New theorems to enable the simplification of certain functions when applied to specific natural number constants (such as 4)
--- a/src/HOL/Fact.thy Thu May 29 11:11:22 2014 +0200
+++ b/src/HOL/Fact.thy Thu May 29 14:39:19 2014 +0100
@@ -324,4 +324,8 @@
by (induct r rule: nat.induct) (auto simp add: fact_div_fact Suc_diff_Suc mult_le_mono)
qed
+lemma fact_numeral: --{*Evaluation for specific numerals*}
+ "fact (numeral k) = (numeral k) * (fact (pred_numeral k))"
+ by (simp add: numeral_eq_Suc)
+
end
--- a/src/HOL/Set_Interval.thy Thu May 29 11:11:22 2014 +0200
+++ b/src/HOL/Set_Interval.thy Thu May 29 14:39:19 2014 +0100
@@ -758,6 +758,22 @@
apply (simp_all add: atLeastLessThanSuc)
done
+subsubsection {* Intervals and numerals *}
+
+lemma lessThan_nat_numeral: --{*Evaluation for specific numerals*}
+ "lessThan (numeral k :: nat) = insert (pred_numeral k) (lessThan (pred_numeral k))"
+ by (simp add: numeral_eq_Suc lessThan_Suc)
+
+lemma atMost_nat_numeral: --{*Evaluation for specific numerals*}
+ "atMost (numeral k :: nat) = insert (numeral k) (atMost (pred_numeral k))"
+ by (simp add: numeral_eq_Suc atMost_Suc)
+
+lemma atLeastLessThan_nat_numeral: --{*Evaluation for specific numerals*}
+ "atLeastLessThan m (numeral k :: nat) =
+ (if m \<le> (pred_numeral k) then insert (pred_numeral k) (atLeastLessThan m (pred_numeral k))
+ else {})"
+ by (simp add: numeral_eq_Suc atLeastLessThanSuc)
+
subsubsection {* Image *}
lemma image_add_atLeastAtMost:
@@ -1006,16 +1022,17 @@
by (simp add: lessThan_Suc_atMost [THEN sym])
lemma card_atLeastLessThan [simp]: "card {l..<u} = u - l"
- apply (subgoal_tac "card {l..<u} = card {..<u-l}")
- apply (erule ssubst, rule card_lessThan)
- apply (subgoal_tac "(%x. x + l) ` {..<u-l} = {l..<u}")
- apply (erule subst)
- apply (rule card_image)
- apply (simp add: inj_on_def)
- apply (auto simp add: image_def atLeastLessThan_def lessThan_def)
- apply (rule_tac x = "x - l" in exI)
- apply arith
- done
+proof -
+ have "{l..<u} = (%x. x + l) ` {..<u-l}"
+ apply (auto simp add: image_def atLeastLessThan_def lessThan_def)
+ apply (rule_tac x = "x - l" in exI)
+ apply arith
+ done
+ then have "card {l..<u} = card {..<u-l}"
+ by (simp add: card_image inj_on_def)
+ then show ?thesis
+ by simp
+qed
lemma card_atLeastAtMost [simp]: "card {l..u} = Suc u - l"
by (subst atLeastLessThanSuc_atLeastAtMost [THEN sym], simp)
@@ -1174,8 +1191,6 @@
lemma card_less_Suc2: "0 \<notin> M \<Longrightarrow> card {k. Suc k \<in> M \<and> k < i} = card {k \<in> M. k < Suc i}"
apply (rule card_bij_eq [of Suc _ _ "\<lambda>x. x - Suc 0"])
-apply simp
-apply fastforce
apply auto
apply (rule inj_on_diff_nat)
apply auto
@@ -1195,7 +1210,8 @@
hence c: "{k \<in> M. k < Suc i} = insert 0 ({k \<in> M. k < Suc i} - {0})"
by (auto simp only: insert_Diff)
have b: "{k \<in> M. k < Suc i} - {0} = {k \<in> M - {0}. k < Suc i}" by auto
- from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"] have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
+ from finite_M_bounded_by_nat[of "\<lambda>x. x \<in> M" "Suc i"]
+ have "Suc (card {k. Suc k \<in> M \<and> k < i}) = card (insert 0 ({k \<in> M. k < Suc i} - {0}))"
apply (subst card_insert)
apply simp_all
apply (subst b)