--- a/src/ZF/Constructible/Reflection.thy Mon Sep 09 17:28:29 2002 +0200
+++ b/src/ZF/Constructible/Reflection.thy Tue Sep 10 16:47:17 2002 +0200
@@ -37,16 +37,16 @@
and Mset_cont : "cont_Ord(Mset)"
and Pair_in_Mset : "[| x \<in> Mset(a); y \<in> Mset(a); Limit(a) |]
==> <x,y> \<in> Mset(a)"
- defines "M(x) == \<exists>a. Ord(a) \<and> x \<in> Mset(a)"
- and "Reflects(Cl,P,Q) == Closed_Unbounded(Cl) \<and>
+ defines "M(x) == \<exists>a. Ord(a) & x \<in> Mset(a)"
+ and "Reflects(Cl,P,Q) == Closed_Unbounded(Cl) &
(\<forall>a. Cl(a) --> (\<forall>x\<in>Mset(a). P(x) <-> Q(a,x)))"
fixes F0 --{*ordinal for a specific value @{term y}*}
fixes FF --{*sup over the whole level, @{term "y\<in>Mset(a)"}*}
fixes ClEx --{*Reflecting ordinals for the formula @{term "\<exists>z. P"}*}
- defines "F0(P,y) == \<mu>b. (\<exists>z. M(z) \<and> P(<y,z>)) -->
+ defines "F0(P,y) == \<mu>b. (\<exists>z. M(z) & P(<y,z>)) -->
(\<exists>z\<in>Mset(b). P(<y,z>))"
and "FF(P) == \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)"
- and "ClEx(P,a) == Limit(a) \<and> normalize(FF(P),a) = a"
+ and "ClEx(P,a) == Limit(a) & normalize(FF(P),a) = a"
lemma (in reflection) Mset_mono: "i\<le>j ==> Mset(i) <= Mset(j)"
apply (insert Mset_mono_le)
@@ -56,7 +56,7 @@
text{*Awkward: we need a version of @{text ClEx_def} as an equality
at the level of classes, which do not really exist*}
lemma (in reflection) ClEx_eq:
- "ClEx(P) == \<lambda>a. Limit(a) \<and> normalize(FF(P),a) = a"
+ "ClEx(P) == \<lambda>a. Limit(a) & normalize(FF(P),a) = a"
by (simp add: ClEx_def [symmetric])
@@ -72,26 +72,26 @@
theorem (in reflection) And_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
- ==> Reflects(\<lambda>a. Cl(a) \<and> C'(a), \<lambda>x. P(x) \<and> P'(x),
- \<lambda>a x. Q(a,x) \<and> Q'(a,x))"
+ ==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) & P'(x),
+ \<lambda>a x. Q(a,x) & Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Or_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
- ==> Reflects(\<lambda>a. Cl(a) \<and> C'(a), \<lambda>x. P(x) \<or> P'(x),
- \<lambda>a x. Q(a,x) \<or> Q'(a,x))"
+ ==> Reflects(\<lambda>a. Cl(a) & C'(a), \<lambda>x. P(x) | P'(x),
+ \<lambda>a x. Q(a,x) | Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Imp_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
- ==> Reflects(\<lambda>a. Cl(a) \<and> C'(a),
+ ==> Reflects(\<lambda>a. Cl(a) & C'(a),
\<lambda>x. P(x) --> P'(x),
\<lambda>a x. Q(a,x) --> Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
theorem (in reflection) Iff_reflection [intro]:
"[| Reflects(Cl,P,Q); Reflects(C',P',Q') |]
- ==> Reflects(\<lambda>a. Cl(a) \<and> C'(a),
+ ==> Reflects(\<lambda>a. Cl(a) & C'(a),
\<lambda>x. P(x) <-> P'(x),
\<lambda>a x. Q(a,x) <-> Q'(a,x))"
by (simp add: Reflects_def Closed_Unbounded_Int, blast)
@@ -155,7 +155,7 @@
lemma (in ex_reflection) ClEx_upward:
"[| z\<in>Mset(a); y\<in>Mset(a); Q(a,<y,z>); Cl(a); ClEx(P,a) |]
- ==> \<exists>z. M(z) \<and> P(<y,z>)"
+ ==> \<exists>z. M(z) & P(<y,z>)"
apply (simp add: ClEx_def M_def)
apply (blast dest: Cl_reflects
intro: Limit_is_Ord Pair_in_Mset)
@@ -164,7 +164,7 @@
text{*Class @{text ClEx} indeed consists of reflecting ordinals...*}
lemma (in ex_reflection) ZF_ClEx_iff:
"[| y\<in>Mset(a); Cl(a); ClEx(P,a) |]
- ==> (\<exists>z. M(z) \<and> P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
+ ==> (\<exists>z. M(z) & P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
by (blast intro: dest: ClEx_downward ClEx_upward)
text{*...and it is closed and unbounded*}
@@ -181,7 +181,7 @@
lemma (in reflection) ClEx_iff:
"[| y\<in>Mset(a); Cl(a); ClEx(P,a);
!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x) |]
- ==> (\<exists>z. M(z) \<and> P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
+ ==> (\<exists>z. M(z) & P(<y,z>)) <-> (\<exists>z\<in>Mset(a). Q(a,<y,z>))"
apply (unfold ClEx_def FF_def F0_def M_def)
apply (rule ex_reflection.ZF_ClEx_iff
[OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro,
@@ -209,8 +209,8 @@
lemma (in reflection) Ex_reflection_0:
"Reflects(Cl,P0,Q0)
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(P0,a),
- \<lambda>x. \<exists>z. M(z) \<and> P0(<x,z>),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(P0,a),
+ \<lambda>x. \<exists>z. M(z) & P0(<x,z>),
\<lambda>a x. \<exists>z\<in>Mset(a). Q0(a,<x,z>))"
apply (simp add: Reflects_def)
apply (intro conjI Closed_Unbounded_Int)
@@ -221,7 +221,7 @@
lemma (in reflection) All_reflection_0:
"Reflects(Cl,P0,Q0)
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x.~P0(x), a),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x.~P0(x), a),
\<lambda>x. \<forall>z. M(z) --> P0(<x,z>),
\<lambda>a x. \<forall>z\<in>Mset(a). Q0(a,<x,z>))"
apply (simp only: all_iff_not_ex_not ball_iff_not_bex_not)
@@ -231,15 +231,15 @@
theorem (in reflection) Ex_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. P(fst(x),snd(x)), a),
- \<lambda>x. \<exists>z. M(z) \<and> P(x,z),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
+ \<lambda>x. \<exists>z. M(z) & P(x,z),
\<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
by (rule Ex_reflection_0 [of _ " \<lambda>x. P(fst(x),snd(x))"
"\<lambda>a x. Q(a,fst(x),snd(x))", simplified])
theorem (in reflection) All_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
\<lambda>x. \<forall>z. M(z) --> P(x,z),
\<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
by (rule All_reflection_0 [of _ "\<lambda>x. P(fst(x),snd(x))"
@@ -249,14 +249,14 @@
theorem (in reflection) Rex_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. P(fst(x),snd(x)), a),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. P(fst(x),snd(x)), a),
\<lambda>x. \<exists>z[M]. P(x,z),
\<lambda>a x. \<exists>z\<in>Mset(a). Q(a,x,z))"
by (unfold rex_def, blast)
theorem (in reflection) Rall_reflection [intro]:
"Reflects(Cl, \<lambda>x. P(fst(x),snd(x)), \<lambda>a x. Q(a,fst(x),snd(x)))
- ==> Reflects(\<lambda>a. Cl(a) \<and> ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
+ ==> Reflects(\<lambda>a. Cl(a) & ClEx(\<lambda>x. ~P(fst(x),snd(x)), a),
\<lambda>x. \<forall>z[M]. P(x,z),
\<lambda>a x. \<forall>z\<in>Mset(a). Q(a,x,z))"
by (unfold rall_def, blast)
@@ -272,7 +272,7 @@
proof state.*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> x \<in> y,
+ \<lambda>x. \<exists>y. M(y) & x \<in> y,
\<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
by fast
@@ -280,8 +280,8 @@
in the class of reflecting ordinals. The @{term "Ord(a)"} is redundant,
though harmless.*}
lemma (in reflection)
- "Reflects(\<lambda>a. Ord(a) \<and> ClEx(\<lambda>x. fst(x) \<in> snd(x), a),
- \<lambda>x. \<exists>y. M(y) \<and> x \<in> y,
+ "Reflects(\<lambda>a. Ord(a) & ClEx(\<lambda>x. fst(x) \<in> snd(x), a),
+ \<lambda>x. \<exists>y. M(y) & x \<in> y,
\<lambda>a x. \<exists>y\<in>Mset(a). x \<in> y)"
by fast
@@ -289,31 +289,31 @@
text{*Example 2*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
+ \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)"
by fast
text{*Example 2'. We give the reflecting class explicitly. *}
lemma (in reflection)
"Reflects
- (\<lambda>a. (Ord(a) \<and>
- ClEx(\<lambda>x. ~ (snd(x) \<subseteq> fst(fst(x)) --> snd(x) \<in> snd(fst(x))), a)) \<and>
+ (\<lambda>a. (Ord(a) &
+ ClEx(\<lambda>x. ~ (snd(x) \<subseteq> fst(fst(x)) --> snd(x) \<in> snd(fst(x))), a)) &
ClEx(\<lambda>x. \<forall>z. M(z) --> z \<subseteq> fst(x) --> z \<in> snd(x), a),
- \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
+ \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)"
by fast
text{*Example 2''. We expand the subset relation.*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) --> (\<forall>w. M(w) --> w\<in>z --> w\<in>x) --> z\<in>y),
+ \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> (\<forall>w. M(w) --> w\<in>z --> w\<in>x) --> z\<in>y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). (\<forall>w\<in>Mset(a). w\<in>z --> w\<in>x) --> z\<in>y)"
by fast
text{*Example 2'''. Single-step version, to reveal the reflecting class.*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
+ \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<subseteq> x --> z \<in> y),
\<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<subseteq> x --> z \<in> y)"
apply (rule Ex_reflection)
txt{*
@@ -333,21 +333,21 @@
if @{term P} is quantifier-free, since it is not being relativized.*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> (\<forall>z. M(z) --> z \<in> y <-> z \<in> x \<and> P(z)),
- \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y <-> z \<in> x \<and> P(z))"
+ \<lambda>x. \<exists>y. M(y) & (\<forall>z. M(z) --> z \<in> y <-> z \<in> x & P(z)),
+ \<lambda>a x. \<exists>y\<in>Mset(a). \<forall>z\<in>Mset(a). z \<in> y <-> z \<in> x & P(z))"
by fast
text{*Example 3'*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> y = Collect(x,P),
+ \<lambda>x. \<exists>y. M(y) & y = Collect(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Collect(x,P))";
by fast
text{*Example 3''*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>x. \<exists>y. M(y) \<and> y = Replace(x,P),
+ \<lambda>x. \<exists>y. M(y) & y = Replace(x,P),
\<lambda>a x. \<exists>y\<in>Mset(a). y = Replace(x,P))";
by fast
@@ -355,7 +355,7 @@
to be relativized.*}
lemma (in reflection)
"Reflects(?Cl,
- \<lambda>A. 0\<notin>A --> (\<exists>f. M(f) \<and> f \<in> (\<Pi>X \<in> A. X)),
+ \<lambda>A. 0\<notin>A --> (\<exists>f. M(f) & f \<in> (\<Pi>X \<in> A. X)),
\<lambda>a A. 0\<notin>A --> (\<exists>f\<in>Mset(a). f \<in> (\<Pi>X \<in> A. X)))"
by fast