merged
authorbulwahn
Fri, 06 Nov 2009 16:59:17 +0100
changeset 33490 826a490f6482
parent 33489 d7e6c8fbf254 (current diff)
parent 33471 5aef13872723 (diff)
child 33491 5bf9a3d5d4ff
merged
src/HOL/Tools/Function/induction_scheme.ML
src/HOL/ex/Induction_Scheme.thy
--- a/NEWS	Fri Nov 06 14:16:57 2009 +0100
+++ b/NEWS	Fri Nov 06 16:59:17 2009 +0100
@@ -227,7 +227,9 @@
 * Maclauren.DERIV_tac and Maclauren.deriv_tac was removed, they are
 replaced by: (auto intro!: DERIV_intros).  INCOMPATIBILITY.
 
-* Renamed method "sizechange" to "size_change".
+* Renamed methods:
+    sizechange -> size_change
+    induct_scheme -> induction_schema
 
 
 *** ML ***
--- a/src/HOL/FunDef.thy	Fri Nov 06 14:16:57 2009 +0100
+++ b/src/HOL/FunDef.thy	Fri Nov 06 16:59:17 2009 +0100
@@ -22,7 +22,7 @@
   ("Tools/Function/lexicographic_order.ML")
   ("Tools/Function/pat_completeness.ML")
   ("Tools/Function/fun.ML")
-  ("Tools/Function/induction_scheme.ML")
+  ("Tools/Function/induction_schema.ML")
   ("Tools/Function/termination.ML")
   ("Tools/Function/decompose.ML")
   ("Tools/Function/descent.ML")
@@ -114,13 +114,13 @@
 use "Tools/Function/function.ML"
 use "Tools/Function/pat_completeness.ML"
 use "Tools/Function/fun.ML"
-use "Tools/Function/induction_scheme.ML"
+use "Tools/Function/induction_schema.ML"
 
 setup {* 
   Function.setup
   #> Pat_Completeness.setup
   #> Function_Fun.setup
-  #> Induction_Scheme.setup
+  #> Induction_Schema.setup
 *}
 
 subsection {* Measure Functions *}
--- a/src/HOL/IsaMakefile	Fri Nov 06 14:16:57 2009 +0100
+++ b/src/HOL/IsaMakefile	Fri Nov 06 16:59:17 2009 +0100
@@ -180,7 +180,7 @@
   Tools/Function/function_lib.ML \
   Tools/Function/function.ML \
   Tools/Function/fun.ML \
-  Tools/Function/induction_scheme.ML \
+  Tools/Function/induction_schema.ML \
   Tools/Function/lexicographic_order.ML \
   Tools/Function/measure_functions.ML \
   Tools/Function/mutual.ML \
@@ -939,7 +939,7 @@
   ex/Efficient_Nat_examples.thy ex/Eval_Examples.thy ex/Fundefs.thy	\
   ex/Groebner_Examples.thy ex/Guess.thy ex/HarmonicSeries.thy		\
   ex/Hebrew.thy ex/Hex_Bin_Examples.thy ex/Higher_Order_Logic.thy	\
-  ex/Hilbert_Classical.thy ex/Induction_Scheme.thy			\
+  ex/Hilbert_Classical.thy ex/Induction_Schema.thy			\
   ex/InductiveInvariant.thy ex/InductiveInvariant_examples.thy		\
   ex/Intuitionistic.thy ex/Lagrange.thy ex/LocaleTest2.thy ex/MT.thy	\
   ex/MergeSort.thy ex/Meson_Test.thy ex/MonoidGroup.thy			\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Function/induction_schema.ML	Fri Nov 06 16:59:17 2009 +0100
@@ -0,0 +1,405 @@
+(*  Title:      HOL/Tools/Function/induction_schema.ML
+    Author:     Alexander Krauss, TU Muenchen
+
+A method to prove induction schemas.
+*)
+
+signature INDUCTION_SCHEMA =
+sig
+  val mk_ind_tac : (int -> tactic) -> (int -> tactic) -> (int -> tactic)
+                   -> Proof.context -> thm list -> tactic
+  val induction_schema_tac : Proof.context -> thm list -> tactic
+  val setup : theory -> theory
+end
+
+
+structure Induction_Schema : INDUCTION_SCHEMA =
+struct
+
+open Function_Lib
+
+
+type rec_call_info = int * (string * typ) list * term list * term list
+
+datatype scheme_case =
+  SchemeCase of
+  {
+   bidx : int,
+   qs: (string * typ) list,
+   oqnames: string list,
+   gs: term list,
+   lhs: term list,
+   rs: rec_call_info list
+  }
+
+datatype scheme_branch = 
+  SchemeBranch of
+  {
+   P : term,
+   xs: (string * typ) list,
+   ws: (string * typ) list,
+   Cs: term list
+  }
+
+datatype ind_scheme =
+  IndScheme of
+  {
+   T: typ, (* sum of products *)
+   branches: scheme_branch list,
+   cases: scheme_case list
+  }
+
+val ind_atomize = MetaSimplifier.rewrite true @{thms induct_atomize}
+val ind_rulify = MetaSimplifier.rewrite true @{thms induct_rulify}
+
+fun meta thm = thm RS eq_reflection
+
+val sum_prod_conv = MetaSimplifier.rewrite true 
+                    (map meta (@{thm split_conv} :: @{thms sum.cases}))
+
+fun term_conv thy cv t = 
+    cv (cterm_of thy t)
+    |> prop_of |> Logic.dest_equals |> snd
+
+fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
+
+fun dest_hhf ctxt t = 
+    let 
+      val (ctxt', vars, imp) = dest_all_all_ctx ctxt t
+    in
+      (ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
+    end
+
+
+fun mk_scheme' ctxt cases concl =
+    let
+      fun mk_branch concl =
+          let
+            val (ctxt', ws, Cs, _ $ Pxs) = dest_hhf ctxt concl
+            val (P, xs) = strip_comb Pxs
+          in
+            SchemeBranch { P=P, xs=map dest_Free xs, ws=ws, Cs=Cs }
+          end
+
+      val (branches, cases') = (* correction *)
+          case Logic.dest_conjunction_list concl of
+            [conc] => 
+            let 
+              val _ $ Pxs = Logic.strip_assums_concl conc
+              val (P, _) = strip_comb Pxs
+              val (cases', conds) = take_prefix (Term.exists_subterm (curry op aconv P)) cases
+              val concl' = fold_rev (curry Logic.mk_implies) conds conc
+            in
+              ([mk_branch concl'], cases')
+            end
+          | concls => (map mk_branch concls, cases)
+
+      fun mk_case premise =
+          let
+            val (ctxt', qs, prems, _ $ Plhs) = dest_hhf ctxt premise
+            val (P, lhs) = strip_comb Plhs
+                                
+            fun bidx Q = find_index (fn SchemeBranch {P=P',...} => Q aconv P') branches
+
+            fun mk_rcinfo pr =
+                let
+                  val (ctxt'', Gvs, Gas, _ $ Phyp) = dest_hhf ctxt' pr
+                  val (P', rcs) = strip_comb Phyp
+                in
+                  (bidx P', Gvs, Gas, rcs)
+                end
+                
+            fun is_pred v = exists (fn SchemeBranch {P,...} => v aconv P) branches
+
+            val (gs, rcprs) = 
+                take_prefix (not o Term.exists_subterm is_pred) prems
+          in
+            SchemeCase {bidx=bidx P, qs=qs, oqnames=map fst qs(*FIXME*), gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
+          end
+
+      fun PT_of (SchemeBranch { xs, ...}) =
+            foldr1 HOLogic.mk_prodT (map snd xs)
+
+      val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) (map PT_of branches)
+    in
+      IndScheme {T=ST, cases=map mk_case cases', branches=branches }
+    end
+
+
+
+fun mk_completeness ctxt (IndScheme {cases, branches, ...}) bidx =
+    let
+      val SchemeBranch { xs, ws, Cs, ... } = nth branches bidx
+      val relevant_cases = filter (fn SchemeCase {bidx=bidx', ...} => bidx' = bidx) cases
+
+      val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) relevant_cases []
+      val (Pbool :: xs') = map Free (Variable.variant_frees ctxt allqnames (("P", HOLogic.boolT) :: xs))
+      val Cs' = map (Pattern.rewrite_term (ProofContext.theory_of ctxt) (filter_out (op aconv) (map Free xs ~~ xs')) []) Cs
+                       
+      fun mk_case (SchemeCase {qs, oqnames, gs, lhs, ...}) =
+          HOLogic.mk_Trueprop Pbool
+                     |> fold_rev (fn x_l => curry Logic.mk_implies (HOLogic.mk_Trueprop(HOLogic.mk_eq x_l)))
+                                 (xs' ~~ lhs)
+                     |> fold_rev (curry Logic.mk_implies) gs
+                     |> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
+    in
+      HOLogic.mk_Trueprop Pbool
+       |> fold_rev (curry Logic.mk_implies o mk_case) relevant_cases
+       |> fold_rev (curry Logic.mk_implies) Cs'
+       |> fold_rev (Logic.all o Free) ws
+       |> fold_rev mk_forall_rename (map fst xs ~~ xs')
+       |> mk_forall_rename ("P", Pbool)
+    end
+
+fun mk_wf ctxt R (IndScheme {T, ...}) =
+    HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
+
+fun mk_ineqs R (IndScheme {T, cases, branches}) =
+    let
+      fun inject i ts =
+          SumTree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
+
+      val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
+
+      fun mk_pres bdx args = 
+          let
+            val SchemeBranch { xs, ws, Cs, ... } = nth branches bdx
+            fun replace (x, v) t = betapply (lambda (Free x) t, v)
+            val Cs' = map (fold replace (xs ~~ args)) Cs
+            val cse = 
+                HOLogic.mk_Trueprop thesis
+                |> fold_rev (curry Logic.mk_implies) Cs'
+                |> fold_rev (Logic.all o Free) ws
+          in
+            Logic.mk_implies (cse, HOLogic.mk_Trueprop thesis)
+          end
+
+      fun f (SchemeCase {bidx, qs, oqnames, gs, lhs, rs, ...}) = 
+          let
+            fun g (bidx', Gvs, Gas, rcarg) =
+                let val export = 
+                         fold_rev (curry Logic.mk_implies) Gas
+                         #> fold_rev (curry Logic.mk_implies) gs
+                         #> fold_rev (Logic.all o Free) Gvs
+                         #> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
+                in
+                (HOLogic.mk_mem (HOLogic.mk_prod (inject bidx' rcarg, inject bidx lhs), R)
+                 |> HOLogic.mk_Trueprop
+                 |> export,
+                 mk_pres bidx' rcarg
+                 |> export
+                 |> Logic.all thesis)
+                end
+          in
+            map g rs
+          end
+    in
+      map f cases
+    end
+
+
+fun mk_hol_imp a b = HOLogic.imp $ a $ b
+
+fun mk_ind_goal thy branches =
+    let
+      fun brnch (SchemeBranch { P, xs, ws, Cs, ... }) =
+          HOLogic.mk_Trueprop (list_comb (P, map Free xs))
+          |> fold_rev (curry Logic.mk_implies) Cs
+          |> fold_rev (Logic.all o Free) ws
+          |> term_conv thy ind_atomize
+          |> ObjectLogic.drop_judgment thy
+          |> tupled_lambda (foldr1 HOLogic.mk_prod (map Free xs))
+    in
+      SumTree.mk_sumcases HOLogic.boolT (map brnch branches)
+    end
+
+
+fun mk_induct_rule ctxt R x complete_thms wf_thm ineqss (IndScheme {T, cases=scases, branches}) =
+    let
+      val n = length branches
+
+      val scases_idx = map_index I scases
+
+      fun inject i ts =
+          SumTree.mk_inj T n (i + 1) (foldr1 HOLogic.mk_prod ts)
+      val P_of = nth (map (fn (SchemeBranch { P, ... }) => P) branches)
+
+      val thy = ProofContext.theory_of ctxt
+      val cert = cterm_of thy 
+
+      val P_comp = mk_ind_goal thy branches
+
+      (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
+      val ihyp = Term.all T $ Abs ("z", T, 
+               Logic.mk_implies
+                 (HOLogic.mk_Trueprop (
+                  Const ("op :", HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT) 
+                    $ (HOLogic.pair_const T T $ Bound 0 $ x) 
+                    $ R),
+                   HOLogic.mk_Trueprop (P_comp $ Bound 0)))
+           |> cert
+
+      val aihyp = assume ihyp
+
+     (* Rule for case splitting along the sum types *)
+      val xss = map (fn (SchemeBranch { xs, ... }) => map Free xs) branches
+      val pats = map_index (uncurry inject) xss
+      val sum_split_rule = Pat_Completeness.prove_completeness thy [x] (P_comp $ x) xss (map single pats)
+
+      fun prove_branch (bidx, (SchemeBranch { P, xs, ws, Cs, ... }, (complete_thm, pat))) =
+          let
+            val fxs = map Free xs
+            val branch_hyp = assume (cert (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, pat))))
+                             
+            val C_hyps = map (cert #> assume) Cs
+
+            val (relevant_cases, ineqss') = filter (fn ((_, SchemeCase {bidx=bidx', ...}), _) => bidx' = bidx) (scases_idx ~~ ineqss)
+                                            |> split_list
+                           
+            fun prove_case (cidx, SchemeCase {qs, oqnames, gs, lhs, rs, ...}) ineq_press =
+                let
+                  val case_hyps = map (assume o cert o HOLogic.mk_Trueprop o HOLogic.mk_eq) (fxs ~~ lhs)
+                           
+                  val cqs = map (cert o Free) qs
+                  val ags = map (assume o cert) gs
+                            
+                  val replace_x_ss = HOL_basic_ss addsimps (branch_hyp :: case_hyps)
+                  val sih = full_simplify replace_x_ss aihyp
+                            
+                  fun mk_Prec (idx, Gvs, Gas, rcargs) (ineq, pres) =
+                      let
+                        val cGas = map (assume o cert) Gas
+                        val cGvs = map (cert o Free) Gvs
+                        val import = fold forall_elim (cqs @ cGvs)
+                                     #> fold Thm.elim_implies (ags @ cGas)
+                        val ipres = pres
+                                     |> forall_elim (cert (list_comb (P_of idx, rcargs)))
+                                     |> import
+                      in
+                        sih |> forall_elim (cert (inject idx rcargs))
+                            |> Thm.elim_implies (import ineq) (* Psum rcargs *)
+                            |> Conv.fconv_rule sum_prod_conv
+                            |> Conv.fconv_rule ind_rulify
+                            |> (fn th => th COMP ipres) (* P rs *)
+                            |> fold_rev (implies_intr o cprop_of) cGas
+                            |> fold_rev forall_intr cGvs
+                      end
+                      
+                  val P_recs = map2 mk_Prec rs ineq_press   (*  [P rec1, P rec2, ... ]  *)
+                               
+                  val step = HOLogic.mk_Trueprop (list_comb (P, lhs))
+                             |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
+                             |> fold_rev (curry Logic.mk_implies) gs
+                             |> fold_rev (Logic.all o Free) qs
+                             |> cert
+                             
+                  val Plhs_to_Pxs_conv = 
+                      foldl1 (uncurry Conv.combination_conv) 
+                      (Conv.all_conv :: map (fn ch => K (Thm.symmetric (ch RS eq_reflection))) case_hyps)
+
+                  val res = assume step
+                                   |> fold forall_elim cqs
+                                   |> fold Thm.elim_implies ags
+                                   |> fold Thm.elim_implies P_recs (* P lhs *) 
+                                   |> Conv.fconv_rule (Conv.arg_conv Plhs_to_Pxs_conv) (* P xs *)
+                                   |> fold_rev (implies_intr o cprop_of) (ags @ case_hyps)
+                                   |> fold_rev forall_intr cqs (* !!qs. Gas ==> xs = lhss ==> P xs *)
+                in
+                  (res, (cidx, step))
+                end
+
+            val (cases, steps) = split_list (map2 prove_case relevant_cases ineqss')
+
+            val bstep = complete_thm
+                |> forall_elim (cert (list_comb (P, fxs)))
+                |> fold (forall_elim o cert) (fxs @ map Free ws)
+                |> fold Thm.elim_implies C_hyps             (* FIXME: optimization using rotate_prems *)
+                |> fold Thm.elim_implies cases (* P xs *)
+                |> fold_rev (implies_intr o cprop_of) C_hyps
+                |> fold_rev (forall_intr o cert o Free) ws
+
+            val Pxs = cert (HOLogic.mk_Trueprop (P_comp $ x))
+                     |> Goal.init
+                     |> (MetaSimplifier.rewrite_goals_tac (map meta (branch_hyp :: @{thm split_conv} :: @{thms sum.cases}))
+                         THEN CONVERSION ind_rulify 1)
+                     |> Seq.hd
+                     |> Thm.elim_implies (Conv.fconv_rule Drule.beta_eta_conversion bstep)
+                     |> Goal.finish ctxt
+                     |> implies_intr (cprop_of branch_hyp)
+                     |> fold_rev (forall_intr o cert) fxs
+          in
+            (Pxs, steps)
+          end
+
+      val (branches, steps) = split_list (map_index prove_branch (branches ~~ (complete_thms ~~ pats)))
+                              |> apsnd flat
+                           
+      val istep = sum_split_rule
+                |> fold (fn b => fn th => Drule.compose_single (b, 1, th)) branches
+                |> implies_intr ihyp
+                |> forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
+         
+      val induct_rule =
+          @{thm "wf_induct_rule"}
+            |> (curry op COMP) wf_thm 
+            |> (curry op COMP) istep
+
+      val steps_sorted = map snd (sort (int_ord o pairself fst) steps)
+    in
+      (steps_sorted, induct_rule)
+    end
+
+
+fun mk_ind_tac comp_tac pres_tac term_tac ctxt facts = (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL 
+(SUBGOAL (fn (t, i) =>
+  let
+    val (ctxt', _, cases, concl) = dest_hhf ctxt t
+    val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
+(*     val _ = tracing (makestring scheme)*)
+    val ([Rn,xn], ctxt'') = Variable.variant_fixes ["R","x"] ctxt'
+    val R = Free (Rn, mk_relT ST)
+    val x = Free (xn, ST)
+    val cert = cterm_of (ProofContext.theory_of ctxt)
+
+    val ineqss = mk_ineqs R scheme
+                   |> map (map (pairself (assume o cert)))
+    val complete = map_range (mk_completeness ctxt scheme #> cert #> assume) (length branches)
+    val wf_thm = mk_wf ctxt R scheme |> cert |> assume
+
+    val (descent, pres) = split_list (flat ineqss)
+    val newgoals = complete @ pres @ wf_thm :: descent 
+
+    val (steps, indthm) = mk_induct_rule ctxt'' R x complete wf_thm ineqss scheme
+
+    fun project (i, SchemeBranch {xs, ...}) =
+        let
+          val inst = cert (SumTree.mk_inj ST (length branches) (i + 1) (foldr1 HOLogic.mk_prod (map Free xs)))
+        in
+          indthm |> Drule.instantiate' [] [SOME inst]
+                 |> simplify SumTree.sumcase_split_ss
+                 |> Conv.fconv_rule ind_rulify
+(*                 |> (fn thm => (tracing (makestring thm); thm))*)
+        end                  
+
+    val res = Conjunction.intr_balanced (map_index project branches)
+                 |> fold_rev implies_intr (map cprop_of newgoals @ steps)
+                 |> (fn thm => Thm.generalize ([], [Rn]) (Thm.maxidx_of thm + 1) thm)
+
+    val nbranches = length branches
+    val npres = length pres
+  in
+    Thm.compose_no_flatten false (res, length newgoals) i
+    THEN term_tac (i + nbranches + npres)
+    THEN (EVERY (map (TRY o pres_tac) ((i + nbranches + npres - 1) downto (i + nbranches))))
+    THEN (EVERY (map (TRY o comp_tac) ((i + nbranches - 1) downto i)))
+  end))
+
+
+fun induction_schema_tac ctxt =
+  mk_ind_tac (K all_tac) (assume_tac APPEND' Goal.assume_rule_tac ctxt) (K all_tac) ctxt;
+
+val setup =
+  Method.setup @{binding induction_schema} (Scan.succeed (RAW_METHOD o induction_schema_tac))
+    "proves an induction principle"
+
+end
--- a/src/HOL/Tools/Function/induction_scheme.ML	Fri Nov 06 14:16:57 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,405 +0,0 @@
-(*  Title:      HOL/Tools/Function/induction_scheme.ML
-    Author:     Alexander Krauss, TU Muenchen
-
-A method to prove induction schemes.
-*)
-
-signature INDUCTION_SCHEME =
-sig
-  val mk_ind_tac : (int -> tactic) -> (int -> tactic) -> (int -> tactic)
-                   -> Proof.context -> thm list -> tactic
-  val induct_scheme_tac : Proof.context -> thm list -> tactic
-  val setup : theory -> theory
-end
-
-
-structure Induction_Scheme : INDUCTION_SCHEME =
-struct
-
-open Function_Lib
-
-
-type rec_call_info = int * (string * typ) list * term list * term list
-
-datatype scheme_case =
-  SchemeCase of
-  {
-   bidx : int,
-   qs: (string * typ) list,
-   oqnames: string list,
-   gs: term list,
-   lhs: term list,
-   rs: rec_call_info list
-  }
-
-datatype scheme_branch = 
-  SchemeBranch of
-  {
-   P : term,
-   xs: (string * typ) list,
-   ws: (string * typ) list,
-   Cs: term list
-  }
-
-datatype ind_scheme =
-  IndScheme of
-  {
-   T: typ, (* sum of products *)
-   branches: scheme_branch list,
-   cases: scheme_case list
-  }
-
-val ind_atomize = MetaSimplifier.rewrite true @{thms induct_atomize}
-val ind_rulify = MetaSimplifier.rewrite true @{thms induct_rulify}
-
-fun meta thm = thm RS eq_reflection
-
-val sum_prod_conv = MetaSimplifier.rewrite true 
-                    (map meta (@{thm split_conv} :: @{thms sum.cases}))
-
-fun term_conv thy cv t = 
-    cv (cterm_of thy t)
-    |> prop_of |> Logic.dest_equals |> snd
-
-fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
-
-fun dest_hhf ctxt t = 
-    let 
-      val (ctxt', vars, imp) = dest_all_all_ctx ctxt t
-    in
-      (ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
-    end
-
-
-fun mk_scheme' ctxt cases concl =
-    let
-      fun mk_branch concl =
-          let
-            val (ctxt', ws, Cs, _ $ Pxs) = dest_hhf ctxt concl
-            val (P, xs) = strip_comb Pxs
-          in
-            SchemeBranch { P=P, xs=map dest_Free xs, ws=ws, Cs=Cs }
-          end
-
-      val (branches, cases') = (* correction *)
-          case Logic.dest_conjunction_list concl of
-            [conc] => 
-            let 
-              val _ $ Pxs = Logic.strip_assums_concl conc
-              val (P, _) = strip_comb Pxs
-              val (cases', conds) = take_prefix (Term.exists_subterm (curry op aconv P)) cases
-              val concl' = fold_rev (curry Logic.mk_implies) conds conc
-            in
-              ([mk_branch concl'], cases')
-            end
-          | concls => (map mk_branch concls, cases)
-
-      fun mk_case premise =
-          let
-            val (ctxt', qs, prems, _ $ Plhs) = dest_hhf ctxt premise
-            val (P, lhs) = strip_comb Plhs
-                                
-            fun bidx Q = find_index (fn SchemeBranch {P=P',...} => Q aconv P') branches
-
-            fun mk_rcinfo pr =
-                let
-                  val (ctxt'', Gvs, Gas, _ $ Phyp) = dest_hhf ctxt' pr
-                  val (P', rcs) = strip_comb Phyp
-                in
-                  (bidx P', Gvs, Gas, rcs)
-                end
-                
-            fun is_pred v = exists (fn SchemeBranch {P,...} => v aconv P) branches
-
-            val (gs, rcprs) = 
-                take_prefix (not o Term.exists_subterm is_pred) prems
-          in
-            SchemeCase {bidx=bidx P, qs=qs, oqnames=map fst qs(*FIXME*), gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
-          end
-
-      fun PT_of (SchemeBranch { xs, ...}) =
-            foldr1 HOLogic.mk_prodT (map snd xs)
-
-      val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) (map PT_of branches)
-    in
-      IndScheme {T=ST, cases=map mk_case cases', branches=branches }
-    end
-
-
-
-fun mk_completeness ctxt (IndScheme {cases, branches, ...}) bidx =
-    let
-      val SchemeBranch { xs, ws, Cs, ... } = nth branches bidx
-      val relevant_cases = filter (fn SchemeCase {bidx=bidx', ...} => bidx' = bidx) cases
-
-      val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) relevant_cases []
-      val (Pbool :: xs') = map Free (Variable.variant_frees ctxt allqnames (("P", HOLogic.boolT) :: xs))
-      val Cs' = map (Pattern.rewrite_term (ProofContext.theory_of ctxt) (filter_out (op aconv) (map Free xs ~~ xs')) []) Cs
-                       
-      fun mk_case (SchemeCase {qs, oqnames, gs, lhs, ...}) =
-          HOLogic.mk_Trueprop Pbool
-                     |> fold_rev (fn x_l => curry Logic.mk_implies (HOLogic.mk_Trueprop(HOLogic.mk_eq x_l)))
-                                 (xs' ~~ lhs)
-                     |> fold_rev (curry Logic.mk_implies) gs
-                     |> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
-    in
-      HOLogic.mk_Trueprop Pbool
-       |> fold_rev (curry Logic.mk_implies o mk_case) relevant_cases
-       |> fold_rev (curry Logic.mk_implies) Cs'
-       |> fold_rev (Logic.all o Free) ws
-       |> fold_rev mk_forall_rename (map fst xs ~~ xs')
-       |> mk_forall_rename ("P", Pbool)
-    end
-
-fun mk_wf ctxt R (IndScheme {T, ...}) =
-    HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
-
-fun mk_ineqs R (IndScheme {T, cases, branches}) =
-    let
-      fun inject i ts =
-          SumTree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
-
-      val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
-
-      fun mk_pres bdx args = 
-          let
-            val SchemeBranch { xs, ws, Cs, ... } = nth branches bdx
-            fun replace (x, v) t = betapply (lambda (Free x) t, v)
-            val Cs' = map (fold replace (xs ~~ args)) Cs
-            val cse = 
-                HOLogic.mk_Trueprop thesis
-                |> fold_rev (curry Logic.mk_implies) Cs'
-                |> fold_rev (Logic.all o Free) ws
-          in
-            Logic.mk_implies (cse, HOLogic.mk_Trueprop thesis)
-          end
-
-      fun f (SchemeCase {bidx, qs, oqnames, gs, lhs, rs, ...}) = 
-          let
-            fun g (bidx', Gvs, Gas, rcarg) =
-                let val export = 
-                         fold_rev (curry Logic.mk_implies) Gas
-                         #> fold_rev (curry Logic.mk_implies) gs
-                         #> fold_rev (Logic.all o Free) Gvs
-                         #> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
-                in
-                (HOLogic.mk_mem (HOLogic.mk_prod (inject bidx' rcarg, inject bidx lhs), R)
-                 |> HOLogic.mk_Trueprop
-                 |> export,
-                 mk_pres bidx' rcarg
-                 |> export
-                 |> Logic.all thesis)
-                end
-          in
-            map g rs
-          end
-    in
-      map f cases
-    end
-
-
-fun mk_hol_imp a b = HOLogic.imp $ a $ b
-
-fun mk_ind_goal thy branches =
-    let
-      fun brnch (SchemeBranch { P, xs, ws, Cs, ... }) =
-          HOLogic.mk_Trueprop (list_comb (P, map Free xs))
-          |> fold_rev (curry Logic.mk_implies) Cs
-          |> fold_rev (Logic.all o Free) ws
-          |> term_conv thy ind_atomize
-          |> ObjectLogic.drop_judgment thy
-          |> tupled_lambda (foldr1 HOLogic.mk_prod (map Free xs))
-    in
-      SumTree.mk_sumcases HOLogic.boolT (map brnch branches)
-    end
-
-
-fun mk_induct_rule ctxt R x complete_thms wf_thm ineqss (IndScheme {T, cases=scases, branches}) =
-    let
-      val n = length branches
-
-      val scases_idx = map_index I scases
-
-      fun inject i ts =
-          SumTree.mk_inj T n (i + 1) (foldr1 HOLogic.mk_prod ts)
-      val P_of = nth (map (fn (SchemeBranch { P, ... }) => P) branches)
-
-      val thy = ProofContext.theory_of ctxt
-      val cert = cterm_of thy 
-
-      val P_comp = mk_ind_goal thy branches
-
-      (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
-      val ihyp = Term.all T $ Abs ("z", T, 
-               Logic.mk_implies
-                 (HOLogic.mk_Trueprop (
-                  Const ("op :", HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT) 
-                    $ (HOLogic.pair_const T T $ Bound 0 $ x) 
-                    $ R),
-                   HOLogic.mk_Trueprop (P_comp $ Bound 0)))
-           |> cert
-
-      val aihyp = assume ihyp
-
-     (* Rule for case splitting along the sum types *)
-      val xss = map (fn (SchemeBranch { xs, ... }) => map Free xs) branches
-      val pats = map_index (uncurry inject) xss
-      val sum_split_rule = Pat_Completeness.prove_completeness thy [x] (P_comp $ x) xss (map single pats)
-
-      fun prove_branch (bidx, (SchemeBranch { P, xs, ws, Cs, ... }, (complete_thm, pat))) =
-          let
-            val fxs = map Free xs
-            val branch_hyp = assume (cert (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, pat))))
-                             
-            val C_hyps = map (cert #> assume) Cs
-
-            val (relevant_cases, ineqss') = filter (fn ((_, SchemeCase {bidx=bidx', ...}), _) => bidx' = bidx) (scases_idx ~~ ineqss)
-                                            |> split_list
-                           
-            fun prove_case (cidx, SchemeCase {qs, oqnames, gs, lhs, rs, ...}) ineq_press =
-                let
-                  val case_hyps = map (assume o cert o HOLogic.mk_Trueprop o HOLogic.mk_eq) (fxs ~~ lhs)
-                           
-                  val cqs = map (cert o Free) qs
-                  val ags = map (assume o cert) gs
-                            
-                  val replace_x_ss = HOL_basic_ss addsimps (branch_hyp :: case_hyps)
-                  val sih = full_simplify replace_x_ss aihyp
-                            
-                  fun mk_Prec (idx, Gvs, Gas, rcargs) (ineq, pres) =
-                      let
-                        val cGas = map (assume o cert) Gas
-                        val cGvs = map (cert o Free) Gvs
-                        val import = fold forall_elim (cqs @ cGvs)
-                                     #> fold Thm.elim_implies (ags @ cGas)
-                        val ipres = pres
-                                     |> forall_elim (cert (list_comb (P_of idx, rcargs)))
-                                     |> import
-                      in
-                        sih |> forall_elim (cert (inject idx rcargs))
-                            |> Thm.elim_implies (import ineq) (* Psum rcargs *)
-                            |> Conv.fconv_rule sum_prod_conv
-                            |> Conv.fconv_rule ind_rulify
-                            |> (fn th => th COMP ipres) (* P rs *)
-                            |> fold_rev (implies_intr o cprop_of) cGas
-                            |> fold_rev forall_intr cGvs
-                      end
-                      
-                  val P_recs = map2 mk_Prec rs ineq_press   (*  [P rec1, P rec2, ... ]  *)
-                               
-                  val step = HOLogic.mk_Trueprop (list_comb (P, lhs))
-                             |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
-                             |> fold_rev (curry Logic.mk_implies) gs
-                             |> fold_rev (Logic.all o Free) qs
-                             |> cert
-                             
-                  val Plhs_to_Pxs_conv = 
-                      foldl1 (uncurry Conv.combination_conv) 
-                      (Conv.all_conv :: map (fn ch => K (Thm.symmetric (ch RS eq_reflection))) case_hyps)
-
-                  val res = assume step
-                                   |> fold forall_elim cqs
-                                   |> fold Thm.elim_implies ags
-                                   |> fold Thm.elim_implies P_recs (* P lhs *) 
-                                   |> Conv.fconv_rule (Conv.arg_conv Plhs_to_Pxs_conv) (* P xs *)
-                                   |> fold_rev (implies_intr o cprop_of) (ags @ case_hyps)
-                                   |> fold_rev forall_intr cqs (* !!qs. Gas ==> xs = lhss ==> P xs *)
-                in
-                  (res, (cidx, step))
-                end
-
-            val (cases, steps) = split_list (map2 prove_case relevant_cases ineqss')
-
-            val bstep = complete_thm
-                |> forall_elim (cert (list_comb (P, fxs)))
-                |> fold (forall_elim o cert) (fxs @ map Free ws)
-                |> fold Thm.elim_implies C_hyps             (* FIXME: optimization using rotate_prems *)
-                |> fold Thm.elim_implies cases (* P xs *)
-                |> fold_rev (implies_intr o cprop_of) C_hyps
-                |> fold_rev (forall_intr o cert o Free) ws
-
-            val Pxs = cert (HOLogic.mk_Trueprop (P_comp $ x))
-                     |> Goal.init
-                     |> (MetaSimplifier.rewrite_goals_tac (map meta (branch_hyp :: @{thm split_conv} :: @{thms sum.cases}))
-                         THEN CONVERSION ind_rulify 1)
-                     |> Seq.hd
-                     |> Thm.elim_implies (Conv.fconv_rule Drule.beta_eta_conversion bstep)
-                     |> Goal.finish ctxt
-                     |> implies_intr (cprop_of branch_hyp)
-                     |> fold_rev (forall_intr o cert) fxs
-          in
-            (Pxs, steps)
-          end
-
-      val (branches, steps) = split_list (map_index prove_branch (branches ~~ (complete_thms ~~ pats)))
-                              |> apsnd flat
-                           
-      val istep = sum_split_rule
-                |> fold (fn b => fn th => Drule.compose_single (b, 1, th)) branches
-                |> implies_intr ihyp
-                |> forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
-         
-      val induct_rule =
-          @{thm "wf_induct_rule"}
-            |> (curry op COMP) wf_thm 
-            |> (curry op COMP) istep
-
-      val steps_sorted = map snd (sort (int_ord o pairself fst) steps)
-    in
-      (steps_sorted, induct_rule)
-    end
-
-
-fun mk_ind_tac comp_tac pres_tac term_tac ctxt facts = (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL 
-(SUBGOAL (fn (t, i) =>
-  let
-    val (ctxt', _, cases, concl) = dest_hhf ctxt t
-    val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
-(*     val _ = tracing (makestring scheme)*)
-    val ([Rn,xn], ctxt'') = Variable.variant_fixes ["R","x"] ctxt'
-    val R = Free (Rn, mk_relT ST)
-    val x = Free (xn, ST)
-    val cert = cterm_of (ProofContext.theory_of ctxt)
-
-    val ineqss = mk_ineqs R scheme
-                   |> map (map (pairself (assume o cert)))
-    val complete = map_range (mk_completeness ctxt scheme #> cert #> assume) (length branches)
-    val wf_thm = mk_wf ctxt R scheme |> cert |> assume
-
-    val (descent, pres) = split_list (flat ineqss)
-    val newgoals = complete @ pres @ wf_thm :: descent 
-
-    val (steps, indthm) = mk_induct_rule ctxt'' R x complete wf_thm ineqss scheme
-
-    fun project (i, SchemeBranch {xs, ...}) =
-        let
-          val inst = cert (SumTree.mk_inj ST (length branches) (i + 1) (foldr1 HOLogic.mk_prod (map Free xs)))
-        in
-          indthm |> Drule.instantiate' [] [SOME inst]
-                 |> simplify SumTree.sumcase_split_ss
-                 |> Conv.fconv_rule ind_rulify
-(*                 |> (fn thm => (tracing (makestring thm); thm))*)
-        end                  
-
-    val res = Conjunction.intr_balanced (map_index project branches)
-                 |> fold_rev implies_intr (map cprop_of newgoals @ steps)
-                 |> (fn thm => Thm.generalize ([], [Rn]) (Thm.maxidx_of thm + 1) thm)
-
-    val nbranches = length branches
-    val npres = length pres
-  in
-    Thm.compose_no_flatten false (res, length newgoals) i
-    THEN term_tac (i + nbranches + npres)
-    THEN (EVERY (map (TRY o pres_tac) ((i + nbranches + npres - 1) downto (i + nbranches))))
-    THEN (EVERY (map (TRY o comp_tac) ((i + nbranches - 1) downto i)))
-  end))
-
-
-fun induct_scheme_tac ctxt =
-  mk_ind_tac (K all_tac) (assume_tac APPEND' Goal.assume_rule_tac ctxt) (K all_tac) ctxt;
-
-val setup =
-  Method.setup @{binding induct_scheme} (Scan.succeed (RAW_METHOD o induct_scheme_tac))
-    "proves an induction principle"
-
-end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/ex/Induction_Schema.thy	Fri Nov 06 16:59:17 2009 +0100
@@ -0,0 +1,48 @@
+(*  Title:      HOL/ex/Induction_Schema.thy
+    Author:     Alexander Krauss, TU Muenchen
+*)
+
+header {* Examples of automatically derived induction rules *}
+
+theory Induction_Schema
+imports Main
+begin
+
+subsection {* Some simple induction principles on nat *}
+
+lemma nat_standard_induct: (* cf. Nat.thy *)
+  "\<lbrakk>P 0; \<And>n. P n \<Longrightarrow> P (Suc n)\<rbrakk> \<Longrightarrow> P x"
+by induction_schema (pat_completeness, lexicographic_order)
+
+lemma nat_induct2:
+  "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc k) ==> P (Suc (Suc k)) \<rbrakk>
+  \<Longrightarrow> P n"
+by induction_schema (pat_completeness, lexicographic_order)
+
+lemma minus_one_induct:
+  "\<lbrakk>\<And>n::nat. (n \<noteq> 0 \<Longrightarrow> P (n - 1)) \<Longrightarrow> P n\<rbrakk> \<Longrightarrow> P x"
+by induction_schema (pat_completeness, lexicographic_order)
+
+theorem diff_induct: (* cf. Nat.thy *)
+  "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
+    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
+by induction_schema (pat_completeness, lexicographic_order)
+
+lemma list_induct2': (* cf. List.thy *)
+  "\<lbrakk> P [] [];
+  \<And>x xs. P (x#xs) [];
+  \<And>y ys. P [] (y#ys);
+   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
+ \<Longrightarrow> P xs ys"
+by induction_schema (pat_completeness, lexicographic_order)
+
+theorem even_odd_induct:
+  assumes "R 0"
+  assumes "Q 0"
+  assumes "\<And>n. Q n \<Longrightarrow> R (Suc n)"
+  assumes "\<And>n. R n \<Longrightarrow> Q (Suc n)"
+  shows "R n" "Q n"
+  using assms
+by induction_schema (pat_completeness+, lexicographic_order)
+
+end
\ No newline at end of file
--- a/src/HOL/ex/Induction_Scheme.thy	Fri Nov 06 14:16:57 2009 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,49 +0,0 @@
-(*  Title:      HOL/ex/Induction_Scheme.thy
-    ID:         $Id$
-    Author:     Alexander Krauss, TU Muenchen
-*)
-
-header {* Examples of automatically derived induction rules *}
-
-theory Induction_Scheme
-imports Main
-begin
-
-subsection {* Some simple induction principles on nat *}
-
-lemma nat_standard_induct: (* cf. Nat.thy *)
-  "\<lbrakk>P 0; \<And>n. P n \<Longrightarrow> P (Suc n)\<rbrakk> \<Longrightarrow> P x"
-by induct_scheme (pat_completeness, lexicographic_order)
-
-lemma nat_induct2:
-  "\<lbrakk> P 0; P (Suc 0); \<And>k. P k ==> P (Suc k) ==> P (Suc (Suc k)) \<rbrakk>
-  \<Longrightarrow> P n"
-by induct_scheme (pat_completeness, lexicographic_order)
-
-lemma minus_one_induct:
-  "\<lbrakk>\<And>n::nat. (n \<noteq> 0 \<Longrightarrow> P (n - 1)) \<Longrightarrow> P n\<rbrakk> \<Longrightarrow> P x"
-by induct_scheme (pat_completeness, lexicographic_order)
-
-theorem diff_induct: (* cf. Nat.thy *)
-  "(!!x. P x 0) ==> (!!y. P 0 (Suc y)) ==>
-    (!!x y. P x y ==> P (Suc x) (Suc y)) ==> P m n"
-by induct_scheme (pat_completeness, lexicographic_order)
-
-lemma list_induct2': (* cf. List.thy *)
-  "\<lbrakk> P [] [];
-  \<And>x xs. P (x#xs) [];
-  \<And>y ys. P [] (y#ys);
-   \<And>x xs y ys. P xs ys  \<Longrightarrow> P (x#xs) (y#ys) \<rbrakk>
- \<Longrightarrow> P xs ys"
-by induct_scheme (pat_completeness, lexicographic_order)
-
-theorem even_odd_induct:
-  assumes "R 0"
-  assumes "Q 0"
-  assumes "\<And>n. Q n \<Longrightarrow> R (Suc n)"
-  assumes "\<And>n. R n \<Longrightarrow> Q (Suc n)"
-  shows "R n" "Q n"
-  using assms
-by induct_scheme (pat_completeness+, lexicographic_order)
-
-end
\ No newline at end of file
--- a/src/HOL/ex/ROOT.ML	Fri Nov 06 14:16:57 2009 +0100
+++ b/src/HOL/ex/ROOT.ML	Fri Nov 06 16:59:17 2009 +0100
@@ -24,7 +24,7 @@
   "Binary",
   "Recdefs",
   "Fundefs",
-  "Induction_Scheme",
+  "Induction_Schema",
   "InductiveInvariant_examples",
   "LocaleTest2",
   "Records",