added an example file with lifting of constants with contravariant and co/contravariant types
authorkuncar
Fri, 09 Dec 2011 14:22:05 +0100
changeset 45799 7fa9410c746a
parent 45798 2373d86cf2e8
child 45800 e832acb88f43
added an example file with lifting of constants with contravariant and co/contravariant types
src/HOL/Quotient_Examples/Lift_Fun.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Quotient_Examples/Lift_Fun.thy	Fri Dec 09 14:22:05 2011 +0100
@@ -0,0 +1,82 @@
+(*  Title:      HOL/Quotient_Examples/Lift_Fun.thy
+    Author:     Ondrej Kuncar
+*)
+
+header {* Example of lifting definitions with contravariant or co/contravariant type variables *}
+
+
+theory Lift_Fun
+imports Main
+begin
+
+text {* This file is meant as a test case for features introduced in the changeset 2d8949268303. 
+  It contains examples of lifting definitions with quotients that have contravariant 
+  type variables or type variables which are covariant and contravariant in the same time. *}
+
+subsection {* Contravariant type variables *}
+
+text {* 'a is a contravariant type variable and we are able to map over this variable
+  in the following four definitions. This example is based on HOL/Fun.thy. *}
+
+quotient_type
+('a, 'b) fun' (infixr "\<rightarrow>" 55) = "'a \<Rightarrow> 'b" / "op =" 
+  by (simp add: identity_equivp)
+
+quotient_definition "comp' :: ('b \<rightarrow> 'c) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'a \<rightarrow> 'c"  is
+  "comp :: ('b \<Rightarrow> 'c) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'a \<Rightarrow> 'c"
+
+quotient_definition "fcomp' :: ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'c) \<Rightarrow> 'a \<Rightarrow> 'c" is 
+  fcomp
+
+quotient_definition "map_fun' :: ('c \<rightarrow> 'a) \<rightarrow> ('b \<rightarrow> 'd) \<rightarrow> ('a \<rightarrow> 'b) \<rightarrow> 'c \<rightarrow> 'd" 
+  is "map_fun::('c \<Rightarrow> 'a) \<Rightarrow> ('b \<Rightarrow> 'd) \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'c \<Rightarrow> 'd"
+
+quotient_definition "inj_on' :: ('a \<rightarrow> 'b) \<rightarrow> 'a set \<rightarrow> bool" is inj_on
+
+quotient_definition "bij_betw' :: ('a \<rightarrow> 'b) \<rightarrow> 'a set \<rightarrow> 'b set \<rightarrow> bool" is bij_betw
+
+
+subsection {* Co/Contravariant type variables *} 
+
+text {* 'a is a covariant and contravariant type variable in the same time.
+  The following example is a bit artificial. We haven't had a natural one yet. *}
+
+quotient_type 'a endofun = "'a \<Rightarrow> 'a" / "op =" by (simp add: identity_equivp)
+
+definition map_endofun' :: "('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> ('a => 'a) \<Rightarrow> ('b => 'b)"
+  where "map_endofun' f g e = map_fun g f e"
+
+quotient_definition "map_endofun :: ('a \<Rightarrow> 'b) \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a endofun \<Rightarrow> 'b endofun" is
+  map_endofun'
+
+text {* Registration of the map function for 'a endofun. *}
+
+enriched_type map_endofun : map_endofun
+proof -
+  have "\<forall> x. abs_endofun (rep_endofun x) = x" using Quotient_endofun by (auto simp: Quotient_def)
+  then show "map_endofun id id = id" 
+    by (auto simp: map_endofun_def map_endofun'_def map_fun_def fun_eq_iff)
+  
+  have a:"\<forall> x. rep_endofun (abs_endofun x) = x" using Quotient_endofun 
+    Quotient_rep_abs[of "(op =)" abs_endofun rep_endofun] by blast
+  show "\<And>f g h i. map_endofun f g \<circ> map_endofun h i = map_endofun (f \<circ> h) (i \<circ> g)"
+    by (auto simp: map_endofun_def map_endofun'_def map_fun_def fun_eq_iff) (simp add: a o_assoc) 
+qed
+
+quotient_definition "endofun_id_id :: ('a endofun) endofun" is "id :: ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
+
+term  endofun_id_id
+thm  endofun_id_id_def
+
+quotient_type 'a endofun' = "'a endofun" / "op =" by (simp add: identity_equivp)
+
+text {* We have to map "'a endofun" to "('a endofun') endofun", i.e., mapping (lifting)
+  over a type variable which is a covariant and contravariant type variable. *}
+
+quotient_definition "endofun'_id_id :: ('a endofun') endofun'" is endofun_id_id
+
+term  endofun'_id_id
+thm  endofun'_id_id_def
+
+
+end