revised inductive definition package
authorpaulson
Mon, 28 Dec 1998 16:58:00 +0100
changeset 6051 7d457fc538e7
parent 6050 b3eb3de3a288
child 6052 4f093e55beeb
revised inductive definition package
src/ZF/Tools/inductive_package.ML
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Tools/inductive_package.ML	Mon Dec 28 16:58:00 1998 +0100
@@ -0,0 +1,568 @@
+(*  Title:      ZF/inductive_package.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+
+Fixedpoint definition module -- for Inductive/Coinductive Definitions
+
+The functor will be instantiated for normal sums/products (inductive defs)
+                         and non-standard sums/products (coinductive defs)
+
+Sums are used only for mutual recursion;
+Products are used only to derive "streamlined" induction rules for relations
+*)
+
+
+type inductive_result =
+   {defs       : thm list,             (*definitions made in thy*)
+    bnd_mono   : thm,                  (*monotonicity for the lfp definition*)
+    dom_subset : thm,                  (*inclusion of recursive set in dom*)
+    intrs      : thm list,             (*introduction rules*)
+    elim       : thm,                  (*case analysis theorem*)
+    mk_cases   : thm list -> string -> thm,    (*generates case theorems*)
+    induct     : thm,                  (*main induction rule*)
+    mutual_induct : thm};              (*mutual induction rule*)
+
+
+(*Functor's result signature*)
+signature INDUCTIVE_PACKAGE =
+  sig 
+
+  (*Insert definitions for the recursive sets, which
+     must *already* be declared as constants in parent theory!*)
+  val add_inductive_i : 
+      bool ->
+      term list * term * term list * thm list * thm list * thm list * thm list
+      -> theory -> theory * inductive_result
+
+  val add_inductive : 
+      string list * string * string list * 
+      thm list * thm list * thm list * thm list
+      -> theory -> theory * inductive_result
+
+  end;
+
+
+(*Declares functions to add fixedpoint/constructor defs to a theory.
+  Recursive sets must *already* be declared as constants.*)
+functor Add_inductive_def_Fun 
+    (structure Fp: FP and Pr : PR and CP: CARTPROD and Su : SU)
+ : INDUCTIVE_PACKAGE =
+struct
+open Logic Ind_Syntax;
+
+(*internal version, accepting terms*)
+fun add_inductive_i verbose (rec_tms, dom_sum, intr_tms, 
+			     monos, con_defs, type_intrs, type_elims) thy = 
+ let
+  val dummy = (*has essential ancestors?*)
+      Theory.requires thy "Inductive" "(co)inductive definitions" 
+
+  val sign = sign_of thy;
+
+  (*recT and rec_params should agree for all mutually recursive components*)
+  val rec_hds = map head_of rec_tms;
+
+  val dummy = assert_all is_Const rec_hds
+	  (fn t => "Recursive set not previously declared as constant: " ^ 
+		   Sign.string_of_term sign t);
+
+  (*Now we know they are all Consts, so get their names, type and params*)
+  val rec_names = map (#1 o dest_Const) rec_hds
+  and (Const(_,recT),rec_params) = strip_comb (hd rec_tms);
+
+  val rec_base_names = map Sign.base_name rec_names;
+  val dummy = assert_all Syntax.is_identifier rec_base_names
+    (fn a => "Base name of recursive set not an identifier: " ^ a);
+
+  local (*Checking the introduction rules*)
+    val intr_sets = map (#2 o rule_concl_msg sign) intr_tms;
+    fun intr_ok set =
+	case head_of set of Const(a,recT) => a mem rec_names | _ => false;
+  in
+    val dummy =  assert_all intr_ok intr_sets
+       (fn t => "Conclusion of rule does not name a recursive set: " ^ 
+		Sign.string_of_term sign t);
+  end;
+
+  val dummy = assert_all is_Free rec_params
+      (fn t => "Param in recursion term not a free variable: " ^
+	       Sign.string_of_term sign t);
+
+  (*** Construct the fixedpoint definition ***)
+  val mk_variant = variant (foldr add_term_names (intr_tms,[]));
+
+  val z' = mk_variant"z" and X' = mk_variant"X" and w' = mk_variant"w";
+
+  fun dest_tprop (Const("Trueprop",_) $ P) = P
+    | dest_tprop Q = error ("Ill-formed premise of introduction rule: " ^ 
+			    Sign.string_of_term sign Q);
+
+  (*Makes a disjunct from an introduction rule*)
+  fun fp_part intr = (*quantify over rule's free vars except parameters*)
+    let val prems = map dest_tprop (strip_imp_prems intr)
+	val dummy = seq (fn rec_hd => seq (chk_prem rec_hd) prems) rec_hds
+	val exfrees = term_frees intr \\ rec_params
+	val zeq = FOLogic.mk_eq (Free(z',iT), #1 (rule_concl intr))
+    in foldr FOLogic.mk_exists
+	     (exfrees, fold_bal (app FOLogic.conj) (zeq::prems)) 
+    end;
+
+  (*The Part(A,h) terms -- compose injections to make h*)
+  fun mk_Part (Bound 0) = Free(X',iT) (*no mutual rec, no Part needed*)
+    | mk_Part h         = Part_const $ Free(X',iT) $ Abs(w',iT,h);
+
+  (*Access to balanced disjoint sums via injections*)
+  val parts = 
+      map mk_Part (accesses_bal (ap Su.inl, ap Su.inr, Bound 0) 
+				(length rec_tms));
+
+  (*replace each set by the corresponding Part(A,h)*)
+  val part_intrs = map (subst_free (rec_tms ~~ parts) o fp_part) intr_tms;
+
+  val fp_abs = absfree(X', iT, 
+		   mk_Collect(z', dom_sum, 
+			      fold_bal (app FOLogic.disj) part_intrs));
+
+  val fp_rhs = Fp.oper $ dom_sum $ fp_abs
+
+  val dummy = seq (fn rec_hd => deny (rec_hd occs fp_rhs) 
+			     "Illegal occurrence of recursion operator")
+	   rec_hds;
+
+  (*** Make the new theory ***)
+
+  (*A key definition:
+    If no mutual recursion then it equals the one recursive set.
+    If mutual recursion then it differs from all the recursive sets. *)
+  val big_rec_base_name = space_implode "_" rec_base_names;
+  val big_rec_name = Sign.intern_const sign big_rec_base_name;
+
+  
+  val dummy =
+      if verbose then
+	  writeln ((if #1 (dest_Const Fp.oper) = "lfp" then "Inductive" 
+		    else "Coinductive") ^ " definition " ^ big_rec_name)
+      else ();
+
+  (*Forbid the inductive definition structure from clashing with a theory
+    name.  This restriction may become obsolete as ML is de-emphasized.*)
+  val dummy = deny (big_rec_base_name mem (Sign.stamp_names_of sign))
+	       ("Definition " ^ big_rec_base_name ^ 
+		" would clash with the theory of the same name!");
+
+  (*Big_rec... is the union of the mutually recursive sets*)
+  val big_rec_tm = list_comb(Const(big_rec_name,recT), rec_params);
+
+  (*The individual sets must already be declared*)
+  val axpairs = map Logic.mk_defpair 
+	((big_rec_tm, fp_rhs) ::
+	 (case parts of 
+	     [_] => []                        (*no mutual recursion*)
+	   | _ => rec_tms ~~          (*define the sets as Parts*)
+		  map (subst_atomic [(Free(X',iT),big_rec_tm)]) parts));
+
+  (*tracing: print the fixedpoint definition*)
+  val dummy = if !Ind_Syntax.trace then
+	      seq (writeln o Sign.string_of_term sign o #2) axpairs
+	  else ()
+
+  (*add definitions of the inductive sets*)
+  val thy1 = thy |> Theory.add_path big_rec_base_name
+                 |> PureThy.add_defs_i (map Attribute.none axpairs)  
+
+
+  (*fetch fp definitions from the theory*)
+  val big_rec_def::part_rec_defs = 
+    map (get_def thy1)
+	(case rec_names of [_] => rec_names 
+			 | _   => big_rec_base_name::rec_names);
+
+
+  val sign1 = sign_of thy1;
+
+  (********)
+  val dummy = writeln "  Proving monotonicity...";
+
+  val bnd_mono = 
+      prove_goalw_cterm [] 
+	(cterm_of sign1
+		  (FOLogic.mk_Trueprop (Fp.bnd_mono $ dom_sum $ fp_abs)))
+	(fn _ =>
+	 [rtac (Collect_subset RS bnd_monoI) 1,
+	  REPEAT (ares_tac (basic_monos @ monos) 1)]);
+
+  val dom_subset = standard (big_rec_def RS Fp.subs);
+
+  val unfold = standard ([big_rec_def, bnd_mono] MRS Fp.Tarski);
+
+  (********)
+  val dummy = writeln "  Proving the introduction rules...";
+
+  (*Mutual recursion?  Helps to derive subset rules for the 
+    individual sets.*)
+  val Part_trans =
+      case rec_names of
+	   [_] => asm_rl
+	 | _   => standard (Part_subset RS subset_trans);
+
+  (*To type-check recursive occurrences of the inductive sets, possibly
+    enclosed in some monotonic operator M.*)
+  val rec_typechecks = 
+     [dom_subset] RL (asm_rl :: ([Part_trans] RL monos)) 
+     RL [subsetD];
+
+  (*Type-checking is hardest aspect of proof;
+    disjIn selects the correct disjunct after unfolding*)
+  fun intro_tacsf disjIn prems = 
+    [(*insert prems and underlying sets*)
+     cut_facts_tac prems 1,
+     DETERM (stac unfold 1),
+     REPEAT (resolve_tac [Part_eqI,CollectI] 1),
+     (*Now 2-3 subgoals: typechecking, the disjunction, perhaps equality.*)
+     rtac disjIn 2,
+     (*Not ares_tac, since refl must be tried before equality assumptions;
+       backtracking may occur if the premises have extra variables!*)
+     DEPTH_SOLVE_1 (resolve_tac [refl,exI,conjI] 2 APPEND assume_tac 2),
+     (*Now solve the equations like Tcons(a,f) = Inl(?b4)*)
+     rewrite_goals_tac con_defs,
+     REPEAT (rtac refl 2),
+     (*Typechecking; this can fail*)
+     if !Ind_Syntax.trace then print_tac "The typechecking subgoal:"
+     else all_tac,
+     REPEAT (FIRSTGOAL (        dresolve_tac rec_typechecks
+			ORELSE' eresolve_tac (asm_rl::PartE::SigmaE2::
+					      type_elims)
+			ORELSE' hyp_subst_tac)),
+     if !Ind_Syntax.trace then print_tac "The subgoal after monos, type_elims:"
+     else all_tac,
+     DEPTH_SOLVE (swap_res_tac (SigmaI::subsetI::type_intrs) 1)];
+
+  (*combines disjI1 and disjI2 to get the corresponding nested disjunct...*)
+  val mk_disj_rls = 
+      let fun f rl = rl RS disjI1
+	  and g rl = rl RS disjI2
+      in  accesses_bal(f, g, asm_rl)  end;
+
+  fun prove_intr (ct, tacsf) = prove_goalw_cterm part_rec_defs ct tacsf;
+
+  val intrs = ListPair.map prove_intr
+		(map (cterm_of sign1) intr_tms,
+		 map intro_tacsf (mk_disj_rls(length intr_tms)))
+	       handle SIMPLIFIER (msg,thm) => (print_thm thm; error msg);
+
+  (********)
+  val dummy = writeln "  Proving the elimination rule...";
+
+  (*Breaks down logical connectives in the monotonic function*)
+  val basic_elim_tac =
+      REPEAT (SOMEGOAL (eresolve_tac (Ind_Syntax.elim_rls @ Su.free_SEs)
+		ORELSE' bound_hyp_subst_tac))
+      THEN prune_params_tac
+	  (*Mutual recursion: collapse references to Part(D,h)*)
+      THEN fold_tac part_rec_defs;
+
+  (*Elimination*)
+  val elim = rule_by_tactic basic_elim_tac 
+		 (unfold RS Ind_Syntax.equals_CollectD)
+
+  (*Applies freeness of the given constructors, which *must* be unfolded by
+      the given defs.  Cannot simply use the local con_defs because  
+      con_defs=[] for inference systems. 
+    String s should have the form t:Si where Si is an inductive set*)
+  fun mk_cases defs s = 
+      rule_by_tactic (rewrite_goals_tac defs THEN 
+		      basic_elim_tac THEN
+		      fold_tac defs)
+	 (assume_read (theory_of_thm elim) s
+	              (*Don't use thy1: it will be stale*)
+	  RS  elim)
+      |> standard;
+
+
+  fun induction_rules raw_induct thy =
+   let
+     val dummy = writeln "  Proving the induction rule...";
+
+     (*** Prove the main induction rule ***)
+
+     val pred_name = "P";            (*name for predicate variables*)
+
+     (*Used to make induction rules;
+	ind_alist = [(rec_tm1,pred1),...] associates predicates with rec ops
+	prem is a premise of an intr rule*)
+     fun add_induct_prem ind_alist (prem as Const("Trueprop",_) $ 
+		      (Const("op :",_)$t$X), iprems) =
+	  (case gen_assoc (op aconv) (ind_alist, X) of
+	       Some pred => prem :: FOLogic.mk_Trueprop (pred $ t) :: iprems
+	     | None => (*possibly membership in M(rec_tm), for M monotone*)
+		 let fun mk_sb (rec_tm,pred) = 
+			     (rec_tm, Ind_Syntax.Collect_const$rec_tm$pred)
+		 in  subst_free (map mk_sb ind_alist) prem :: iprems  end)
+       | add_induct_prem ind_alist (prem,iprems) = prem :: iprems;
+
+     (*Make a premise of the induction rule.*)
+     fun induct_prem ind_alist intr =
+       let val quantfrees = map dest_Free (term_frees intr \\ rec_params)
+	   val iprems = foldr (add_induct_prem ind_alist)
+			      (Logic.strip_imp_prems intr,[])
+	   val (t,X) = Ind_Syntax.rule_concl intr
+	   val (Some pred) = gen_assoc (op aconv) (ind_alist, X)
+	   val concl = FOLogic.mk_Trueprop (pred $ t)
+       in list_all_free (quantfrees, Logic.list_implies (iprems,concl)) end
+       handle Bind => error"Recursion term not found in conclusion";
+
+     (*Minimizes backtracking by delivering the correct premise to each goal.
+       Intro rules with extra Vars in premises still cause some backtracking *)
+     fun ind_tac [] 0 = all_tac
+       | ind_tac(prem::prems) i = 
+	     DEPTH_SOLVE_1 (ares_tac [prem, refl] i) THEN
+	     ind_tac prems (i-1);
+
+     val pred = Free(pred_name, Ind_Syntax.iT --> FOLogic.oT);
+
+     val ind_prems = map (induct_prem (map (rpair pred) rec_tms)) 
+			 intr_tms;
+
+     val dummy = if !Ind_Syntax.trace then 
+		 (writeln "ind_prems = ";
+		  seq (writeln o Sign.string_of_term sign1) ind_prems;
+		  writeln "raw_induct = "; print_thm raw_induct)
+	     else ();
+
+
+     (*We use a MINIMAL simpset. Even FOL_ss contains too many simpules.  
+       If the premises get simplified, then the proofs could fail.*)
+     val min_ss = empty_ss
+	   setmksimps (map mk_eq o ZF_atomize o gen_all)
+	   setSolver  (fn prems => resolve_tac (triv_rls@prems) 
+				   ORELSE' assume_tac
+				   ORELSE' etac FalseE);
+
+     val quant_induct = 
+	 prove_goalw_cterm part_rec_defs 
+	   (cterm_of sign1 
+	    (Logic.list_implies 
+	     (ind_prems, 
+	      FOLogic.mk_Trueprop (Ind_Syntax.mk_all_imp(big_rec_tm,pred)))))
+	   (fn prems =>
+	    [rtac (impI RS allI) 1,
+	     DETERM (etac raw_induct 1),
+	     (*Push Part inside Collect*)
+	     full_simp_tac (min_ss addsimps [Part_Collect]) 1,
+	     (*This CollectE and disjE separates out the introduction rules*)
+	     REPEAT (FIRSTGOAL (eresolve_tac [CollectE, disjE])),
+	     (*Now break down the individual cases.  No disjE here in case
+	       some premise involves disjunction.*)
+	     REPEAT (FIRSTGOAL (eresolve_tac [CollectE, exE, conjE] 
+				ORELSE' hyp_subst_tac)),
+	     ind_tac (rev prems) (length prems) ]);
+
+     val dummy = if !Ind_Syntax.trace then 
+		 (writeln "quant_induct = "; print_thm quant_induct)
+	     else ();
+
+
+     (*** Prove the simultaneous induction rule ***)
+
+     (*Make distinct predicates for each inductive set*)
+
+     (*The components of the element type, several if it is a product*)
+     val elem_type = CP.pseudo_type dom_sum;
+     val elem_factors = CP.factors elem_type;
+     val elem_frees = mk_frees "za" elem_factors;
+     val elem_tuple = CP.mk_tuple Pr.pair elem_type elem_frees;
+
+     (*Given a recursive set and its domain, return the "fsplit" predicate
+       and a conclusion for the simultaneous induction rule.
+       NOTE.  This will not work for mutually recursive predicates.  Previously
+       a summand 'domt' was also an argument, but this required the domain of
+       mutual recursion to invariably be a disjoint sum.*)
+     fun mk_predpair rec_tm = 
+       let val rec_name = (#1 o dest_Const o head_of) rec_tm
+	   val pfree = Free(pred_name ^ "_" ^ Sign.base_name rec_name,
+			    elem_factors ---> FOLogic.oT)
+	   val qconcl = 
+	     foldr FOLogic.mk_all
+	       (elem_frees, 
+		FOLogic.imp $ 
+		(Ind_Syntax.mem_const $ elem_tuple $ rec_tm)
+		      $ (list_comb (pfree, elem_frees)))
+       in  (CP.ap_split elem_type FOLogic.oT pfree, 
+	    qconcl)  
+       end;
+
+     val (preds,qconcls) = split_list (map mk_predpair rec_tms);
+
+     (*Used to form simultaneous induction lemma*)
+     fun mk_rec_imp (rec_tm,pred) = 
+	 FOLogic.imp $ (Ind_Syntax.mem_const $ Bound 0 $ rec_tm) $ 
+			  (pred $ Bound 0);
+
+     (*To instantiate the main induction rule*)
+     val induct_concl = 
+	 FOLogic.mk_Trueprop
+	   (Ind_Syntax.mk_all_imp
+	    (big_rec_tm,
+	     Abs("z", Ind_Syntax.iT, 
+		 fold_bal (app FOLogic.conj) 
+		 (ListPair.map mk_rec_imp (rec_tms, preds)))))
+     and mutual_induct_concl =
+      FOLogic.mk_Trueprop(fold_bal (app FOLogic.conj) qconcls);
+
+     val dummy = if !Ind_Syntax.trace then 
+		 (writeln ("induct_concl = " ^
+			   Sign.string_of_term sign1 induct_concl);
+		  writeln ("mutual_induct_concl = " ^
+			   Sign.string_of_term sign1 mutual_induct_concl))
+	     else ();
+
+
+     val lemma_tac = FIRST' [eresolve_tac [asm_rl, conjE, PartE, mp],
+			     resolve_tac [allI, impI, conjI, Part_eqI],
+			     dresolve_tac [spec, mp, Pr.fsplitD]];
+
+     val need_mutual = length rec_names > 1;
+
+     val lemma = (*makes the link between the two induction rules*)
+       if need_mutual then
+	  (writeln "  Proving the mutual induction rule...";
+	   prove_goalw_cterm part_rec_defs 
+		 (cterm_of sign1 (Logic.mk_implies (induct_concl,
+						   mutual_induct_concl)))
+		 (fn prems =>
+		  [cut_facts_tac prems 1, 
+		   REPEAT (rewrite_goals_tac [Pr.split_eq] THEN
+			   lemma_tac 1)]))
+       else (writeln "  [ No mutual induction rule needed ]";
+	     TrueI);
+
+     val dummy = if !Ind_Syntax.trace then 
+		 (writeln "lemma = "; print_thm lemma)
+	     else ();
+
+
+     (*Mutual induction follows by freeness of Inl/Inr.*)
+
+     (*Simplification largely reduces the mutual induction rule to the 
+       standard rule*)
+     val mut_ss = 
+	 min_ss addsimps [Su.distinct, Su.distinct', Su.inl_iff, Su.inr_iff];
+
+     val all_defs = con_defs @ part_rec_defs;
+
+     (*Removes Collects caused by M-operators in the intro rules.  It is very
+       hard to simplify
+	 list({v: tf. (v : t --> P_t(v)) & (v : f --> P_f(v))}) 
+       where t==Part(tf,Inl) and f==Part(tf,Inr) to  list({v: tf. P_t(v)}).
+       Instead the following rules extract the relevant conjunct.
+     *)
+     val cmonos = [subset_refl RS Collect_mono] RL monos
+		   RLN (2,[rev_subsetD]);
+
+     (*Minimizes backtracking by delivering the correct premise to each goal*)
+     fun mutual_ind_tac [] 0 = all_tac
+       | mutual_ind_tac(prem::prems) i = 
+	   DETERM
+	    (SELECT_GOAL 
+	       (
+		(*Simplify the assumptions and goal by unfolding Part and
+		  using freeness of the Sum constructors; proves all but one
+		  conjunct by contradiction*)
+		rewrite_goals_tac all_defs  THEN
+		simp_tac (mut_ss addsimps [Part_iff]) 1  THEN
+		IF_UNSOLVED (*simp_tac may have finished it off!*)
+		  ((*simplify assumptions*)
+		   (*some risk of excessive simplification here -- might have
+		     to identify the bare minimum set of rewrites*)
+		   full_simp_tac 
+		      (mut_ss addsimps conj_simps @ imp_simps @ quant_simps) 1
+		   THEN
+		   (*unpackage and use "prem" in the corresponding place*)
+		   REPEAT (rtac impI 1)  THEN
+		   rtac (rewrite_rule all_defs prem) 1  THEN
+		   (*prem must not be REPEATed below: could loop!*)
+		   DEPTH_SOLVE (FIRSTGOAL (ares_tac [impI] ORELSE' 
+					   eresolve_tac (conjE::mp::cmonos))))
+	       ) i)
+	    THEN mutual_ind_tac prems (i-1);
+
+     val mutual_induct_fsplit = 
+       if need_mutual then
+	 prove_goalw_cterm []
+	       (cterm_of sign1
+		(Logic.list_implies 
+		   (map (induct_prem (rec_tms~~preds)) intr_tms,
+		    mutual_induct_concl)))
+	       (fn prems =>
+		[rtac (quant_induct RS lemma) 1,
+		 mutual_ind_tac (rev prems) (length prems)])
+       else TrueI;
+
+     (** Uncurrying the predicate in the ordinary induction rule **)
+
+     (*instantiate the variable to a tuple, if it is non-trivial, in order to
+       allow the predicate to be "opened up".
+       The name "x.1" comes from the "RS spec" !*)
+     val inst = 
+	 case elem_frees of [_] => I
+	    | _ => instantiate ([], [(cterm_of sign1 (Var(("x",1), Ind_Syntax.iT)), 
+				      cterm_of sign1 elem_tuple)]);
+
+     (*strip quantifier and the implication*)
+     val induct0 = inst (quant_induct RS spec RSN (2,rev_mp));
+
+     val Const ("Trueprop", _) $ (pred_var $ _) = concl_of induct0
+
+     val induct = CP.split_rule_var(pred_var, elem_type-->FOLogic.oT, induct0) 
+		  |> standard
+     and mutual_induct = CP.remove_split mutual_induct_fsplit
+    in
+      (thy
+	|> PureThy.add_tthms 
+	    [(("induct", Attribute.tthm_of induct), []),
+	     (("mutual_induct", Attribute.tthm_of mutual_induct), [])],
+       induct, mutual_induct)
+    end;  (*of induction_rules*)
+
+  val raw_induct = standard ([big_rec_def, bnd_mono] MRS Fp.induct)
+
+  val (thy2, induct, mutual_induct) = 
+      if #1 (dest_Const Fp.oper) = "lfp" then induction_rules raw_induct thy1
+      else (thy1, raw_induct, TrueI)
+  and defs = big_rec_def :: part_rec_defs
+
+ in
+   (thy2
+	 |> PureThy.add_tthms
+	      [(("bnd_mono", Attribute.tthm_of bnd_mono), []),
+	       (("dom_subset", Attribute.tthm_of dom_subset), []),
+	       (("elim", Attribute.tthm_of elim), [])]
+	 |> PureThy.add_tthmss
+	       [(("defs", Attribute.tthms_of defs), []),
+		(("intrs", Attribute.tthms_of intrs), [])]
+         |> Theory.parent_path,
+    {defs = defs,
+     bnd_mono = bnd_mono,
+     dom_subset = dom_subset,
+     intrs = intrs,
+     elim = elim,
+     mk_cases = mk_cases,
+     induct = induct,
+     mutual_induct = mutual_induct})
+
+ end;
+
+
+(*external version, accepting strings*)
+fun add_inductive (srec_tms, sdom_sum, sintrs, monos,
+		     con_defs, type_intrs, type_elims) thy = 
+  let val rec_tms = map (readtm (sign_of thy) Ind_Syntax.iT) srec_tms
+      and dom_sum = readtm (sign_of thy) Ind_Syntax.iT sdom_sum
+      and intr_tms = map (readtm (sign_of thy) propT) sintrs
+  in  
+    add_inductive_i true (rec_tms, dom_sum, intr_tms, 
+			  monos, con_defs, type_intrs, type_elims) thy
+
+  end
+end;