incorporated into NEWS;
authorwenzelm
Thu, 15 Sep 2005 20:25:04 +0200
changeset 17424 808d90bad8f7
parent 17423 de6b33a4efda
child 17425 67c84a7d29f7
incorporated into NEWS;
src/HOL/Hyperreal/CHANGES
--- a/src/HOL/Hyperreal/CHANGES	Thu Sep 15 20:24:53 2005 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,144 +0,0 @@
--- Changes from Isabelle 2004 version of HOL-Complex
-
-* There is a new type constructor "star" for making nonstandard types.
-  The old type names are now type synonyms:
-  - hypreal = real star
-  - hypnat = nat star
-  - hcomplex = complex star
-
-* Many groups of similarly-defined constants have been replaced by polymorphic
-  versions:
-
-star_of <-- hypreal_of_real, hypnat_of_nat, hcomplex_of_complex
-
-starset      <-- starsetNat, starsetC
-*s*          <-- *sNat*, *sc*
-starset_n    <-- starsetNat_n, starsetC_n
-*sn*         <-- *sNatn*, *scn*
-InternalSets <-- InternalNatSets, InternalCSets
-
-starfun      <-- starfunNat, starfunNat2, starfunC, starfunRC, starfunCR
-*f*          <-- *fNat*, *fNat2*, *fc*, *fRc*, *fcR*
-starfun_n    <-- starfunNat_n, starfunNat2_n, starfunC_n, starfunRC_n, starfunCR_n
-*fn*         <-- *fNatn*, *fNat2n*, *fcn*, *fRcn*, *fcRn*
-InternalFuns <-- InternalNatFuns, InternalNatFuns2, InternalCFuns, InternalRCFuns, InternalCRFuns
-
-* Many type-specific theorems have been removed in favor of theorems specific 
-  to various axiomatic type classes:
-
-add_commute <-- hypreal_add_commute, hypnat_add_commute, hcomplex_add_commute
-add_assoc   <-- hypreal_add_assoc, hypnat_add_assoc, hcomplex_add_assoc
-OrderedGroup.add_0 <-- hypreal_add_zero_left, hypnat_add_zero_left, hcomplex_add_zero_left
-OrderedGroup.add_0_right <-- hypreal_add_zero_right, hcomplex_add_zero_right
-right_minus <-- hypreal_add_minus
-left_minus <-- hypreal_add_minus_left, hcomplex_add_minus_left
-mult_commute <-- hypreal_mult_commute, hypnat_mult_commute, hcomplex_mult_commute
-mult_assoc <-- hypreal_mult_assoc, hypnat_mult_assoc, hcomplex_mult_assoc
-mult_1_left <-- hypreal_mult_1, hypnat_mult_1, hcomplex_mult_one_left
-mult_1_right <-- hcomplex_mult_one_right
-mult_zero_left <-- hcomplex_mult_zero_left
-left_distrib <-- hypreal_add_mult_distrib, hypnat_add_mult_distrib, hcomplex_add_mult_distrib
-right_distrib <-- hypnat_add_mult_distrib2
-zero_neq_one <-- hypreal_zero_not_eq_one, hypnat_zero_not_eq_one, hcomplex_zero_not_eq_one
-right_inverse <-- hypreal_mult_inverse
-left_inverse <-- hypreal_mult_inverse_left, hcomplex_mult_inv_left
-order_refl <-- hypreal_le_refl, hypnat_le_refl
-order_trans <-- hypreal_le_trans, hypnat_le_trans
-order_antisym <-- hypreal_le_anti_sym, hypnat_le_anti_sym
-order_less_le <-- hypreal_less_le, hypnat_less_le
-linorder_linear <-- hypreal_le_linear, hypnat_le_linear
-add_left_mono <-- hypreal_add_left_mono, hypnat_add_left_mono
-mult_strict_left_mono <-- hypreal_mult_less_mono2, hypnat_mult_less_mono2
-add_nonneg_nonneg <-- hypreal_le_add_order
-
-* Separate theorems having to do with type-specific versions of constants have
-  been merged into theorems that apply to the new polymorphic constants:
-
-STAR_UNIV_set <-- STAR_real_set, NatStar_real_set, STARC_complex_set
-STAR_empty_set <-- NatStar_empty_set, STARC_empty_set
-STAR_Un <-- NatStar_Un, STARC_Un
-STAR_Int <-- NatStar_Int, STARC_Int
-STAR_Compl <-- NatStar_Compl, STARC_Compl
-STAR_subset <-- NatStar_subset, STARC_subset
-STAR_mem <-- NatStar_mem, STARC_mem
-STAR_mem_Compl <-- STARC_mem_Compl
-STAR_diff <-- STARC_diff
-STAR_star_of_image_subset <-- STAR_hypreal_of_real_image_subset, NatStar_hypreal_of_real_image_subset, STARC_hcomplex_of_complex_image_subset
-starset_n_Un <-- starsetNat_n_Un, starsetC_n_Un
-starset_n_Int <-- starsetNat_n_Int, starsetC_n_Int
-starset_n_Compl <-- starsetNat_n_Compl, starsetC_n_Compl
-starset_n_diff <-- starsetNat_n_diff, starsetC_n_diff
-InternalSets_Un <-- InternalNatSets_Un, InternalCSets_Un
-InternalSets_Int <-- InternalNatSets_Int, InternalCSets_Int
-InternalSets_Compl <-- InternalNatSets_Compl, InternalCSets_Compl
-InternalSets_diff <-- InternalNatSets_diff, InternalCSets_diff
-InternalSets_UNIV_diff <-- InternalNatSets_UNIV_diff, InternalCSets_UNIV_diff
-InternalSets_starset_n <-- InternalNatSets_starsetNat_n, InternalCSets_starsetC_n
-starset_starset_n_eq <-- starsetNat_starsetNat_n_eq, starsetC_starsetC_n_eq
-starset_n_starset <-- starsetNat_n_starsetNat, starsetC_n_starsetC
-starfun_n_starfun <-- starfunNat_n_starfunNat, starfunNat2_n_starfunNat2, starfunC_n_starfunC, starfunRC_n_starfunRC, starfunCR_n_starfunCR
-starfun <-- starfunNat, starfunNat2, starfunC, starfunRC, starfunCR
-starfun_mult <-- starfunNat_mult, starfunNat2_mult, starfunC_mult, starfunRC_mult, starfunCR_mult
-starfun_add <-- starfunNat_add, starfunNat2_add, starfunC_add, starfunRC_add, starfunCR_add
-starfun_minus <-- starfunNat_minus, starfunNat2_minus, starfunC_minus, starfunRC_minus, starfunCR_minus
-starfun_diff <-- starfunC_diff, starfunRC_diff, starfunCR_diff
-starfun_o <-- starfunNatNat2_o, starfunNat2_o, starfun_stafunNat_o, starfunC_o, starfunC_starfunRC_o, starfun_starfunCR_o
-starfun_o2 <-- starfunNatNat2_o2, starfun_stafunNat_o2, starfunC_o2, starfunC_starfunRC_o2, starfun_starfunCR_o2
-starfun_const_fun <-- starfunNat_const_fun, starfunNat2_const_fun, starfunC_const_fun, starfunRC_const_fun, starfunCR_const_fun
-starfun_inverse <-- starfunNat_inverse, starfunC_inverse, starfunRC_inverse, starfunCR_inverse
-starfun_eq <-- starfunNat_eq, starfunNat2_eq, starfunC_eq, starfunRC_eq, starfunCR_eq
-starfun_eq_iff <-- starfunC_eq_iff, starfunRC_eq_iff, starfunCR_eq_iff
-starfun_Id <-- starfunC_Id
-starfun_approx <-- starfunNat_approx, starfunCR_approx
-starfun_capprox <-- starfunC_capprox, starfunRC_capprox
-starfun_abs <-- starfunNat_rabs
-starfun_lambda_cancel <-- starfunC_lambda_cancel, starfunCR_lambda_cancel, starfunRC_lambda_cancel
-starfun_lambda_cancel2 <-- starfunC_lambda_cancel2, starfunCR_lambda_cancel2, starfunRC_lambda_cancel2
-starfun_mult_HFinite_approx <-- starfunCR_mult_HFinite_capprox
-starfun_mult_CFinite_capprox <-- starfunC_mult_CFinite_capprox, starfunRC_mult_CFinite_capprox
-starfun_add_capprox <-- starfunC_add_capprox, starfunRC_add_capprox
-starfun_add_approx <-- starfunCR_add_approx
-starfun_inverse_inverse <-- starfunC_inverse_inverse
-starfun_divide <-- starfunC_divide, starfunCR_divide, starfunRC_divide
-starfun_n_congruent <-- starfunNat_n_congruent, starfunC_n_congruent
-starfun_n <-- starfunNat_n, starfunC_n
-starfun_n_mult <-- starfunNat_n_mult, starfunC_n_mult
-starfun_n_add <-- starfunNat_n_add, starfunC_n_add
-starfun_n_add_minus <-- starfunNat_n_add_minus
-starfun_n_const_fun <-- starfunNat_n_const_fun, starfunC_n_const_fun
-starfun_n_minus <-- starfunNat_n_minus, starfunC_n_minus
-starfun_n_eq <-- starfunNat_n_eq, starfunC_n_eq
- 
-star_n_add <-- hypreal_add, hypnat_add, hcomplex_add
-star_n_minus <-- hypreal_minus, hcomplex_minus
-star_n_diff <-- hypreal_diff, hcomplex_diff
-star_n_mult <-- hypreal_mult, hcomplex_mult
-star_n_inverse <-- hypreal_inverse, hcomplex_inverse
-star_n_le <-- hypreal_le, hypnat_le
-star_n_less <-- hypreal_less, hypnat_less
-star_n_zero_num <-- hypreal_zero_num, hypnat_zero_num, hcomplex_zero_num
-star_n_one_num <-- hypreal_one_num, hypnat_one_num, hcomplex_one_num
-star_n_abs <-- hypreal_hrabs
-star_n_divide <-- hcomplex_divide
-
-star_of_add <-- hypreal_of_real_add, hcomplex_of_complex_add
-star_of_minus <-- hypreal_of_real_minus, hcomplex_of_complex_minus
-star_of_diff <-- hypreal_of_real_diff
-star_of_mult <-- hypreal_of_real_mult, hcomplex_of_complex_mult
-star_of_one <-- hypreal_of_real_one, hcomplex_of_complex_one
-star_of_zero <-- hypreal_of_real_zero, hcomplex_of_complex_zero
-star_of_le <-- hypreal_of_real_le_iff
-star_of_less <-- hypreal_of_real_less_iff
-star_of_eq <-- hypreal_of_real_eq_iff, hcomplex_of_complex_eq_iff
-star_of_inverse <-- hypreal_of_real_inverse, hcomplex_of_complex_inverse
-star_of_divide <-- hypreal_of_real_divide, hcomplex_of_complex_divide
-star_of_of_nat <-- hypreal_of_real_of_nat, hcomplex_of_complex_of_nat
-star_of_of_int <-- hypreal_of_real_of_int, hcomplex_of_complex_of_int
-star_of_number_of <-- hypreal_number_of, hcomplex_number_of
-star_of_number_less <-- number_of_less_hypreal_of_real_iff
-star_of_number_le <-- number_of_le_hypreal_of_real_iff
-star_of_eq_number <-- hypreal_of_real_eq_number_of_iff
-star_of_less_number <-- hypreal_of_real_less_number_of_iff
-star_of_le_number <-- hypreal_of_real_le_number_of_iff
-star_of_power <-- hypreal_of_real_power
-star_of_eq_0 <-- hcomplex_of_complex_zero_iff