--- a/src/HOL/Complex/CLim.ML Tue Dec 23 12:54:15 2003 +0100
+++ b/src/HOL/Complex/CLim.ML Tue Dec 23 12:54:45 2003 +0100
@@ -826,8 +826,8 @@
by (simp_tac (simpset() addsimps [hcomplex_add_divide_distrib]) 1);
by (REPEAT(dtac (bex_CInfinitesimal_iff2 RS iffD2) 1));
by (auto_tac (claset(),
- simpset() delsimps [hcomplex_times_divide1_eq]
- addsimps [hcomplex_times_divide1_eq RS sym]));
+ simpset() delsimps [times_divide_eq_right]
+ addsimps [times_divide_eq_right RS sym]));
by (rewtac hcomplex_diff_def);
by (dres_inst_tac [("D","Db")] lemma_nscderiv2 1);
by (dtac (capprox_minus_iff RS iffD2 RS (bex_CInfinitesimal_iff2 RS iffD2)) 4);
@@ -1050,14 +1050,6 @@
by Auto_tac;
qed "CInfinitesimal_add_not_zero";
-(***
-Goal "[|(x::hcomplex) ~= 0; y ~= 0 |] \
-\ ==> inverse(x) + inverse(y) = (x + y)*inverse(x*y)";
-by (asm_full_simp_tac (simpset() addsimps [hcomplex_inverse_distrib,
- hcomplex_add_mult_distrib,hcomplex_mult_assoc RS sym]) 1);
-qed "hcomplex_inverse_add";
-***)
-
(*Can't get rid of x ~= 0 because it isn't continuous at zero*)
Goalw [nscderiv_def]
@@ -1071,9 +1063,10 @@
hcomplex_minus_mult_eq2 RS sym]));
by (asm_simp_tac
(simpset() addsimps [hcomplex_inverse_add,
- hcomplex_inverse_distrib RS sym, hcomplex_minus_inverse RS sym]
+ inverse_mult_distrib RS sym, hcomplex_minus_inverse RS sym]
@ hcomplex_add_ac @ hcomplex_mult_ac
- delsimps [hcomplex_minus_mult_eq1 RS sym,
+ delsimps [thm"Ring_and_Field.inverse_minus_eq",
+ inverse_mult_distrib, hcomplex_minus_mult_eq1 RS sym,
hcomplex_minus_mult_eq2 RS sym] ) 1);
by (asm_simp_tac (simpset() addsimps [hcomplex_mult_assoc RS sym,
hcomplex_add_mult_distrib2]
--- a/src/HOL/Complex/NSCA.ML Tue Dec 23 12:54:15 2003 +0100
+++ b/src/HOL/Complex/NSCA.ML Tue Dec 23 12:54:45 2003 +0100
@@ -1311,7 +1311,7 @@
by (auto_tac (claset(),
simpset() addsimps [stc_mult RS sym, stc_not_CInfinitesimal,
CFinite_inverse]));
-by (stac hcomplex_mult_inv_right 1);
+by (stac right_inverse 1);
by Auto_tac;
qed "stc_inverse";
--- a/src/HOL/Complex/NSComplex.thy Tue Dec 23 12:54:15 2003 +0100
+++ b/src/HOL/Complex/NSComplex.thy Tue Dec 23 12:54:45 2003 +0100
@@ -6,6 +6,12 @@
theory NSComplex = NSInduct:
+(* Move to one of the hyperreal theories *)
+lemma hypreal_of_nat: "hypreal_of_nat m = Abs_hypreal(hyprel `` {%n. real m})"
+apply (induct_tac "m")
+apply (auto simp add: hypreal_zero_def hypreal_of_nat_Suc hypreal_zero_num hypreal_one_num hypreal_add real_of_nat_Suc)
+done
+
constdefs
hcomplexrel :: "((nat=>complex)*(nat=>complex)) set"
"hcomplexrel == {p. EX X Y. p = ((X::nat=>complex),Y) &
@@ -358,144 +364,12 @@
apply (auto , ultra)
done
-lemma hcomplex_minus_minus: "- (- z) = (z::hcomplex)"
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (simp (no_asm_simp) add: hcomplex_minus)
-done
-declare hcomplex_minus_minus [simp]
-
-lemma inj_hcomplex_minus: "inj(%z::hcomplex. -z)"
-apply (rule inj_onI)
-apply (drule_tac f = "uminus" in arg_cong)
-apply simp
-done
-
-lemma hcomplex_minus_zero: "- 0 = (0::hcomplex)"
-apply (unfold hcomplex_zero_def)
-apply (simp (no_asm) add: hcomplex_minus)
-done
-declare hcomplex_minus_zero [simp]
-
-lemma hcomplex_minus_zero_iff: "(-x = 0) = (x = (0::hcomplex))"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_zero_def hcomplex_minus)
-done
-declare hcomplex_minus_zero_iff [simp]
-
-lemma hcomplex_minus_zero_iff2: "(0 = -x) = (x = (0::hcomplex))"
-apply (auto dest: sym)
-done
-declare hcomplex_minus_zero_iff2 [simp]
-
-lemma hcomplex_minus_not_zero_iff: "(-x ~= 0) = (x ~= (0::hcomplex))"
-apply auto
-done
-
-lemma hcomplex_add_minus_right: "z + - z = (0::hcomplex)"
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_add hcomplex_minus hcomplex_zero_def)
-done
-declare hcomplex_add_minus_right [simp]
-
lemma hcomplex_add_minus_left: "-z + z = (0::hcomplex)"
apply (rule_tac z = "z" in eq_Abs_hcomplex)
apply (auto simp add: hcomplex_add hcomplex_minus hcomplex_zero_def)
done
declare hcomplex_add_minus_left [simp]
-lemma hcomplex_add_minus_cancel: "z + (- z + w) = (w::hcomplex)"
-apply (simp (no_asm) add: hcomplex_add_assoc [symmetric])
-done
-
-lemma hcomplex_minus_add_cancel: "(-z) + (z + w) = (w::hcomplex)"
-apply (simp (no_asm) add: hcomplex_add_assoc [symmetric])
-done
-
-lemma hRe_minus: "hRe(-z) = - hRe(z)"
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (auto simp add: hRe hcomplex_minus hypreal_minus complex_Re_minus)
-done
-
-lemma hIm_minus: "hIm(-z) = - hIm(z)"
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (auto simp add: hIm hcomplex_minus hypreal_minus complex_Im_minus)
-done
-
-lemma hcomplex_add_minus_eq_minus:
- "x + y = (0::hcomplex) ==> x = -y"
-apply (unfold hcomplex_zero_def)
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_add hcomplex_minus)
-apply ultra
-done
-
-lemma hcomplex_minus_add_distrib: "-(x + y) = -x + -(y::hcomplex)"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_add hcomplex_minus)
-done
-declare hcomplex_minus_add_distrib [simp]
-
-lemma hcomplex_add_left_cancel: "((x::hcomplex) + y = x + z) = (y = z)"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_add)
-done
-declare hcomplex_add_left_cancel [iff]
-
-lemma hcomplex_add_right_cancel: "(y + (x::hcomplex)= z + x) = (y = z)"
-apply (simp (no_asm) add: hcomplex_add_commute)
-done
-declare hcomplex_add_right_cancel [iff]
-
-lemma hcomplex_eq_minus_iff: "((x::hcomplex) = y) = ((0::hcomplex) = x + - y)"
-apply (safe)
-apply (rule_tac [2] x1 = "-y" in hcomplex_add_right_cancel [THEN iffD1])
-apply auto
-done
-
-lemma hcomplex_eq_minus_iff2: "((x::hcomplex) = y) = (x + - y = (0::hcomplex))"
-apply (safe)
-apply (rule_tac [2] x1 = "-y" in hcomplex_add_right_cancel [THEN iffD1])
-apply auto
-done
-
-subsection{*Subraction for Nonstandard Complex Numbers*}
-
-lemma hcomplex_diff:
- "Abs_hcomplex(hcomplexrel``{%n. X n}) - Abs_hcomplex(hcomplexrel``{%n. Y n}) =
- Abs_hcomplex(hcomplexrel``{%n. X n - Y n})"
-
-apply (unfold hcomplex_diff_def)
-apply (auto simp add: hcomplex_minus hcomplex_add complex_diff_def)
-done
-
-lemma hcomplex_diff_zero: "(z::hcomplex) - z = (0::hcomplex)"
-apply (unfold hcomplex_diff_def)
-apply (simp (no_asm))
-done
-declare hcomplex_diff_zero [simp]
-
-lemma hcomplex_diff_0: "(0::hcomplex) - x = -x"
-apply (simp (no_asm) add: hcomplex_diff_def)
-done
-
-lemma hcomplex_diff_0_right: "x - (0::hcomplex) = x"
-apply (simp (no_asm) add: hcomplex_diff_def)
-done
-
-lemma hcomplex_diff_self: "x - x = (0::hcomplex)"
-apply (simp (no_asm) add: hcomplex_diff_def)
-done
-
-declare hcomplex_diff_0 [simp] hcomplex_diff_0_right [simp] hcomplex_diff_self [simp]
-
-lemma hcomplex_diff_eq_eq: "((x::hcomplex) - y = z) = (x = z + y)"
-apply (auto simp add: hcomplex_diff_def hcomplex_add_assoc)
-done
-
subsection{*Multiplication for Nonstandard Complex Numbers*}
lemma hcomplex_mult:
@@ -520,16 +394,6 @@
apply (auto simp add: hcomplex_mult complex_mult_assoc)
done
-lemma hcomplex_mult_left_commute: "(x::hcomplex) * (y * z) = y * (x * z)"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (rule_tac z = "z" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_mult complex_mult_left_commute)
-done
-
-lemmas hcomplex_mult_ac = hcomplex_mult_assoc hcomplex_mult_commute
- hcomplex_mult_left_commute
-
lemma hcomplex_mult_one_left: "(1::hcomplex) * z = z"
apply (unfold hcomplex_one_def)
apply (rule_tac z = "z" in eq_Abs_hcomplex)
@@ -537,11 +401,6 @@
done
declare hcomplex_mult_one_left [simp]
-lemma hcomplex_mult_one_right: "z * (1::hcomplex) = z"
-apply (simp (no_asm) add: hcomplex_mult_commute)
-done
-declare hcomplex_mult_one_right [simp]
-
lemma hcomplex_mult_zero_left: "(0::hcomplex) * z = 0"
apply (unfold hcomplex_zero_def)
apply (rule_tac z = "z" in eq_Abs_hcomplex)
@@ -549,45 +408,6 @@
done
declare hcomplex_mult_zero_left [simp]
-lemma hcomplex_mult_zero_right: "z * (0::hcomplex) = 0"
-apply (simp (no_asm) add: hcomplex_mult_commute)
-done
-declare hcomplex_mult_zero_right [simp]
-
-lemma hcomplex_minus_mult_eq1: "-(x * y) = -x * (y::hcomplex)"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_mult hcomplex_minus)
-done
-
-lemma hcomplex_minus_mult_eq2: "-(x * y) = x * -(y::hcomplex)"
-apply (rule_tac z = "x" in eq_Abs_hcomplex)
-apply (rule_tac z = "y" in eq_Abs_hcomplex)
-apply (auto simp add: hcomplex_mult hcomplex_minus)
-done
-
-declare hcomplex_minus_mult_eq1 [symmetric, simp] hcomplex_minus_mult_eq2 [symmetric, simp]
-
-lemma hcomplex_mult_minus_one: "- 1 * (z::hcomplex) = -z"
-apply (simp (no_asm))
-done
-declare hcomplex_mult_minus_one [simp]
-
-lemma hcomplex_mult_minus_one_right: "(z::hcomplex) * - 1 = -z"
-apply (subst hcomplex_mult_commute)
-apply (simp (no_asm))
-done
-declare hcomplex_mult_minus_one_right [simp]
-
-lemma hcomplex_minus_mult_cancel: "-x * -y = x * (y::hcomplex)"
-apply auto
-done
-declare hcomplex_minus_mult_cancel [simp]
-
-lemma hcomplex_minus_mult_commute: "-x * y = x * -(y::hcomplex)"
-apply auto
-done
-
lemma hcomplex_add_mult_distrib: "((z1::hcomplex) + z2) * w = (z1 * w) + (z2 * w)"
apply (rule_tac z = "z1" in eq_Abs_hcomplex)
apply (rule_tac z = "z2" in eq_Abs_hcomplex)
@@ -595,12 +415,6 @@
apply (auto simp add: hcomplex_mult hcomplex_add complex_add_mult_distrib)
done
-lemma hcomplex_add_mult_distrib2: "(w::hcomplex) * (z1 + z2) = (w * z1) + (w * z2)"
-apply (rule_tac z1 = "z1 + z2" in hcomplex_mult_commute [THEN ssubst])
-apply (simp (no_asm) add: hcomplex_add_mult_distrib)
-apply (simp (no_asm) add: hcomplex_mult_commute)
-done
-
lemma hcomplex_zero_not_eq_one: "(0::hcomplex) ~= (1::hcomplex)"
apply (unfold hcomplex_zero_def hcomplex_one_def)
apply auto
@@ -619,15 +433,6 @@
apply (auto , ultra)
done
-lemma HCOMPLEX_INVERSE_ZERO: "inverse (0::hcomplex) = 0"
-apply (unfold hcomplex_zero_def)
-apply (auto simp add: hcomplex_inverse)
-done
-
-lemma HCOMPLEX_DIVISION_BY_ZERO: "a / (0::hcomplex) = 0"
-apply (simp (no_asm) add: hcomplex_divide_def HCOMPLEX_INVERSE_ZERO)
-done
-
lemma hcomplex_mult_inv_left:
"z ~= (0::hcomplex) ==> inverse(z) * z = (1::hcomplex)"
apply (unfold hcomplex_zero_def hcomplex_one_def)
@@ -640,105 +445,173 @@
done
declare hcomplex_mult_inv_left [simp]
-lemma hcomplex_mult_inv_right: "z ~= (0::hcomplex) ==> z * inverse(z) = (1::hcomplex)"
-apply (auto intro: hcomplex_mult_commute [THEN subst])
+subsection {* The Field of Nonstandard Complex Numbers *}
+
+instance hcomplex :: field
+proof
+ fix z u v w :: hcomplex
+ show "(u + v) + w = u + (v + w)"
+ by (simp add: hcomplex_add_assoc)
+ show "z + w = w + z"
+ by (simp add: hcomplex_add_commute)
+ show "0 + z = z"
+ by (simp)
+ show "-z + z = 0"
+ by (simp)
+ show "z - w = z + -w"
+ by (simp add: hcomplex_diff_def)
+ show "(u * v) * w = u * (v * w)"
+ by (simp add: hcomplex_mult_assoc)
+ show "z * w = w * z"
+ by (simp add: hcomplex_mult_commute)
+ show "1 * z = z"
+ by (simp)
+ show "0 \<noteq> (1::hcomplex)"
+ by (rule hcomplex_zero_not_eq_one)
+ show "(u + v) * w = u * w + v * w"
+ by (simp add: hcomplex_add_mult_distrib)
+ assume neq: "w \<noteq> 0"
+ thus "z / w = z * inverse w"
+ by (simp add: hcomplex_divide_def)
+ show "inverse w * w = 1"
+ by (rule hcomplex_mult_inv_left)
+qed
+
+lemma HCOMPLEX_INVERSE_ZERO: "inverse (0::hcomplex) = 0"
+apply (unfold hcomplex_zero_def)
+apply (auto simp add: hcomplex_inverse)
done
-declare hcomplex_mult_inv_right [simp]
+
+lemma HCOMPLEX_DIVISION_BY_ZERO: "a / (0::hcomplex) = 0"
+apply (simp (no_asm) add: hcomplex_divide_def HCOMPLEX_INVERSE_ZERO)
+done
+
+instance hcomplex :: division_by_zero
+proof
+ fix x :: hcomplex
+ show "inverse 0 = (0::hcomplex)" by (rule HCOMPLEX_INVERSE_ZERO)
+ show "x/0 = 0" by (rule HCOMPLEX_DIVISION_BY_ZERO)
+qed
lemma hcomplex_mult_left_cancel: "(c::hcomplex) ~= (0::hcomplex) ==> (c*a=c*b) = (a=b)"
-apply auto
-apply (drule_tac f = "%x. x*inverse c" in arg_cong)
-apply (simp add: hcomplex_mult_ac)
+by (simp add: field_mult_cancel_left)
+
+subsection{*More Minus Laws*}
+
+lemma inj_hcomplex_minus: "inj(%z::hcomplex. -z)"
+apply (rule inj_onI)
+apply (drule_tac f = "uminus" in arg_cong)
+apply simp
+done
+
+lemma hRe_minus: "hRe(-z) = - hRe(z)"
+apply (rule_tac z = "z" in eq_Abs_hcomplex)
+apply (auto simp add: hRe hcomplex_minus hypreal_minus complex_Re_minus)
+done
+
+lemma hIm_minus: "hIm(-z) = - hIm(z)"
+apply (rule_tac z = "z" in eq_Abs_hcomplex)
+apply (auto simp add: hIm hcomplex_minus hypreal_minus complex_Im_minus)
+done
+
+lemma hcomplex_add_minus_eq_minus:
+ "x + y = (0::hcomplex) ==> x = -y"
+apply (drule Ring_and_Field.equals_zero_I)
+apply (simp add: minus_equation_iff [of x y])
+done
+
+lemma hcomplex_minus_add_distrib: "-(x + y) = -x + -(y::hcomplex)"
+apply (rule Ring_and_Field.minus_add_distrib)
+done
+
+lemma hcomplex_add_left_cancel: "((x::hcomplex) + y = x + z) = (y = z)"
+apply (rule Ring_and_Field.add_left_cancel)
+done
+declare hcomplex_add_left_cancel [iff]
+
+lemma hcomplex_add_right_cancel: "(y + (x::hcomplex)= z + x) = (y = z)"
+apply (rule Ring_and_Field.add_right_cancel)
+done
+declare hcomplex_add_right_cancel [iff]
+
+subsection{*More Multiplication Laws*}
+
+lemma hcomplex_mult_left_commute: "(x::hcomplex) * (y * z) = y * (x * z)"
+apply (rule Ring_and_Field.mult_left_commute)
+done
+
+lemmas hcomplex_mult_ac = hcomplex_mult_assoc hcomplex_mult_commute
+ hcomplex_mult_left_commute
+
+lemma hcomplex_mult_one_right: "z * (1::hcomplex) = z"
+apply (rule Ring_and_Field.mult_1_right)
+done
+
+lemma hcomplex_mult_zero_right: "z * (0::hcomplex) = 0"
+apply (rule Ring_and_Field.mult_right_zero)
+done
+
+lemma hcomplex_minus_mult_eq1: "-(x * y) = -x * (y::hcomplex)"
+apply (rule Ring_and_Field.minus_mult_left)
+done
+
+declare hcomplex_minus_mult_eq1 [symmetric, simp]
+
+lemma hcomplex_minus_mult_eq2: "-(x * y) = x * -(y::hcomplex)"
+apply (rule Ring_and_Field.minus_mult_right)
+done
+
+declare hcomplex_minus_mult_eq2 [symmetric, simp]
+
+lemma hcomplex_mult_minus_one: "- 1 * (z::hcomplex) = -z"
+apply (simp (no_asm))
+done
+declare hcomplex_mult_minus_one [simp]
+
+lemma hcomplex_mult_minus_one_right: "(z::hcomplex) * - 1 = -z"
+apply (subst hcomplex_mult_commute)
+apply (simp (no_asm))
+done
+declare hcomplex_mult_minus_one_right [simp]
+
+lemma hcomplex_add_mult_distrib2: "(w::hcomplex) * (z1 + z2) = (w * z1) + (w * z2)"
+apply (rule Ring_and_Field.right_distrib)
done
lemma hcomplex_mult_right_cancel: "(c::hcomplex) ~= (0::hcomplex) ==> (a*c=b*c) = (a=b)"
-apply (safe)
-apply (drule_tac f = "%x. x*inverse c" in arg_cong)
-apply (simp add: hcomplex_mult_ac)
+apply (simp add: Ring_and_Field.field_mult_cancel_right);
done
lemma hcomplex_inverse_not_zero: "z ~= (0::hcomplex) ==> inverse(z) ~= 0"
-apply (safe)
-apply (frule hcomplex_mult_right_cancel [THEN iffD2])
-apply (erule_tac [2] V = "inverse z = 0" in thin_rl)
-apply (assumption , auto)
+apply (simp add: );
done
-declare hcomplex_inverse_not_zero [simp]
lemma hcomplex_mult_not_zero: "[| x ~= (0::hcomplex); y ~= 0 |] ==> x * y ~= 0"
-apply (safe)
-apply (drule_tac f = "%z. inverse x*z" in arg_cong)
-apply (simp add: hcomplex_mult_assoc [symmetric])
+apply (simp add: Ring_and_Field.field_mult_eq_0_iff);
done
lemmas hcomplex_mult_not_zeroE = hcomplex_mult_not_zero [THEN notE, standard]
-lemma hcomplex_inverse_inverse: "inverse(inverse x) = (x::hcomplex)"
-apply (case_tac "x = 0", simp add: HCOMPLEX_INVERSE_ZERO)
-apply (rule_tac c1 = "inverse x" in hcomplex_mult_right_cancel [THEN iffD1])
-apply (erule hcomplex_inverse_not_zero)
-apply (auto dest: hcomplex_inverse_not_zero)
-done
-declare hcomplex_inverse_inverse [simp]
-
-lemma hcomplex_inverse_one: "inverse((1::hcomplex)) = 1"
-apply (unfold hcomplex_one_def)
-apply (simp (no_asm) add: hcomplex_inverse)
-done
-declare hcomplex_inverse_one [simp]
-
lemma hcomplex_minus_inverse: "inverse(-x) = -inverse(x::hcomplex)"
-apply (case_tac "x = 0", simp add: HCOMPLEX_INVERSE_ZERO)
-apply (rule_tac c1 = "-x" in hcomplex_mult_right_cancel [THEN iffD1])
-apply (force );
-apply (subst hcomplex_mult_inv_left)
-apply auto
-done
-
-lemma hcomplex_inverse_distrib: "inverse(x*y) = inverse x * inverse (y::hcomplex)"
-apply (case_tac "x = 0", simp add: HCOMPLEX_INVERSE_ZERO)
-apply (case_tac "y = 0", simp add: HCOMPLEX_INVERSE_ZERO)
-apply (rule_tac c1 = "x*y" in hcomplex_mult_left_cancel [THEN iffD1])
-apply (auto simp add: hcomplex_mult_not_zero hcomplex_mult_ac)
-apply (auto simp add: hcomplex_mult_not_zero hcomplex_mult_assoc [symmetric])
+apply (rule Ring_and_Field.inverse_minus_eq)
done
-subsection{*Division*}
-lemma hcomplex_times_divide1_eq: "(x::hcomplex) * (y/z) = (x*y)/z"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_mult_assoc)
-done
+subsection{*Subraction and Division*}
-lemma hcomplex_times_divide2_eq: "(y/z) * (x::hcomplex) = (y*x)/z"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_mult_ac)
-done
-
-declare hcomplex_times_divide1_eq [simp] hcomplex_times_divide2_eq [simp]
-
-lemma hcomplex_divide_divide1_eq: "(x::hcomplex) / (y/z) = (x*z)/y"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_inverse_distrib hcomplex_mult_ac)
+lemma hcomplex_diff:
+ "Abs_hcomplex(hcomplexrel``{%n. X n}) - Abs_hcomplex(hcomplexrel``{%n. Y n}) =
+ Abs_hcomplex(hcomplexrel``{%n. X n - Y n})"
+apply (unfold hcomplex_diff_def)
+apply (auto simp add: hcomplex_minus hcomplex_add complex_diff_def)
done
-lemma hcomplex_divide_divide2_eq: "((x::hcomplex) / y) / z = x/(y*z)"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_inverse_distrib hcomplex_mult_assoc)
+lemma hcomplex_diff_eq_eq: "((x::hcomplex) - y = z) = (x = z + y)"
+apply (rule Ring_and_Field.diff_eq_eq)
done
-declare hcomplex_divide_divide1_eq [simp] hcomplex_divide_divide2_eq [simp]
-
-(** As with multiplication, pull minus signs OUT of the / operator **)
-
-lemma hcomplex_minus_divide_eq: "(-x) / (y::hcomplex) = - (x/y)"
-apply (simp (no_asm) add: hcomplex_divide_def)
-done
-declare hcomplex_minus_divide_eq [simp]
-
-lemma hcomplex_divide_minus_eq: "(x / -(y::hcomplex)) = - (x/y)"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_minus_inverse)
-done
-declare hcomplex_divide_minus_eq [simp]
-
lemma hcomplex_add_divide_distrib: "(x+y)/(z::hcomplex) = x/z + y/z"
-apply (simp (no_asm) add: hcomplex_divide_def hcomplex_add_mult_distrib)
+apply (rule Ring_and_Field.add_divide_distrib)
done
@@ -840,9 +713,8 @@
done
declare hcomplex_of_hypreal_epsilon_not_zero [simp]
-(*---------------------------------------------------------------------------*)
-(* Modulus (absolute value) of nonstandard complex number *)
-(*---------------------------------------------------------------------------*)
+
+subsection{*Modulus (Absolute Value) of Nonstandard Complex Number*}
lemma hcmod:
"hcmod (Abs_hcomplex(hcomplexrel `` {%n. X n})) =
@@ -882,8 +754,7 @@
lemma hcnj:
"hcnj (Abs_hcomplex(hcomplexrel `` {%n. X n})) =
- Abs_hcomplex(hcomplexrel `` {%n. cnj(X n)})"
-
+ Abs_hcomplex(hcomplexrel `` {%n. cnj(X n)})"
apply (unfold hcnj_def)
apply (rule_tac f = "Abs_hcomplex" in arg_cong)
apply (auto , ultra)
@@ -1252,7 +1123,7 @@
lemma hcomplex_inverse_divide:
"inverse(x/y) = y/(x::hcomplex)"
apply (unfold hcomplex_divide_def)
-apply (auto simp add: hcomplex_inverse_distrib hcomplex_mult_commute)
+apply (auto simp add: inverse_mult_distrib hcomplex_mult_commute)
done
declare hcomplex_inverse_divide [simp]
@@ -1720,7 +1591,6 @@
(*---------------------------------------------------------------------------*)
lemma hcis_hrcis_eq: "hcis a = hrcis 1 a"
-
apply (unfold hrcis_def)
apply (simp (no_asm))
done
@@ -1775,12 +1645,6 @@
done
declare hcomplex_i_mult_minus2 [simp]
-(* Move to one of the hyperreal theories *)
-lemma hypreal_of_nat: "hypreal_of_nat m = Abs_hypreal(hyprel `` {%n. real m})"
-apply (induct_tac "m")
-apply (auto simp add: hypreal_zero_def hypreal_of_nat_Suc hypreal_zero_num hypreal_one_num hypreal_add real_of_nat_Suc)
-done
-
lemma hcis_hypreal_of_nat_Suc_mult:
"hcis (hypreal_of_nat (Suc n) * a) = hcis a * hcis (hypreal_of_nat n * a)"
apply (rule_tac z = "a" in eq_Abs_hypreal)
@@ -1991,29 +1855,15 @@
val hIm_add = thm"hIm_add";
val hcomplex_minus_congruent = thm"hcomplex_minus_congruent";
val hcomplex_minus = thm"hcomplex_minus";
-val hcomplex_minus_minus = thm"hcomplex_minus_minus";
val inj_hcomplex_minus = thm"inj_hcomplex_minus";
-val hcomplex_minus_zero = thm"hcomplex_minus_zero";
-val hcomplex_minus_zero_iff = thm"hcomplex_minus_zero_iff";
-val hcomplex_minus_zero_iff2 = thm"hcomplex_minus_zero_iff2";
-val hcomplex_minus_not_zero_iff = thm"hcomplex_minus_not_zero_iff";
-val hcomplex_add_minus_right = thm"hcomplex_add_minus_right";
val hcomplex_add_minus_left = thm"hcomplex_add_minus_left";
-val hcomplex_add_minus_cancel = thm"hcomplex_add_minus_cancel";
-val hcomplex_minus_add_cancel = thm"hcomplex_minus_add_cancel";
val hRe_minus = thm"hRe_minus";
val hIm_minus = thm"hIm_minus";
val hcomplex_add_minus_eq_minus = thm"hcomplex_add_minus_eq_minus";
val hcomplex_minus_add_distrib = thm"hcomplex_minus_add_distrib";
val hcomplex_add_left_cancel = thm"hcomplex_add_left_cancel";
val hcomplex_add_right_cancel = thm"hcomplex_add_right_cancel";
-val hcomplex_eq_minus_iff = thm"hcomplex_eq_minus_iff";
-val hcomplex_eq_minus_iff2 = thm"hcomplex_eq_minus_iff2";
val hcomplex_diff = thm"hcomplex_diff";
-val hcomplex_diff_zero = thm"hcomplex_diff_zero";
-val hcomplex_diff_0 = thm"hcomplex_diff_0";
-val hcomplex_diff_0_right = thm"hcomplex_diff_0_right";
-val hcomplex_diff_self = thm"hcomplex_diff_self";
val hcomplex_diff_eq_eq = thm"hcomplex_diff_eq_eq";
val hcomplex_mult = thm"hcomplex_mult";
val hcomplex_mult_commute = thm"hcomplex_mult_commute";
@@ -2027,8 +1877,6 @@
val hcomplex_minus_mult_eq2 = thm"hcomplex_minus_mult_eq2";
val hcomplex_mult_minus_one = thm"hcomplex_mult_minus_one";
val hcomplex_mult_minus_one_right = thm"hcomplex_mult_minus_one_right";
-val hcomplex_minus_mult_cancel = thm"hcomplex_minus_mult_cancel";
-val hcomplex_minus_mult_commute = thm"hcomplex_minus_mult_commute";
val hcomplex_add_mult_distrib = thm"hcomplex_add_mult_distrib";
val hcomplex_add_mult_distrib2 = thm"hcomplex_add_mult_distrib2";
val hcomplex_zero_not_eq_one = thm"hcomplex_zero_not_eq_one";
@@ -2036,22 +1884,12 @@
val HCOMPLEX_INVERSE_ZERO = thm"HCOMPLEX_INVERSE_ZERO";
val HCOMPLEX_DIVISION_BY_ZERO = thm"HCOMPLEX_DIVISION_BY_ZERO";
val hcomplex_mult_inv_left = thm"hcomplex_mult_inv_left";
-val hcomplex_mult_inv_right = thm"hcomplex_mult_inv_right";
val hcomplex_mult_left_cancel = thm"hcomplex_mult_left_cancel";
val hcomplex_mult_right_cancel = thm"hcomplex_mult_right_cancel";
val hcomplex_inverse_not_zero = thm"hcomplex_inverse_not_zero";
val hcomplex_mult_not_zero = thm"hcomplex_mult_not_zero";
val hcomplex_mult_not_zeroE = thm"hcomplex_mult_not_zeroE";
-val hcomplex_inverse_inverse = thm"hcomplex_inverse_inverse";
-val hcomplex_inverse_one = thm"hcomplex_inverse_one";
val hcomplex_minus_inverse = thm"hcomplex_minus_inverse";
-val hcomplex_inverse_distrib = thm"hcomplex_inverse_distrib";
-val hcomplex_times_divide1_eq = thm"hcomplex_times_divide1_eq";
-val hcomplex_times_divide2_eq = thm"hcomplex_times_divide2_eq";
-val hcomplex_divide_divide1_eq = thm"hcomplex_divide_divide1_eq";
-val hcomplex_divide_divide2_eq = thm"hcomplex_divide_divide2_eq";
-val hcomplex_minus_divide_eq = thm"hcomplex_minus_divide_eq";
-val hcomplex_divide_minus_eq = thm"hcomplex_divide_minus_eq";
val hcomplex_add_divide_distrib = thm"hcomplex_add_divide_distrib";
val hcomplex_of_hypreal = thm"hcomplex_of_hypreal";
val inj_hcomplex_of_hypreal = thm"inj_hcomplex_of_hypreal";
--- a/src/HOL/Complex/NSComplexArith0.ML Tue Dec 23 12:54:15 2003 +0100
+++ b/src/HOL/Complex/NSComplexArith0.ML Tue Dec 23 12:54:45 2003 +0100
@@ -29,9 +29,7 @@
qed "hcomplex_inverse_eq_divide";
Goal "(inverse(x::hcomplex) = 0) = (x = 0)";
-by (auto_tac (claset(),
- simpset() addsimps [HCOMPLEX_INVERSE_ZERO]));
-by (blast_tac (claset() addIs [ccontr] addDs [hcomplex_inverse_not_zero]) 1);
+by (Simp_tac 1);
qed "hcomplex_inverse_zero_iff";
Addsimps [hcomplex_inverse_zero_iff];
@@ -60,7 +58,7 @@
Goal "!!k::hcomplex. k~=0 ==> (k*m) / (k*n) = (m/n)";
by (asm_simp_tac
- (simpset() addsimps [hcomplex_divide_def, hcomplex_inverse_distrib]) 1);
+ (simpset() addsimps [hcomplex_divide_def, inverse_mult_distrib]) 1);
by (subgoal_tac "k * m * (inverse k * inverse n) = \
\ (k * inverse k) * (m * inverse n)" 1);
by (Asm_full_simp_tac 1);
@@ -295,7 +293,6 @@
Goal "(-b = -a) = (b = (a::hcomplex))";
by Auto_tac;
-by (etac ( inj_hcomplex_minus RS injD) 1);
qed "hcomplex_minus_eq_cancel";
Addsimps [hcomplex_minus_eq_cancel];
@@ -324,7 +321,7 @@
Goal "[|(x::hcomplex) ~= 0; y ~= 0 |] \
\ ==> inverse(x) + inverse(y) = (x + y)*inverse(x*y)";
-by (asm_full_simp_tac (simpset() addsimps [hcomplex_inverse_distrib,
+by (asm_full_simp_tac (simpset() addsimps [inverse_mult_distrib,
hcomplex_add_mult_distrib,hcomplex_mult_assoc RS sym]) 1);
qed "hcomplex_inverse_add";
--- a/src/HOL/Complex/NSComplexBin.ML Tue Dec 23 12:54:15 2003 +0100
+++ b/src/HOL/Complex/NSComplexBin.ML Tue Dec 23 12:54:45 2003 +0100
@@ -310,7 +310,7 @@
(*To let us treat subtraction as addition*)
val diff_simps = [hcomplex_diff_def, hcomplex_minus_add_distrib,
- hcomplex_minus_minus];
+ minus_minus];
(*push the unary minus down: - x * y = x * - y *)
val hcomplex_minus_mult_eq_1_to_2 =
@@ -319,7 +319,7 @@
(*to extract again any uncancelled minuses*)
val hcomplex_minus_from_mult_simps =
- [hcomplex_minus_minus, hcomplex_minus_mult_eq1 RS sym,
+ [minus_minus, hcomplex_minus_mult_eq1 RS sym,
hcomplex_minus_mult_eq2 RS sym];
(*combine unary minus with numeric literals, however nested within a product*)