removed very slow proof of unnamed/unused theorem from HOL/Quickcheck_Narrowing.thy (cf. 2dee03f192b7) -- can take seconds for main HOL and minutes for HOL-Proofs;
--- a/src/HOL/Quickcheck_Narrowing.thy Sat Jun 25 12:57:46 2011 +0200
+++ b/src/HOL/Quickcheck_Narrowing.thy Sat Jun 25 14:25:10 2011 +0200
@@ -384,44 +384,6 @@
by (simp add: around_zero.simps[of "i + 1"])
qed
-lemma
- assumes "int n <= 2 * i"
- shows "(n mod 2 = 1 --> around_zero i ! n = (int n + 1) div 2) &
- (n mod 2 = 0 --> around_zero i ! n = (- (int n)) div 2)"
-using assms
-proof (cases "i >= 0")
- case False
- with assms show ?thesis by (simp add: around_zero.simps[of i])
-next
- case True
- from assms show ?thesis
- proof (induct rule: int_ge_induct[OF True])
- case (2 i)
- have i: "n < Suc (2 * nat i) \<or> n = Suc (2 * nat i) \<or> n = (2 * nat i) + 2 \<or> n > (2 * nat i) + 2"
- by arith
- show ?case
- proof -
- {
- assume "n mod 2 = 1"
- from 2 length_around_zero[OF 2(1)] this i have "around_zero (i + 1) ! n = (int n + 1) div 2"
- unfolding around_zero.simps[of "i + 1"]
- by (auto simp add: nth_append)
- } moreover
- {
- assume a: "n mod 2 = 0"
- have "\<forall> q q'. 2 * q \<noteq> Suc (2 * q')" by arith
- from a 2 length_around_zero[OF 2(1)] this i have "around_zero (i + 1) ! n = - int n div 2"
- unfolding around_zero.simps[of "i + 1"]
- by (auto simp add: nth_append)
- }
- ultimately show ?thesis by auto
- qed
- next
- case 1
- from 1 show ?case by (auto simp add: around_zero.simps[of 0])
- qed
-qed
-
instantiation int :: narrowing
begin