--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Equiv_Relations.thy Fri Nov 19 17:31:49 2004 +0100
@@ -0,0 +1,352 @@
+(* ID: $Id$
+ Authors: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1996 University of Cambridge
+*)
+
+header {* Equivalence Relations in Higher-Order Set Theory *}
+
+theory Equiv_Relations
+imports Relation Finite_Set
+begin
+
+subsection {* Equivalence relations *}
+
+locale equiv =
+ fixes A and r
+ assumes refl: "refl A r"
+ and sym: "sym r"
+ and trans: "trans r"
+
+text {*
+ Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
+ r = r"}.
+
+ First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
+*}
+
+lemma sym_trans_comp_subset:
+ "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r"
+ by (unfold trans_def sym_def converse_def) blast
+
+lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r"
+ by (unfold refl_def) blast
+
+lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r"
+ apply (unfold equiv_def)
+ apply clarify
+ apply (rule equalityI)
+ apply (rules intro: sym_trans_comp_subset refl_comp_subset)+
+ done
+
+text {* Second half. *}
+
+lemma comp_equivI:
+ "r\<inverse> O r = r ==> Domain r = A ==> equiv A r"
+ apply (unfold equiv_def refl_def sym_def trans_def)
+ apply (erule equalityE)
+ apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r")
+ apply fast
+ apply fast
+ done
+
+
+subsection {* Equivalence classes *}
+
+lemma equiv_class_subset:
+ "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
+ -- {* lemma for the next result *}
+ by (unfold equiv_def trans_def sym_def) blast
+
+theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
+ apply (assumption | rule equalityI equiv_class_subset)+
+ apply (unfold equiv_def sym_def)
+ apply blast
+ done
+
+lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
+ by (unfold equiv_def refl_def) blast
+
+lemma subset_equiv_class:
+ "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
+ -- {* lemma for the next result *}
+ by (unfold equiv_def refl_def) blast
+
+lemma eq_equiv_class:
+ "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
+ by (rules intro: equalityD2 subset_equiv_class)
+
+lemma equiv_class_nondisjoint:
+ "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
+ by (unfold equiv_def trans_def sym_def) blast
+
+lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A"
+ by (unfold equiv_def refl_def) blast
+
+theorem equiv_class_eq_iff:
+ "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
+ by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
+
+theorem eq_equiv_class_iff:
+ "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
+ by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
+
+
+subsection {* Quotients *}
+
+constdefs
+ quotient :: "['a set, ('a*'a) set] => 'a set set" (infixl "'/'/" 90)
+ "A//r == \<Union>x \<in> A. {r``{x}}" -- {* set of equiv classes *}
+
+lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
+ by (unfold quotient_def) blast
+
+lemma quotientE:
+ "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
+ by (unfold quotient_def) blast
+
+lemma Union_quotient: "equiv A r ==> Union (A//r) = A"
+ by (unfold equiv_def refl_def quotient_def) blast
+
+lemma quotient_disj:
+ "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
+ apply (unfold quotient_def)
+ apply clarify
+ apply (rule equiv_class_eq)
+ apply assumption
+ apply (unfold equiv_def trans_def sym_def)
+ apply blast
+ done
+
+lemma quotient_eqI:
+ "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y"
+ apply (clarify elim!: quotientE)
+ apply (rule equiv_class_eq, assumption)
+ apply (unfold equiv_def sym_def trans_def, blast)
+ done
+
+lemma quotient_eq_iff:
+ "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)"
+ apply (rule iffI)
+ prefer 2 apply (blast del: equalityI intro: quotient_eqI)
+ apply (clarify elim!: quotientE)
+ apply (unfold equiv_def sym_def trans_def, blast)
+ done
+
+
+lemma quotient_empty [simp]: "{}//r = {}"
+by(simp add: quotient_def)
+
+lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
+by(simp add: quotient_def)
+
+lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
+by(simp add: quotient_def)
+
+
+subsection {* Defining unary operations upon equivalence classes *}
+
+text{*A congruence-preserving function*}
+locale congruent =
+ fixes r and f
+ assumes congruent: "(y,z) \<in> r ==> f y = f z"
+
+syntax
+ RESPECTS ::"['a => 'b, ('a * 'a) set] => bool" (infixr "respects" 80)
+
+translations
+ "f respects r" == "congruent r f"
+
+
+lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c"
+ -- {* lemma required to prove @{text UN_equiv_class} *}
+ by auto
+
+lemma UN_equiv_class:
+ "equiv A r ==> f respects r ==> a \<in> A
+ ==> (\<Union>x \<in> r``{a}. f x) = f a"
+ -- {* Conversion rule *}
+ apply (rule equiv_class_self [THEN UN_constant_eq], assumption+)
+ apply (unfold equiv_def congruent_def sym_def)
+ apply (blast del: equalityI)
+ done
+
+lemma UN_equiv_class_type:
+ "equiv A r ==> f respects r ==> X \<in> A//r ==>
+ (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B"
+ apply (unfold quotient_def)
+ apply clarify
+ apply (subst UN_equiv_class)
+ apply auto
+ done
+
+text {*
+ Sufficient conditions for injectiveness. Could weaken premises!
+ major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
+ A ==> f y \<in> B"}.
+*}
+
+lemma UN_equiv_class_inject:
+ "equiv A r ==> f respects r ==>
+ (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r
+ ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r)
+ ==> X = Y"
+ apply (unfold quotient_def)
+ apply clarify
+ apply (rule equiv_class_eq)
+ apply assumption
+ apply (subgoal_tac "f x = f xa")
+ apply blast
+ apply (erule box_equals)
+ apply (assumption | rule UN_equiv_class)+
+ done
+
+
+subsection {* Defining binary operations upon equivalence classes *}
+
+text{*A congruence-preserving function of two arguments*}
+locale congruent2 =
+ fixes r1 and r2 and f
+ assumes congruent2:
+ "(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2"
+
+text{*Abbreviation for the common case where the relations are identical*}
+syntax
+ RESPECTS2 ::"['a => 'b, ('a * 'a) set] => bool" (infixr "respects2 " 80)
+
+translations
+ "f respects2 r" => "congruent2 r r f"
+
+lemma congruent2_implies_congruent:
+ "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)"
+ by (unfold congruent_def congruent2_def equiv_def refl_def) blast
+
+lemma congruent2_implies_congruent_UN:
+ "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==>
+ congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
+ apply (unfold congruent_def)
+ apply clarify
+ apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)
+ apply (simp add: UN_equiv_class congruent2_implies_congruent)
+ apply (unfold congruent2_def equiv_def refl_def)
+ apply (blast del: equalityI)
+ done
+
+lemma UN_equiv_class2:
+ "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2
+ ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
+ by (simp add: UN_equiv_class congruent2_implies_congruent
+ congruent2_implies_congruent_UN)
+
+lemma UN_equiv_class_type2:
+ "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f
+ ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2
+ ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B)
+ ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"
+ apply (unfold quotient_def)
+ apply clarify
+ apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
+ congruent2_implies_congruent quotientI)
+ done
+
+lemma UN_UN_split_split_eq:
+ "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =
+ (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"
+ -- {* Allows a natural expression of binary operators, *}
+ -- {* without explicit calls to @{text split} *}
+ by auto
+
+lemma congruent2I:
+ "equiv A1 r1 ==> equiv A2 r2
+ ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w)
+ ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z)
+ ==> congruent2 r1 r2 f"
+ -- {* Suggested by John Harrison -- the two subproofs may be *}
+ -- {* \emph{much} simpler than the direct proof. *}
+ apply (unfold congruent2_def equiv_def refl_def)
+ apply clarify
+ apply (blast intro: trans)
+ done
+
+lemma congruent2_commuteI:
+ assumes equivA: "equiv A r"
+ and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y"
+ and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z"
+ shows "f respects2 r"
+ apply (rule congruent2I [OF equivA equivA])
+ apply (rule commute [THEN trans])
+ apply (rule_tac [3] commute [THEN trans, symmetric])
+ apply (rule_tac [5] sym)
+ apply (assumption | rule congt |
+ erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+
+ done
+
+
+subsection {* Cardinality results *}
+
+text {*Suggested by Florian Kammüller*}
+
+lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
+ -- {* recall @{thm equiv_type} *}
+ apply (rule finite_subset)
+ apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
+ apply (unfold quotient_def)
+ apply blast
+ done
+
+lemma finite_equiv_class:
+ "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"
+ apply (unfold quotient_def)
+ apply (rule finite_subset)
+ prefer 2 apply assumption
+ apply blast
+ done
+
+lemma equiv_imp_dvd_card:
+ "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X
+ ==> k dvd card A"
+ apply (rule Union_quotient [THEN subst])
+ apply assumption
+ apply (rule dvd_partition)
+ prefer 4 apply (blast dest: quotient_disj)
+ apply (simp_all add: Union_quotient equiv_type finite_quotient)
+ done
+
+ML
+{*
+val UN_UN_split_split_eq = thm "UN_UN_split_split_eq";
+val UN_constant_eq = thm "UN_constant_eq";
+val UN_equiv_class = thm "UN_equiv_class";
+val UN_equiv_class2 = thm "UN_equiv_class2";
+val UN_equiv_class_inject = thm "UN_equiv_class_inject";
+val UN_equiv_class_type = thm "UN_equiv_class_type";
+val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
+val Union_quotient = thm "Union_quotient";
+val comp_equivI = thm "comp_equivI";
+val congruent2I = thm "congruent2I";
+val congruent2_commuteI = thm "congruent2_commuteI";
+val congruent2_def = thm "congruent2_def";
+val congruent2_implies_congruent = thm "congruent2_implies_congruent";
+val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
+val congruent_def = thm "congruent_def";
+val eq_equiv_class = thm "eq_equiv_class";
+val eq_equiv_class_iff = thm "eq_equiv_class_iff";
+val equiv_class_eq = thm "equiv_class_eq";
+val equiv_class_eq_iff = thm "equiv_class_eq_iff";
+val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
+val equiv_class_self = thm "equiv_class_self";
+val equiv_comp_eq = thm "equiv_comp_eq";
+val equiv_def = thm "equiv_def";
+val equiv_imp_dvd_card = thm "equiv_imp_dvd_card";
+val equiv_type = thm "equiv_type";
+val finite_equiv_class = thm "finite_equiv_class";
+val finite_quotient = thm "finite_quotient";
+val quotientE = thm "quotientE";
+val quotientI = thm "quotientI";
+val quotient_def = thm "quotient_def";
+val quotient_disj = thm "quotient_disj";
+val refl_comp_subset = thm "refl_comp_subset";
+val subset_equiv_class = thm "subset_equiv_class";
+val sym_trans_comp_subset = thm "sym_trans_comp_subset";
+*}
+
+end
--- a/src/HOL/Integ/Equiv.thy Fri Nov 19 15:05:10 2004 +0100
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,353 +0,0 @@
-(* Title: HOL/Integ/Equiv.thy
- ID: $Id$
- Authors: Lawrence C Paulson, Cambridge University Computer Laboratory
- Copyright 1996 University of Cambridge
-*)
-
-header {* Equivalence relations in Higher-Order Set Theory *}
-
-theory Equiv
-imports Relation Finite_Set
-begin
-
-subsection {* Equivalence relations *}
-
-locale equiv =
- fixes A and r
- assumes refl: "refl A r"
- and sym: "sym r"
- and trans: "trans r"
-
-text {*
- Suppes, Theorem 70: @{text r} is an equiv relation iff @{text "r\<inverse> O
- r = r"}.
-
- First half: @{text "equiv A r ==> r\<inverse> O r = r"}.
-*}
-
-lemma sym_trans_comp_subset:
- "sym r ==> trans r ==> r\<inverse> O r \<subseteq> r"
- by (unfold trans_def sym_def converse_def) blast
-
-lemma refl_comp_subset: "refl A r ==> r \<subseteq> r\<inverse> O r"
- by (unfold refl_def) blast
-
-lemma equiv_comp_eq: "equiv A r ==> r\<inverse> O r = r"
- apply (unfold equiv_def)
- apply clarify
- apply (rule equalityI)
- apply (rules intro: sym_trans_comp_subset refl_comp_subset)+
- done
-
-text {* Second half. *}
-
-lemma comp_equivI:
- "r\<inverse> O r = r ==> Domain r = A ==> equiv A r"
- apply (unfold equiv_def refl_def sym_def trans_def)
- apply (erule equalityE)
- apply (subgoal_tac "\<forall>x y. (x, y) \<in> r --> (y, x) \<in> r")
- apply fast
- apply fast
- done
-
-
-subsection {* Equivalence classes *}
-
-lemma equiv_class_subset:
- "equiv A r ==> (a, b) \<in> r ==> r``{a} \<subseteq> r``{b}"
- -- {* lemma for the next result *}
- by (unfold equiv_def trans_def sym_def) blast
-
-theorem equiv_class_eq: "equiv A r ==> (a, b) \<in> r ==> r``{a} = r``{b}"
- apply (assumption | rule equalityI equiv_class_subset)+
- apply (unfold equiv_def sym_def)
- apply blast
- done
-
-lemma equiv_class_self: "equiv A r ==> a \<in> A ==> a \<in> r``{a}"
- by (unfold equiv_def refl_def) blast
-
-lemma subset_equiv_class:
- "equiv A r ==> r``{b} \<subseteq> r``{a} ==> b \<in> A ==> (a,b) \<in> r"
- -- {* lemma for the next result *}
- by (unfold equiv_def refl_def) blast
-
-lemma eq_equiv_class:
- "r``{a} = r``{b} ==> equiv A r ==> b \<in> A ==> (a, b) \<in> r"
- by (rules intro: equalityD2 subset_equiv_class)
-
-lemma equiv_class_nondisjoint:
- "equiv A r ==> x \<in> (r``{a} \<inter> r``{b}) ==> (a, b) \<in> r"
- by (unfold equiv_def trans_def sym_def) blast
-
-lemma equiv_type: "equiv A r ==> r \<subseteq> A \<times> A"
- by (unfold equiv_def refl_def) blast
-
-theorem equiv_class_eq_iff:
- "equiv A r ==> ((x, y) \<in> r) = (r``{x} = r``{y} & x \<in> A & y \<in> A)"
- by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
-
-theorem eq_equiv_class_iff:
- "equiv A r ==> x \<in> A ==> y \<in> A ==> (r``{x} = r``{y}) = ((x, y) \<in> r)"
- by (blast intro!: equiv_class_eq dest: eq_equiv_class equiv_type)
-
-
-subsection {* Quotients *}
-
-constdefs
- quotient :: "['a set, ('a*'a) set] => 'a set set" (infixl "'/'/" 90)
- "A//r == \<Union>x \<in> A. {r``{x}}" -- {* set of equiv classes *}
-
-lemma quotientI: "x \<in> A ==> r``{x} \<in> A//r"
- by (unfold quotient_def) blast
-
-lemma quotientE:
- "X \<in> A//r ==> (!!x. X = r``{x} ==> x \<in> A ==> P) ==> P"
- by (unfold quotient_def) blast
-
-lemma Union_quotient: "equiv A r ==> Union (A//r) = A"
- by (unfold equiv_def refl_def quotient_def) blast
-
-lemma quotient_disj:
- "equiv A r ==> X \<in> A//r ==> Y \<in> A//r ==> X = Y | (X \<inter> Y = {})"
- apply (unfold quotient_def)
- apply clarify
- apply (rule equiv_class_eq)
- apply assumption
- apply (unfold equiv_def trans_def sym_def)
- apply blast
- done
-
-lemma quotient_eqI:
- "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y; (x,y) \<in> r|] ==> X = Y"
- apply (clarify elim!: quotientE)
- apply (rule equiv_class_eq, assumption)
- apply (unfold equiv_def sym_def trans_def, blast)
- done
-
-lemma quotient_eq_iff:
- "[|equiv A r; X \<in> A//r; Y \<in> A//r; x \<in> X; y \<in> Y|] ==> (X = Y) = ((x,y) \<in> r)"
- apply (rule iffI)
- prefer 2 apply (blast del: equalityI intro: quotient_eqI)
- apply (clarify elim!: quotientE)
- apply (unfold equiv_def sym_def trans_def, blast)
- done
-
-
-lemma quotient_empty [simp]: "{}//r = {}"
-by(simp add: quotient_def)
-
-lemma quotient_is_empty [iff]: "(A//r = {}) = (A = {})"
-by(simp add: quotient_def)
-
-lemma quotient_is_empty2 [iff]: "({} = A//r) = (A = {})"
-by(simp add: quotient_def)
-
-
-subsection {* Defining unary operations upon equivalence classes *}
-
-text{*A congruence-preserving function*}
-locale congruent =
- fixes r and f
- assumes congruent: "(y,z) \<in> r ==> f y = f z"
-
-syntax
- RESPECTS ::"['a => 'b, ('a * 'a) set] => bool" (infixr "respects" 80)
-
-translations
- "f respects r" == "congruent r f"
-
-
-lemma UN_constant_eq: "a \<in> A ==> \<forall>y \<in> A. f y = c ==> (\<Union>y \<in> A. f(y))=c"
- -- {* lemma required to prove @{text UN_equiv_class} *}
- by auto
-
-lemma UN_equiv_class:
- "equiv A r ==> f respects r ==> a \<in> A
- ==> (\<Union>x \<in> r``{a}. f x) = f a"
- -- {* Conversion rule *}
- apply (rule equiv_class_self [THEN UN_constant_eq], assumption+)
- apply (unfold equiv_def congruent_def sym_def)
- apply (blast del: equalityI)
- done
-
-lemma UN_equiv_class_type:
- "equiv A r ==> f respects r ==> X \<in> A//r ==>
- (!!x. x \<in> A ==> f x \<in> B) ==> (\<Union>x \<in> X. f x) \<in> B"
- apply (unfold quotient_def)
- apply clarify
- apply (subst UN_equiv_class)
- apply auto
- done
-
-text {*
- Sufficient conditions for injectiveness. Could weaken premises!
- major premise could be an inclusion; bcong could be @{text "!!y. y \<in>
- A ==> f y \<in> B"}.
-*}
-
-lemma UN_equiv_class_inject:
- "equiv A r ==> f respects r ==>
- (\<Union>x \<in> X. f x) = (\<Union>y \<in> Y. f y) ==> X \<in> A//r ==> Y \<in> A//r
- ==> (!!x y. x \<in> A ==> y \<in> A ==> f x = f y ==> (x, y) \<in> r)
- ==> X = Y"
- apply (unfold quotient_def)
- apply clarify
- apply (rule equiv_class_eq)
- apply assumption
- apply (subgoal_tac "f x = f xa")
- apply blast
- apply (erule box_equals)
- apply (assumption | rule UN_equiv_class)+
- done
-
-
-subsection {* Defining binary operations upon equivalence classes *}
-
-text{*A congruence-preserving function of two arguments*}
-locale congruent2 =
- fixes r1 and r2 and f
- assumes congruent2:
- "(y1,z1) \<in> r1 ==> (y2,z2) \<in> r2 ==> f y1 y2 = f z1 z2"
-
-text{*Abbreviation for the common case where the relations are identical*}
-syntax
- RESPECTS2 ::"['a => 'b, ('a * 'a) set] => bool" (infixr "respects2 " 80)
-
-translations
- "f respects2 r" => "congruent2 r r f"
-
-lemma congruent2_implies_congruent:
- "equiv A r1 ==> congruent2 r1 r2 f ==> a \<in> A ==> congruent r2 (f a)"
- by (unfold congruent_def congruent2_def equiv_def refl_def) blast
-
-lemma congruent2_implies_congruent_UN:
- "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a \<in> A2 ==>
- congruent r1 (\<lambda>x1. \<Union>x2 \<in> r2``{a}. f x1 x2)"
- apply (unfold congruent_def)
- apply clarify
- apply (rule equiv_type [THEN subsetD, THEN SigmaE2], assumption+)
- apply (simp add: UN_equiv_class congruent2_implies_congruent)
- apply (unfold congruent2_def equiv_def refl_def)
- apply (blast del: equalityI)
- done
-
-lemma UN_equiv_class2:
- "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f ==> a1 \<in> A1 ==> a2 \<in> A2
- ==> (\<Union>x1 \<in> r1``{a1}. \<Union>x2 \<in> r2``{a2}. f x1 x2) = f a1 a2"
- by (simp add: UN_equiv_class congruent2_implies_congruent
- congruent2_implies_congruent_UN)
-
-lemma UN_equiv_class_type2:
- "equiv A1 r1 ==> equiv A2 r2 ==> congruent2 r1 r2 f
- ==> X1 \<in> A1//r1 ==> X2 \<in> A2//r2
- ==> (!!x1 x2. x1 \<in> A1 ==> x2 \<in> A2 ==> f x1 x2 \<in> B)
- ==> (\<Union>x1 \<in> X1. \<Union>x2 \<in> X2. f x1 x2) \<in> B"
- apply (unfold quotient_def)
- apply clarify
- apply (blast intro: UN_equiv_class_type congruent2_implies_congruent_UN
- congruent2_implies_congruent quotientI)
- done
-
-lemma UN_UN_split_split_eq:
- "(\<Union>(x1, x2) \<in> X. \<Union>(y1, y2) \<in> Y. A x1 x2 y1 y2) =
- (\<Union>x \<in> X. \<Union>y \<in> Y. (\<lambda>(x1, x2). (\<lambda>(y1, y2). A x1 x2 y1 y2) y) x)"
- -- {* Allows a natural expression of binary operators, *}
- -- {* without explicit calls to @{text split} *}
- by auto
-
-lemma congruent2I:
- "equiv A1 r1 ==> equiv A2 r2
- ==> (!!y z w. w \<in> A2 ==> (y,z) \<in> r1 ==> f y w = f z w)
- ==> (!!y z w. w \<in> A1 ==> (y,z) \<in> r2 ==> f w y = f w z)
- ==> congruent2 r1 r2 f"
- -- {* Suggested by John Harrison -- the two subproofs may be *}
- -- {* \emph{much} simpler than the direct proof. *}
- apply (unfold congruent2_def equiv_def refl_def)
- apply clarify
- apply (blast intro: trans)
- done
-
-lemma congruent2_commuteI:
- assumes equivA: "equiv A r"
- and commute: "!!y z. y \<in> A ==> z \<in> A ==> f y z = f z y"
- and congt: "!!y z w. w \<in> A ==> (y,z) \<in> r ==> f w y = f w z"
- shows "f respects2 r"
- apply (rule congruent2I [OF equivA equivA])
- apply (rule commute [THEN trans])
- apply (rule_tac [3] commute [THEN trans, symmetric])
- apply (rule_tac [5] sym)
- apply (assumption | rule congt |
- erule equivA [THEN equiv_type, THEN subsetD, THEN SigmaE2])+
- done
-
-
-subsection {* Cardinality results *}
-
-text {*Suggested by Florian Kammüller*}
-
-lemma finite_quotient: "finite A ==> r \<subseteq> A \<times> A ==> finite (A//r)"
- -- {* recall @{thm equiv_type} *}
- apply (rule finite_subset)
- apply (erule_tac [2] finite_Pow_iff [THEN iffD2])
- apply (unfold quotient_def)
- apply blast
- done
-
-lemma finite_equiv_class:
- "finite A ==> r \<subseteq> A \<times> A ==> X \<in> A//r ==> finite X"
- apply (unfold quotient_def)
- apply (rule finite_subset)
- prefer 2 apply assumption
- apply blast
- done
-
-lemma equiv_imp_dvd_card:
- "finite A ==> equiv A r ==> \<forall>X \<in> A//r. k dvd card X
- ==> k dvd card A"
- apply (rule Union_quotient [THEN subst])
- apply assumption
- apply (rule dvd_partition)
- prefer 4 apply (blast dest: quotient_disj)
- apply (simp_all add: Union_quotient equiv_type finite_quotient)
- done
-
-ML
-{*
-val UN_UN_split_split_eq = thm "UN_UN_split_split_eq";
-val UN_constant_eq = thm "UN_constant_eq";
-val UN_equiv_class = thm "UN_equiv_class";
-val UN_equiv_class2 = thm "UN_equiv_class2";
-val UN_equiv_class_inject = thm "UN_equiv_class_inject";
-val UN_equiv_class_type = thm "UN_equiv_class_type";
-val UN_equiv_class_type2 = thm "UN_equiv_class_type2";
-val Union_quotient = thm "Union_quotient";
-val comp_equivI = thm "comp_equivI";
-val congruent2I = thm "congruent2I";
-val congruent2_commuteI = thm "congruent2_commuteI";
-val congruent2_def = thm "congruent2_def";
-val congruent2_implies_congruent = thm "congruent2_implies_congruent";
-val congruent2_implies_congruent_UN = thm "congruent2_implies_congruent_UN";
-val congruent_def = thm "congruent_def";
-val eq_equiv_class = thm "eq_equiv_class";
-val eq_equiv_class_iff = thm "eq_equiv_class_iff";
-val equiv_class_eq = thm "equiv_class_eq";
-val equiv_class_eq_iff = thm "equiv_class_eq_iff";
-val equiv_class_nondisjoint = thm "equiv_class_nondisjoint";
-val equiv_class_self = thm "equiv_class_self";
-val equiv_comp_eq = thm "equiv_comp_eq";
-val equiv_def = thm "equiv_def";
-val equiv_imp_dvd_card = thm "equiv_imp_dvd_card";
-val equiv_type = thm "equiv_type";
-val finite_equiv_class = thm "finite_equiv_class";
-val finite_quotient = thm "finite_quotient";
-val quotientE = thm "quotientE";
-val quotientI = thm "quotientI";
-val quotient_def = thm "quotient_def";
-val quotient_disj = thm "quotient_disj";
-val refl_comp_subset = thm "refl_comp_subset";
-val subset_equiv_class = thm "subset_equiv_class";
-val sym_trans_comp_subset = thm "sym_trans_comp_subset";
-*}
-
-end
--- a/src/HOL/Integ/IntDef.thy Fri Nov 19 15:05:10 2004 +0100
+++ b/src/HOL/Integ/IntDef.thy Fri Nov 19 17:31:49 2004 +0100
@@ -8,7 +8,7 @@
header{*The Integers as Equivalence Classes over Pairs of Natural Numbers*}
theory IntDef
-imports Equiv NatArith
+imports Equiv_Relations NatArith
begin
constdefs
--- a/src/HOL/IsaMakefile Fri Nov 19 15:05:10 2004 +0100
+++ b/src/HOL/IsaMakefile Fri Nov 19 17:31:49 2004 +0100
@@ -82,11 +82,11 @@
$(SRC)/TFL/tfl.ML $(SRC)/TFL/thms.ML $(SRC)/TFL/thry.ML \
$(SRC)/TFL/usyntax.ML $(SRC)/TFL/utils.ML \
Datatype.thy Datatype_Universe.ML Datatype_Universe.thy \
- Divides.thy Extraction.thy Finite_Set.ML Finite_Set.thy \
+ Divides.thy Equiv_Relations.thy Extraction.thy Finite_Set.ML Finite_Set.thy \
Fun.thy Gfp.ML Gfp.thy Hilbert_Choice.thy HOL.ML \
HOL.thy HOL_lemmas.ML Inductive.thy Infinite_Set.thy Integ/Numeral.thy \
Integ/cooper_dec.ML Integ/cooper_proof.ML \
- Integ/Equiv.thy Integ/IntArith.thy Integ/IntDef.thy \
+ Integ/IntArith.thy Integ/IntDef.thy \
Integ/IntDiv.thy Integ/NatBin.thy Integ/NatSimprocs.thy Integ/Parity.thy \
Integ/int_arith1.ML Integ/int_factor_simprocs.ML Integ/nat_simprocs.ML \
Integ/Presburger.thy Integ/presburger.ML Integ/qelim.ML \