a = -b \<longleftrightarrow> a = b"
+  fixes a b :: ereal
+  shows "-a = -b \<longleftrightarrow> a = b"
   by (cases rule: ereal2_cases[of a b]) simp_all
 
 function of_ereal :: "ereal \<Rightarrow> real" where
-"of_ereal (ereal r) = r" |
-"of_ereal \<infinity> = 0" |
-"of_ereal (-\<infinity>) = 0"
+  "of_ereal (ereal r) = r"
+| "of_ereal \<infinity> = 0"
+| "of_ereal (-\<infinity>) = 0"
   by (auto intro: ereal_cases)
-termination proof qed (rule wf_empty)
+termination by default (rule wf_empty)
 
 defs (overloaded)
   real_of_ereal_def [code_unfold]: "real \<equiv> of_ereal"
 
 lemma real_of_ereal[simp]:
-    "real (- x :: ereal) = - (real x)"
-    "real (ereal r) = r"
-    "real (\<infinity>::ereal) = 0"
+  "real (- x :: ereal) = - (real x)"
+  "real (ereal r) = r"
+  "real (\<infinity>::ereal) = 0"
   by (cases x) (simp_all add: real_of_ereal_def)
 
 lemma range_ereal[simp]: "range ereal = UNIV - {\<infinity>, -\<infinity>}"
 proof safe
-  fix x assume "x \<notin> range ereal" "x \<noteq> \<infinity>"
-  then show "x = -\<infinity>" by (cases x) auto
+  fix x
+  assume "x \<notin> range ereal" "x \<noteq> \<infinity>"
+  then show "x = -\<infinity>"
+    by (cases x) auto
 qed auto
 
 lemma ereal_range_uminus[simp]: "range uminus = (UNIV::ereal set)"
 proof safe
-  fix x :: ereal show "x \<in> range uminus" by (intro image_eqI[of _ _ "-x"]) auto
+  fix x :: ereal
+  show "x \<in> range uminus"
+    by (intro image_eqI[of _ _ "-x"]) auto
 qed auto
 
 instantiation ereal :: abs
 begin
-  function abs_ereal where
-    "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"
-  | "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
-  | "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
-  by (auto intro: ereal_cases)
-  termination proof qed (rule wf_empty)
-  instance ..
+
+function abs_ereal where
+  "\<bar>ereal r\<bar> = ereal \<bar>r\<bar>"
+| "\<bar>-\<infinity>\<bar> = (\<infinity>::ereal)"
+| "\<bar>\<infinity>\<bar> = (\<infinity>::ereal)"
+by (auto intro: ereal_cases)
+termination proof qed (rule wf_empty)
+
+instance ..
+
 end
 
-lemma abs_eq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> = \<infinity> ; x = \<infinity> \<Longrightarrow> P ; x = -\<infinity> \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
-  by (cases x) auto
+lemma abs_eq_infinity_cases[elim!]:
+  fixes x :: ereal
+  assumes "\<bar>x\<bar> = \<infinity>"
+  obtains "x = \<infinity>" | "x = -\<infinity>"
+  using assms by (cases x) auto
 
-lemma abs_neq_infinity_cases[elim!]: "\<lbrakk> \<bar>x :: ereal\<bar> \<noteq> \<infinity> ; \<And>r. x = ereal r \<Longrightarrow> P \<rbrakk> \<Longrightarrow> P"
+lemma abs_neq_infinity_cases[elim!]:
+  fixes x :: ereal
+  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
+  obtains r where "x = ereal r"
+  using assms by (cases x) auto
+
+lemma abs_ereal_uminus[simp]:
+  fixes x :: ereal
+  shows "\<bar>- x\<bar> = \<bar>x\<bar>"
   by (cases x) auto
 
-lemma abs_ereal_uminus[simp]: "\<bar>- x\<bar> = \<bar>x::ereal\<bar>"
-  by (cases x) auto
+lemma ereal_infinity_cases:
+  fixes a :: ereal
+  shows "a \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"
+  by auto
 
-lemma ereal_infinity_cases: "(a::ereal) \<noteq> \<infinity> \<Longrightarrow> a \<noteq> -\<infinity> \<Longrightarrow> \<bar>a\<bar> \<noteq> \<infinity>"
-  by auto
 
 subsubsection "Addition"
 
-instantiation ereal :: "{one, comm_monoid_add}"
+instantiation ereal :: "{one,comm_monoid_add}"
 begin
 
 definition "0 = ereal 0"
 definition "1 = ereal 1"
 
 function plus_ereal where
-"ereal r + ereal p = ereal (r + p)" |
-"\<infinity> + a = (\<infinity>::ereal)" |
-"a + \<infinity> = (\<infinity>::ereal)" |
-"ereal r + -\<infinity> = - \<infinity>" |
-"-\<infinity> + ereal p = -(\<infinity>::ereal)" |
-"-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"
+  "ereal r + ereal p = ereal (r + p)"
+| "\<infinity> + a = (\<infinity>::ereal)"
+| "a + \<infinity> = (\<infinity>::ereal)"
+| "ereal r + -\<infinity> = - \<infinity>"
+| "-\<infinity> + ereal p = -(\<infinity>::ereal)"
+| "-\<infinity> + -\<infinity> = -(\<infinity>::ereal)"
 proof -
   case (goal1 P x)
-  then obtain a b where "x = (a, b)" by (cases x) auto
+  then obtain a b where "x = (a, b)"
+    by (cases x) auto
   with goal1 show P
    by (cases rule: ereal2_cases[of a b]) auto
 qed auto
@@ -172,6 +198,7 @@
   show "a + b + c = a + (b + c)"
     by (cases rule: ereal3_cases[of a b c]) simp_all
 qed
+
 end
 
 instance ereal :: numeral ..
@@ -182,35 +209,37 @@
 lemma abs_ereal_zero[simp]: "\<bar>0\<bar> = (0::ereal)"
   unfolding zero_ereal_def abs_ereal.simps by simp
 
-lemma ereal_uminus_zero[simp]:
-  "- 0 = (0::ereal)"
+lemma ereal_uminus_zero[simp]: "- 0 = (0::ereal)"
   by (simp add: zero_ereal_def)
 
 lemma ereal_uminus_zero_iff[simp]:
-  fixes a :: ereal shows "-a = 0 \<longleftrightarrow> a = 0"
+  fixes a :: ereal
+  shows "-a = 0 \<longleftrightarrow> a = 0"
   by (cases a) simp_all
 
 lemma ereal_plus_eq_PInfty[simp]:
-  fixes a b :: ereal shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
+  fixes a b :: ereal
+  shows "a + b = \<infinity> \<longleftrightarrow> a = \<infinity> \<or> b = \<infinity>"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_plus_eq_MInfty[simp]:
-  fixes a b :: ereal shows "a + b = -\<infinity> \<longleftrightarrow>
-    (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"
+  fixes a b :: ereal
+  shows "a + b = -\<infinity> \<longleftrightarrow> (a = -\<infinity> \<or> b = -\<infinity>) \<and> a \<noteq> \<infinity> \<and> b \<noteq> \<infinity>"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_add_cancel_left:
-  fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
-  shows "a + b = a + c \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
+  fixes a b :: ereal
+  assumes "a \<noteq> -\<infinity>"
+  shows "a + b = a + c \<longleftrightarrow> a = \<infinity> \<or> b = c"
   using assms by (cases rule: ereal3_cases[of a b c]) auto
 
 lemma ereal_add_cancel_right:
-  fixes a b :: ereal assumes "a \<noteq> -\<infinity>"
-  shows "b + a = c + a \<longleftrightarrow> (a = \<infinity> \<or> b = c)"
+  fixes a b :: ereal
+  assumes "a \<noteq> -\<infinity>"
+  shows "b + a = c + a \<longleftrightarrow> a = \<infinity> \<or> b = c"
   using assms by (cases rule: ereal3_cases[of a b c]) auto
 
-lemma ereal_real:
-  "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"
+lemma ereal_real: "ereal (real x) = (if \<bar>x\<bar> = \<infinity> then 0 else x)"
   by (cases x) simp_all
 
 lemma real_of_ereal_add:
@@ -219,6 +248,7 @@
     (if (\<bar>a\<bar> = \<infinity>) \<and> (\<bar>b\<bar> = \<infinity>) \<or> (\<bar>a\<bar> \<noteq> \<infinity>) \<and> (\<bar>b\<bar> \<noteq> \<infinity>) then real a + real b else 0)"
   by (cases rule: ereal2_cases[of a b]) auto
 
+
 subsubsection "Linear order on @{typ ereal}"
 
 instantiation ereal :: linorder
@@ -250,7 +280,7 @@
 lemma ereal_infty_less_eq[simp]:
   fixes x :: ereal
   shows "\<infinity> \<le> x \<longleftrightarrow> x = \<infinity>"
-  "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"
+    and "x \<le> -\<infinity> \<longleftrightarrow> x = -\<infinity>"
   by (auto simp add: less_eq_ereal_def)
 
 lemma ereal_less[simp]:
@@ -282,10 +312,16 @@
     by (cases rule: ereal2_cases[of x y]) auto
   show "x \<le> y \<or> y \<le> x "
     by (cases rule: ereal2_cases[of x y]) auto
-  { assume "x \<le> y" "y \<le> x" then show "x = y"
-    by (cases rule: ereal2_cases[of x y]) auto }
-  { assume "x \<le> y" "y \<le> z" then show "x \<le> z"
-    by (cases rule: ereal3_cases[of x y z]) auto }
+  {
+    assume "x \<le> y" "y \<le> x"
+    then show "x = y"
+      by (cases rule: ereal2_cases[of x y]) auto
+  }
+  {
+    assume "x \<le> y" "y \<le> z"
+    then show "x \<le> z"
+      by (cases rule: ereal3_cases[of x y z]) auto
+  }
 qed
 
 end
@@ -298,20 +334,25 @@
 
 instance ereal :: ordered_ab_semigroup_add
 proof
-  fix a b c :: ereal assume "a \<le> b" then show "c + a \<le> c + b"
+  fix a b c :: ereal
+  assume "a \<le> b"
+  then show "c + a \<le> c + b"
     by (cases rule: ereal3_cases[of a b c]) auto
 qed
 
 lemma real_of_ereal_positive_mono:
-  fixes x y :: ereal shows "\<lbrakk>0 \<le> x; x \<le> y; y \<noteq> \<infinity>\<rbrakk> \<Longrightarrow> real x \<le> real y"
+  fixes x y :: ereal
+  shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> y \<noteq> \<infinity> \<Longrightarrow> real x \<le> real y"
   by (cases rule: ereal2_cases[of x y]) auto
 
 lemma ereal_MInfty_lessI[intro, simp]:
-  fixes a :: ereal shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"
+  fixes a :: ereal
+  shows "a \<noteq> -\<infinity> \<Longrightarrow> -\<infinity> < a"
   by (cases a) auto
 
 lemma ereal_less_PInfty[intro, simp]:
-  fixes a :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"
+  fixes a :: ereal
+  shows "a \<noteq> \<infinity> \<Longrightarrow> a < \<infinity>"
   by (cases a) auto
 
 lemma ereal_less_ereal_Ex:
@@ -321,12 +362,16 @@
 
 lemma less_PInf_Ex_of_nat: "x \<noteq> \<infinity> \<longleftrightarrow> (\<exists>n::nat. x < ereal (real n))"
 proof (cases x)
-  case (real r) then show ?thesis
+  case (real r)
+  then show ?thesis
     using reals_Archimedean2[of r] by simp
 qed simp_all
 
 lemma ereal_add_mono:
-  fixes a b c d :: ereal assumes "a \<le> b" "c \<le> d" shows "a + c \<le> b + d"
+  fixes a b c d :: ereal
+  assumes "a \<le> b"
+    and "c \<le> d"
+  shows "a + c \<le> b + d"
   using assms
   apply (cases a)
   apply (cases rule: ereal3_cases[of b c d], auto)
@@ -334,31 +379,34 @@
   done
 
 lemma ereal_minus_le_minus[simp]:
-  fixes a b :: ereal shows "- a \<le> - b \<longleftrightarrow> b \<le> a"
+  fixes a b :: ereal
+  shows "- a \<le> - b \<longleftrightarrow> b \<le> a"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_minus_less_minus[simp]:
-  fixes a b :: ereal shows "- a < - b \<longleftrightarrow> b < a"
+  fixes a b :: ereal
+  shows "- a < - b \<longleftrightarrow> b < a"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_le_real_iff:
-  "x \<le> real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0))"
+  "x \<le> real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x \<le> y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x \<le> 0)"
   by (cases y) auto
 
 lemma real_le_ereal_iff:
-  "real y \<le> x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x))"
+  "real y \<le> x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y \<le> ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 \<le> x)"
   by (cases y) auto
 
 lemma ereal_less_real_iff:
-  "x < real y \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0))"
+  "x < real y \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> ereal x < y) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> x < 0)"
   by (cases y) auto
 
 lemma real_less_ereal_iff:
-  "real y < x \<longleftrightarrow> ((\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x))"
+  "real y < x \<longleftrightarrow> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> y < ereal x) \<and> (\<bar>y\<bar> = \<infinity> \<longrightarrow> 0 < x)"
   by (cases y) auto
 
 lemma real_of_ereal_pos:
-  fixes x :: ereal shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto
+  fixes x :: ereal
+  shows "0 \<le> x \<Longrightarrow> 0 \<le> real x" by (cases x) auto
 
 lemmas real_of_ereal_ord_simps =
   ereal_le_real_iff real_le_ereal_iff ereal_less_real_iff real_less_ereal_iff
@@ -372,35 +420,44 @@
 lemma abs_ereal_pos[simp]: "0 \<le> \<bar>x :: ereal\<bar>"
   by (cases x) auto
 
-lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> (x \<le> 0 \<or> x = \<infinity>)"
+lemma real_of_ereal_le_0[simp]: "real (x :: ereal) \<le> 0 \<longleftrightarrow> x \<le> 0 \<or> x = \<infinity>"
   by (cases x) auto
 
 lemma abs_real_of_ereal[simp]: "\<bar>real (x :: ereal)\<bar> = real \<bar>x\<bar>"
   by (cases x) auto
 
 lemma zero_less_real_of_ereal:
-  fixes x :: ereal shows "0 < real x \<longleftrightarrow> (0 < x \<and> x \<noteq> \<infinity>)"
+  fixes x :: ereal
+  shows "0 < real x \<longleftrightarrow> 0 < x \<and> x \<noteq> \<infinity>"
   by (cases x) auto
 
 lemma ereal_0_le_uminus_iff[simp]:
-  fixes a :: ereal shows "0 \<le> -a \<longleftrightarrow> a \<le> 0"
+  fixes a :: ereal
+  shows "0 \<le> - a \<longleftrightarrow> a \<le> 0"
   by (cases rule: ereal2_cases[of a]) auto
 
 lemma ereal_uminus_le_0_iff[simp]:
-  fixes a :: ereal shows "-a \<le> 0 \<longleftrightarrow> 0 \<le> a"
+  fixes a :: ereal
+  shows "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
   by (cases rule: ereal2_cases[of a]) auto
 
 lemma ereal_add_strict_mono:
   fixes a b c d :: ereal
-  assumes "a = b" "0 \<le> a" "a \<noteq> \<infinity>" "c < d"
+  assumes "a = b"
+    and "0 \<le> a"
+    and "a \<noteq> \<infinity>"
+    and "c < d"
   shows "a + c < b + d"
-  using assms by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto
+  using assms
+  by (cases rule: ereal3_cases[case_product ereal_cases, of a b c d]) auto
 
-lemma ereal_less_add: 
-  fixes a b c :: ereal shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"
+lemma ereal_less_add:
+  fixes a b c :: ereal
+  shows "\<bar>a\<bar> \<noteq> \<infinity> \<Longrightarrow> c < b \<Longrightarrow> a + c < a + b"
   by (cases rule: ereal2_cases[of b c]) auto
 
-lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)" by auto
+lemma ereal_uminus_eq_reorder: "- a = b \<longleftrightarrow> a = (-b::ereal)"
+  by auto
 
 lemma ereal_uminus_less_reorder: "- a < b \<longleftrightarrow> -b < (a::ereal)"
   by (subst (3) ereal_uminus_uminus[symmetric]) (simp only: ereal_minus_less_minus)
@@ -412,23 +469,39 @@
   ereal_uminus_eq_reorder ereal_uminus_less_reorder ereal_uminus_le_reorder
 
 lemma ereal_bot:
-  fixes x :: ereal assumes "\<And>B. x \<le> ereal B" shows "x = - \<infinity>"
+  fixes x :: ereal
+  assumes "\<And>B. x \<le> ereal B"
+  shows "x = - \<infinity>"
 proof (cases x)
-  case (real r) with assms[of "r - 1"] show ?thesis by auto
+  case (real r)
+  with assms[of "r - 1"] show ?thesis
+    by auto
 next
-  case PInf with assms[of 0] show ?thesis by auto
+  case PInf
+  with assms[of 0] show ?thesis
+    by auto
 next
-  case MInf then show ?thesis by simp
+  case MInf
+  then show ?thesis
+    by simp
 qed
 
 lemma ereal_top:
-  fixes x :: ereal assumes "\<And>B. x \<ge> ereal B" shows "x = \<infinity>"
+  fixes x :: ereal
+  assumes "\<And>B. x \<ge> ereal B"
+  shows "x = \<infinity>"
 proof (cases x)
-  case (real r) with assms[of "r + 1"] show ?thesis by auto
+  case (real r)
+  with assms[of "r + 1"] show ?thesis
+    by auto
 next
-  case MInf with assms[of 0] show ?thesis by auto
+  case MInf
+  with assms[of 0] show ?thesis
+    by auto
 next
-  case PInf then show ?thesis by simp
+  case PInf
+  then show ?thesis
+    by simp
 qed
 
 lemma
@@ -449,32 +522,36 @@
   unfolding incseq_def by auto
 
 lemma ereal_add_nonneg_nonneg:
-  fixes a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"
+  fixes a b :: ereal
+  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> 0 \<le> a + b"
   using add_mono[of 0 a 0 b] by simp
 
-lemma image_eqD: "f ` A = B \<Longrightarrow> (\<forall>x\<in>A. f x \<in> B)"
+lemma image_eqD: "f ` A = B \<Longrightarrow> \<forall>x\<in>A. f x \<in> B"
   by auto
 
 lemma incseq_setsumI:
-  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
+  fixes f :: "nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
   assumes "\<And>i. 0 \<le> f i"
   shows "incseq (\<lambda>i. setsum f {..< i})"
 proof (intro incseq_SucI)
-  fix n have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
+  fix n
+  have "setsum f {..< n} + 0 \<le> setsum f {..<n} + f n"
     using assms by (rule add_left_mono)
   then show "setsum f {..< n} \<le> setsum f {..< Suc n}"
     by auto
 qed
 
 lemma incseq_setsumI2:
-  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add, ordered_ab_semigroup_add}"
+  fixes f :: "'i \<Rightarrow> nat \<Rightarrow> 'a::{comm_monoid_add,ordered_ab_semigroup_add}"
   assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
   shows "incseq (\<lambda>i. \<Sum>n\<in>A. f n i)"
-  using assms unfolding incseq_def by (auto intro: setsum_mono)
+  using assms
+  unfolding incseq_def by (auto intro: setsum_mono)
+
 
 subsubsection "Multiplication"
 
-instantiation ereal :: "{comm_monoid_mult, sgn}"
+instantiation ereal :: "{comm_monoid_mult,sgn}"
 begin
 
 function sgn_ereal :: "ereal \<Rightarrow> ereal" where
@@ -482,28 +559,31 @@
 | "sgn (\<infinity>::ereal) = 1"
 | "sgn (-\<infinity>::ereal) = -1"
 by (auto intro: ereal_cases)
-termination proof qed (rule wf_empty)
+termination by default (rule wf_empty)
 
 function times_ereal where
-"ereal r * ereal p = ereal (r * p)" |
-"ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
-"\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)" |
-"ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
-"-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)" |
-"(\<infinity>::ereal) * \<infinity> = \<infinity>" |
-"-(\<infinity>::ereal) * \<infinity> = -\<infinity>" |
-"(\<infinity>::ereal) * -\<infinity> = -\<infinity>" |
-"-(\<infinity>::ereal) * -\<infinity> = \<infinity>"
+  "ereal r * ereal p = ereal (r * p)"
+| "ereal r * \<infinity> = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"
+| "\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then \<infinity> else -\<infinity>)"
+| "ereal r * -\<infinity> = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"
+| "-\<infinity> * ereal r = (if r = 0 then 0 else if r > 0 then -\<infinity> else \<infinity>)"
+| "(\<infinity>::ereal) * \<infinity> = \<infinity>"
+| "-(\<infinity>::ereal) * \<infinity> = -\<infinity>"
+| "(\<infinity>::ereal) * -\<infinity> = -\<infinity>"
+| "-(\<infinity>::ereal) * -\<infinity> = \<infinity>"
 proof -
   case (goal1 P x)
-  then obtain a b where "x = (a, b)" by (cases x) auto
-  with goal1 show P by (cases rule: ereal2_cases[of a b]) auto
+  then obtain a b where "x = (a, b)"
+    by (cases x) auto
+  with goal1 show P
+    by (cases rule: ereal2_cases[of a b]) auto
 qed simp_all
 termination by (relation "{}") simp
 
 instance
 proof
-  fix a b c :: ereal show "1 * a = a"
+  fix a b c :: ereal
+  show "1 * a = a"
     by (cases a) (simp_all add: one_ereal_def)
   show "a * b = b * a"
     by (cases rule: ereal2_cases[of a b]) simp_all
@@ -511,36 +591,39 @@
     by (cases rule: ereal3_cases[of a b c])
        (simp_all add: zero_ereal_def zero_less_mult_iff)
 qed
+
 end
 
 lemma real_ereal_1[simp]: "real (1::ereal) = 1"
   unfolding one_ereal_def by simp
 
 lemma real_of_ereal_le_1:
-  fixes a :: ereal shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"
+  fixes a :: ereal
+  shows "a \<le> 1 \<Longrightarrow> real a \<le> 1"
   by (cases a) (auto simp: one_ereal_def)
 
 lemma abs_ereal_one[simp]: "\<bar>1\<bar> = (1::ereal)"
   unfolding one_ereal_def by simp
 
 lemma ereal_mult_zero[simp]:
-  fixes a :: ereal shows "a * 0 = 0"
+  fixes a :: ereal
+  shows "a * 0 = 0"
   by (cases a) (simp_all add: zero_ereal_def)
 
 lemma ereal_zero_mult[simp]:
-  fixes a :: ereal shows "0 * a = 0"
+  fixes a :: ereal
+  shows "0 * a = 0"
   by (cases a) (simp_all add: zero_ereal_def)
 
-lemma ereal_m1_less_0[simp]:
-  "-(1::ereal) < 0"
+lemma ereal_m1_less_0[simp]: "-(1::ereal) < 0"
   by (simp add: zero_ereal_def one_ereal_def)
 
-lemma ereal_zero_m1[simp]:
-  "1 \<noteq> (0::ereal)"
+lemma ereal_zero_m1[simp]: "1 \<noteq> (0::ereal)"
   by (simp add: zero_ereal_def one_ereal_def)
 
 lemma ereal_times_0[simp]:
-  fixes x :: ereal shows "0 * x = 0"
+  fixes x :: ereal
+  shows "0 * x = 0"
   by (cases x) (auto simp: zero_ereal_def)
 
 lemma ereal_times[simp]:
@@ -549,21 +632,24 @@
   by (auto simp add: times_ereal_def one_ereal_def)
 
 lemma ereal_plus_1[simp]:
-  "1 + ereal r = ereal (r + 1)" "ereal r + 1 = ereal (r + 1)"
-  "1 + -(\<infinity>::ereal) = -\<infinity>" "-(\<infinity>::ereal) + 1 = -\<infinity>"
+  "1 + ereal r = ereal (r + 1)"
+  "ereal r + 1 = ereal (r + 1)"
+  "1 + -(\<infinity>::ereal) = -\<infinity>"
+  "-(\<infinity>::ereal) + 1 = -\<infinity>"
   unfolding one_ereal_def by auto
 
 lemma ereal_zero_times[simp]:
-  fixes a b :: ereal shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
+  fixes a b :: ereal
+  shows "a * b = 0 \<longleftrightarrow> a = 0 \<or> b = 0"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_mult_eq_PInfty[simp]:
-  shows "a * b = (\<infinity>::ereal) \<longleftrightarrow>
+  "a * b = (\<infinity>::ereal) \<longleftrightarrow>
     (a = \<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = -\<infinity>)"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_mult_eq_MInfty[simp]:
-  shows "a * b = -(\<infinity>::ereal) \<longleftrightarrow>
+  "a * b = -(\<infinity>::ereal) \<longleftrightarrow>
     (a = \<infinity> \<and> b < 0) \<or> (a < 0 \<and> b = \<infinity>) \<or> (a = -\<infinity> \<and> b > 0) \<or> (a > 0 \<and> b = -\<infinity>)"
   by (cases rule: ereal2_cases[of a b]) auto
 
@@ -574,11 +660,13 @@
   by (simp_all add: zero_ereal_def one_ereal_def)
 
 lemma ereal_mult_minus_left[simp]:
-  fixes a b :: ereal shows "-a * b = - (a * b)"
+  fixes a b :: ereal
+  shows "-a * b = - (a * b)"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_mult_minus_right[simp]:
-  fixes a b :: ereal shows "a * -b = - (a * b)"
+  fixes a b :: ereal
+  shows "a * -b = - (a * b)"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma ereal_mult_infty[simp]:
@@ -590,26 +678,33 @@
   by (cases a) auto
 
 lemma ereal_mult_strict_right_mono:
-  assumes "a < b" and "0 < c" "c < (\<infinity>::ereal)"
+  assumes "a < b"
+    and "0 < c"
+    and "c < (\<infinity>::ereal)"
   shows "a * c < b * c"
   using assms
-  by (cases rule: ereal3_cases[of a b c])
-     (auto simp: zero_le_mult_iff)
+  by (cases rule: ereal3_cases[of a b c]) (auto simp: zero_le_mult_iff)
 
 lemma ereal_mult_strict_left_mono:
-  "\<lbrakk> a < b ; 0 < c ; c < (\<infinity>::ereal)\<rbrakk> \<Longrightarrow> c * a < c * b"
-  using ereal_mult_strict_right_mono by (simp add: mult_commute[of c])
+  "a < b \<Longrightarrow> 0 < c \<Longrightarrow> c < (\<infinity>::ereal) \<Longrightarrow> c * a < c * b"
+  using ereal_mult_strict_right_mono
+  by (simp add: mult_commute[of c])
 
 lemma ereal_mult_right_mono:
-  fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> a*c \<le> b*c"
+  fixes a b c :: ereal
+  shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> a * c \<le> b * c"
   using assms
-  apply (cases "c = 0") apply simp
-  by (cases rule: ereal3_cases[of a b c])
-     (auto simp: zero_le_mult_iff)
+  apply (cases "c = 0")
+  apply simp
+  apply (cases rule: ereal3_cases[of a b c])
+  apply (auto simp: zero_le_mult_iff)
+  done
 
 lemma ereal_mult_left_mono:
-  fixes a b c :: ereal shows "\<lbrakk>a \<le> b; 0 \<le> c\<rbrakk> \<Longrightarrow> c * a \<le> c * b"
-  using ereal_mult_right_mono by (simp add: mult_commute[of c])
+  fixes a b c :: ereal
+  shows "a \<le> b \<Longrightarrow> 0 \<le> c \<Longrightarrow> c * a \<le> c * b"
+  using ereal_mult_right_mono
+  by (simp add: mult_commute[of c])
 
 lemma zero_less_one_ereal[simp]: "0 \<le> (1::ereal)"
   by (simp add: one_ereal_def zero_ereal_def)
@@ -618,11 +713,13 @@
   by (cases rule: ereal2_cases[of a b]) (auto simp: mult_nonneg_nonneg)
 
 lemma ereal_right_distrib:
-  fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"
+  fixes r a b :: ereal
+  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> r * (a + b) = r * a + r * b"
   by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
 
 lemma ereal_left_distrib:
-  fixes r a b :: ereal shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"
+  fixes r a b :: ereal
+  shows "0 \<le> a \<Longrightarrow> 0 \<le> b \<Longrightarrow> (a + b) * r = a * r + b * r"
   by (cases rule: ereal3_cases[of r a b]) (simp_all add: field_simps)
 
 lemma ereal_mult_le_0_iff:
@@ -657,7 +754,9 @@
 
 lemma ereal_distrib:
   fixes a b c :: ereal
-  assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>" "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>" "\<bar>c\<bar> \<noteq> \<infinity>"
+  assumes "a \<noteq> \<infinity> \<or> b \<noteq> -\<infinity>"
+    and "a \<noteq> -\<infinity> \<or> b \<noteq> \<infinity>"
+    and "\<bar>c\<bar> \<noteq> \<infinity>"
   shows "(a + b) * c = a * c + b * c"
   using assms
   by (cases rule: ereal3_cases[of a b c]) (simp_all add: field_simps)
@@ -670,74 +769,119 @@
 
 lemma ereal_le_epsilon:
   fixes x y :: ereal
-  assumes "ALL e. 0 < e --> x <= y + e"
-  shows "x <= y"
-proof-
-{ assume a: "EX r. y = ereal r"
-  then obtain r where r_def: "y = ereal r" by auto
-  { assume "x=(-\<infinity>)" hence ?thesis by auto }
+  assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + e"
+  shows "x \<le> y"
+proof -
+  {
+    assume a: "\<exists>r. y = ereal r"
+    then obtain r where r_def: "y = ereal r"
+      by auto
+    {
+      assume "x = -\<infinity>"
+      then have ?thesis by auto
+    }
+    moreover
+    {
+      assume "x \<noteq> -\<infinity>"
+      then obtain p where p_def: "x = ereal p"
+      using a assms[rule_format, of 1]
+        by (cases x) auto
+      {
+        fix e
+        have "0 < e \<longrightarrow> p \<le> r + e"
+          using assms[rule_format, of "ereal e"] p_def r_def by auto
+      }
+      then have "p \<le> r"
+        apply (subst field_le_epsilon)
+        apply auto
+        done
+      then have ?thesis
+        using r_def p_def by auto
+    }
+    ultimately have ?thesis
+      by blast
+  }
   moreover
-  { assume "~(x=(-\<infinity>))"
-    then obtain p where p_def: "x = ereal p"
-    using a assms[rule_format, of 1] by (cases x) auto
-    { fix e have "0 < e --> p <= r + e"
-      using assms[rule_format, of "ereal e"] p_def r_def by auto }
-    hence "p <= r" apply (subst field_le_epsilon) by auto
-    hence ?thesis using r_def p_def by auto
-  } ultimately have ?thesis by blast
-}
-moreover
-{ assume "y=(-\<infinity>) | y=\<infinity>" hence ?thesis
-    using assms[rule_format, of 1] by (cases x) auto
-} ultimately show ?thesis by (cases y) auto
+  {
+    assume "y = -\<infinity> | y = \<infinity>"
+    then have ?thesis
+      using assms[rule_format, of 1] by (cases x) auto
+  }
+  ultimately show ?thesis
+    by (cases y) auto
 qed
 
-
 lemma ereal_le_epsilon2:
   fixes x y :: ereal
-  assumes "ALL e. 0 < e --> x <= y + ereal e"
-  shows "x <= y"
-proof-
-{ fix e :: ereal assume "e>0"
-  { assume "e=\<infinity>" hence "x<=y+e" by auto }
-  moreover
-  { assume "e~=\<infinity>"
-    then obtain r where "e = ereal r" using `e>0` apply (cases e) by auto
-    hence "x<=y+e" using assms[rule_format, of r] `e>0` by auto
-  } ultimately have "x<=y+e" by blast
-} then show ?thesis using ereal_le_epsilon by auto
+  assumes "\<forall>e. 0 < e \<longrightarrow> x \<le> y + ereal e"
+  shows "x \<le> y"
+proof -
+  {
+    fix e :: ereal
+    assume "e > 0"
+    {
+      assume "e = \<infinity>"
+      then have "x \<le> y + e"
+        by auto
+    }
+    moreover
+    {
+      assume "e \<noteq> \<infinity>"
+      then obtain r where "e = ereal r"
+        using `e > 0` by (cases e) auto
+      then have "x \<le> y + e"
+        using assms[rule_format, of r] `e>0` by auto
+    }
+    ultimately have "x \<le> y + e"
+      by blast
+  }
+  then show ?thesis
+    using ereal_le_epsilon by auto
 qed
 
 lemma ereal_le_real:
   fixes x y :: ereal
-  assumes "ALL z. x <= ereal z --> y <= ereal z"
-  shows "y <= x"
-by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)
+  assumes "\<forall>z. x \<le> ereal z \<longrightarrow> y \<le> ereal z"
+  shows "y \<le> x"
+  by (metis assms ereal_bot ereal_cases ereal_infty_less_eq(2) ereal_less_eq(1) linorder_le_cases)
 
 lemma setprod_ereal_0:
   fixes f :: "'a \<Rightarrow> ereal"
-  shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> (finite A \<and> (\<exists>i\<in>A. f i = 0))"
-proof cases
-  assume "finite A"
+  shows "(\<Prod>i\<in>A. f i) = 0 \<longleftrightarrow> finite A \<and> (\<exists>i\<in>A. f i = 0)"
+proof (cases "finite A")
+  case True
   then show ?thesis by (induct A) auto
-qed auto
+next
+  case False
+  then show ?thesis by auto
+qed
 
 lemma setprod_ereal_pos:
-  fixes f :: "'a \<Rightarrow> ereal" assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i" shows "0 \<le> (\<Prod>i\<in>I. f i)"
-proof cases
-  assume "finite I" from this pos show ?thesis by induct auto
-qed simp
+  fixes f :: "'a \<Rightarrow> ereal"
+  assumes pos: "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
+  shows "0 \<le> (\<Prod>i\<in>I. f i)"
+proof (cases "finite I")
+  case True
+  from this pos show ?thesis
+    by induct auto
+next
+  case False
+  then show ?thesis by simp
+qed
 
 lemma setprod_PInf:
   fixes f :: "'a \<Rightarrow> ereal"
   assumes "\<And>i. i \<in> I \<Longrightarrow> 0 \<le> f i"
   shows "(\<Prod>i\<in>I. f i) = \<infinity> \<longleftrightarrow> finite I \<and> (\<exists>i\<in>I. f i = \<infinity>) \<and> (\<forall>i\<in>I. f i \<noteq> 0)"
-proof cases
-  assume "finite I" from this assms show ?thesis
+proof (cases "finite I")
+  case True
+  from this assms show ?thesis
   proof (induct I)
     case (insert i I)
-    then have pos: "0 \<le> f i" "0 \<le> setprod f I" by (auto intro!: setprod_ereal_pos)
-    from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>" by auto
+    then have pos: "0 \<le> f i" "0 \<le> setprod f I"
+      by (auto intro!: setprod_ereal_pos)
+    from insert have "(\<Prod>j\<in>insert i I. f j) = \<infinity> \<longleftrightarrow> setprod f I * f i = \<infinity>"
+      by auto
     also have "\<dots> \<longleftrightarrow> (setprod f I = \<infinity> \<or> f i = \<infinity>) \<and> f i \<noteq> 0 \<and> setprod f I \<noteq> 0"
       using setprod_ereal_pos[of I f] pos
       by (cases rule: ereal2_cases[of "f i" "setprod f I"]) auto
@@ -745,13 +889,22 @@
       using insert by (auto simp: setprod_ereal_0)
     finally show ?case .
   qed simp
-qed simp
+next
+  case False
+  then show ?thesis by simp
+qed
 
 lemma setprod_ereal: "(\<Prod>i\<in>A. ereal (f i)) = ereal (setprod f A)"
-proof cases
-  assume "finite A" then show ?thesis
+proof (cases "finite A")
+  case True
+  then show ?thesis
     by induct (auto simp: one_ereal_def)
-qed (simp add: one_ereal_def)
+next
+  case False
+  then show ?thesis
+    by (simp add: one_ereal_def)
+qed
+
 
 subsubsection {* Power *}
 
@@ -771,10 +924,12 @@
   by (induct n) (auto simp: one_ereal_def)
 
 lemma zero_le_power_ereal[simp]:
-  fixes a :: ereal assumes "0 \<le> a"
+  fixes a :: ereal
+  assumes "0 \<le> a"
   shows "0 \<le> a ^ n"
   using assms by (induct n) (auto simp: ereal_zero_le_0_iff)
 
+
 subsubsection {* Subtraction *}
 
 lemma ereal_minus_minus_image[simp]:
@@ -783,25 +938,30 @@
   by (auto simp: image_iff)
 
 lemma ereal_uminus_lessThan[simp]:
-  fixes a :: ereal shows "uminus ` {..<a} = {-a<..}"
+  fixes a :: ereal
+  shows "uminus ` {..<a} = {-a<..}"
 proof -
   {
-    fix x assume "-a < x"
-    then have "- x < - (- a)" by (simp del: ereal_uminus_uminus)
-    then have "- x < a" by simp
+    fix x
+    assume "-a < x"
+    then have "- x < - (- a)"
+      by (simp del: ereal_uminus_uminus)
+    then have "- x < a"
+      by simp
   }
-  then show ?thesis by (auto intro!: image_eqI)
+  then show ?thesis
+    by (auto intro!: image_eqI)
 qed
 
-lemma ereal_uminus_greaterThan[simp]:
-  "uminus ` {(a::ereal)<..} = {..<-a}"
-  by (metis ereal_uminus_lessThan ereal_uminus_uminus
-            ereal_minus_minus_image)
+lemma ereal_uminus_greaterThan[simp]: "uminus ` {(a::ereal)<..} = {..<-a}"
+  by (metis ereal_uminus_lessThan ereal_uminus_uminus ereal_minus_minus_image)
 
 instantiation ereal :: minus
 begin
+
 definition "x - y = x + -(y::ereal)"
 instance ..
+
 end
 
 lemma ereal_minus[simp]:
@@ -815,8 +975,7 @@
   "0 - x = -x"
   by (simp_all add: minus_ereal_def)
 
-lemma ereal_x_minus_x[simp]:
-  "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"
+lemma ereal_x_minus_x[simp]: "x - x = (if \<bar>x\<bar> = \<infinity> then \<infinity> else 0::ereal)"
   by (cases x) simp_all
 
 lemma ereal_eq_minus_iff:
@@ -848,9 +1007,7 @@
 
 lemma ereal_le_minus_iff:
   fixes x y z :: ereal
-  shows "x \<le> z - y \<longleftrightarrow>
-    (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and>
-    (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"
+  shows "x \<le> z - y \<longleftrightarrow> (y = \<infinity> \<longrightarrow> z \<noteq> \<infinity> \<longrightarrow> x = -\<infinity>) \<and> (\<bar>y\<bar> \<noteq> \<infinity> \<longrightarrow> x + y \<le> z)"
   by (cases rule: ereal3_cases[of x y z]) auto
 
 lemma ereal_le_minus:
@@ -860,9 +1017,7 @@
 
 lemma ereal_minus_less_iff:
   fixes x y z :: ereal
-  shows "x - y < z \<longleftrightarrow>
-    y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and>
-    (y \<noteq> \<infinity> \<longrightarrow> x < z + y)"
+  shows "x - y < z \<longleftrightarrow> y \<noteq> -\<infinity> \<and> (y = \<infinity> \<longrightarrow> x \<noteq> \<infinity> \<and> z \<noteq> -\<infinity>) \<and> (y \<noteq> \<infinity> \<longrightarrow> x < z + y)"
   by (cases rule: ereal3_cases[of x y z]) auto
 
 lemma ereal_minus_less:
@@ -917,31 +1072,40 @@
 
 lemma ereal_between:
   fixes x e :: ereal
-  assumes "\<bar>x\<bar> \<noteq> \<infinity>" "0 < e"
-  shows "x - e < x" "x < x + e"
-using assms apply (cases x, cases e) apply auto
-using assms apply (cases x, cases e) apply auto
-done
+  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
+    and "0 < e"
+  shows "x - e < x"
+    and "x < x + e"
+  using assms
+  apply (cases x, cases e)
+  apply auto
+  using assms
+  apply (cases x, cases e)
+  apply auto
+  done
 
 lemma ereal_minus_eq_PInfty_iff:
-  fixes x y :: ereal shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"
+  fixes x y :: ereal
+  shows "x - y = \<infinity> \<longleftrightarrow> y = -\<infinity> \<or> x = \<infinity>"
   by (cases x y rule: ereal2_cases) simp_all
 
+
 subsubsection {* Division *}
 
 instantiation ereal :: inverse
 begin
 
 function inverse_ereal where
-"inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))" |
-"inverse (\<infinity>::ereal) = 0" |
-"inverse (-\<infinity>::ereal) = 0"
+  "inverse (ereal r) = (if r = 0 then \<infinity> else ereal (inverse r))"
+| "inverse (\<infinity>::ereal) = 0"
+| "inverse (-\<infinity>::ereal) = 0"
   by (auto intro: ereal_cases)
 termination by (relation "{}") simp
 
 definition "x / y = x * inverse (y :: ereal)"
 
 instance ..
+
 end
 
 lemma real_of_ereal_inverse[simp]:
@@ -959,53 +1123,61 @@
   unfolding divide_ereal_def by (auto simp: divide_real_def)
 
 lemma ereal_divide_same[simp]:
-  fixes x :: ereal shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"
-  by (cases x)
-     (simp_all add: divide_real_def divide_ereal_def one_ereal_def)
+  fixes x :: ereal
+  shows "x / x = (if \<bar>x\<bar> = \<infinity> \<or> x = 0 then 0 else 1)"
+  by (cases x) (simp_all add: divide_real_def divide_ereal_def one_ereal_def)
 
 lemma ereal_inv_inv[simp]:
-  fixes x :: ereal shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"
+  fixes x :: ereal
+  shows "inverse (inverse x) = (if x \<noteq> -\<infinity> then x else \<infinity>)"
   by (cases x) auto
 
 lemma ereal_inverse_minus[simp]:
-  fixes x :: ereal shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"
+  fixes x :: ereal
+  shows "inverse (- x) = (if x = 0 then \<infinity> else -inverse x)"
   by (cases x) simp_all
 
 lemma ereal_uminus_divide[simp]:
-  fixes x y :: ereal shows "- x / y = - (x / y)"
+  fixes x y :: ereal
+  shows "- x / y = - (x / y)"
   unfolding divide_ereal_def by simp
 
 lemma ereal_divide_Infty[simp]:
-  fixes x :: ereal shows "x / \<infinity> = 0" "x / -\<infinity> = 0"
+  fixes x :: ereal
+  shows "x / \<infinity> = 0" "x / -\<infinity> = 0"
   unfolding divide_ereal_def by simp_all
 
-lemma ereal_divide_one[simp]:
-  "x / 1 = (x::ereal)"
+lemma ereal_divide_one[simp]: "x / 1 = (x::ereal)"
   unfolding divide_ereal_def by simp
 
-lemma ereal_divide_ereal[simp]:
-  "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"
+lemma ereal_divide_ereal[simp]: "\<infinity> / ereal r = (if 0 \<le> r then \<infinity> else -\<infinity>)"
   unfolding divide_ereal_def by simp
 
 lemma zero_le_divide_ereal[simp]:
-  fixes a :: ereal assumes "0 \<le> a" "0 \<le> b"
+  fixes a :: ereal
+  assumes "0 \<le> a"
+    and "0 \<le> b"
   shows "0 \<le> a / b"
   using assms by (cases rule: ereal2_cases[of a b]) (auto simp: zero_le_divide_iff)
 
 lemma ereal_le_divide_pos:
-  fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"
+  fixes x y z :: ereal
+  shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> x * y \<le> z"
   by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
 
 lemma ereal_divide_le_pos:
-  fixes x y z :: ereal shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"
+  fixes x y z :: ereal
+  shows "x > 0 \<Longrightarrow> x \<noteq> \<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> z \<le> x * y"
   by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
 
 lemma ereal_le_divide_neg:
-  fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"
+  fixes x y z :: ereal
+  shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> y \<le> z / x \<longleftrightarrow> z \<le> x * y"
   by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
 
 lemma ereal_divide_le_neg:
-  fixes x y z :: ereal shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"
+  fixes x y z :: ereal
+  shows "x < 0 \<Longrightarrow> x \<noteq> -\<infinity> \<Longrightarrow> z / x \<le> y \<longleftrightarrow> x * y \<le> z"
   by (cases rule: ereal3_cases[of x y z]) (auto simp: field_simps)
 
 lemma ereal_inverse_antimono_strict:
@@ -1015,31 +1187,37 @@
 
 lemma ereal_inverse_antimono:
   fixes x y :: ereal
-  shows "0 \<le> x \<Longrightarrow> x <= y \<Longrightarrow> inverse y <= inverse x"
+  shows "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> inverse y \<le> inverse x"
   by (cases rule: ereal2_cases[of x y]) auto
 
 lemma inverse_inverse_Pinfty_iff[simp]:
-  fixes x :: ereal shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"
+  fixes x :: ereal
+  shows "inverse x = \<infinity> \<longleftrightarrow> x = 0"
   by (cases x) auto
 
 lemma ereal_inverse_eq_0:
-  fixes x :: ereal shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"
+  fixes x :: ereal
+  shows "inverse x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity>"
   by (cases x) auto
 
 lemma ereal_0_gt_inverse:
-  fixes x :: ereal shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"
+  fixes x :: ereal
+  shows "0 < inverse x \<longleftrightarrow> x \<noteq> \<infinity> \<and> 0 \<le> x"
   by (cases x) auto
 
 lemma ereal_mult_less_right:
   fixes a b c :: ereal
-  assumes "b * a < c * a" "0 < a" "a < \<infinity>"
+  assumes "b * a < c * a"
+    and "0 < a"
+    and "a < \<infinity>"
   shows "b < c"
   using assms
   by (cases rule: ereal3_cases[of a b c])
      (auto split: split_if_asm simp: zero_less_mult_iff zero_le_mult_iff)
 
 lemma ereal_power_divide:
-  fixes x y :: ereal shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
+  fixes x y :: ereal
+  shows "y \<noteq> 0 \<Longrightarrow> (x / y) ^ n = x^n / y^n"
   by (cases rule: ereal2_cases[of x y])
      (auto simp: one_ereal_def zero_ereal_def power_divide not_le
                  power_less_zero_eq zero_le_power_iff)
@@ -1047,36 +1225,47 @@
 lemma ereal_le_mult_one_interval:
   fixes x y :: ereal
   assumes y: "y \<noteq> -\<infinity>"
-  assumes z: "\<And>z. \<lbrakk> 0 < z ; z < 1 \<rbrakk> \<Longrightarrow> z * x \<le> y"
+  assumes z: "\<And>z. 0 < z \<Longrightarrow> z < 1 \<Longrightarrow> z * x \<le> y"
   shows "x \<le> y"
 proof (cases x)
-  case PInf with z[of "1 / 2"] show "x \<le> y" by (simp add: one_ereal_def)
+  case PInf
+  with z[of "1 / 2"] show "x \<le> y"
+    by (simp add: one_ereal_def)
 next
-  case (real r) note r = this
+  case (real r)
+  note r = this
   show "x \<le> y"
   proof (cases y)
-    case (real p) note p = this
+    case (real p)
+    note p = this
     have "r \<le> p"
     proof (rule field_le_mult_one_interval)
-      fix z :: real assume "0 < z" and "z < 1"
-      with z[of "ereal z"]
-      show "z * r \<le> p" using p r by (auto simp: zero_le_mult_iff one_ereal_def)
+      fix z :: real
+      assume "0 < z" and "z < 1"
+      with z[of "ereal z"] show "z * r \<le> p"
+        using p r by (auto simp: zero_le_mult_iff one_ereal_def)
     qed
-    then show "x \<le> y" using p r by simp
+    then show "x \<le> y"
+      using p r by simp
   qed (insert y, simp_all)
 qed simp
 
 lemma ereal_divide_right_mono[simp]:
   fixes x y z :: ereal
-  assumes "x \<le> y" "0 < z" shows "x / z \<le> y / z"
-using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)
+  assumes "x \<le> y"
+    and "0 < z"
+  shows "x / z \<le> y / z"
+  using assms by (cases x y z rule: ereal3_cases) (auto intro: divide_right_mono)
 
 lemma ereal_divide_left_mono[simp]:
   fixes x y z :: ereal
-  assumes "y \<le> x" "0 < z" "0 < x * y"
+  assumes "y \<le> x"
+    and "0 < z"
+    and "0 < x * y"
   shows "z / x \<le> z / y"
-using assms by (cases x y z rule: ereal3_cases)
-  (auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)
+  using assms
+  by (cases x y z rule: ereal3_cases)
+    (auto intro: divide_left_mono simp: field_simps sign_simps split: split_if_asm)
 
 lemma ereal_divide_zero_left[simp]:
   fixes a :: ereal
@@ -1088,13 +1277,16 @@
   shows "b / c * a = b * a / c"
   by (cases a b c rule: ereal3_cases) (auto simp: field_simps sign_simps)
 
+
 subsection "Complete lattice"
 
 instantiation ereal :: lattice
 begin
+
 definition [simp]: "sup x y = (max x y :: ereal)"
 definition [simp]: "inf x y = (min x y :: ereal)"
 instance by default simp_all
+
 end
 
 instantiation ereal :: complete_lattice
@@ -1109,29 +1301,46 @@
 lemma ereal_complete_Sup:
   fixes S :: "ereal set"
   shows "\<exists>x. (\<forall>y\<in>S. y \<le> x) \<and> (\<forall>z. (\<forall>y\<in>S. y \<le> z) \<longrightarrow> x \<le> z)"
-proof cases
-  assume "\<exists>x. \<forall>a\<in>S. a \<le> ereal x"
-  then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y" by auto
-  then have "\<infinity> \<notin> S" by force
+proof (cases "\<exists>x. \<forall>a\<in>S. a \<le> ereal x")
+  case True
+  then obtain y where y: "\<And>a. a\<in>S \<Longrightarrow> a \<le> ereal y"
+    by auto
+  then have "\<infinity> \<notin> S"
+    by force
   show ?thesis
-  proof cases
-    assume "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}"
-    with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>" by auto
+  proof (cases "S \<noteq> {-\<infinity>} \<and> S \<noteq> {}")
+    case True
+    with `\<infinity> \<notin> S` obtain x where x: "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"
+      by auto
     obtain s where s: "\<forall>x\<in>ereal -` S. x \<le> s" "\<And>z. (\<forall>x\<in>ereal -` S. x \<le> z) \<Longrightarrow> s \<le> z"
     proof (atomize_elim, rule complete_real)
-      show "\<exists>x. x \<in> ereal -` S" using x by auto
-      show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z" by (auto dest: y intro!: exI[of _ y])
+      show "\<exists>x. x \<in> ereal -` S"
+        using x by auto
+      show "\<exists>z. \<forall>x\<in>ereal -` S. x \<le> z"
+        by (auto dest: y intro!: exI[of _ y])
     qed
     show ?thesis
     proof (safe intro!: exI[of _ "ereal s"])
-      fix y assume "y \<in> S" with s `\<infinity> \<notin> S` show "y \<le> ereal s"
+      fix y
+      assume "y \<in> S"
+      with s `\<infinity> \<notin> S` show "y \<le> ereal s"
         by (cases y) auto
     next
-      fix z assume "\<forall>y\<in>S. y \<le> z" with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
+      fix z
+      assume "\<forall>y\<in>S. y \<le> z"
+      with `S \<noteq> {-\<infinity>} \<and> S \<noteq> {}` show "ereal s \<le> z"
         by (cases z) (auto intro!: s)
     qed
-  qed (auto intro!: exI[of _ "-\<infinity>"])
-qed (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)
+  next
+    case False
+    then show ?thesis
+      by (auto intro!: exI[of _ "-\<infinity>"])
+  qed
+next
+  case False
+  then show ?thesis
+    by (fastforce intro!: exI[of _ \<infinity>] ereal_top intro: order_trans dest: less_imp_le simp: not_le)
+qed
 
 lemma ereal_complete_uminus_eq:
   fixes S :: "ereal set"
@@ -1141,23 +1350,24 @@
 
 lemma ereal_complete_Inf:
   "\<exists>x. (\<forall>y\<in>S::ereal set. x \<le> y) \<and> (\<forall>z. (\<forall>y\<in>S. z \<le> y) \<longrightarrow> z \<le> x)"
-  using ereal_complete_Sup[of "uminus ` S"] unfolding ereal_complete_uminus_eq by auto
+  using ereal_complete_Sup[of "uminus ` S"]
+  unfolding ereal_complete_uminus_eq
+  by auto
 
 instance
 proof
   show "Sup {} = (bot::ereal)"
-  apply (auto simp: bot_ereal_def Sup_ereal_def)
-  apply (rule some1_equality)
-  apply (metis ereal_bot ereal_less_eq(2))
-  apply (metis ereal_less_eq(2))
-  done
-next
+    apply (auto simp: bot_ereal_def Sup_ereal_def)
+    apply (rule some1_equality)
+    apply (metis ereal_bot ereal_less_eq(2))
+    apply (metis ereal_less_eq(2))
+    done
   show "Inf {} = (top::ereal)"
-  apply (auto simp: top_ereal_def Inf_ereal_def)
-  apply (rule some1_equality)
-  apply (metis ereal_top ereal_less_eq(1))
-  apply (metis ereal_less_eq(1))
-  done
+    apply (auto simp: top_ereal_def Inf_ereal_def)
+    apply (rule some1_equality)
+    apply (metis ereal_top ereal_less_eq(1))
+    apply (metis ereal_less_eq(1))
+    done
 qed (auto intro: someI2_ex ereal_complete_Sup ereal_complete_Inf
   simp: Sup_ereal_def Inf_ereal_def bot_ereal_def top_ereal_def)
 
@@ -1183,74 +1393,89 @@
   using ereal_Sup_uminus_image_eq[of "uminus ` S"] by simp
 
 lemma ereal_SUPR_uminus:
-  fixes f :: "'a => ereal"
+  fixes f :: "'a \<Rightarrow> ereal"
   shows "(SUP i : R. -(f i)) = -(INF i : R. f i)"
   using ereal_Sup_uminus_image_eq[of "f`R"]
   by (simp add: SUP_def INF_def image_image)
 
 lemma ereal_INFI_uminus:
-  fixes f :: "'a => ereal"
-  shows "(INF i : R. -(f i)) = -(SUP i : R. f i)"
+  fixes f :: "'a \<Rightarrow> ereal"
+  shows "(INF i : R. - f i) = - (SUP i : R. f i)"
   using ereal_SUPR_uminus[of _ "\<lambda>x. - f x"] by simp
 
 lemma ereal_image_uminus_shift:
-  fixes X Y :: "ereal set" shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"
+  fixes X Y :: "ereal set"
+  shows "uminus ` X = Y \<longleftrightarrow> X = uminus ` Y"
 proof
   assume "uminus ` X = Y"
   then have "uminus ` uminus ` X = uminus ` Y"
     by (simp add: inj_image_eq_iff)
-  then show "X = uminus ` Y" by (simp add: image_image)
+  then show "X = uminus ` Y"
+    by (simp add: image_image)
 qed (simp add: image_image)
 
 lemma Inf_ereal_iff:
   fixes z :: ereal
-  shows "(!!x. x:X ==> z <= x) ==> (EX x:X. x<y) <-> Inf X < y"
-  by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower less_le_not_le linear
-            order_less_le_trans)
+  shows "(\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> (\<exists>x\<in>X. x < y) \<longleftrightarrow> Inf X < y"
+  by (metis complete_lattice_class.Inf_greatest complete_lattice_class.Inf_lower
+      less_le_not_le linear order_less_le_trans)
 
 lemma Sup_eq_MInfty:
-  fixes S :: "ereal set" shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
+  fixes S :: "ereal set"
+  shows "Sup S = -\<infinity> \<longleftrightarrow> S = {} \<or> S = {-\<infinity>}"
   unfolding bot_ereal_def[symmetric] by auto
 
 lemma Inf_eq_PInfty:
-  fixes S :: "ereal set" shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
+  fixes S :: "ereal set"
+  shows "Inf S = \<infinity> \<longleftrightarrow> S = {} \<or> S = {\<infinity>}"
   using Sup_eq_MInfty[of "uminus`S"]
   unfolding ereal_Sup_uminus_image_eq ereal_image_uminus_shift by simp
 
-lemma Inf_eq_MInfty: 
-  fixes S :: "ereal set" shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"
+lemma Inf_eq_MInfty:
+  fixes S :: "ereal set"
+  shows "-\<infinity> \<in> S \<Longrightarrow> Inf S = -\<infinity>"
   unfolding bot_ereal_def[symmetric] by auto
 
 lemma Sup_eq_PInfty:
-  fixes S :: "ereal set" shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"
+  fixes S :: "ereal set"
+  shows "\<infinity> \<in> S \<Longrightarrow> Sup S = \<infinity>"
   unfolding top_ereal_def[symmetric] by auto
 
 lemma Sup_ereal_close:
   fixes e :: ereal
-  assumes "0 < e" and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
+  assumes "0 < e"
+    and S: "\<bar>Sup S\<bar> \<noteq> \<infinity>" "S \<noteq> {}"
   shows "\<exists>x\<in>S. Sup S - e < x"
   using assms by (cases e) (auto intro!: less_Sup_iff[THEN iffD1])
 
 lemma Inf_ereal_close:
-  fixes e :: ereal assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>" "0 < e"
+  fixes e :: ereal
+  assumes "\<bar>Inf X\<bar> \<noteq> \<infinity>"
+    and "0 < e"
   shows "\<exists>x\<in>X. x < Inf X + e"
 proof (rule Inf_less_iff[THEN iffD1])
-  show "Inf X < Inf X + e" using assms
-    by (cases e) auto
+  show "Inf X < Inf X + e"
+    using assms by (cases e) auto
 qed
 
 lemma SUP_nat_Infty: "(SUP i::nat. ereal (real i)) = \<infinity>"
 proof -
-  { fix x ::ereal assume "x \<noteq> \<infinity>"
+  {
+    fix x :: ereal
+    assume "x \<noteq> \<infinity>"
     then have "\<exists>k::nat. x < ereal (real k)"
     proof (cases x)
-      case MInf then show ?thesis by (intro exI[of _ 0]) auto
+      case MInf
+      then show ?thesis
+        by (intro exI[of _ 0]) auto
     next
       case (real r)
       moreover obtain k :: nat where "r < real k"
         using ex_less_of_nat by (auto simp: real_eq_of_nat)
-      ultimately show ?thesis by auto
-    qed simp }
+      ultimately show ?thesis
+        by auto
+    qed simp
+  }
   then show ?thesis
     using SUP_eq_top_iff[of UNIV "\<lambda>n::nat. ereal (real n)"]
     by (auto simp: top_ereal_def)
@@ -1259,96 +1484,136 @@
 lemma Inf_less:
   fixes x :: ereal
   assumes "(INF i:A. f i) < x"
-  shows "EX i. i : A & f i <= x"
-proof(rule ccontr)
-  assume "~ (EX i. i : A & f i <= x)"
-  hence "ALL i:A. f i > x" by auto
-  hence "(INF i:A. f i) >= x" apply (subst INF_greatest) by auto
-  thus False using assms by auto
+  shows "\<exists>i. i \<in> A \<and> f i \<le> x"
+proof (rule ccontr)
+  assume "\<not> ?thesis"
+  then have "\<forall>i\<in>A. f i > x"
+    by auto
+  then have "(INF i:A. f i) \<ge> x"
+    by (subst INF_greatest) auto
+  then show False
+    using assms by auto
 qed
 
 lemma SUP_ereal_le_addI:
   fixes f :: "'i \<Rightarrow> ereal"
-  assumes "\<And>i. f i + y \<le> z" and "y \<noteq> -\<infinity>"
+  assumes "\<And>i. f i + y \<le> z"
+    and "y \<noteq> -\<infinity>"
   shows "SUPR UNIV f + y \<le> z"
 proof (cases y)
   case (real r)
-  then have "\<And>i. f i \<le> z - y" using assms by (simp add: ereal_le_minus_iff)
-  then have "SUPR UNIV f \<le> z - y" by (rule SUP_least)
-  then show ?thesis using real by (simp add: ereal_le_minus_iff)
+  then have "\<And>i. f i \<le> z - y"
+    using assms by (simp add: ereal_le_minus_iff)
+  then have "SUPR UNIV f \<le> z - y"
+    by (rule SUP_least)
+  then show ?thesis
+    using real by (simp add: ereal_le_minus_iff)
 qed (insert assms, auto)
 
 lemma SUPR_ereal_add:
   fixes f g :: "nat \<Rightarrow> ereal"
-  assumes "incseq f" "incseq g" and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
+  assumes "incseq f"
+    and "incseq g"
+    and pos: "\<And>i. f i \<noteq> -\<infinity>" "\<And>i. g i \<noteq> -\<infinity>"
   shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
 proof (rule SUP_eqI)
-  fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
-  have f: "SUPR UNIV f \<noteq> -\<infinity>" using pos
-    unfolding SUP_def Sup_eq_MInfty by (auto dest: image_eqD)
-  { fix j
-    { fix i
+  fix y
+  assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> f i + g i \<le> y"
+  have f: "SUPR UNIV f \<noteq> -\<infinity>"
+    using pos
+    unfolding SUP_def Sup_eq_MInfty
+    by (auto dest: image_eqD)
+  {
+    fix j
+    {
+      fix i
       have "f i + g j \<le> f i + g (max i j)"
-        using `incseq g`[THEN incseqD] by (rule add_left_mono) auto
+        using `incseq g`[THEN incseqD]
+        by (rule add_left_mono) auto
       also have "\<dots> \<le> f (max i j) + g (max i j)"
-        using `incseq f`[THEN incseqD] by (rule add_right_mono) auto
+        using `incseq f`[THEN incseqD]
+        by (rule add_right_mono) auto
       also have "\<dots> \<le> y" using * by auto
-      finally have "f i + g j \<le> y" . }
+      finally have "f i + g j \<le> y" .
+    }
     then have "SUPR UNIV f + g j \<le> y"
       using assms(4)[of j] by (intro SUP_ereal_le_addI) auto
-    then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps) }
+    then have "g j + SUPR UNIV f \<le> y" by (simp add: ac_simps)
+  }
   then have "SUPR UNIV g + SUPR UNIV f \<le> y"
     using f by (rule SUP_ereal_le_addI)
-  then show "SUPR UNIV f + SUPR UNIV g \<le> y" by (simp add: ac_simps)
+  then show "SUPR UNIV f + SUPR UNIV g \<le> y"
+    by (simp add: ac_simps)
 qed (auto intro!: add_mono SUP_upper)
 
 lemma SUPR_ereal_add_pos:
   fixes f g :: "nat \<Rightarrow> ereal"
-  assumes inc: "incseq f" "incseq g" and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
+  assumes inc: "incseq f" "incseq g"
+    and pos: "\<And>i. 0 \<le> f i" "\<And>i. 0 \<le> g i"
   shows "(SUP i. f i + g i) = SUPR UNIV f + SUPR UNIV g"
 proof (intro SUPR_ereal_add inc)
-  fix i show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>" using pos[of i] by auto
+  fix i
+  show "f i \<noteq> -\<infinity>" "g i \<noteq> -\<infinity>"
+    using pos[of i] by auto
 qed
 
 lemma SUPR_ereal_setsum:
   fixes f g :: "'a \<Rightarrow> nat \<Rightarrow> ereal"
-  assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)" and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
+  assumes "\<And>n. n \<in> A \<Longrightarrow> incseq (f n)"
+    and pos: "\<And>n i. n \<in> A \<Longrightarrow> 0 \<le> f n i"
   shows "(SUP i. \<Sum>n\<in>A. f n i) = (\<Sum>n\<in>A. SUPR UNIV (f n))"
-proof cases
-  assume "finite A" then show ?thesis using assms
+proof (cases "finite A")
+  case True
+  then show ?thesis using assms
     by induct (auto simp: incseq_setsumI2 setsum_nonneg SUPR_ereal_add_pos)
-qed simp
+next
+  case False
+  then show ?thesis by simp
+qed
 
 lemma SUPR_ereal_cmult:
-  fixes f :: "nat \<Rightarrow> ereal" assumes "\<And>i. 0 \<le> f i" "0 \<le> c"
+  fixes f :: "nat \<Rightarrow> ereal"
+  assumes "\<And>i. 0 \<le> f i"
+    and "0 \<le> c"
   shows "(SUP i. c * f i) = c * SUPR UNIV f"
 proof (rule SUP_eqI)
-  fix i have "f i \<le> SUPR UNIV f" by (rule SUP_upper) auto
+  fix i
+  have "f i \<le> SUPR UNIV f"
+    by (rule SUP_upper) auto
   then show "c * f i \<le> c * SUPR UNIV f"
     using `0 \<le> c` by (rule ereal_mult_left_mono)
 next
-  fix y assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
+  fix y
+  assume *: "\<And>i. i \<in> UNIV \<Longrightarrow> c * f i \<le> y"
   show "c * SUPR UNIV f \<le> y"
-  proof cases
-    assume c: "0 < c \<and> c \<noteq> \<infinity>"
+  proof (cases "0 < c \<and> c \<noteq> \<infinity>")
+    case True
     with * have "SUPR UNIV f \<le> y / c"
       by (intro SUP_least) (auto simp: ereal_le_divide_pos)
-    with c show ?thesis
+    with True show ?thesis
       by (auto simp: ereal_le_divide_pos)
   next
-    { assume "c = \<infinity>" have ?thesis
-      proof cases
-        assume **: "\<forall>i. f i = 0"
-        then have "range f = {0}" by auto
-        with ** show "c * SUPR UNIV f \<le> y" using *
-          by (auto simp: SUP_def min_max.sup_absorb1)
+    case False
+    {
+      assume "c = \<infinity>"
+      have ?thesis
+      proof (cases "\<forall>i. f i = 0")
+        case True
+        then have "range f = {0}"
+          by auto
+        with True show "c * SUPR UNIV f \<le> y"
+          using * by (auto simp: SUP_def min_max.sup_absorb1)
       next
-        assume "\<not> (\<forall>i. f i = 0)"
-        then obtain i where "f i \<noteq> 0" by auto
-        with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis by (auto split: split_if_asm)
-      qed }
-    moreover assume "\<not> (0 < c \<and> c \<noteq> \<infinity>)"
-    ultimately show ?thesis using * `0 \<le> c` by auto
+        case False
+        then obtain i where "f i \<noteq> 0"
+          by auto
+        with *[of i] `c = \<infinity>` `0 \<le> f i` show ?thesis
+          by (auto split: split_if_asm)
+      qed
+    }
+    moreover note False
+    ultimately show ?thesis
+      using * `0 \<le> c` by auto
   qed
 qed
 
@@ -1359,15 +1624,21 @@
   unfolding SUP_def Sup_eq_top_iff[where 'a=ereal, unfolded top_ereal_def]
   apply simp
 proof safe
-  fix x :: ereal assume "x \<noteq> \<infinity>"
+  fix x :: ereal
+  assume "x \<noteq> \<infinity>"
   show "\<exists>i\<in>A. x < f i"
   proof (cases x)
-    case PInf with `x \<noteq> \<infinity>` show ?thesis by simp
+    case PInf
+    with `x \<noteq> \<infinity>` show ?thesis
+      by simp
   next
-    case MInf with assms[of "0"] show ?thesis by force
+    case MInf
+    with assms[of "0"] show ?thesis
+      by force
   next
     case (real r)
-    with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)" by auto
+    with less_PInf_Ex_of_nat[of x] obtain n :: nat where "x < ereal (real n)"
+      by auto
     moreover obtain i where "i \<in> A" "ereal (real n) \<le> f i"
       using assms ..
     ultimately show ?thesis
@@ -1382,7 +1653,8 @@
   case (real r)
   have "\<forall>n::nat. \<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
   proof
-    fix n ::nat have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"
+    fix n :: nat
+    have "\<exists>x\<in>A. Sup A - 1 / ereal (real n) < x"
       using assms real by (intro Sup_ereal_close) (auto simp: one_ereal_def)
     then obtain x where "x \<in> A" "Sup A - 1 / ereal (real n) < x" ..
     then show "\<exists>x. x \<in> A \<and> Sup A < x + 1 / ereal (real n)"
@@ -1392,48 +1664,63 @@
     where f: "\<forall>x. f x \<in> A \<and> Sup A < f x + 1 / ereal (real x)" ..
   have "SUPR UNIV f = Sup A"
   proof (rule SUP_eqI)
-    fix i show "f i \<le> Sup A" using f
-      by (auto intro!: complete_lattice_class.Sup_upper)
+    fix i
+    show "f i \<le> Sup A"
+      using f by (auto intro!: complete_lattice_class.Sup_upper)
   next
-    fix y assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"
+    fix y
+    assume bound: "\<And>i. i \<in> UNIV \<Longrightarrow> f i \<le> y"
     show "Sup A \<le> y"
     proof (rule ereal_le_epsilon, intro allI impI)
-      fix e :: ereal assume "0 < e"
+      fix e :: ereal
+      assume "0 < e"
       show "Sup A \<le> y + e"
       proof (cases e)
         case (real r)
-        hence "0 < r" using `0 < e` by auto
-        then obtain n ::nat where *: "1 / real n < r" "0 < n"
-          using ex_inverse_of_nat_less by (auto simp: real_eq_of_nat inverse_eq_divide)
-        have "Sup A \<le> f n + 1 / ereal (real n)" using f[THEN spec, of n]
+        then have "0 < r"
+          using `0 < e` by auto
+        then obtain n :: nat where *: "1 / real n < r" "0 < n"
+          using ex_inverse_of_nat_less
+          by (auto simp: real_eq_of_nat inverse_eq_divide)
+        have "Sup A \<le> f n + 1 / ereal (real n)"
+          using f[THEN spec, of n]
           by auto
-        also have "1 / ereal (real n) \<le> e" using real * by (auto simp: one_ereal_def )
-        with bound have "f n + 1 / ereal (real n) \<le> y + e" by (rule add_mono) simp
+        also have "1 / ereal (real n) \<le> e"
+          using real *
+          by (auto simp: one_ereal_def )
+        with bound have "f n + 1 / ereal (real n) \<le> y + e"
+          by (rule add_mono) simp
         finally show "Sup A \<le> y + e" .
       qed (insert `0 < e`, auto)
     qed
   qed
-  with f show ?thesis by (auto intro!: exI[of _ f])
+  with f show ?thesis
+    by (auto intro!: exI[of _ f])
 next
   case PInf
-  from `A \<noteq> {}` obtain x where "x \<in> A" by auto
+  from `A \<noteq> {}` obtain x where "x \<in> A"
+    by auto
   show ?thesis
-  proof cases
-    assume *: "\<infinity> \<in> A"
-    then have "\<infinity> \<le> Sup A" by (intro complete_lattice_class.Sup_upper)
-    with * show ?thesis by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])
+  proof (cases "\<infinity> \<in> A")
+    case True
+    then have "\<infinity> \<le> Sup A"
+      by (intro complete_lattice_class.Sup_upper)
+    with True show ?thesis
+      by (auto intro!: exI[of _ "\<lambda>x. \<infinity>"])
   next
-    assume "\<infinity> \<notin> A"
+    case False
     have "\<exists>x\<in>A. 0 \<le> x"
-      by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least ereal_infty_less_eq2 linorder_linear)
-    then obtain x where "x \<in> A" "0 \<le> x" by auto
+      by (metis Infty_neq_0 PInf complete_lattice_class.Sup_least
+          ereal_infty_less_eq2 linorder_linear)
+    then obtain x where "x \<in> A" and "0 \<le> x"
+      by auto
     have "\<forall>n::nat. \<exists>f. f \<in> A \<and> x + ereal (real n) \<le> f"
     proof (rule ccontr)
       assume "\<not> ?thesis"
       then have "\<exists>n::nat. Sup A \<le> x + ereal (real n)"
         by (simp add: Sup_le_iff not_le less_imp_le Ball_def) (metis less_imp_le)
       then show False using `x \<in> A` `\<infinity> \<notin> A` PInf
-        by(cases x) auto
+        by (cases x) auto
     qed
     from choice[OF this] obtain f :: "nat \<Rightarrow> ereal"
       where f: "\<forall>z. f z \<in> A \<and> x + ereal (real z) \<le> f z" ..
@@ -1444,20 +1731,26 @@
         using f[THEN spec, of n] `0 \<le> x`
         by (cases rule: ereal2_cases[of "f n" x]) (auto intro!: exI[of _ n])
     qed
-    then show ?thesis using f PInf by (auto intro!: exI[of _ f])
+    then show ?thesis
+      using f PInf by (auto intro!: exI[of _ f])
   qed
 next
   case MInf
-  with `A \<noteq> {}` have "A = {-\<infinity>}" by (auto simp: Sup_eq_MInfty)
-  then show ?thesis using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])
+  with `A \<noteq> {}` have "A = {-\<infinity>}"
+    by (auto simp: Sup_eq_MInfty)
+  then show ?thesis
+    using MInf by (auto intro!: exI[of _ "\<lambda>x. -\<infinity>"])
 qed
 
 lemma SUPR_countable_SUPR:
   "A \<noteq> {} \<Longrightarrow> \<exists>f::nat \<Rightarrow> ereal. range f \<subseteq> g`A \<and> SUPR A g = SUPR UNIV f"
-  using Sup_countable_SUPR[of "g`A"] by (auto simp: SUP_def)
+  using Sup_countable_SUPR[of "g`A"]
+  by (auto simp: SUP_def)
 
 lemma Sup_ereal_cadd:
-  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
+  fixes A :: "ereal set"
+  assumes "A \<noteq> {}"
+    and "a \<noteq> -\<infinity>"
   shows "Sup ((\<lambda>x. a + x) ` A) = a + Sup A"
 proof (rule antisym)
   have *: "\<And>a::ereal. \<And>A. Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A"
@@ -1465,37 +1758,46 @@
   then show "Sup ((\<lambda>x. a + x) ` A) \<le> a + Sup A" .
   show "a + Sup A \<le> Sup ((\<lambda>x. a + x) ` A)"
   proof (cases a)
-    case PInf with `A \<noteq> {}` show ?thesis by (auto simp: image_constant min_max.sup_absorb1)
+    case PInf with `A \<noteq> {}`
+    show ?thesis
+      by (auto simp: image_constant min_max.sup_absorb1)
   next
     case (real r)
     then have **: "op + (- a) ` op + a ` A = A"
       by (auto simp: image_iff ac_simps zero_ereal_def[symmetric])
-    from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis unfolding **
+    from *[of "-a" "(\<lambda>x. a + x) ` A"] real show ?thesis
+      unfolding **
       by (cases rule: ereal2_cases[of "Sup A" "Sup (op + a ` A)"]) auto
   qed (insert `a \<noteq> -\<infinity>`, auto)
 qed
 
 lemma Sup_ereal_cminus:
-  fixes A :: "ereal set" assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
+  fixes A :: "ereal set"
+  assumes "A \<noteq> {}"
+    and "a \<noteq> -\<infinity>"
   shows "Sup ((\<lambda>x. a - x) ` A) = a - Inf A"
   using Sup_ereal_cadd[of "uminus ` A" a] assms
-  by (simp add: comp_def image_image minus_ereal_def
-                 ereal_Sup_uminus_image_eq)
+  by (simp add: comp_def image_image minus_ereal_def ereal_Sup_uminus_image_eq)
 
 lemma SUPR_ereal_cminus:
   fixes f :: "'i \<Rightarrow> ereal"
-  fixes A assumes "A \<noteq> {}" and "a \<noteq> -\<infinity>"
+  fixes A
+  assumes "A \<noteq> {}"
+    and "a \<noteq> -\<infinity>"
   shows "(SUP x:A. a - f x) = a - (INF x:A. f x)"
   using Sup_ereal_cminus[of "f`A" a] assms
   unfolding SUP_def INF_def image_image by auto
 
 lemma Inf_ereal_cminus:
-  fixes A :: "ereal set" assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
+  fixes A :: "ereal set"
+  assumes "A \<noteq> {}"
+    and "\<bar>a\<bar> \<noteq> \<infinity>"
   shows "Inf ((\<lambda>x. a - x) ` A) = a - Sup A"
 proof -
   {
     fix x
-    have "-a - -x = -(a - x)" using assms by (cases x) auto
+    have "-a - -x = -(a - x)"
+      using assms by (cases x) auto
   } note * = this
   then have "(\<lambda>x. -a - x)`uminus`A = uminus ` (\<lambda>x. a - x) ` A"
     by (auto simp: image_image)
@@ -1505,25 +1807,32 @@
 qed
 
 lemma INFI_ereal_cminus:
-  fixes a :: ereal assumes "A \<noteq> {}" and "\<bar>a\<bar> \<noteq> \<infinity>"
+  fixes a :: ereal
+  assumes "A \<noteq> {}"
+    and "\<bar>a\<bar> \<noteq> \<infinity>"
   shows "(INF x:A. a - f x) = a - (SUP x:A. f x)"
   using Inf_ereal_cminus[of "f`A" a] assms
   unfolding SUP_def INF_def image_image
   by auto
 
 lemma uminus_ereal_add_uminus_uminus:
-  fixes a b :: ereal shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"
+  fixes a b :: ereal
+  shows "a \<noteq> \<infinity> \<Longrightarrow> b \<noteq> \<infinity> \<Longrightarrow> - (- a + - b) = a + b"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma INFI_ereal_add:
   fixes f :: "nat \<Rightarrow> ereal"
-  assumes "decseq f" "decseq g" and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
+  assumes "decseq f" "decseq g"
+    and fin: "\<And>i. f i \<noteq> \<infinity>" "\<And>i. g i \<noteq> \<infinity>"
   shows "(INF i. f i + g i) = INFI UNIV f + INFI UNIV g"
 proof -
   have INF_less: "(INF i. f i) < \<infinity>" "(INF i. g i) < \<infinity>"
     using assms unfolding INF_less_iff by auto
-  { fix i from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
-      by (rule uminus_ereal_add_uminus_uminus) }
+  {
+    fix i
+    from fin[of i] have "- ((- f i) + (- g i)) = f i + g i"
+      by (rule uminus_ereal_add_uminus_uminus)
+  }
   then have "(INF i. f i + g i) = (INF i. - ((- f i) + (- g i)))"
     by simp
   also have "\<dots> = INFI UNIV f + INFI UNIV g"
@@ -1534,6 +1843,7 @@
   finally show ?thesis .
 qed
 
+
 subsection "Relation to @{typ enat}"
 
 definition "ereal_of_enat n = (case n of enat n \<Rightarrow> ereal (real n) | \<infinity> \<Rightarrow> \<infinity>)"
@@ -1546,50 +1856,41 @@
   "ereal_of_enat \<infinity> = \<infinity>"
   by (simp_all add: ereal_of_enat_def)
 
-lemma ereal_of_enat_le_iff[simp]:
-  "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
-by (cases m n rule: enat2_cases) auto
+lemma ereal_of_enat_le_iff[simp]: "ereal_of_enat m \<le> ereal_of_enat n \<longleftrightarrow> m \<le> n"
+  by (cases m n rule: enat2_cases) auto
 
-lemma ereal_of_enat_less_iff[simp]:
-  "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"
-by (cases m n rule: enat2_cases) auto
+lemma ereal_of_enat_less_iff[simp]: "ereal_of_enat m < ereal_of_enat n \<longleftrightarrow> m < n"
+  by (cases m n rule: enat2_cases) auto
 
-lemma numeral_le_ereal_of_enat_iff[simp]:
-  shows "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"
-by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
+lemma numeral_le_ereal_of_enat_iff[simp]: "numeral m \<le> ereal_of_enat n \<longleftrightarrow> numeral m \<le> n"
+  by (cases n) (auto dest: natceiling_le intro: natceiling_le_eq[THEN iffD1])
 
-lemma numeral_less_ereal_of_enat_iff[simp]:
-  shows "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
-by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
+lemma numeral_less_ereal_of_enat_iff[simp]: "numeral m < ereal_of_enat n \<longleftrightarrow> numeral m < n"
+  by (cases n) (auto simp: real_of_nat_less_iff[symmetric])
 
-lemma ereal_of_enat_ge_zero_cancel_iff[simp]:
-  "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
-by (cases n) (auto simp: enat_0[symmetric])
+lemma ereal_of_enat_ge_zero_cancel_iff[simp]: "0 \<le> ereal_of_enat n \<longleftrightarrow> 0 \<le> n"
+  by (cases n) (auto simp: enat_0[symmetric])
 
-lemma ereal_of_enat_gt_zero_cancel_iff[simp]:
-  "0 < ereal_of_enat n \<longleftrightarrow> 0 < n"
-by (cases n) (auto simp: enat_0[symmetric])
+lemma ereal_of_enat_gt_zero_cancel_iff[simp]: "0 < ereal_of_enat n \<longleftrightarrow> 0 < n"
+  by (cases n) (auto simp: enat_0[symmetric])
 
-lemma ereal_of_enat_zero[simp]:
-  "ereal_of_enat 0 = 0"
-by (auto simp: enat_0[symmetric])
+lemma ereal_of_enat_zero[simp]: "ereal_of_enat 0 = 0"
+  by (auto simp: enat_0[symmetric])
 
-lemma ereal_of_enat_inf[simp]:
-  "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"
+lemma ereal_of_enat_inf[simp]: "ereal_of_enat n = \<infinity> \<longleftrightarrow> n = \<infinity>"
   by (cases n) auto
 
-
-lemma ereal_of_enat_add:
-  "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"
-by (cases m n rule: enat2_cases) auto
+lemma ereal_of_enat_add: "ereal_of_enat (m + n) = ereal_of_enat m + ereal_of_enat n"
+  by (cases m n rule: enat2_cases) auto
 
 lemma ereal_of_enat_sub:
-  assumes "n \<le> m" shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "
-using assms by (cases m n rule: enat2_cases) auto
+  assumes "n \<le> m"
+  shows "ereal_of_enat (m - n) = ereal_of_enat m - ereal_of_enat n "
+  using assms by (cases m n rule: enat2_cases) auto
 
 lemma ereal_of_enat_mult:
   "ereal_of_enat (m * n) = ereal_of_enat m * ereal_of_enat n"
-by (cases m n rule: enat2_cases) auto
+  by (cases m n rule: enat2_cases) auto
 
 lemmas ereal_of_enat_pushin = ereal_of_enat_add ereal_of_enat_sub ereal_of_enat_mult
 lemmas ereal_of_enat_pushout = ereal_of_enat_pushin[symmetric]
@@ -1607,6 +1908,7 @@
 
 instance
   by default (simp add: open_ereal_generated)
+
 end
 
 lemma open_PInfty: "open A \<Longrightarrow> \<infinity> \<in> A \<Longrightarrow> (\<exists>x. {ereal x<..} \<subseteq> A)"
@@ -1618,8 +1920,13 @@
   with Int show ?case
     by (intro exI[of _ "max x z"]) fastforce
 next
-  { fix x have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t" by (cases x) auto }
-  moreover case (Basis S)
+  case (Basis S)
+  {
+    fix x
+    have "x \<noteq> \<infinity> \<Longrightarrow> \<exists>t. x \<le> ereal t"
+      by (cases x) auto
+  }
+  moreover note Basis
   ultimately show ?case
     by (auto split: ereal.split)
 qed (fastforce simp add: vimage_Union)+
@@ -1633,8 +1940,13 @@
   with Int show ?case
     by (intro exI[of _ "min x z"]) fastforce
 next
-  { fix x have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x" by (cases x) auto }
-  moreover case (Basis S)
+  case (Basis S)
+  {
+    fix x
+    have "x \<noteq> - \<infinity> \<Longrightarrow> \<exists>t. ereal t \<le> x"
+      by (cases x) auto
+  }
+  moreover note Basis
   ultimately show ?case
     by (auto split: ereal.split)
 qed (fastforce simp add: vimage_Union)+
@@ -1642,13 +1954,18 @@
 lemma open_ereal_vimage: "open S \<Longrightarrow> open (ereal -` S)"
   unfolding open_ereal_generated
 proof (induct rule: generate_topology.induct)
-  case (Int A B) then show ?case by auto
+  case (Int A B)
+  then show ?case
+    by auto
 next
-  { fix x have
+  case (Basis S)
+  {
+    fix x have
       "ereal -` {..<x} = (case x of PInfty \<Rightarrow> UNIV | MInfty \<Rightarrow> {} | ereal r \<Rightarrow> {..<r})"
       "ereal -` {x<..} = (case x of PInfty \<Rightarrow> {} | MInfty \<Rightarrow> UNIV | ereal r \<Rightarrow> {r<..})"
-      by (induct x) auto }
-  moreover case (Basis S)
+      by (induct x) auto
+  }
+  moreover note Basis
   ultimately show ?case
     by (auto split: ereal.split)
 qed (fastforce simp add: vimage_Union)+
@@ -1657,16 +1974,32 @@
   unfolding open_generated_order[where 'a=real]
 proof (induct rule: generate_topology.induct)
   case (Basis S)
-  moreover { fix x have "ereal ` {..< x} = { -\<infinity> <..< ereal x }" by auto (case_tac xa, auto) }
-  moreover { fix x have "ereal ` {x <..} = { ereal x <..< \<infinity> }" by auto (case_tac xa, auto) }
+  moreover {
+    fix x
+    have "ereal ` {..< x} = { -\<infinity> <..< ereal x }"
+      apply auto
+      apply (case_tac xa)
+      apply auto
+      done
+  }
+  moreover {
+    fix x
+    have "ereal ` {x <..} = { ereal x <..< \<infinity> }"
+      apply auto
+      apply (case_tac xa)
+      apply auto
+      done
+  }
   ultimately show ?case
      by auto
 qed (auto simp add: image_Union image_Int)
 
-lemma open_ereal_def: "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
+lemma open_ereal_def:
+  "open A \<longleftrightarrow> open (ereal -` A) \<and> (\<infinity> \<in> A \<longrightarrow> (\<exists>x. {ereal x <..} \<subseteq> A)) \<and> (-\<infinity> \<in> A \<longrightarrow> (\<exists>x. {..<ereal x} \<subseteq> A))"
   (is "open A \<longleftrightarrow> ?rhs")
 proof
-  assume "open A" then show ?rhs
+  assume "open A"
+  then show ?rhs
     using open_PInfty open_MInfty open_ereal_vimage by auto
 next
   assume "?rhs"
@@ -1678,14 +2011,23 @@
     by (subst *) (auto simp: open_Un)
 qed
 
-lemma open_PInfty2: assumes "open A" "\<infinity> \<in> A" obtains x where "{ereal x<..} \<subseteq> A"
+lemma open_PInfty2:
+  assumes "open A"
+    and "\<infinity> \<in> A"
+  obtains x where "{ereal x<..} \<subseteq> A"
   using open_PInfty[OF assms] by auto
 
-lemma open_MInfty2: assumes "open A" "-\<infinity> \<in> A" obtains x where "{..<ereal x} \<subseteq> A"
+lemma open_MInfty2:
+  assumes "open A"
+    and "-\<infinity> \<in> A"
+  obtains x where "{..<ereal x} \<subseteq> A"
   using open_MInfty[OF assms] by auto
 
-lemma ereal_openE: assumes "open A" obtains x y where
-  "open (ereal -` A)" "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A" "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
+lemma ereal_openE:
+  assumes "open A"
+  obtains x y where "open (ereal -` A)"
+    and "\<infinity> \<in> A \<Longrightarrow> {ereal x<..} \<subseteq> A"
+    and "-\<infinity> \<in> A \<Longrightarrow> {..<ereal y} \<subseteq> A"
   using assms open_ereal_def by auto
 
 lemmas open_ereal_lessThan = open_lessThan[where 'a=ereal]
@@ -1695,60 +2037,76 @@
 lemmas closed_ereal_atMost = closed_atMost[where 'a=ereal]
 lemmas closed_ereal_atLeastAtMost = closed_atLeastAtMost[where 'a=ereal]
 lemmas closed_ereal_singleton = closed_singleton[where 'a=ereal]
-  
+
 lemma ereal_open_cont_interval:
   fixes S :: "ereal set"
-  assumes "open S" "x \<in> S" "\<bar>x\<bar> \<noteq> \<infinity>"
-  obtains e where "e>0" "{x-e <..< x+e} \<subseteq> S"
-proof-
-  from `open S` have "open (ereal -` S)" by (rule ereal_openE)
-  then obtain e where "0 < e" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"
+  assumes "open S"
+    and "x \<in> S"
+    and "\<bar>x\<bar> \<noteq> \<infinity>"
+  obtains e where "e > 0" and "{x-e <..< x+e} \<subseteq> S"
+proof -
+  from `open S`
+  have "open (ereal -` S)"
+    by (rule ereal_openE)
+  then obtain e where "e > 0" and e: "\<And>y. dist y (real x) < e \<Longrightarrow> ereal y \<in> S"
     using assms unfolding open_dist by force
   show thesis
   proof (intro that subsetI)
-    show "0 < ereal e" using `0 < e` by auto
-    fix y assume "y \<in> {x - ereal e<..<x + ereal e}"
+    show "0 < ereal e"
+      using `0 < e` by auto
+    fix y
+    assume "y \<in> {x - ereal e<..<x + ereal e}"
     with assms obtain t where "y = ereal t" "dist t (real x) < e"
-      apply (cases y) by (auto simp: dist_real_def)
-    then show "y \<in> S" using e[of t] by auto
+      by (cases y) (auto simp: dist_real_def)
+    then show "y \<in> S"
+      using e[of t] by auto
   qed
 qed
 
 lemma ereal_open_cont_interval2:
   fixes S :: "ereal set"
-  assumes "open S" "x \<in> S" and x: "\<bar>x\<bar> \<noteq> \<infinity>"
-  obtains a b where "a < x" "x < b" "{a <..< b} \<subseteq> S"
+  assumes "open S"
+    and "x \<in> S"
+    and x: "\<bar>x\<bar> \<noteq> \<infinity>"
+  obtains a b where "a < x" and "x < b" and "{a <..< b} \<subseteq> S"
 proof -
   obtain e where "0 < e" "{x - e<..<x + e} \<subseteq> S"
     using assms by (rule ereal_open_cont_interval)
-  with that[of "x-e" "x+e"] ereal_between[OF x, of e]
-  show thesis by auto
+  with that[of "x - e" "x + e"] ereal_between[OF x, of e]
+  show thesis
+    by auto
 qed
 
+
 subsubsection {* Convergent sequences *}
 
-lemma lim_ereal[simp]:
-  "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net" (is "?l = ?r")
+lemma lim_ereal[simp]: "((\<lambda>n. ereal (f n)) ---> ereal x) net \<longleftrightarrow> (f ---> x) net"
+  (is "?l = ?r")
 proof (intro iffI topological_tendstoI)
-  fix S assume "?l" "open S" "x \<in> S"
+  fix S
+  assume "?l" and "open S" and "x \<in> S"
   then show "eventually (\<lambda>x. f x \<in> S) net"
     using `?l`[THEN topological_tendstoD, OF open_ereal, OF `open S`]
     by (simp add: inj_image_mem_iff)
 next
-  fix S assume "?r" "open S" "ereal x \<in> S"
+  fix S
+  assume "?r" and "open S" and "ereal x \<in> S"
   show "eventually (\<lambda>x. ereal (f x) \<in> S) net"
     using `?r`[THEN topological_tendstoD, OF open_ereal_vimage, OF `open S`]
-    using `ereal x \<in> S` by auto
+    using `ereal x \<in> S`
+    by auto
 qed
 
 lemma lim_real_of_ereal[simp]:
   assumes lim: "(f ---> ereal x) net"
   shows "((\<lambda>x. real (f x)) ---> x) net"
 proof (intro topological_tendstoI)
-  fix S assume "open S" "x \<in> S"
+  fix S
+  assume "open S" and "x \<in> S"
   then have S: "open S" "ereal x \<in> ereal ` S"
     by (simp_all add: inj_image_mem_iff)
-  have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S" by auto
+  have "\<forall>x. f x \<in> ereal ` S \<longrightarrow> real (f x) \<in> S"
+    by auto
   from this lim[THEN topological_tendstoD, OF open_ereal, OF S]
   show "eventually (\<lambda>x. real (f x) \<in> S) net"
     by (rule eventually_mono)
@@ -1756,10 +2114,12 @@
 
 lemma tendsto_PInfty: "(f ---> \<infinity>) F \<longleftrightarrow> (\<forall>r. eventually (\<lambda>x. ereal r < f x) F)"
 proof -
-  { fix l :: ereal assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F"
-    from this[THEN spec, of "real l"]
-    have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F"
-      by (cases l) (auto elim: eventually_elim1) }
+  {
+    fix l :: ereal
+    assume "\<forall>r. eventually (\<lambda>x. ereal r < f x) F"
+    from this[THEN spec, of "real l"] have "l \<noteq> \<infinity> \<Longrightarrow> eventually (\<lambda>x. l < f x) F"
+      by (cases l) (auto elim: eventually_elim1)
+  }
   then show ?thesis
     by (auto simp: order_tendsto_iff)
 qed
@@ -1772,20 +2132,26 @@
   from open_MInfty[OF this] obtain B where "{..<ereal B} \<subseteq> S" ..
   moreover
   assume "\<forall>r::real. eventually (\<lambda>z. f z < r) F"
-  then have "eventually (\<lambda>z. f z \<in> {..< B}) F" by auto
-  ultimately show "eventually (\<lambda>z. f z \<in> S) F" by (auto elim!: eventually_elim1)
+  then have "eventually (\<lambda>z. f z \<in> {..< B}) F"
+    by auto
+  ultimately show "eventually (\<lambda>z. f z \<in> S) F"
+    by (auto elim!: eventually_elim1)
 next
-  fix x assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
-  from this[rule_format, of "{..< ereal x}"]
-  show "eventually (\<lambda>y. f y < ereal x) F" by auto
+  fix x
+  assume "\<forall>S. open S \<longrightarrow> -\<infinity> \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) F"
+  from this[rule_format, of "{..< ereal x}"] show "eventually (\<lambda>y. f y < ereal x) F"
+    by auto
 qed
 
 lemma Lim_PInfty: "f ----> \<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. f n \<ge> ereal B)"
   unfolding tendsto_PInfty eventually_sequentially
 proof safe
-  fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"
-  then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n" by blast
-  moreover have "ereal r < ereal (r + 1)" by auto
+  fix r
+  assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. ereal r \<le> f n"
+  then obtain N where "\<forall>n\<ge>N. ereal (r + 1) \<le> f n"
+    by blast
+  moreover have "ereal r < ereal (r + 1)"
+    by auto
   ultimately show "\<exists>N. \<forall>n\<ge>N. ereal r < f n"
     by (blast intro: less_le_trans)
 qed (blast intro: less_imp_le)
@@ -1793,9 +2159,12 @@
 lemma Lim_MInfty: "f ----> -\<infinity> \<longleftrightarrow> (\<forall>B. \<exists>N. \<forall>n\<ge>N. ereal B \<ge> f n)"
   unfolding tendsto_MInfty eventually_sequentially
 proof safe
-  fix r assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"
-  then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)" by blast
-  moreover have "ereal (r - 1) < ereal r" by auto
+  fix r
+  assume "\<forall>r. \<exists>N. \<forall>n\<ge>N. f n \<le> ereal r"
+  then obtain N where "\<forall>n\<ge>N. f n \<le> ereal (r - 1)"
+    by blast
+  moreover have "ereal (r - 1) < ereal r"
+    by auto
   ultimately show "\<exists>N. \<forall>n\<ge>N. f n < ereal r"
     by (blast intro: le_less_trans)
 qed (blast intro: less_imp_le)
@@ -1807,38 +2176,43 @@
   using LIMSEQ_le_const[of f l "ereal B"] by auto
 
 lemma tendsto_explicit:
-  "f ----> f0 <-> (ALL S. open S --> f0 : S --> (EX N. ALL n>=N. f n : S))"
+  "f ----> f0 \<longleftrightarrow> (\<forall>S. open S \<longrightarrow> f0 \<in> S \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> S))"
   unfolding tendsto_def eventually_sequentially by auto
 
-lemma Lim_bounded_PInfty2:
-  "f ----> l \<Longrightarrow> ALL n>=N. f n <= ereal B \<Longrightarrow> l ~= \<infinity>"
+lemma Lim_bounded_PInfty2: "f ----> l \<Longrightarrow> \<forall>n\<ge>N. f n \<le> ereal B \<Longrightarrow> l \<noteq> \<infinity>"
   using LIMSEQ_le_const2[of f l "ereal B"] by fastforce
 
-lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> ALL n>=M. f n <= C \<Longrightarrow> l<=C"
+lemma Lim_bounded_ereal: "f ----> (l :: 'a::linorder_topology) \<Longrightarrow> \<forall>n\<ge>M. f n \<le> C \<Longrightarrow> l \<le> C"
   by (intro LIMSEQ_le_const2) auto
 
 lemma Lim_bounded2_ereal:
-  assumes lim:"f ----> (l :: 'a::linorder_topology)" and ge: "ALL n>=N. f n >= C"
-  shows "l>=C"
+  assumes lim:"f ----> (l :: 'a::linorder_topology)"
+    and ge: "\<forall>n\<ge>N. f n \<ge> C"
+  shows "l \<ge> C"
   using ge
   by (intro tendsto_le[OF trivial_limit_sequentially lim tendsto_const])
      (auto simp: eventually_sequentially)
 
 lemma real_of_ereal_mult[simp]:
-  fixes a b :: ereal shows "real (a * b) = real a * real b"
+  fixes a b :: ereal
+  shows "real (a * b) = real a * real b"
   by (cases rule: ereal2_cases[of a b]) auto
 
 lemma real_of_ereal_eq_0:
-  fixes x :: ereal shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"
+  fixes x :: ereal
+  shows "real x = 0 \<longleftrightarrow> x = \<infinity> \<or> x = -\<infinity> \<or> x = 0"
   by (cases x) auto
 
 lemma tendsto_ereal_realD:
   fixes f :: "'a \<Rightarrow> ereal"
-  assumes "x \<noteq> 0" and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"
+  assumes "x \<noteq> 0"
+    and tendsto: "((\<lambda>x. ereal (real (f x))) ---> x) net"
   shows "(f ---> x) net"
 proof (intro topological_tendstoI)
-  fix S assume S: "open S" "x \<in> S"
-  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}" by auto
+  fix S
+  assume S: "open S" "x \<in> S"
+  with `x \<noteq> 0` have "open (S - {0})" "x \<in> S - {0}"
+    by auto
   from tendsto[THEN topological_tendstoD, OF this]
   show "eventually (\<lambda>x. f x \<in> S) net"
     by (rule eventually_rev_mp) (auto simp: ereal_real)
@@ -1849,22 +2223,25 @@
   assumes x: "\<bar>x\<bar> \<noteq> \<infinity>" and tendsto: "(f ---> x) net"
   shows "((\<lambda>x. ereal (real (f x))) ---> x) net"
 proof (intro topological_tendstoI)
-  fix S assume "open S" "x \<in> S"
-  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}" by auto
+  fix S
+  assume "open S" and "x \<in> S"
+  with x have "open (S - {\<infinity>, -\<infinity>})" "x \<in> S - {\<infinity>, -\<infinity>}"
+    by auto
   from tendsto[THEN topological_tendstoD, OF this]
   show "eventually (\<lambda>x. ereal (real (f x)) \<in> S) net"
     by (elim eventually_elim1) (auto simp: ereal_real)
 qed
 
 lemma ereal_mult_cancel_left:
-  fixes a b c :: ereal shows "a * b = a * c \<longleftrightarrow>
-    ((\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c)"
-  by (cases rule: ereal3_cases[of a b c])
-     (simp_all add: zero_less_mult_iff)
+  fixes a b c :: ereal
+  shows "a * b = a * c \<longleftrightarrow> (\<bar>a\<bar> = \<infinity> \<and> 0 < b * c) \<or> a = 0 \<or> b = c"
+  by (cases rule: ereal3_cases[of a b c]) (simp_all add: zero_less_mult_iff)
 
 lemma ereal_inj_affinity:
   fixes m t :: ereal
-  assumes "\<bar>m\<bar> \<noteq> \<infinity>" "m \<noteq> 0" "\<bar>t\<bar> \<noteq> \<infinity>"
+  assumes "\<bar>m\<bar> \<noteq> \<infinity>"
+    and "m \<noteq> 0"
+    and "\<bar>t\<bar> \<noteq> \<infinity>"
   shows "inj_on (\<lambda>x. m * x + t) A"
   using assms
   by (cases rule: ereal2_cases[of m t])
@@ -1902,108 +2279,136 @@
 lemma ereal_mult_m1[simp]: "x * ereal (-1) = -x"
   by (cases x) auto
 
-lemma ereal_real': assumes "\<bar>x\<bar> \<noteq> \<infinity>" shows "ereal (real x) = x"
+lemma ereal_real':
+  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
+  shows "ereal (real x) = x"
   using assms by auto
 
-lemma real_ereal_id: "real o ereal = id"
-proof-
-  { fix x have "(real o ereal) x = id x" by auto }
-  then show ?thesis using ext by blast
+lemma real_ereal_id: "real \<circ> ereal = id"
+proof -
+  {
+    fix x
+    have "(real o ereal) x = id x"
+      by auto
+  }
+  then show ?thesis
+    using ext by blast
 qed
 
 lemma open_image_ereal: "open(UNIV-{ \<infinity> , (-\<infinity> :: ereal)})"
-by (metis range_ereal open_ereal open_UNIV)
+  by (metis range_ereal open_ereal open_UNIV)
 
 lemma ereal_le_distrib:
-  fixes a b c :: ereal shows "c * (a + b) \<le> c * a + c * b"
+  fixes a b c :: ereal
+  shows "c * (a + b) \<le> c * a + c * b"
   by (cases rule: ereal3_cases[of a b c])
      (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
 
 lemma ereal_pos_distrib:
-  fixes a b c :: ereal assumes "0 \<le> c" "c \<noteq> \<infinity>" shows "c * (a + b) = c * a + c * b"
-  using assms by (cases rule: ereal3_cases[of a b c])
-                 (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
+  fixes a b c :: ereal
+  assumes "0 \<le> c"
+    and "c \<noteq> \<infinity>"
+  shows "c * (a + b) = c * a + c * b"
+  using assms
+  by (cases rule: ereal3_cases[of a b c])
+    (auto simp add: field_simps not_le mult_le_0_iff mult_less_0_iff)
 
 lemma ereal_pos_le_distrib:
-fixes a b c :: ereal
-assumes "c>=0"
-shows "c * (a + b) <= c * a + c * b"
-  using assms by (cases rule: ereal3_cases[of a b c])
-                 (auto simp add: field_simps)
+  fixes a b c :: ereal
+  assumes "c \<ge> 0"
+  shows "c * (a + b) \<le> c * a + c * b"
+  using assms
+  by (cases rule: ereal3_cases[of a b c]) (auto simp add: field_simps)
 
-lemma ereal_max_mono:
-  "[| (a::ereal) <= b; c <= d |] ==> max a c <= max b d"
+lemma ereal_max_mono: "(a::ereal) \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> max a c \<le> max b d"
   by (metis sup_ereal_def sup_mono)
 
-
-lemma ereal_max_least:
-  "[| (a::ereal) <= x; c <= x |] ==> max a c <= x"
+lemma ereal_max_least: "(a::ereal) \<le> x \<Longrightarrow> c \<le> x \<Longrightarrow> max a c \<le> x"
   by (metis sup_ereal_def sup_least)
 
 lemma ereal_LimI_finite:
   fixes x :: ereal
   assumes "\<bar>x\<bar> \<noteq> \<infinity>"
-  assumes "!!r. 0 < r ==> EX N. ALL n>=N. u n < x + r & x < u n + r"
+    and "\<And>r. 0 < r \<Longrightarrow> \<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"
   shows "u ----> x"
 proof (rule topological_tendstoI, unfold eventually_sequentially)
-  obtain rx where rx_def: "x=ereal rx" using assms by (cases x) auto
-  fix S assume "open S" "x : S"
-  then have "open (ereal -` S)" unfolding open_ereal_def by auto
-  with `x \<in> S` obtain r where "0 < r" and dist: "!!y. dist y rx < r ==> ereal y \<in> S"
-    unfolding open_real_def rx_def by auto
+  obtain rx where rx: "x = ereal rx"
+    using assms by (cases x) auto
+  fix S
+  assume "open S" and "x \<in> S"
+  then have "open (ereal -` S)"
+    unfolding open_ereal_def by auto
+  with `x \<in> S` obtain r where "0 < r" and dist: "\<And>y. dist y rx < r \<Longrightarrow> ereal y \<in> S"
+    unfolding open_real_def rx by auto
   then obtain n where
-    upper: "!!N. n <= N ==> u N < x + ereal r" and
-    lower: "!!N. n <= N ==> x < u N + ereal r" using assms(2)[of "ereal r"] by auto
-  show "EX N. ALL n>=N. u n : S"
+    upper: "\<And>N. n \<le> N \<Longrightarrow> u N < x + ereal r" and
+    lower: "\<And>N. n \<le> N \<Longrightarrow> x < u N + ereal r"
+    using assms(2)[of "ereal r"] by auto
+  show "\<exists>N. \<forall>n\<ge>N. u n \<in> S"
   proof (safe intro!: exI[of _ n])
-    fix N assume "n <= N"
+    fix N
+    assume "n \<le> N"
     from upper[OF this] lower[OF this] assms `0 < r`
-    have "u N ~: {\<infinity>,(-\<infinity>)}" by auto
-    then obtain ra where ra_def: "(u N) = ereal ra" by (cases "u N") auto
-    hence "rx < ra + r" and "ra < rx + r"
-       using rx_def assms `0 < r` lower[OF `n <= N`] upper[OF `n <= N`] by auto
-    hence "dist (real (u N)) rx < r"
-      using rx_def ra_def
+    have "u N \<notin> {\<infinity>,(-\<infinity>)}"
+      by auto
+    then obtain ra where ra_def: "(u N) = ereal ra"
+      by (cases "u N") auto
+    then have "rx < ra + r" and "ra < rx + r"
+      using rx assms `0 < r` lower[OF `n \<le> N`] upper[OF `n \<le> N`]
+      by auto
+    then have "dist (real (u N)) rx < r"
+      using rx ra_def
       by (auto simp: dist_real_def abs_diff_less_iff field_simps)
-    from dist[OF this] show "u N : S" using `u N  ~: {\<infinity>, -\<infinity>}`
+    from dist[OF this] show "u N \<in> S"
+      using `u N  \<notin> {\<infinity>, -\<infinity>}`
       by (auto simp: ereal_real split: split_if_asm)
   qed
 qed
 
 lemma tendsto_obtains_N:
   assumes "f ----> f0"
-  assumes "open S" "f0 : S"
-  obtains N where "ALL n>=N. f n : S"
+  assumes "open S"
+    and "f0 \<in> S"
+  obtains N where "\<forall>n\<ge>N. f n \<in> S"
   using assms using tendsto_def
   using tendsto_explicit[of f f0] assms by auto
 
 lemma ereal_LimI_finite_iff:
   fixes x :: ereal
   assumes "\<bar>x\<bar> \<noteq> \<infinity>"
-  shows "u ----> x <-> (ALL r. 0 < r --> (EX N. ALL n>=N. u n < x + r & x < u n + r))"
-  (is "?lhs <-> ?rhs")
+  shows "u ----> x \<longleftrightarrow> (\<forall>r. 0 < r \<longrightarrow> (\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r))"
+  (is "?lhs \<longleftrightarrow> ?rhs")
 proof
   assume lim: "u ----> x"
-  { fix r assume "(r::ereal)>0"
-    then obtain N where N_def: "ALL n>=N. u n : {x - r <..< x + r}"
+  {
+    fix r :: ereal
+    assume "r > 0"
+    then obtain N where "\<forall>n\<ge>N. u n \<in> {x - r <..< x + r}"
        apply (subst tendsto_obtains_N[of u x "{x - r <..< x + r}"])
-       using lim ereal_between[of x r] assms `r>0` by auto
-    hence "EX N. ALL n>=N. u n < x + r & x < u n + r"
-      using ereal_minus_less[of r x] by (cases r) auto
-  } then show "?rhs" by auto
+       using lim ereal_between[of x r] assms `r > 0`
+       apply auto
+       done
+    then have "\<exists>N. \<forall>n\<ge>N. u n < x + r \<and> x < u n + r"
+      using ereal_minus_less[of r x]
+      by (cases r) auto
+  }
+  then show ?rhs
+    by auto
 next
-  assume ?rhs then show "u ----> x"
+  assume ?rhs
+  then show "u ----> x"
     using ereal_LimI_finite[of x] assms by auto
 qed
 
 lemma ereal_Limsup_uminus:
-  fixes f :: "'a => ereal"
-  shows "Limsup net (\<lambda>x. - (f x)) = -(Liminf net f)"
+  fixes f :: "'a \<Rightarrow> ereal"
+  shows "Limsup net (\<lambda>x. - (f x)) = - Liminf net f"
   unfolding Limsup_def Liminf_def ereal_SUPR_uminus ereal_INFI_uminus ..
 
 lemma liminf_bounded_iff:
   fixes x :: "nat \<Rightarrow> ereal"
-  shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)" (is "?lhs <-> ?rhs")
+  shows "C \<le> liminf x \<longleftrightarrow> (\<forall>B<C. \<exists>N. \<forall>n\<ge>N. B < x n)"
+  (is "?lhs \<longleftrightarrow> ?rhs")
   unfolding le_Liminf_iff eventually_sequentially ..
 
 lemma
@@ -2012,6 +2417,7 @@
     and ereal_decseq_uminus[simp]: "decseq (\<lambda>i. - X i) = incseq X"
   unfolding incseq_def decseq_def by auto
 
+
 subsubsection {* Tests for code generator *}
 
 (* A small list of simple arithmetic expressions *)
--- a/src/Pure/PIDE/query_operation.scala	Wed Sep 25 12:29:06 2013 +0200
+++ b/src/Pure/PIDE/query_operation.scala	Wed Sep 25 12:52:21 2013 +0200
@@ -18,6 +18,7 @@
     val WAITING = Value("waiting")
     val RUNNING = Value("running")
     val FINISHED = Value("finished")
+    val REMOVED = Value("removed")
   }
 }
 
@@ -37,7 +38,7 @@
   private var current_query: List[String] = Nil
   private var current_update_pending = false
   private var current_output: List[XML.Tree] = Nil
-  private var current_status = Query_Operation.Status.FINISHED
+  private var current_status = Query_Operation.Status.REMOVED
   private var current_exec_id = Document_ID.none
 
   private def reset_state()
@@ -46,7 +47,7 @@
     current_query = Nil
     current_update_pending = false
     current_output = Nil
-    current_status = Query_Operation.Status.FINISHED
+    current_status = Query_Operation.Status.REMOVED
     current_exec_id = Document_ID.none
   }
 
@@ -100,7 +101,7 @@
       results.collectFirst({ case XML.Elem(_, List(elem: XML.Elem)) if elem.name == name => status })
 
     val new_status =
-      if (removed) Query_Operation.Status.FINISHED
+      if (removed) Query_Operation.Status.REMOVED
       else
         get_status(Markup.FINISHED, Query_Operation.Status.FINISHED) orElse
         get_status(Markup.RUNNING, Query_Operation.Status.RUNNING) getOrElse
@@ -128,7 +129,7 @@
         if (current_status != new_status) {
           current_status = new_status
           consume_status(new_status)
-          if (new_status == Query_Operation.Status.FINISHED) {
+          if (new_status == Query_Operation.Status.REMOVED) {
             remove_overlay()
             editor.flush()
           }
@@ -187,7 +188,7 @@
           current_location match {
             case Some(command)
             if current_update_pending ||
-              (current_status != Query_Operation.Status.FINISHED &&
+              (current_status != Query_Operation.Status.REMOVED &&
                 changed.commands.contains(command)) =>
               Swing_Thread.later { content_update() }
             case _ =>
--- a/src/Tools/jEdit/src/find_dockable.scala	Wed Sep 25 12:29:06 2013 +0200
+++ b/src/Tools/jEdit/src/find_dockable.scala	Wed Sep 25 12:52:21 2013 +0200
@@ -37,7 +37,7 @@
         process_indicator.update("Waiting for evaluation of context ...", 5)
       case Query_Operation.Status.RUNNING =>
         process_indicator.update("Running find operation ...", 15)
-      case Query_Operation.Status.FINISHED =>
+      case _ =>
         process_indicator.update(null, 0)
     }
   }
--- a/src/Tools/jEdit/src/sledgehammer_dockable.scala	Wed Sep 25 12:29:06 2013 +0200
+++ b/src/Tools/jEdit/src/sledgehammer_dockable.scala	Wed Sep 25 12:52:21 2013 +0200
@@ -38,7 +38,7 @@
         process_indicator.update("Waiting for evaluation of context ...", 5)
       case Query_Operation.Status.RUNNING =>
         process_indicator.update("Sledgehammering ...", 15)
-      case Query_Operation.Status.FINISHED =>
+      case _ =>
         process_indicator.update(null, 0)
     }
   }