--- a/src/HOL/Relation.thy Tue Dec 06 20:08:51 2022 +0100
+++ b/src/HOL/Relation.thy Tue Dec 06 18:56:28 2022 +0100
@@ -298,10 +298,10 @@
by (rule irrefl_onI[of UNIV, simplified])
lemma irreflp_onI: "(\<And>a. a \<in> A \<Longrightarrow> \<not> R a a) \<Longrightarrow> irreflp_on A R"
- by (simp add: irreflp_on_def)
+ by (rule irrefl_onI[to_pred])
lemma irreflpI[intro?]: "(\<And>a. \<not> R a a) \<Longrightarrow> irreflp R"
- by (rule irreflp_onI[of UNIV, simplified])
+ by (rule irreflI[to_pred])
lemma irrefl_onD: "irrefl_on A r \<Longrightarrow> a \<in> A \<Longrightarrow> (a, a) \<notin> r"
by (simp add: irrefl_on_def)
@@ -310,10 +310,10 @@
by (rule irrefl_onD[of UNIV, simplified])
lemma irreflp_onD: "irreflp_on A R \<Longrightarrow> a \<in> A \<Longrightarrow> \<not> R a a"
- by (simp add: irreflp_on_def)
+ by (rule irrefl_onD[to_pred])
lemma irreflpD: "irreflp R \<Longrightarrow> \<not> R x x"
- by (rule irreflp_onD[of UNIV, simplified])
+ by (rule irreflD[to_pred])
lemma irrefl_on_distinct [code]: "irrefl_on A r \<longleftrightarrow> (\<forall>(a, b) \<in> r. a \<in> A \<longrightarrow> b \<in> A \<longrightarrow> a \<noteq> b)"
by (auto simp add: irrefl_on_def)
@@ -609,10 +609,10 @@
by (rule total_onI)
lemma totalp_onI: "(\<And>x y. x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y \<or> R y x) \<Longrightarrow> totalp_on A R"
- by (simp add: totalp_on_def)
+ by (rule total_onI[to_pred])
lemma totalpI: "(\<And>x y. x \<noteq> y \<Longrightarrow> R x y \<or> R y x) \<Longrightarrow> totalp R"
- by (rule totalp_onI)
+ by (rule totalI[to_pred])
lemma totalp_onD:
"totalp_on A R \<Longrightarrow> x \<in> A \<Longrightarrow> y \<in> A \<Longrightarrow> x \<noteq> y \<Longrightarrow> R x y \<or> R y x"
--- a/src/HOL/Wellfounded.thy Tue Dec 06 20:08:51 2022 +0100
+++ b/src/HOL/Wellfounded.thy Tue Dec 06 18:56:28 2022 +0100
@@ -75,7 +75,7 @@
using wf_irrefl [OF assms] by (auto simp add: irrefl_def)
lemma wfP_imp_irreflp: "wfP r \<Longrightarrow> irreflp r"
- by (rule wf_imp_irrefl[to_pred, folded top_set_def])
+ by (rule wf_imp_irrefl[to_pred])
lemma wf_wellorderI:
assumes wf: "wf {(x::'a::ord, y). x < y}"